
Ann Oper Res (2015) 235:423–452
DOI 10.1007/s10479-015-1914-5

Set constraint model and automated encoding into SAT:
application to the social golfer problem

Frédéric Lardeux1 · Eric Monfroy2 ·
Broderick Crawford3,4,5 · Ricardo Soto3,6,7

Published online: 9 June 2015
© Springer Science+Business Media New York 2015

Abstract On the one hand, constraint satisfaction problems allow one to expressively model
problems. On the other hand, propositional satisfiability problem (SAT) solvers can handle
huge SAT instances. We thus present a technique to expressively model set constraint prob-
lems and to encode them automatically into SAT instances. We apply our technique to the
social golfer problem and we also use it to break symmetries of the problem. Our technique
is simpler, more expressive, and less error-prone than direct modeling. The SAT instances
that we automatically generate contain less clauses than improved direct instances such as
in Triska and Musliu (Ann Oper Res 194(1):427–438, 2012), and with unit propagation they
also contain less variables.Moreover, they are well-suited for SAT solvers and they are solved
faster as shown when solving difficult instances of the social golfer problem.

Keywords Constraint programming · CSP · Set constraints · SAT encoding ·
Social golfer problem

B Frédéric Lardeux
Frederic.Lardeux@univ-angers.fr

Eric Monfroy
Eric.Monfroy@univ-nantes.fr

Broderick Crawford
broderick.crawford@ucv.cl

Ricardo Soto
ricardo.soto@ucv.cl

1 LERIA, Université d’Angers, Angers, France

2 LINA, UMR CNRS 6241, TASC INRIA, Université de Nantes, Nantes, France

3 Pontificia Universidad Católica de Valparaiso, 2362807 Valparaiso, Chile

4 Universidad San Sebastián, Valdivia, Chile

5 Universidad Central de Chile, Santiago, Chile

6 Universidad Autónoma de Chile, Temuco, Chile

7 Universidad Cientifica del Sur, Lima, Perú

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-015-1914-5&domain=pdf

424 Ann Oper Res (2015) 235:423–452

1 Introduction

Most of combinatorial problems can be formulated as constraint satisfaction problems
(CSP) Rossi et al. (2006). A CSP is defined by some variables (generally over finite domains)
and constraints between these variables. Solving a CSP consists in finding assignments of
the variables that satisfy the constraints. One of the main strength of CSP is expressiveness:
variables can be of various types (finite domains, floating point numbers, intervals, sets, …)
and constraints as well (linear arithmetic constraints, set constraints, non linear constraints,
Boolean constraints, symbolic constraints,…).Moreover, the so-called global constraints not
only improve solving efficiency but also expressiveness: they propose new constructs and
relations such as alldifferent (to enforce that all the variables of a list have different values),
cumulative (to schedule tasks sharing resources), …

On the other hand, the propositional satisfiability problem (SAT) Garey and Johnson
(1979) is restricted (in terms of expressiveness) to Boolean variables and propositional for-
mulae. However, SAT solvers can now handle huge SAT instances (millions of variables). It
is thus attractive to (1) encode CSPs into SAT (e.g., Bacchus 2007; Bessière et al. 2004) in
order to benefit from the expressiveness of CSP and the power of SAT, or (2) introduce more
expressiveness into SAT, for example with global constraints (e.g., alldifferent Lardeux et al.
2009; cardinality Bailleux and Boufkhad 2003).

In this paper we are concerned with the transformation of set constraints into SAT
instances: we often refer to this transformation as “encoding”. Various systems of set
constraints (either specialized systems Legeard and Legros 1991, libraries for constraint pro-
gramming systems such as Gervet 1994, the set constraint library of CHOCO http://www.
emn.fr/z-info/choco-solver/, or constraint systems and modelers such as MiniZinc (http://
www.minizinc.org/) have been designed for solving problems such as prototyping combina-
torial problems, axiomatization of set theory, analysis of programs,…They have shown that
some problems can easily be modeled with set constraints.

Coding set constraints directly into SAT is a tedious tasks (see for example Triska and
Musliu 2012 or Gent and Lynce 2005). Moreover, when one wants to optimize its model in
terms of variables and clauses this quickly leads to very complicated and unreadable models
in which errors can easily appear. Thus, our approach is based on an automated encoding of
set constraints into SAT instances. To this end, we define some encoding rules (⇔enc) that
encode set constraints (such as intersection, union, membership, cardinal of sets) into the
corresponding SAT clauses and variables. The advantage is that the modeling language (i.e.,
standard set constraints) is expressive, simple, and readable. We have tried this technique on
various problems, and theSAT instanceswhich are automatically generated have a complexity
similar to the complexity of improved direct SAT formulations, and their solving with a SAT
solver (in our case Minisat) is efficient.

We illustrate our approach with the social golfer problem (problem number 10 of the
CSPLib Gent and Walsh 1999). The problem is the following: q golfers play every weeks
during w weeks split in g groups of p golfers (q = p.g). How to schedule the play of
these golfers such that no golfer plays in the same group as any other golfer more than
once. An instance of the problem is then given by a triple g − p − w. Various instances of
the social golfer problem are still open, and the problem is attractive since it is related to
problems such as encryption and covering problems. Compared to direct encodings (such as
the one of Triska and Musliu 2012), the instances we generate are smaller (less clauses), and
also contain less variables using unit propagation. The introduction of symmetry breaking
is simplified with our technique and can be done by adding constraints to the initial model

123

http://www.emn.fr/z-info/choco-solver/
http://www.emn.fr/z-info/choco-solver/
http://www.minizinc.org/
http://www.minizinc.org/

Ann Oper Res (2015) 235:423–452 425

or by refining the initial model. Using Minisat Eén and Sörensson (2003), our automatically
generated instances (with or without symmetry breaking) are solved faster than the ones
of Triska and Musliu (2012).

We can compare our work with works of different types, first of all with SAT encoding
techniques such as Bacchus (2007) and Bessière et al. (2004). These works make a relation
between CSP solving and SAT solving in terms of properties such as consistencies for finite
domain variables and constraints. In this article, we focus on expressiveness for SAT and on
a different type of constraints, i.e., set constraints.

Concerning applications, i.e., the social golfer problem, the closest work is Triska and
Musliu (2012) which is a revision and improvement of Gent and Lynce (2005).Whereas these
works are direct modeling of the social golfer problem directly in SAT, we are concerned
with a higher-level model language which is automatically transformed into SAT instances.
Triska and Musliu (2012) also proposes various symmetry breaking techniques to improve
the model; some of these symmetries naturally disappear using our set constraint model (for
example, we do not have any permutations due to the numbering of players inside a group).
Other symmetry breakings can easily be introduced in our model, by adding constraints or
by refining the initial model.

In Cotta et al. (2006), the social golfer problem is modeled with a combination of set
constraints and arithmetic constraints. However, this model is not directly used but it is
transformed into CSP before being solved by mimetic algorithms.

Finally, our approach is similar to Lardeux et al. (2009) in which alldifferent global
constraints and overlapping alldifferent constraints are handled expressively before being
encoded automatically in SAT using rewrite rules.

Note also that we use the work of Bailleux and Boufkhad (2003) about the cardinality
global constraint in order to perform the encoding of set cardinality.

In the next section (Sect. 2), we present our set constraint language and the rule-based
system for encoding set constraints into SAT; we consider standard set constraints. To get a
comparison basis, we then (Sect. 3) give a direct SATmodel of the social golfer problem, and
some variants of this model. We then present how to model the social golfer problem with
set constraints, and show the interest of our system in terms of expressiveness. In Sect. 4, we
show how to introduce symmetry breaking techniques (that can be found in the literature)
with our set constraint language: by adding new constraints or by refining the initial model.
In Sect. 5, we compare various SAT instances, either direct or automatically generated with
our encoding rule: this analysis is made with respect to instance structures (e.g., number of
variables and clauses). In the next section, we compare the solving time of these instances.
Section 7, discusses various points related to our technique: structure of instances, usefullness
of unit propagation, difference with work about set constraints in constraint programming,
…We finally conclude in Sect. 8.

2 Set constraint encoding

We present here the encoding of usual (CSP) set constraints (such as ∈, ∪, ∩, …) into
SAT clauses. More constraints could be defined, but they can be deduced from these basic
constraints.

123

426 Ann Oper Res (2015) 235:423–452

2.1 Universe and supports

We consider two notions: universe and support. Unformally, the universe is the set of all
elements that are considered in a model of a given problem while the support F of a set F
appearing in this model is a set of possible elements of F (i.e., F is a superset of F).

Definition 1 Let P be a problem, and M be a model of P in L, i.e., a description of P from
the natural language to the language of constraints L.
– The universe U of M is a finite set of constants.
– The support of the set F of the model M is a subset of the universe U ; we denote it by

F . F represents the elements of U that can possibly be elements of F :

F ⊆ F ⊆ U and F ∈ P(F)

where P(F) = {A|A ⊆ F} is the power set of F . We say that F is over F .

Note that each element of U\F cannot be element of F . In the following, we denote sets
by uppercase letters (e.g., F) and their supports by calligraphic uppercase letters (e.g., F).
When there is no confusion of model, we shorten “the set F of the model M” to “the set F”.

Consider a model M with a universe U , and a set F over F . For each element x of F , we
consider a Boolean variable xF which is true if x ∈ F and false otherwise. We call the set
of such variables the support variables for F in F .

Example 1 Let U = {x, y, z, t} be the universe of a model M , and F = {x, y, t} be the
support of a set F of M . Then, we have 3 Boolean variables xF , yF , and tF corresponding
respectively to x , y, and z to represent F . By definition, z /∈ F and there is no zF variable; and
x, y, t can possibly be in F . Consider now that F = {x, y}. Then, xF = true, yF = true,
and tF = f alse.

In the following, we write xF for xF = true and ¬xF for xF = f alse.

2.2 The ⇔enc encoding rule

We can now define the encoding of the various CSP set constraints into SAT. In the following,
we consider three sets F , G, and H respectively defined on the supports F , G and H of the
universe U , and for each x ∈ U the various Boolean variables xF , xG , and xH as defined
before. |G| denotes the cardinality of the set G.

Note that we do not force the supports to be minimal: for example, for the equality
constraint F = G, the sets F\G and G\F can be non empty whereas F\G and G\F must be
empty. We thus consider these cases in the ⇔enc encoding rule. Allowing the supports to be
non minimal eases the modeling process: indeed, one does not have to compute the minimal
support and can use a superset of it or the universe. This is practical when sets are built from
many other sets using numerous set constraints. Note also that using smaller supports reduces
the size of the generated SAT instances.

The encoding rule is noted ⇔enc. The clauses that are generated by this rule are of the
form ∀x ∈ F, φ(xF) which denotes the |F | formulae φ(xF) built for each element x of
the support F of F (x refers to the element of the universe/support, and xF to the variable
representing x for the set F). For the membership constraint, the rule is not quantified; for
multi-intersection and multi-union, an additional universal quantifier over i is used to denote
a set of encoding rules, each rule being related to one of the sets Fi .

In the following, we propose several set constraint encodings with: first the set constraint,
then its encoding in SAT, and finally, the number of generated clauses.

123

Ann Oper Res (2015) 235:423–452 427

2.3 Membership constraint

This constraint enforces the membership of an element x to a set F :

– if x ∈ F (x is in the support of F), then the corresponding support variable must be true,
i.e., xF .

– if x /∈ F (x is not in the support of F), then the constraint x ∈ F must generate a failure
since the problem does not have any solution.

x ∈ F ⇔enc

{
x ∈ F, xF 1 unit clause
x /∈ F, f alse 1 empty clause

The constraint x /∈ F can be similarly defined:

x /∈ F ⇔enc

{
x ∈ F, ¬xF 1 unit clause
x /∈ F, true 1 empty clause

2.4 Set equality constraint

Two sets G and F are equal if and only if:

– for the elements of F ∩G: the support variables of G have the same values as the support
variables of F ;

– for the elements of F\G: the support variables of F must be false. Indeed, an element of
the universe which is not in the support of a set is not part of this set; thus, an element of
F\G cannot be in F .

– for the elements of G\F : the support variables of G must be false.

F = G ⇔enc

⎧⎨
⎩

∀x ∈ F ∩ G, xF ↔ xG 2.|F ∩ G| binary clauses
∀x ∈ F\G, ¬xF |F\G| unit clauses
∀x ∈ G\F, ¬xG |G\F | unit clauses

The constraint F 	= G can be similarly defined by considering the negation of the con-
junction of formulae of the previous encoding.

2.5 Intersection constraint

Let H be the intersection of two sets G and F :

– for the elements of F ∩ G ∩H: a support variable of H is true if and only if this variable
is in F and G;

– for the elements of (F ∩ G)\H: since such an element cannot be in H , it must not be in
F and G;

– for the elements ofH\(F ∩ G): a support variable of H which is not in the support of F
and G cannot be true

F ∩ G = H
⇔enc⎧⎪⎪⎨

⎪⎪⎩
∀x ∈ F ∩ G ∩ H, xF ∧ xG ↔ xH

|F ∩ G ∩ H| ternary clauses
+2.|F ∩ G ∩ H| binary clauses

∀x ∈ (F ∩ G)\H, ¬xF ∨ ¬xG |(F ∩ G)\H| binary clauses
∀x ∈ H\(F ∩ G), ¬xH |H\(F ∩ G)| unit clauses

Note that if H = ∅ (e.g., we want to force the intersection to be empty), then the encoding
can be simplified into ∀x ∈ U,¬xF ∨ ¬xG , and thus, reduce its size to |U | clauses.

123

428 Ann Oper Res (2015) 235:423–452

2.6 Union constraint

More cases are to be considered for this constraints:

– for the elements of F ∩ G ∩H: a support variable of H is true if and only if this variable
is in F or in G; this is the trivial case;

– for the elements of (F ∩ H)\G: this case is a reduction of the previous one but it is
however equivalent; since such an element x is not in the support of G then xG does not
exist, and x is in H if and only if it is in F ; note that the generated clauses are exactly
the same removing xG ;

– for the elements of (G ∩ H)\F : this is the symmetrical case for G;
– for the elements ofH\(F ∪G): the support variables of H that are not in F or in G must

be false;
– for the elements of F\H: elements of the support of F that are not in the support of H

cannot be in F ;
– for the elements of G\H: symmetrical case for G.

F ∪ G = H
⇔enc⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀x ∈ F ∩ G ∩ H, xF ∨ xG ↔ xH
|F ∩ G ∩ H| ternary clauses
+2.|F ∩ G ∩ H| binary clauses

∀x ∈ (F ∩ H)\G, xF ↔ xH 2.|(F ∩ H)\G| binary clauses
∀x ∈ (G ∩ H)\F, xG ↔ xH 2.|(G ∩ H)\F | binary clauses
∀x ∈ H\(F ∪ G), ¬xH |H\(F ∪ G)| unit clauses
∀x ∈ F\H, ¬xF |F\H| unit clauses
∀x ∈ G\H, ¬xG |G\H| unit clauses

2.7 Inclusion constraint

– for the elements of F ∩ G: such an element is in G if it is in F ,
– for the elements of F\G: since these elements cannot be in G, they cannot be in F ;

F ⊆ G ⇔enc

{∀x ∈ F ∩ G, xF → xG |F ∩ G| binary clauses
∀x ∈ F\G, ¬xF |F\G| unit clauses

2.8 Difference constraint

– for the elements of F ∩ G ∩ H: such elements are in H if and only if they are in F and
not in G;

– for the elements of F\(G ∪ H): such elements cannot be in F ;
– for the elements of H\F : such elements cannot be in H ;
– for the elements of (F ∩ H)\G: such elements are in H if and only if they are in F ;
– for the elements of (F ∩G)\H: since such elements cannot be in H , if they are in F they

also must be in G;

123

Ann Oper Res (2015) 235:423–452 429

H = F\G
⇔enc⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∀x ∈ F ∩ G ∩ H, xF ∧ ¬xG ↔ xH
|F ∩ G ∩ H| ternary clauses
+2.|F ∩ G ∩ H| binary clauses

∀x ∈ F\(G ∪ H), ¬xF |F\(G ∪ H)| ternary clauses
∀x ∈ H\F, ¬xH |H\F | unit clauses
∀x ∈ (F ∩ H)\G, xF ↔ xH 2.|(F ∩ H)\G| binary clauses
∀x ∈ (F ∩ G)\H, xF → xG |(F ∩ G)\H| binary clauses

2.9 Multi-union constraint

The multi-union constraint H = ⋃n
i=1 Fi is equivalent to the n constraints expressed as

H = F1 ∪ (F2 ∪ (. . . (Fn−1 ∪ Fn) . . .). It is not only a short-hand, but it also significantly
reduces the number of generated clauses. Indeed, elements of

⋂n
i=1 Fi are considered once

in the multi-union constraint whereas it is considered n times in the corresponding n union
constraints. We do not detail the encoding since this is an extension of the union constraint.
In the next formulae, the set {1, . . . , n} is noted N .

H = ⋃n
i=1 Fi⇔enc⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀I, J ∈ P(N), I 	= ∅, I ∪ J = N ,

∀x ∈ H ∩ (
⋂

i∈I Fi)\(⋃ j∈J F j),
∨

i∈I xFi ↔ xH
(I)

∀x ∈ H\(⋃n
i=1 Fi), ¬xH (I I)

∀i ∈ [1..n], ∀x ∈ Fi\H, ¬xFi (I I I)

(I) generates∑
I,J∈P(N),

I 	=∅,

I∪J=N

(|H ∩ (
⋂

i∈I Fi)\(⋃ j∈J F j)|.(|I | + 1)
)
binary clauses

and∑
I,J∈P(N),

I 	=∅,

I∪J=N

(|H ∩ (
⋂

i∈I Fi)\(⋃ j∈J F j)|
)

(|I | + 1)-ary clauses

(I I) generates |H\(⋃n
i=1 Fi)| unit clauses

(I I I) generates
∑n

i=1 |(Fi\H| unit clauses
Note also that in our implementation that generates SAT instances, the result of an union

must be stored in a set: thus, H = ⋃n
i=1 Fi is equivalent to H = F1 ∪ H1, H1 = F2 ∪ H2,

…,Hn−1 = Fn−1 ∪ Fn . The multi-union constraint thus also significantly reduce the number
of variables (variables necessary for the intermediate sets Hi).

2.10 Multi-intersection constraint

Similarly, we define the multi-intersection constraints. As for the multi-union, the advantage
is the gain of clauses, and of variables in our implementation of the encoding.

H = ⋂n
i=1 Fi ⇔enc

⎧⎪⎨
⎪⎩

∀x ∈ H ∩ (
⋂n

i=1 Fi),
∧n

i=1 xFi ↔ xH (I)

∀x ∈ ⋂n
i=1 Fi\H,

∨n
i=1(¬xFi) (I I)

∀x ∈ H\(⋂n
i=1 Fi), ¬xH (I I I)

123

430 Ann Oper Res (2015) 235:423–452

(I) generates 2.|H ∩ (
⋂n

i=1 Fi)| (n + 1)-ary clauses
(I I) generates | ⋂n

i=1 Fi\H| n-ary clauses
(I I I) generates |H\(⋂n

i=1 Fi)| unit clauses
2.11 Cardinality constraint

This constraint is interesting to enforce the size of a set, or to compute the size of a set. We
denote by k = |G| the cardinality constraint linking the cardinal of G to the finite domain
number (or variable) k. This constraint has been studied for the encoding of global constraints,
see for example Bailleux and Boufkhad (2003).

The very intuitive encoding of this constraint is quite simple. If we have a support G of
size n and we want to obtain a set G of k elements (k ≤ n) we have to verify that:

– All the sets of k + 1 variables have at least one false variable.
– All the sets of n − k + 1 variables have at most one true variable.

|G| = k ⇔enc

∀{x1, . . . , xk+1} ⊆ V,
∨
i

¬xi ,∀{x1, . . . , xn−k+1} ⊆ V,
∨
i

xi

The weakness of this encoding is the number of generated clauses:

n!
(k + 1)! + (n − k − 1)! + n!

(k − 1)! + (n − k + 1)!
A more efficient encoding (but less intuitive) for this constraint is the use of the unary

representation of integers (an integer k ∈ [0..n] is represented by 1 k times followed by 0
n − k times). This encoding is presented in Bailleux and Boufkhad (2003) with two main
components: the totalizer and the comparator. Note that we have chosen this encoding for
the unit clauses it generates (see Sect. 3.3.2).

The totalizer corresponds to a balanced binary tree structure. It is used to associate an
auxiliary variable (output variable) for each variable of the cardinality constraint (input
variable) and to sort these new variables such that the true variables are placed before the
false variables. Internal variables used to linked input and output variables are called linking
variables. The main property of the binary tree is that each non-leaf node corresponds to
the union of the two children. The leaves are the input variables and the seed is the set of
the output variables. Each node N has two child nodes C1 and C2 that are sets of Boolean
variables. We denote C1

α the α-th variable of the set C1.
The totalizer is encoded by generating for each node the next clauses:

∧
0≤α≤|C1|
0≤β≤|C2|
0≤γ≤|N |
α+β=γ

(¬C1
α ∨ ¬C2

β ∨ Nγ) ∧ (C1
α+1 ∨ C2

β+1 ∨ ¬Nγ+1)

with

– C1
0 = C2

0 = N0 = 1

– C1
|C1|+1

= C2
|C2|+1

= N|N |+1 = 0

123

Ann Oper Res (2015) 235:423–452 431

The comparator enforces the cardinal k of the set simply by assigning the true value to
the first k output variables (noted si) of the totalizer. Its encoding is very simple:∧

1≤i≤k

si
∧

k+1≤ j≤n

¬s j

In total, if G is over the support G of size n, then the set constraint |G| = k generates:

– n + ∑n
i=1 2u

n
i

(
� uni

2 � + 1
) (

� uni
2 � + 1

)
−

(
uni
2 + 1

)
clauses

–
∑n

i=1 u
n
i variables.

with unn = 1,un1 = n and uni = un2i−1 + 2un2i + un2i+1.

3 Models for the social golfer problem

In this section we describe various SAT related models for the social golfer problem.

3.1 Direct encoding

In order to present (and then compare) a SATmodel for the social golfer problem which does
not use set constraints, we give here a model, similar to the one of Triska and Musliu (2012)
(which was already a revision of Gent and Lynce 2005) without auxiliary variables.

The Boolean variables to be considered are denoted gq ′,p′,g′,w′ meaning (when gq ′,p′,g′,w′
is true) that player q ′ is the p′-th player of the group number g′ of week w′ with:

– p′ ranging from 1 to p, p being the number of players in each group;
– g′ ranging from 1 to g, g being the number of groups each week;
– q ′ ranging from 1 to q , q = g.p being the total number of players;
– and w ranging from 1 to w, w being the number of weeks considered.

With the q.p.g.w variables of type gq ′,p′,g′,w′ , the constraints are:

– each golfer plays once per week;
– there is p players in each group;
– two players never play twice in the same group.

Each golfer plays at least once per week To enforce that each golfer plays at least once per
week, we need the following g.p.w clauses:

q∧
q ′=1

w∧
w′=1

p∨
p′=1

g∨
g′=1

gq ′,p′,g′,w′ (1)

meaning that for each week w′, each player q ′ is at least the p′-th player in one group g′.

Each players plays at most once per week Enforcing that each players plays at most once
per week is done in two steps, first enforcing that each golfer plays at most once per group
in each week: on week w′, group g′, the same player cannot play both on position p′ of g′
and position p′′ of g′:

q∧
q ′=1

w∧
w′=1

p∧
p′=1

g∧
g′=1

p∧
p′′=p′+1

¬gq ′,p′,g′,w′ ∨ ¬gq ′,p′′,g′,w′ (2)

123

432 Ann Oper Res (2015) 235:423–452

Formula (2) consists in q.w.g.p.(p − 1)/2 clauses.
Then, the following q.w.p.(p−1).g.(g−1)/4 clauses ensure than a player does not play

in more than a group each week:

q∧
q ′=1

w∧
w′=1

p∧
p′=1

g∧
g′=1

g∧
g′′=g′+1

p∧
p′′=p′+1

¬gq ′,p′,g′,w′ ∨ ¬gq ′,p′′,g′′,w′ (3)

Groups are correct The same has to be done for groups to ensure that they are correct: one
and only one player per position in each group, each week. There is at least a golfer playing
at position p′ in the group g′ on week w′; this gives w.p.g clauses:

w∧
w′=1

p∧
p′=1

g∧
g′=1

q∨
q ′

gq ′,p′,g′,w′ (4)

And at most one golfer plays at position p′ in the group g′ on week w′:
w∧

w′=1

p∧
p′=1

g∧
g′=1

q∧
q ′

q∧
q ′′=q ′+1

¬gq ′,p′,g′,w′ ∨ ¬gq ′′,p′,g′,w′ (5)

which results in q.(q − 1).w.p.g/2 clauses.

The socialization constraint The only remaining constraint (named the socialization con-
straint) states that two players cannot play twice in the same group, i.e., if a player q ′ plays
in the same group g′ on the same week w′ as player q ′′, and that q ′ plays in another group
g′′ another week w′′, then q ′′ cannot play on group g′′ on week w′′ at whatever position:

w∧
w′=1

g∧
g′=1

w∧
w′′=w′+1

g∧
g′′=1

q∧
q ′=1

p∧
p1=1

p∧
p′
1=1

q∧
q ′′=q ′+1

p∧
p2=1

p∧
p′
2=1

gq ′,p1,g′,w′ ∧ gq ′′,p2,g′,w′ ∧ gq ′,p′
1,g

′′,w′′ → ¬gq ′′,p′
2,g

′′,w′′ (6)

Formula (6) is the hard point of the direct model with a complexity of w.(w − 1).g2.q.(q −
1).p4/4 clauses.

Complexity of the direct encoding The complexity of the direct encoding DE which contains
Formulae (1)–(6) is thus: O(w2.g4.p6) in terms of clauses with p2.g2.w variables.

3.2 Variants of the direct encoding

3.2.1 The ladder matrix structure

In Gent and Lynce (2005) a ladder matrix is used: the ladder matrix, which was first presented
in Gent and Prosser (2002), introduces a set of auxiliary variables g′

i,k,l ↔ ∨p
p′=1 g

′
i,p′,k,l .

Intuitively, these new variables abstract the positions of the players in the group. These new
variables together with the characteristics of the ladder matrix are then used to model the
socialization constraint. The resulting constraints are a bit less complex than the socialization
constraint given above, but the ladder matrix introduces an “intermediate level” in the model
which is not so simple to handle and not expressive. Moreover, it also results from this model
more variables and more clauses.

123

Ann Oper Res (2015) 235:423–452 433

3.2.2 Intermediate variables

In Triska and Musliu (2012), q.g.w intermediate variables g′
i,k,l are introduced:

∀i ∈ [1..q],∀k ∈ [1..g],∀l ∈ [1..w], g′
i,k,l ↔

p∨
p′=1

gi,p′,k,l (7)

As for the ladder matrix, these variables abstract the positions of players in the groups. These
variables simplify the socialization constraint by abstracting positions as follows:

∧w
w′=1

∧g
g′=1

∧w
w′′=w′+1

∧g
g′′=1

∧q
q ′

∧q
q ′′=q ′+1

(¬g′
q ′,g′,w′ ∨ ¬g′

q ′′,g′,w′) ∨ (¬g′
q ′,g′′,w′′ ∨ ¬g′

q ′′,g′′,w′′)
(8)

This introduces q.w.g new intermediate variables g′
i,k,l and q.w.g.(p + 1) clauses in

g′
i,k,l ↔ ∨p

p′=1 g
′
i,p′,k,l , but this significantly reduces the complexity of the new socialization

constraint from w.(w − 1).g2.q.(q − 1).p4/4 to w.(w − 1).g2.q.(q − 1)/4.
The complexity of the Triska–Musliu encoding (2012) (Formulae 1–5, 7, and 8) is thus

O(w2.g4.p2) in terms of clauses. In the following we call this encoding TME. A more
complete analysis in terms of variables and clauses is given in Sect. 5.2.

3.3 SAT encoding for set constraint model

Wepropose amodel for the social golfer problem using set constraints in a solver independent
way. These constraints are then encoded into SAT using our ⇔enc rules.

3.3.1 Set constraints model

An instance of the problem is thus given by a triple g − p − w:

– p is the number of players per group;
– g is the number of groups per week;
– w is the number of weeks;

The universe for this model is the set of playersP = {p1, . . . , pq}with q = g.p being the
total number of players. We need the following w.g set variables to model the groups G1,1,
…, Gw,g . The set Gi, j is the group number j of week i and is over the support Gi, j = P .
Each Gi, j will contain p players from P . Note that the supports are minimal and cannot be
reduced without loosing solutions (or symmetric solutions). We now give the constraints of
the social golfer problem.

p players per group every weeks:

∀i ∈ [1..w],∀ j ∈ [1..g], |Gi, j | = p (9)

Every golfer plays every weeks:

∀i ∈ [1..w]
⋃
j=1..g

Gi, j = P (10)

123

434 Ann Oper Res (2015) 235:423–452

No golfer plays in two groups the same week:

∀i ∈ [1..w]
⋂
j=1..g

Gi, j = ∅ (11)

However, Constraints (11) are not required since they are implied by Constraints (9) and
Constraints (10).

Two players cannot play twice together in the same group : The simplest formulation is:
∀p1, p2 ∈ P,∀w1, w2 ∈ [1..w],∀g1, g2 ∈ [1..g], p1 	= p2 ∧ (g1 	= g2∨w1 	= w2) ∧ p1 ∈
Gg1,w1 ∧ p2 ∈ Gg1,w1 ∧ p1 ∈ Gg2,w2 → p2 /∈ Gg2,w2 meaning : if two different golfers
play in the same group g1, if p1 plays in another group g2 then p2 cannot play in this group
g2. However, due to the permutations p1, p2, w1, w2, and g1, g2, this constraint introduces
redundancies that can be removed using the following constraint:

∀w1, w2 ∈ [1..w], pi , p j ∈ P, g1, g2 ∈ [1..g],
w1 > w2 ∧ i > j ∧ (12)

pi ∈ Gw1,g1 ∧ p j ∈ Gw1,g1 ∧ pi ∈ Gw2,g2 → p j /∈ Gw2,g2

Another formulation of these constraints can be given using the cardinality constraints:

∀w1, w2 ∈ [1..w], g1, g2 ∈ [1..g], w1 > w2 ∧ |Gw1,g1 ∩ Gw2,g2 | ≤ 1 (13)

3.3.2 SCE: set constraint encoding

From the set constraint model proposed previously, our ⇔enc encoding rule automatically
generates SAT instances as describe in Sect. 2. For each type of the above constraints we
give the number of clauses generated in the SAT instance:

p players per group every weeks : Constraints (9) generates

w.g.w.

(
g.p +

g.p∑
i=1

[
2ug.pi

(
�u

g.p
i

2
� + 1

) (
�u

g.p
i

2
� + 1

)
−

(
ug.pi

2
+ 1

)])

clauses with ug.pg.p = 1,ug.p1 = g.p and ug.pi = ug.p2i−1 + 2ug.p2i + ug.p2i+1. The complexity of the
formula generated by Constraints (9) is O(w2.g3.p2).

Every golfer plays every week : Constraints (10) generates w.g.p clauses.

Two players cannot play twice together in the same group : Two formulations are possible:

– with implication formulation,Constraints (12) generatesw.(w−1).g.(g+1).q.(q−1)/2)
clauses (O(w2.g4.p2)).

– with cardinality formulation, Constraints (13) generates w.((w − 1)/2).g.((g +
1)/2).3.q.(q + ∑q

i=1[2uqi (� uqi
2 �+1)(� uqi

2 �+1) − (
uqi
2 +1)]) clauses (O(w2.g5.p3)).

Complexity of the generated SAT instances Complexity of Constraints (12) is O(w2.g4.p2)
whereas complexity of Constraints (13) is O(w2.g5.p3). Thus in the following we will only
focus on the implication formulation (Constraints 12). To summarize, the complexity of the
SAT instances generated by the SCE model (Set Constraint Encoding model) made from

123

Ann Oper Res (2015) 235:423–452 435

Constraints (9), (10), and (12) is O(w2.g4.p2). In Sect. 5.2, we show the exact numbers of
clauses that are required for specific instances of the social golfer problem.

Post-treatment by Unit Propagation Unit propagation is a simply process corresponding to
constraint propagation. The idea is to eliminate unit clauses (clauses with only false literals
and one free literal) by valuing the free literal to true. This valuation can produce new unit
clauses and then the process is achieved until there is no longer any unit clause. In term of
complexity, algorithms for unit propagation is in polynomial time; however, in practice, this
process is insignificant compared to solving time and may significantly reduce:

– instances size,
– number of variables,
– and solving time.

Note also that the cardinality constraint encoding that we have chosen generates a lot of unit
clauses that vanish using unit propagation.

4 Symmetry breaking for the social golfer problem

The idea of symmetry breaking is to remove symmetric solutions and to ease the work of a
(SAT) solver. The social golfer problem is highly symmetric: the position of a player in a
group is not relevant; the groups in a week can be renumbered; the weeks can be swapped.
Symmetry breaking thus consists in eliminating these symmetries by adding new constraints
ormodifying themodel. Gent and Lynce (2005) proposes some clauses to remove symmetries
among players, to order groups within a week with respect to their first player, to order
lexicographically the weeks with respect to the second player in the first group of each week,
. . . However, these clauses become more and more complicated and mistakes can easily be
introduced. Indeed, Triska and Musliu (2012) revised the clauses for symmetry breaking of
Gent and Lynce (2005) in order to correct the ranges of the various

∨
and

∧
appearing in

these clauses.
More symmetries can be broken, such as in Frisch et al. (2002) or Flener et al. (2002).

All symmetries can be broken, such as shown in Crawford et al. (1996), but this is often at
the cost of a super exponential number of constraints. Thus, this cannot be considered in
practice.

4.1 Symmetry breaking for TME

In Triska and Musliu (2012), three types of symmetry breaking are added to the TME encod-
ing. Note that this is done by adding constraints. The first one consists in breaking the
symmetry among players within each group.

p.g∧
i=1

p−1∧
j=1

g∧
k=1

w∧
l=1

i∧
m=1

¬Gi, j,k,l ∨ ¬Gm,(j+1),k,l (14)

The second one consists in ordering all groups within a single week by their first players.

p.g∧
i=1

g−1∧
k=1

w∧
l=1

i−1∧
m=1

¬Gi,1,k,l ∨ ¬Gm,1,(k+1),l (15)

123

436 Ann Oper Res (2015) 235:423–452

The last one consists in strictly ascending second players in the first group of each week.

p.g∧
i=1

w∧
l=1

i∧
m=1

¬Gi,2,1,l ∨ ¬Gm,2,1,(l+1) (16)

The encoding TMESB(p)corresponding to the Triska–Musliu encoding breaking sym-
metries among players is thus defined by Formulae (1)–(5), (7), (8), (14). The encoding
TMESB(p,g,w)corresponding to TME (breaking symmetries among players, groups, and
weeks) is thus Formulae (1)–(5), (7), (8), (14)–(16).

Note that symmetry (14) does not apply to the SCE model: using sets there is no permu-
tation of players inside a group.

4.2 Symmetry breaking with set constraint model

With our set constraint language, we have two possibilities to break symmetries. The first
one consists in adding some constraints to the initial model; the second one consists in
refining/modifying the model itself by modifying the supports of sets and the constraints.

Since our model is different from the ones of Gent and Lynce (2005) and Triska and
Musliu (2012), we do not obtain exactly the same symmetries: we do not have symmetries
due to the numbering of players inside a group, but we have symmetric weeks and symmetric
groups in a week. In the following, we break symmetries by completely fixing the first week
(f1), and then by fixing the first player of the p first groups of each week as in Gent and
Lynce (2005) and Triska and Musliu (2012) (f2).

The first group of symmetry breaking (f1) consists in filling the first week as follows: the
first p players are sent to the first group of the first week; the next p players to the second
group of the first week; and so on.

We consider a second group f2 of symmetry breaking which completes f1. f2 consists in
spreading the first p players (who already played together the first week in the first group due
to f1) in different groups each week: the first player in the first group of each week (except the
first week); the second one in the second group of each week; and so on. This approximately
corresponds to group (23) of constraints of Triska and Musliu (2012).

We first consider the following fact to simplify the following models: when p (the number
of players per group) becomes greater than g (the number of groups per week) we can rather
obviously see that the problem has no solution. Indeed, consider the p players of the first
group of the first week; for the second week, they all must play in different groups; thus, the
number of groups needs to be greater or equal to the number of players per group, otherwise,
there is no solution. In the following, we thus consider g ≥ p. However, if one does not want
to make this simplification, it is sufficient to change p by min(g, p) in the following, and to
add the constraints “Two players cannot play twice together in the same group” betweenG1,1

and the other groups. Indeed, these constraints make immediately the model unsatisfiable for
g < p.

4.2.1 Symmetry breaking for the set constraint model by adding constraints

In this section constraints are added to the initial model in order to break symmetries. For f1,
we only have to add the following simple constraints to the model of the SCE.

∀i ∈ [1..q], pi ∈ G1,((i−1) div p)+1 (17)

123

Ann Oper Res (2015) 235:423–452 437

For the second group f2 of symmetry breaking, the required constraints are also simple:

∀i ∈ [2..w],∀ j ∈ [1..p], p j ∈ Gi, j (18)

We can note that these constraints add clauses to the set model and its SAT encoding, but
all these extra constraints are unit clauses that will produce unit propagation: thus, they will
vanish.

The SAT encoding of the set model with symmetry breaking by adding constraints to the
model is named SCESBC(f1,f2)and consists in Constraints (9), (10), (12), (17), and (18).

Symmetry breaking f1 and f2 can be added to the TME model:

– in TME, (17) corresponds to:

p.g∧
i=1

Gi,((i−1) mod p)+1,((i−1) div p))+1,1 (19)

– and (18) corresponds to:

w∧
l=2

g∧
k=1

Gk,1,k,l (20)

4.2.2 Symmetry breaking for the set constraint model by modifying the model

Modifying the model is more tedious. However, the gain is to reduce the supports of sets and
cardinality constraints. These modified models will thus significantly reduce the size of the
generated SAT instances.

The only modification for f1 consists in both modifying the supports of the groups of the
first week and to fix these groups:

∀i ∈ [1..g],G1,i = {p1+(i−1).g, . . . pp+(i−1).g}
and

∀i ∈ [1..g],G1,i = G1,i (21)

The other sets, variables, and constraints remain unchanged.
To introduce f2, we change the group variables. Instead of the Gi, j , we now consider the

sets G ′
1,1, . . . ,G

′
w,g such that:

– for the first week Gi, j = G ′
i, j ;

– for the following weeks Gi, j = G ′
i, j ∪ {p j } if j ≤ p, Gi, j = G ′

i, j otherwise.

The support of the G ′
1,i (i.e., the groups of the first week) are defined as with SB1. Since

themin(p, g) first player are spread on themin(p, g) first groups of each week, the supports
of the other groups can be reduced. Let P ′ = {pmin(p,g)+1, . . . , pq} be the set of golfers
except the first ones. The supports can thus be defined by:

∀i ∈ [2..w],∀ j ∈ [1..g],Gi, j = P ′

Constraints are modified as follows.

123

438 Ann Oper Res (2015) 235:423–452

P players per group every weeks : Constraints (9) must be replaced by Constraints (22)–(24).

∀i ∈ [1..g], |G ′
1,i | = p (22)

∀ j ∈ [2..w],∀i ∈ [1..p], |G ′
j,i | = p − 1 (23)

∀ j ∈ [2..w],∀i ∈ [p + 1..g], |G ′
j,i | = p (24)

Every golfer plays every week : Constraints (25) replace Constraints (10).

∀ j ∈ [2..w]
⋃

i=1..g

G j,i = P ′ (25)

Two players cannot play twice together in the same group: Constraints (12) are replaced by
Constraints (26)–(29).

We recall here that we are working onG ′
i, j which has the following relation with the intial

setGi, j of themodelwithout symmetry breaking: if j ≤ p and i > 1, thenGi, j = G ′
i, j∪{p j }.

Since 2 groups Gi, j with j ≤ p and i > 1 have player p j in common, the corresponding
groups G ′

i, j (which supports do not contain the pl , l ≤ p) cannot have any other player pk
in common:

∀w1, w2 ∈ [2..w], pi ∈ P, g1 ∈ [1..p], w1 > w2,

pi ∈ G ′
w1,g1 → pi /∈ G ′

w2,g1 (26)

The relation between other two groups is not changed as shown below.
Constraints between a group of the first week (except the first group) and groups of other

weeks:

∀w1 ∈ [2..w], pi , p j ∈ P, g1 ∈ [2..g], g2 ∈ [1..g], i > j,
pi ∈ G ′

1,g1
∧ p j ∈ G ′

1,g1
∧ pi ∈ G ′

w1,g2 → p j /∈ G ′
w1,g2

(27)

Note that if one does not consider the simplification p ≤ g, then g1 must be considered in
[2..g] to generate the proper constraints (that will generate a failure during the resolution of
the SAT instance).

Constraints between two groups (except of the first week) equally numbered with an index
greater than p:

∀w1, w2 ∈ [2..w], pi , p j ∈ P, g1 ∈ [p + 1..g], w1 > w2, i > j,
pi ∈ G ′

w1,g1 ∧ p j ∈ G ′
w1,g1 ∧ pi ∈ G ′

w2,g1 → p j /∈ G ′
w2,g1

(28)

Constraints between two groups (except of the first week) not equally numbered:

∀w1, w2 ∈ [2..w], pi , p j ∈ P, g1, g2 ∈ [1..g], w1 > w2, g1 	= g2, i > j,
pi ∈ G ′

w1,g1 ∧ p j ∈ G ′
w1,g1 ∧ pi ∈ G ′

w2,g2 → p j /∈ G ′
w2,g2

(29)

The SAT encoding of the set model with symmetry breaking by modifying the model is
named SCESBM(f1,f2) and consists in Constraints (21)–(29).

123

Ann Oper Res (2015) 235:423–452 439

5 Comparisons of models

We now define an order over models with respect to their solutions. Let σ(m) denotes the
complete set of solutions of the model m. Then, we define the � order as follows:

m1 � m2 iff σ(m2) ⊆ σ(m1)

and

m1 ∼= m2 iff σ(m1) = σ(m2)

� thus enables us to compare models in terms of solutions. Consequently, we obtain the
following correspondences between models:

TME � TMESB(p) � TMESB(p,f1,f2) � TMESB(p,g,w,f1,f2)

∼= ∼=
SCE � SCESBM(f1,f2)

∼=
SCESBC(f1,f2)

and

TMESB(p,g,w)� TMESB(p,g,w,f1,f2)

where SB(x) denotes the x broken symmetries:

– p: symmetries inside a group are broken by ordering players w.r.t. their numbers
– g: symmetries in a week are broken by ordering groups inside a week w.r.t. their first

players
– w: symmetries between weeks are broken by ordering weeks with respect to the second

players of the first groups.
– f1 and f2: f1 fixes the first week; and f2 fixes the first player of the p first group of the

next weeks.

Unit propagation does not change the set of solutions, and thus does not modify the above
order. The � order will help us to better compare models that are equivalent with respect to
their solutions.

Table 1 summarizes the various encodings that we will compare in the following sections.
These encodings have been described in previous sections. NAMEUP denotes the encoding
NAME after unit propagation.

5.1 Expressiveness

We compare here the models in terms of expressiveness. Comparisons in terms of structures
(number of clauses and variables) are given in the next section.

The first remark is that the variables we use in the set model are much simpler. Indeed,
we have only two indices instead of 4, making them more readable. This is due to the fact
that we do not have to number the positions in a group (groups are sets), and we do not have
to add an index for the number of players (players are members of the groups).

The second difference to be noticed is the simplicity and expressiveness of constraints.
Indeed, set constraints are more expressive than pure SAT clauses. Then, the encoding in
SAT is performed using the encoding rules ⇔enc. The advantage is double:

123

440 Ann Oper Res (2015) 235:423–452

Table 1 List of the encoding names, descriptions and the corresponding constraints or formulae

Encoding name Description Corresponding constraints or formulae

DE Direct encoding (1)–(6)

TME Triska–Musliu encoding (1)–(5), (7), (8)

TMESB(p) TME with sym. breaking p (1)–(5), (7), (8), (14)

TMESB(p,f1,f2) TME with sym. breaking (1)–(5), (7), (8),

p, f1, f2 (14), (19)–(20)

TMESB(p,g,w) TME with sym. (1)–(5), (7), (8),

breaking p, g, w (14)–(16)

TMESB(p,g,w,f1,f2) TME with sym. (1)–(5), (7), (8),

breaking p, g, w, f1, f2 (14)–(16),(19)–(20)

SCE SAT encoding of the set (9), (10), (12)

constraint model

SCESBC(f1,f2) SCE with sym. breaking (9), (10), (12), (17), (18)

f1, f2 by adding constraints

SCESBM(f1,f2) SCE with sym. breaking f1, (21)–(29)

f2 by modifying the model

NAMEUP Encoding after unit

propagation treatment

– first, constraints are readable, expressive, easy to modify, resulting in a much understand-
able model;

– second, less mistakes are introduced since the modeling process is much simpler.

Last, but not least, the set encoding is solver independent: the same model (changing the
syntax) could be used in a CSP solver with set constraints1 or in a SAT solver after applying
the rule encoding ⇔enc proposed above.

With the setmodel, symmetry breaking can be achieved by adding constraints ormodifying
the model itself. The process is a bit more complicated than just adding constraints, but the
result is worth: instances are smaller and solving time is faster.

To summarize, in termsof expressiveness, readability, error introduction, and solver depen-
dence, our setmodel is superior to direct encodings such asDE or TME.Breaking symmetries
is also easier in the set model. However, all symmetries cannot be broken in the set model
(e.g., 15 and 16), and techniques such as supersymmetric2 modeling Prestwich (2003) cannot
be applied for various problemsmodeled with sets (for example, for the social golfer problem
with sets we cannot introduce symmetries inside a group by changing the order of players).

Each encoding produces specific SAT instances. We compare the direct encodings and
the set constraint encoding in two ways: the size of the provided instances and the ease to
solve them with a complete SAT solver.

1 Indeed, we did it with MiniZinc (http://www.minizinc.org/) but did not obtain good results in terms of
running time and instances that could be solved.
2 This technique which consists in increasing the number of symmetries in order to obtain more solutions,
sometimes gives even better results, especially with incomplete solvers such as local search.

123

http://www.minizinc.org/

Ann Oper Res (2015) 235:423–452 441

Table 2 Size of instances generated using the direct encoding (DE), the Triska and Musliu encoding (TME)
Triska and Musliu (2012), the set constraints encoding [(with unit propagation post-process (SCEUP) and
without (SCE)]

Prob. DE TME SCE SCEUP

#Vars #Cls #Vars #Cls #Vars #Cls #Vars #Cls

5-3-6 1350 3,203,055 1800 60,255 8625 50,400 1410 43,905

5-3-7 1575 4,481,085 2100 79,485 11,110 67,985 1645 60,410

8-4-4 4096 48,850,176 5120 322,816 24,224 234,912 3840 204,928

8-4-5 5120 81,378,880 6400 482,880 34,752 372,992 4800 335,520

8-4-6 6144 121,896,960 7680 674,688 47,072 542,816 5760 497,856

8-4-7 7168 170,815,680 8960 898,240 61,184 744,384 6720 691,936

8-4-8 8192 227,723,776 10,240 1,153,536 77,088 977,696 7680 917,760

8-4-9 9216 292,552,704 11,520 1,440,576 94,784 1,242,752 8640 1,175,328

8-4-10 10,240 365,690,880 12,800 1,759,360 114,272 1,539,552 9600 1,464,640

9-4-6 7776 196,150,032 9720 1,047,762 117,324 858,366 7344 792,882

9-4-7 9072 274,564,584 11,340 1,400,994 157,284 1,180,026 8568 1,103,634

9-4-8 10,368 366,042,816 12,960 1,805,256 203,076 1,552,716 9792 1,465,416

9-4-9 11,664 470,584,728 14,580 2,260,548 254,700 1,976,436 11,016 1,878,228

9-4-10 12,960 588,190,320 16,200 2,766,870 312,156 2,451,186 12,240 2,342,070

5.2 Model structure

In order to compare our set constraint encoding, we generate a set of social golfer instances
with: the direct encoding DE, the Triska–Musliu encoding (TME) proposed in Triska and
Musliu (2012), and our set constraint encodingwith unit propagation post-treatment (SCEUP)
and without (SCE). In Table 2, each instance is defined by the triple (groups, players per
group, weeks) and for each encoding the number of variables and the number of (generated)
clauses are provided. It is not possible to compare efficiency of an encoding only in terms of
instance size; this is done in the next section. Nevertheless, big instances are intractable due
to the limited size of computer memory. It is thus necessary to generate as small as possible
instances. In Table 2, for each instance, encodings generating the smallest number of clauses
and variables are in bold.

The DE encoding is clearly unsuitable when the number of players or groups increases:
the number of clauses immediately blows up. With the introduction of auxiliary variables the
number of clauses is less important for TME but the number of variables is increased. SCE
produces more variables but less clauses. As might be expected, SCEUP provides the most
interesting encoding in terms of number of clauses and variables: indeed, SCE generates a
lot of unit and binary clauses (Sect. 3.1) than vanish using unit propagation.

5.3 Impact of the symmetry breaking

Social golfer problem has a lot of identical solutions modulo symmetries. In Table 3 we apply
the symmetry breaking processes presented in Sect. 4.2 to the instances proposed in Table 2.

For TME, introducing symmetry breaking constraints only increases the number of clauses
(around 10% more clauses), the number of variables does not change. Note also that unit

123

442 Ann Oper Res (2015) 235:423–452

Ta
bl

e
3

Si
ze

of
SA

T
in
st
an
ce
s
w
.r.
t.
th
e
va
ri
ou
s
m
od
el
s
an
d
w
ith

/w
ith

ou
tU

P
as

a
pr
e-
pr
oc
es
s

Pr
ob
.

T
M
E

T
M
E
SB

(p
)

T
M
E
SB

(p
,g
,w
)

T
M
E
SB

(p
,f
1,
f2
)

T
M
E
SB

(p
,g
,w
,f
1,
f2
)

T
M
E
SB

(p
,f
1,
f2
)

U
P

T
M
E
SB

(p
,g
,w
,f
1,
f2
)

U
P

#V
ar
s

#C
ls

#V
ar
s

#C
ls

#V
ar
s

#C
ls

#V
ar
s

#C
ls

#V
ar
s

#C
ls

#V
ar
s

#C
ls

#V
ar
s

#C
ls

5-
3-
6

18
00

60
,2
55

18
00

67
,4
55

18
00

70
,9
35

18
00

67
,4
85

18
00

70
,9
65

10
20

28
,9
50

10
20

29
,6
52

5-
3-
7

21
00

79
,4
85

21
00

87
,8
85

21
00

91
,9
65

21
00

87
,9
18

21
00

91
,9
98

12
24

39
,7
98

12
24

40
,6
56

8-
4-
4

51
20

32
2,
81

6
51

20
37

3,
50

4
51

20
38

9,
87

2
51

20
37

3,
54

8
51

20
38

9,
91

6
30

24
16

4,
97

6
30

24
16

9,
44

2

8-
4-
5

64
00

48
2,
88

0
64

00
54

6,
24

0
64

00
56

6,
83

2
64

00
54

6,
28

8
64

00
56

6,
88

0
40

32
26

8,
57

6
40

32
27

4,
66

6

8-
4-
6

76
80

67
4,
68

8
76

80
75

0,
72

0
76

80
77

5,
53

6
76

80
75

0,
77

2
76

80
77

5,
58

8
50

40
39

6,
48

0
50

40
40

4,
19

4

8-
4-
7

89
60

89
8,
24

0
89

60
98

6,
94

4
89

60
1,
01

5,
98

4
89

60
98

7,
00

0
89

60
1,
01

6,
04

0
60

48
54

8,
68

8
60

48
55

8,
02

6

8-
4-
8

10
,2
40

1,
15

3,
53

6
10

,2
40

1,
25

4,
91

2
10

24
0

1,
28

8,
17

6
10

,2
40

1,
25

4,
97

2
10

,2
40

1,
28

8,
23

6
70

56
72

5,
20

0
70

56
73

6,
16

2

8-
4-
9

11
,5
20

1,
44

0,
57

6
11

,5
20

1,
55

4,
62

4
11

,5
20

1,
59

2,
11

2
11

,5
20

1,
55

4,
68

8
11

,5
20

1,
59

2,
17

6
80

64
92

6,
01

6
80

64
93

8,
60

2

8-
4-
10

12
,8
00

1,
75

9,
36

0
12

,8
00

1,
88

6,
08

0
12

,8
00

1,
92

7,
79

2
12

,8
00

1,
88

6,
14

8
12

,8
00

1,
92

7,
86

0
90

72
1,
15

1,
13

6
90

72
1,
16

5,
34

6

9-
4-
6

97
20

1,
04

7,
76

2
97

20
1,
15

5,
65

4
97

20
1,
19

0,
95

2
97

20
1,
15

5,
71

0
97

20
1,
19

1,
00

8
65

60
63

1,
52

0
65

60
64

4,
19

2

9-
4-
7

11
,3
40

1,
40

0,
99

4
11

,3
40

1,
52

6,
86

8
11

,3
40

1,
56

8,
16

0
11

,3
40

1,
52

6,
92

8
11

,3
40

1,
56

8,
22

0
78

72
87

8,
73

6
78

72
89

4,
04

8

9-
4-
8

12
,9
60

1,
80

5,
25

6
12

,9
60

1,
94

9,
11

2
12

,9
60

1,
99

6,
39

8
12

,9
60

1,
94

9,
17

6
12

,9
60

1,
99

6,
46

2
91

84
1,
16

6,
25

6
91

84
1,
18

4,
20

8

9-
4-
9

14
,5
80

2,
26

0,
54

8
14

,5
80

2,
42

2,
38

6
14

,5
80

2,
26

0,
54

8
14

,5
80

2,
42

2,
45

4
14

,5
80

2,
47

5,
73

4
10

,4
96

1,
49

4,
08

0
10

,4
96

1,
51

4,
67

2

9-
4-
10

16
,2
00

2,
76

6,
87

0
16

,2
00

2,
94

6,
69

0
16

,2
00

3,
00

5,
96

4
16

,2
00

2,
94

6,
76

2
16

,2
00

3,
00

6,
03

6
11

,8
08

1,
86

2,
20

8
11

,8
08

1,
88

5,
44

0

Pr
ob
.

SC
E

SC
E
SB

M
(f
1,
f2
)

SC
E
SB

C
(f
1,
f2
)

SC
E
U
P

SC
E
SB

M
(f
1,
f2
)

U
P

SC
E
SB

C
(f
1,
f2
)

U
P

#V
ar
s

#C
ls

#V
ar
s

#C
ls

#V
ar
s

#C
ls

#V
ar
s

#C
ls

#V
ar
s

#C
ls

#V
ar
s

#C
ls

5-
3-
6

86
25

50
,4
00

57
02

21
,4
87

86
25

50
,4
30

14
10

43
,9
05

86
0

17
,6

80
98

0
23

,1
10

5-
3-
7

11
,1
10

67
,9
85

77
34

30
,2
43

11
,1
10

68
,0
18

16
45

60
,4
10

10
32

25
,6

80
11

76
33

,6
90

8-
4-
4

24
,2
24

23
4,
91

2
14

,1
92

95
,7
12

24
,2
24

23
4,
95

6
38

40
20

4,
92

8
23

76
77

,7
00

25
80

91
,5
48

8-
4-
5

34
,7
52

37
2,
99

2
22

,4
76

17
3,
18

0
34

,7
52

37
3,
04

0
48

00
33

5,
52

0
31

68
14

9,
18

4
34

40
17

6,
24

0

123

Ann Oper Res (2015) 235:423–452 443

Ta
bl

e
3

co
nt
in
ue
d

Pr
ob
.

SC
E

SC
E
SB

M
(f
1,
f2
)

SC
E
SB

C
(f
1,
f2
)

SC
E
U
P

SC
E
SB

M
(f
1,
f2
)

U
P

SC
E
SB

C
(f
1,
f2
)

U
P

#V
ar
s

#C
ls

#V
ar
s

#C
ls

#V
ar
s

#C
ls

#V
ar
s

#C
ls

#V
ar
s

#C
ls

#V
ar
s

#C
ls

8-
4-
6

47
,0
72

54
2,
81

6
32

,5
52

27
3,
44

0
47

,0
72

54
2,
86

8
57

60
49

7,
85

6
39

60
24

3,
46

0
43

00
28

8,
02

0

8-
4-
7

61
,1
84

74
4,
38

4
44

,4
20

39
6,
49

2
61

,1
84

74
4,
44

0
67

20
69

1,
93

6
47

52
36

0,
52

8
51

60
42

6,
88

8

8-
4-
8

77
,0
88

97
7,
69

6
58

,0
80

54
2,
33

6
77

,0
88

97
7,
75

6
76

80
91

7,
76

0
55

44
50

0,
38

8
60

20
59

2,
84

4

8-
4-
9

94
,7
84

1,
24

2,
75

2
73

,5
32

71
0,
97

2
94

,7
84

1,
24

2,
81

6
86

40
1,
17

5,
32

8
63

36
66

3,
04

0
6,
88

0
78

5,
88

8

8-
4-
10

11
4,
27

2
1,
53

9,
55

2
90

,7
76

90
2,
40

0
11

4,
27

2
1,
53

9,
62

0
96

00
1,
46

4,
64

0
71

28
84

8,
48

4
77

40
1,
00

6,
02

0

9-
4-
6

11
7,
32

4
85

8,
36

6
46

,3
44

44
7,
83

2
11

7,
32

4
85

8,
42

2
73

44
79

2,
88

2
56

20
47

1,
69

0
56

20
47

1,
69

0

9-
4-
7

15
7,
28

4
1,
18

0,
02

6
63

,3
68

65
2,
34

4
15

7,
28

4
1,
18

0,
08

6
85

68
1,
10

3,
63

4
60

08
56

1,
71

2
67

44
70

0,
83

0

9-
4-
8

20
3,
07

6
1,
55

2,
71

6
82

,9
84

89
5,
17

6
20

3,
07

6
1,
55

2,
78

0
97

92
1,
46

5,
41

6
70

24
78

2,
62

0
78

68
97

4,
90

4

9-
4-
9

25
4,
70

0
1,
97

6,
43

6
10

5,
19

2
1,
17

6,
32

8
25

4,
70

0
1,
97

6,
50

4
11

,0
16

1,
87

8,
22

8
80

40
1,

03
9,

95
6

89
92

1,
29

3,
91

2

9-
4-
10

31
2,
15

6
2,
45

1,
18

6
12

9,
99

2
1,
49

5,
80

0
31

2,
15

6
2,
45

1,
25

8
12

,2
40

2,
34

2,
07

0
90

56
1,

33
3,

72
0

10
,1
16

1,
65

7,
85

4

Fo
r
ea
ch

in
st
an
ce
,e
nc
od
in
gs

ge
ne
ra
tin

g
th
e
sm

al
le
st
nu
m
be
r
of

cl
au
se
s
an
d
va
ri
ab
le
s
ar
e
in

bo
ld

123

444 Ann Oper Res (2015) 235:423–452

propagation is not worth for TME instances nor for TMESB(p) or TMESB(p,g,w) instances:
there is no unit clause and the size of the instance is not changed (both in terms of variables
and clauses). For TMESB(p,f1,f2) and TMESB(p,g,w,f1,f2) unit propagation significantly reduces
the size of the generated SAT instances.

For SCE, symmetry breaking by adding constraints adds a negligible amount of constraints
(see SCESBC(f1,f2)). More interestingly, adding symmetry breaking by modifying the model
(SCESBM(f1,f2)) significantly reduces the size of the generated SAT instances: from 20 up to
60% less variables and from 40 to 60% less clauses. This significant reduction is due to the
reduction of supports and to the cardinality constraints: sets with k − 1 elements instead of
k, and less clauses are necessary when supports are smaller.

Without unit propagation, the instances of SCESBM(f1,f2) are always the smallest one
generated with respect to the number of clauses.

Unit propagation has no impact at all on TME, TMESB(p) and TMESB(p,g,w). How-
ever, its impact is significant on TMESB(p,f1,f2), TMESB(p,g,w,f1,f2), SCE, SCESBM(f1,f2), and
SCESBC(f1,f2):

– for TMESB(p,f1,f2), unit propagation decreases the number of variables (around 40%) and
the number of clauses (up to 50%).

– for SCE, unit propagation divides the number of variables by 6 to 25: this is mainly due
to the variables of the cardinality constraints. The number of clauses is reduced of around
10%.

– for SCESBC(f1,f2), unit propagation reduces even more the number of variables (up to 30
times less variables). The number of clauses is reduced from 30 to 60%.

– for SCESBM(f1,f2), unit propagation is less spectacular: indeed, the initial model itself is
reduced by adding symmetry breaking. However, the number of variable is divided by 5
up to 15. The number of clauses is reduced of about 10%.

To summarize, unit propagation is more beneficial to SCESBC(f1,f2); however, SCESBM(f1,f2)
UP

always gives the best instances in terms of number of clauses and number of variables.

6 Experimental Analysis

In the previous section we have shown that SCE enables us to obtain the smallest instances
with unit propagation. The use of symmetry breaking also reduces the size of the SAT
instances. It can happen that symmetry breaking makes more difficult the resolution: by
changing the search landscape, an “easy” solution can disappear; with incomplete solvers
(such as local search), symmetry breaking can partitions the search space and makes difficult
a path to a solution.3 In this section we will compare the efficiency of the encodings in terms
of running time.

To compare our set constraints encoding with Triska–Musliu Triska and Musliu (2012)
encoding, we use the well known solver Minisat Eén and Sörensson (2003). This solver
won various competitions.4 Since some few years, a pre-treatment named SatELite Eén and
Biere (2005) has been added to Minisat in order to drastically reduce the number of clauses
(e.g., by using subsumptions detections) and variables (e.g., eliminating pure literals). It is
now included in Minisat but an option enables one to deactivate it. When we will use this
pre-treatment, its running time will be included in the running time of Minisat.

3 We have tested the incomplete solver Sparrow Balint and Fröhlich (2010) and no solution was found with
a time out of one hour.
4 http://www.satcompetition.org/.

123

http://www.satcompetition.org/

Ann Oper Res (2015) 235:423–452 445

Experimentations are realized on a 2.60GHz Intel Core i5-2540M CPU and 4GB RAM.
For each experiment, the time-out is 300 s. Larger execution times were tested but no real
differences were observed. Results for the direct encoding DE are not presented since, as
supposed, no results are obtained in a reasonable time.

Tables 4 and 5 represent respectively the running time of Minisat with the use of SatElite
as pre-treatment and without pre-treatment.

First of all, the two tables show that the use of SatElite is difficult to predict: for some
instances, it significantly improves the results whereas for others, it significantly degrades the
results. On average, it does not improve the results and the best running times are obtained
without pre-treatment.

Moreover, symmetry breaking modifying the model (SCESBM(f1,f2)) provides the best
results (or results very close to the best ones), with or without pre-treatment. The use of unit
propagation seems to have a weak impact to the resolution time of SCESBM(f1,f2).

When unit propagation is applied, the new SAT instance is solved more quickly. However,
the running time needed by unit propagation brings out a global running time higher than
without the use of unit propagation.

Breaking symmetries in TME is rather fluctuating: depending on the instances and depend-
ing on the use of SatELite, it significantly improves or degrades the results.

To summarize, the best results are obtained with our set constraint model, with
SCESBM(f1,f2) when the pre-treatment is not applied. Finally, the best results are obtained
without pre-treatment.

7 Discussion

Modeling Modeling a problem with set constraints and then automatically generating the
corresponding SAT instances is much simpler than directly writing encodings such as DE or
TME. Breaking symmetries can be rather tedious in direct encodings, very easy by adding
constraints in the set model, and rather tedious by modifying the set constraint model. Using
sets, some symmetries (such as 14) can vanish naturally. However, all symmetries that can
be broken in set models can be broken in a direct model, whereas the opposite is not true.
For example, we cannot add symmetry breaking for symmetries g and w corresponding to
clauses (15) and (16) for the TME model.

Using a higher level formalism (such as our set constraint) is thus beneficial to themodeling
phase: it simplifies the task, and avoid making errors (mainly errors in the numerous indices
required by a direct encoding). The SAT encoding is then automatically done.

SAT instances We have shown that the SAT instances that are automatically produced by our
encoding rules are of good quality:

– they always produce significantly less clauses (with or without symmetry breaking, and
with or without unit propagation);

– with unit propagation, they also generate less variables;
– and finally, they are solved faster with Minisat (if we do not take into account the unit

propagation running time), without “tuning parameters”, with or without pre-treatment
with SatElite.

123

446 Ann Oper Res (2015) 235:423–452

Ta
bl

e
4

M
in
is
at

w
it

h
Sa

tE
lit
e:
R
un

ni
ng

tim
e
fo
r
th
e
SC

E
en
co
di
ng

an
d
th
e
T
M
E
en
co
di
ng

.F
or
m
ul
at
io
ns

w
ith

sy
m
m
et
ry

br
ea
ki
ng

an
d
U
P
ar
e
co
m
pa
re
d

Pr
ob
.

T
M
E

T
M
E
SB

(p
)

T
M
E
SB

(p
,g
,w
)

T
M
E
SB

(p
,f
1,
f2
)

T
M
E
SB

(p
,g
,w
,f
1,
f2
)

T
M
E
SB

(p
,f
1,
f2
)

U
P

T
M
E
SB

(p
,g
,w
,f
1,
f2
)

U
P

U
P

M
in
.

To
t.

U
P

M
in
.

To
t.

5-
3-
6

8.
92

2.
16

0.
69

0.
23

0.
22

0.
44

0.
07

0.
51

0.
44

0.
08

0.
52

5-
3-
7

98
.2
8

3.
62

13
.3
7

0.
37

0.
49

0.
67

1.
21

1.
88

0.
68

0.
46

1.
14

8-
4-
4

1.
04

1.
24

1.
33

1.
29

1.
44

3.
72

0.
26

3.
98

3.
75

0.
27

4.
02

8-
4-
5

2.
26

2.
47

2.
64

2.
55

2.
65

7.
02

0.
64

7.
66

6.
99

0.
67

7.
66

8-
4-
6

4.
44

5.
48

5.
16

4.
92

4.
96

11
.5
7

1.
34

12
.9
1

11
.6
6

1.
36

13
.0
2

8-
4-
7

34
.2
5

51
.6
0

94
.6
8

8.
34

12
.4
8

17
.9
0

4.
58

22
.4
8

17
.8
5

4.
08

21
.9
3

8-
4-
8

–
–

–
–

–
26

.0
4

–
–

26
.0
2

–
-

8-
4-
9

–
–

–
–

–
38

.4
4

–
–

36
.6
0

–
-

8-
4-
10

–
–

–
–

–
49

.0
1

–
–

48
.8
9

–
-

9-
4-
6

8.
45

8.
22

10
.5
2

8.
70

8.
73

22
.0
3

2.
57

24
.6

22
.2
5

3.
29

25
.5
4

9-
4-
7

13
.6
9

17
.4
6

27
.1
6

16
.0
4

15
.9
8

33
.7
6

4.
78

38
.5
4

34
.3
8

6.
70

41
.0
8

9-
4-
8

–
11

7.
45

31
.8
7

37
.4
0

52
.0
0

49
.3
0

17
.1
5

66
.4
5

50
.1
8

30
.3
5

80
.5
3

9-
4-
9

–
–

–
–

–
68

.6
6

–
–

69
.3
4

–
-

9-
4-
10

–
–

–
–

–
93

.9
5

–
–

93
.3
2

–
-

Pr
ob
.

SC
E

SC
E
SB

M
SC

E
SB

C
SC

E
U
P

SC
E
SB

M
U
P

SC
E
SB

C
U
P

U
P

M
in
.

To
t.

U
P

M
in
.

To
t.

U
P

M
in
.

To
t.

5-
3-
6

0.
18

0.
06

0.
12

0.
41

0.
12

0.
53

3.
1

0.
07

3.
17

0.
41

0.
04

0.
45

5-
3-
7

1.
42

0.
13

1.
21

0.
54

5.
09

5.
63

0.
48

0.
09

0.
57

0.
58

0.
08

0.
66

8-
4-
4

0.
97

0.
32

1.
19

1.
63

0.
90

2.
53

1.
41

0.
29

1.
7

1.
64

0.
27

1.
91

8-
4-
5

1.
93

0.
86

2.
51

2.
67

1.
89

4.
56

2.
39

0.
84

3.
23

2.
73

0.
78

3.
51

8-
4-
6

3.
65

1.
87

4.
74

3.
89

3.
65

7.
54

3.
56

1.
82

5.
38

4.
01

1.
71

5.
72

123

Ann Oper Res (2015) 235:423–452 447

Ta
bl

e
4

co
nt
in
ue
d

Pr
ob
.

SC
E

SC
E
SB

M
SC

E
SB

C
SC

E
U
P

SC
E
SB

M
U
P

SC
E
SB

C
U
P

U
P

M
in
.

To
t.

U
P

M
in
.

To
t.

U
P

M
in
.

To
t.

8-
4-
7

8.
66

3.
59

8.
52

5.
40

7.
52

12
.9
2

5.
09

3.
64

8.
73

5.
57

3.
46

9.
03

8-
4-
8

–
–

–
7.
23

–
–

6.
70

–
–

7.
29

–
–

8-
4-
9

–
–

–
9.
09

–
–

8.
71

–
–

9.
56

–
–

8-
4-
10

–
–

–
11

.8
6

–
–

10
.8
4

–
–

11
.6
1

–
–

9-
4-
6

11
.2
4

3.
15

10
.3
4

6.
11

11
.1
0

17
.2
1

5.
72

2.
71

8.
43

6.
42

4.
58

11
.0
0

9-
4-
7

18
.9
5

5.
80

17
.8
0

8.
37

19
.0
4

27
.4
1

8.
09

5.
12

13
.2
1

8.
70

8.
76

17
.4
6

9-
4-
8

31
.8
7

11
.1
0

29
.6
0

11
.2
2

31
.4
8

42
.7

10
.7
0

12
.7
2

23
,4
2

12
.0
1

14
.9
0

26
.9
1

9-
4-
9

–
–

–
14

.5
5

–
–

13
.9
2

–
–

15
.0
0

–
–

9-
4-
10

–
–

–
18

.0
0

–
–

17
.4
4

–
–

18
.6
4

–
–

123

448 Ann Oper Res (2015) 235:423–452

Ta
bl

e
5

M
in
is
at

w
it

ho
ut

Sa
tE
lit
e:
R
un

ni
ng

tim
e
fo
r
th
e
SC

E
an
d
T
M
E
en
co
di
ng

s.
Fo

rm
ul
at
io
ns

w
ith

sy
m
m
et
ry

br
ea
ki
ng

an
d
U
P
ar
e
co
m
pa
re
d

Pr
ob
.

T
M
E

T
M
E
SB

(p
)

T
M
E
SB

(p
,g
,w
)

T
M
E
SB

(p
,f
1,
f2
)

T
M
E
SB

(p
,g
,w
,f
1,
f2
)

T
M
E
SB

(p
,f
1,
f2
)

U
P

T
M
E
SB

(p
,g
,w
,f
1,
f2
)

U
P

U
P

M
in
.

To
t.

U
P

M
in
.

To
t.

5-
3-
6

9.
37

1.
97

0.
30

0.
09

0.
10

0.
44

0.
03

0.
47

0.
44

0.
06

0.
50

5-
3-
7

97
.4
7

20
.8
0

24
.8
6

0.
22

0.
42

0.
67

0.
47

1.
14

0.
68

0.
24

0.
92

8-
4-
4

0.
05

0.
10

0.
23

0.
08

0.
09

3.
72

0.
03

3.
75

3.
75

0.
03

3.
78

8-
4-
5

0.
08

0.
16

0.
58

0.
15

0.
24

7.
02

0.
08

7.
1

6.
99

0.
12

7.
11

8-
4-
6

0.
25

0.
46

3.
58

0.
38

0.
24

11
.5
7

0.
31

11
.8
8

11
.6
6

0.
30

11
.9
6

8-
4-
7

27
.0
5

7.
43

25
.8
8

1.
95

8.
82

17
.9
0

0.
73

18
.6
3

17
.8
5

7.
17

25
.0
2

8-
4-
8

–
–

–
–

–
26

.0
4

–
–

26
.0
2

–
-

8-
4-
9

–
–

–
–

–
38

.4
4

–
–

36
.6
0

–
-

8-
4-
10

–
–

–
–

–
49

.0
1

–
–

48
.8
9

–
-

9-
4-
6

0.
23

0.
47

3.
72

0.
37

0.
36

22
.0
3

0.
33

22
.3
6

22
.2
5

0.
38

22
.6
3

9-
4-
7

0.
31

6.
15

6.
61

1.
30

3.
04

33
.7
6

1.
15

34
.9
1

34
.3
8

1.
08

35
.4
6

9-
4-
8

24
7.
83

14
9.
27

–
17

.3
9

15
.8
1

49
.3
0

19
.3
5

68
.6
5

50
.1
8

37
.1
6

87
.3
4

9-
4-
9

–
–

–
–

–
68

.6
6

–
–

69
.3
4

–
-

9-
4-
10

–
–

–
–

–
93

.9
5

–
–

93
.3
2

–
-

Pr
ob
.

SC
E

SC
E
SB

M
SC

E
SB

C
SC

E
U
P

SC
E
SB

M
U
P

SC
E
SB

C
U
P

U
P

M
in
.

T
ot

.
U
P

M
in
.

T
ot

.
U
P

M
in
.

To
t.

5-
3-
6

1.
05

0.
01

0.
01

0.
41

0.
26

0.
67

3.
1

0.
01

3.
11

0.
41

0.
01

0.
42

5-
3-
7

9.
19

0.
06

0.
13

0.
54

5.
67

6.
21

0.
48

1.
79

2.
27

0.
58

0.
28

0.
86

8-
4-
4

0.
09

0.
03

0.
07

1.
63

0.
07

1.
7

1.
41

0.
03

1.
44

1.
64

0.
03

1.
67

8-
4-
5

0.
13

0.
06

0.
11

2.
67

0.
06

2.
73

2.
39

0.
05

2.
44

2.
73

0.
07

2.
8

8-
4-
6

0.
27

0.
14

0.
18

3.
89

0.
19

4.
08

3.
56

0.
08

3.
64

4.
01

0.
09

4.
1

123

Ann Oper Res (2015) 235:423–452 449

Ta
bl

e
5

co
nt
in
ue
d

Pr
ob
.

SC
E

SC
E
SB

M
SC

E
SB

C
SC

E
U
P

SC
E
SB

M
U
P

SC
E
SB

C
U
P

U
P

M
in
.

To
t.

U
P

M
in
.

To
t.

U
P

M
in
.

To
t.

8-
4-
7

3.
53

0.
48

1.
71

5.
40

1.
94

7.
34

5.
09

0.
56

5.
65

5.
57

0.
98

6.
55

8-
4-
8

–
–

–
7.
23

–
–

6.
70

–
–

7.
29

–
–

8-
4-
9

–
–

–
9.
09

–
–

8.
71

–
–

9.
56

–
–

8-
4-
10

–
–

–
11

.8
6

–
–

10
.8
4

–
–

11
.6
1

–
–

9-
4-
6

0.
37

0.
13

0.
29

6.
11

0.
25

6.
36

5.
72

0.
11

5.
83

6.
42

0.
13

6.
55

9-
4-
7

0.
31

6.
61

0.
58

8.
37

0.
36

8.
73

8.
09

0.
14

8.
23

8.
70

0.
24

8.
94

9-
4-
8

14
.6
6

5.
03

1.
10

11
.2
2

20
.9
3

32
.1
5

10
.7
0

2.
62

13
.3
2

12
.0
1

0.
68

12
.6
9

9-
4-
9

–
–

–
14

.5
5

–
–

13
.9
2

–
–

15
.0
0

–
–

9-
4-
10

–
–

–
18

.0
0

–
–

17
.4
4

–
–

18
.6
4

–
–

123

450 Ann Oper Res (2015) 235:423–452

Symmetry breaking We have shown that breaking symmetries by adding constraint to the
set model is very simple. Moreover, the generated SAT instances after unit-propagation are
much smaller, and the solving time is also improved.

Symmetry breaking by modifying the model is even more beneficial. However, the effort
for modifying the model is more important than the effort for adding constraints. This extra
work is very beneficial for the size of the generated SAT instances, but not so much worth for
the solving time (it is depending on instances, and pre-treatment). Thus, one has to make the
trade-off between solving time and modeling time. The size of the generated instances can
be the deciding factor: larger problems can be modeled and generated introducing symmetry
breaking into the model as in SCESBM(f1,f2).

Set constraints in constraint programming The expressiveness of set constraints in constraint
programming (such as in Gervet 1994; Legeard and Legros 1991, or MiniZinc (http://www.
minizinc.org/)) is more or less the same as the one of our set constraints in terms of sets: that
was our goal. However, our approach is different: in systems such as Gervet (1994) or http://
www.emn.fr/z-info/choco-solver/, sets constraints are not the only constraints, but a special
set solver has to be designed to solve these models. For example, the mechanism of Gervet
(1994) consists in reducing the domain of the sets by working on lower and upper bounds of
the sets and to combine this process with search. Note that the domain of a set is similar to our
notion of support, and lower and upper bounds of sets are the smallest and largest elements
of a set with respect to a given ordering. Our approach is different: we do not want to design a
special solver, nor to tune an existing one for efficiently solving our SAT instances; we want
to transform a high level model written with set constraints into a good quality (in terms of
size and solving time) SAT instance that is efficiently solved by an existing multi-purpose
SAT solver.

Note that in the future, we want to add a pre-process to reduce support sizes. Indeed,
the size of the SAT instances depends on the size of the supports. For the social golfer
problem, supports are minimal: they cannot be reduced without loosing solutions. But for
some other problems, supports can be reduced by a deduction process (withtout loosing
solution), and thus, generated SAT instances can be reduced. Such a process could be to
enforce generalized arc consistency (GAC) for sets (i.e., similar to one application of the first
phase of the mechanism of Gervet (1994) for bounds without search). A next step would also
be to compare generalized arc consistency for sets and unit propagation.

Note also that in Azevedo (2006) some comparisons of set constraint solvers in constraint
programming are given for the social golfer problem.Most of the results reported are obtained
by giving special (dynamic) search heuristics or special solving mechanisms. The approach
is thus very different from ours.

The social golfer problem in constraint programming We have tried to solve several CSP
models with the MiniZinc (http://www.minizinc.org/) constraint system:
– 3 set constraint models: our SCE model, the model presented in the MiniZinc tutorial,

and a model of the MiniZinc github;5

– 3 constraints models: 2 from the MiniZinc github based on two 2D matrices and one on
a 3D matrix of player numbers; one from the webpage of Hakan Kjellerstrand.6

5 https://github.com/MiniZinc/minizinc-benchmarks/tree/master/golfers.
6 http://www.hakank.org/minizinc/social_golfers1.mzn.

123

http://www.minizinc.org/
http://www.minizinc.org/
http://www.emn.fr/z-info/choco-solver/
http://www.emn.fr/z-info/choco-solver/
http://www.minizinc.org/
https://github.com/MiniZinc/minizinc-benchmarks/tree/master/golfers
http://www.hakank.org/minizinc/social_golfers1.mzn

Ann Oper Res (2015) 235:423–452 451

In terms of declarativeness, thesemodels are readable and rather easy to understand.However,
in terms of efficiency, we could only solve small instances of the SGP. That is the reason why
we did not present them in the previous tables.

8 Conclusion

We have presented a technique for encoding set constraints into SAT: the modeling process is
achieved using some very expressive set constraintswhich are then automatically transformed
into SAT variables and clauses using our ⇔enc encoding rules. This technique has been
applied successfully to model and encode the social golfer problem, and to study some
symmetry breaking on this problem.

The advantages of our technique are the following:

– the modeling process is simple, expressive, and readable. Moreover, it is solver indepen-
dent and independent from CSP or SAT;

– the technique is less error-prone than direct SAT encodings;
– breaking symmetry can be achieved by just adding new constraints or by refin-

ing/modifying the model (this cannot be done so easily with direct encodings such as DE
or TME);

– the SAT instances which are automatically generated are smaller than the ones of Triska
and Musliu (2012); with unit propagation, our instances also contain less variables than
the ones of Triska and Musliu (2012);

– finally, with respect to solving time, our automatically generated instances of the social
golfer problem are solved faster with or without unit propagation, with or without con-
straint breaking, with or without SatElite (the pre-treatment mechanism of Minisat).

We have tested our technique to model and solve other problems (such as n-queen problem,
Sudoku, WhoWithWhom, car sequencing, …). Each time we obtained very readable and
simple set models. The generated SAT instances also appeared to be well-suited for Minisat.

In the future, we plan to use our set constraints encoding for formalizing domain variables
and sequences of elements. To this end, we will need to add some new constraints and to
complete our ⇔enc encoding rule.

We want to refine the notion of supports and reduce their sizes. As said before, this does
not have any impact on a problem such as the social golfer problem for which supports are
already “minimal”. But for many problems (in which supports are not clear at the principle),
it is important to reduce the size of the supports (using a pre-treatment) before generating
the SAT instances.

Finally, we also plan to combine set constraints with some arithmetic constraints, and we
want to define the corresponding SAT encoding.

References

Azevedo, F. (2006). An attempt to dynamically break symmetries in the social golfers problem. In F. Azevedo,
P. Barahona, F. Fages, & F. Rossi (Eds.), CSCLP, Lecture Notes in Computer Science, vol. 4651 (pp.
33–47). Springer.

Bacchus, F. (2007). Gac via unit propagation. In Proceedings of CP 2007, LNCS, vol. 4741 (pp. 133–147).
Springer.

Bailleux, O., & Boufkhad, Y. (2003). Efficient cnf encoding of boolean cardinality constraints. In Proceedings
of CP 2003, vol. 2833 (pp. 108–122). Springer.

123

452 Ann Oper Res (2015) 235:423–452

Balint, A., & Fröhlich, A. (2010). Improving stochastic local search for SAT with a new probability distribu-
tion. In Proceedings of Theory and Applications of Satisfiability Testing—SAT 2010, 13th International
Conference, SAT 2010, Edinburgh, UK, July 11–14, 2010 (pp. 10–15).

Bessière, C., Hebrard, E., & Walsh, T. (2004). Local consistencies in sat. In Selected Revised Papers of SAT
2003, LNCS, vol. 2919 (pp. 299–314). Springer.

Choco. http://www.emn.fr/z-info/choco-solver/.
Cotta, C., Dotú, I., Fernández, A. J., & Hentenryck, P. V. (2006). Scheduling social golfers with memetic

evolutionary programming. In Proceedings of HM 2006, LNCS, vol. 4030 (pp. 150–161). Springer.
Crawford, J. M., Ginsberg, M. L., Luks, E. M., & Roy, A. (1996). Symmetry-breaking predicates for search

problems. In Proc. of KR’96 (pp. 148–159). Morgan Kaufmann.
Eén, N., & Biere, A. (2005). Effective preprocessing in sat through variable and clause elimination. In Pro-

ceedings of SAT 2005, vol. 3569 (pp. 61–75).
Eén,N.,&Sörensson,N. (2003)An extensible sat-solver. InProceedings of SAT 2003, vol. 2919 (pp. 502–518).
Flener, P., Frisch, A. M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., &Walsh, T. (2002). Breaking row and

column symmetries in matrix models. In Proceedings of CP 2002, vol. 2470 (pp. 462–476). Springer.
Frisch, A. M., Hnich, B., Kiziltan, Z., Miguel, I., & Walsh, T. (2002). Global constraints for lexicographic

orderings. In Proceedings of CP 2002, vol. 2470 (pp. 93–108). Springer.
Garey,M. R., & Johnson, D. S. (1979).Computers and intractability, a guide to the theory of NP-completeness.

San Francisco: W.H. Freeman & Company.
Gent, I., & Lynce, I. (2005). A sat encoding for the social golfer problem. In IJCAI’05 workshop on modelling

and solving problems with constraints.
Gent, I. P., & Prosser, P. (2002). An empirical study of the stable marriage problem with ties and incomplete

lists. In Proceedings of ECAI’2002 (pp. 141–145). IOS Press.
Gent, I. P., & Walsh, T. (1999). CSPLib: A benchmark library for constraints. In Proceedings of CP 1999,

LNCS, vol. 1713 (pp. 480–481). Springer.
Gervet, C. (1994). Conjunto: Constraint propagation over set constraints with finite set domain variables. In

Proceedings of ICLP’94 (p. 733). MIT Press.
Lardeux, F., Monfroy, E., Saubion, F., Crawford, B., & Castro, C. (2009). Sat encoding and csp reduction for

interconnected alldiff constraints. In Proceedings of MICAI 2009 (pp. 360–371).
Legeard, B., & Legros, E. (1991). Short overview of the clps system. In Proceedings of PLILP’91, vol. 528

(pp. 431–433). Springer.
MiniZinc. http://www.minizinc.org/.
Prestwich, S. D. (2003). Negative effects ofmodeling techniques on search performance.AnnalsOR, 118(1–4),

137–150.
Rossi, F., vanBeek, P.,&Walsh, T. (Eds.). (2006).Handbook of constraint programming. Amsterdam:Elsevier.
Triska, M., & Musliu, N. (2012). An improved sat formulation for the social golfer problem. Annals of

Operations Research, 194(1), 427–438.

123

http://www.emn.fr/z-info/choco-solver/
http://www.minizinc.org/

	Set constraint model and automated encoding into SAT: application to the social golfer problem
	Abstract
	1 Introduction
	2 Set constraint encoding
	2.1 Universe and supports
	2.2 The Leftrightarrow enc encoding rule
	2.3 Membership constraint
	2.4 Set equality constraint
	2.5 Intersection constraint
	2.6 Union constraint
	2.7 Inclusion constraint
	2.8 Difference constraint
	2.9 Multi-union constraint
	2.10 Multi-intersection constraint
	2.11 Cardinality constraint

	3 Models for the social golfer problem
	3.1 Direct encoding
	3.2 Variants of the direct encoding
	3.2.1 The ladder matrix structure
	3.2.2 Intermediate variables

	3.3 SAT encoding for set constraint model
	3.3.1 Set constraints model
	3.3.2 SCE: set constraint encoding

	4 Symmetry breaking for the social golfer problem
	4.1 Symmetry breaking for TME
	4.2 Symmetry breaking with set constraint model
	4.2.1 Symmetry breaking for the set constraint model by adding constraints
	4.2.2 Symmetry breaking for the set constraint model by modifying the model

	5 Comparisons of models
	5.1 Expressiveness
	5.2 Model structure
	5.3 Impact of the symmetry breaking

	6 Experimental Analysis
	7 Discussion
	8 Conclusion
	References

