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Abstract A hierarchical decomposition is a common approach for coping with complex
decision problems involving multiple dimensions. Recently, the multiple criteria hierarchy
process (MCHP) has been introduced as a new general framework for dealing with multiple
criteria decision aiding in case of a hierarchical structure of the family of evaluation criteria.
This study applies the MCHP framework to multiple criteria sorting problems and extends
existing disaggregation and robust ordinal regression techniques that induce decision models
from data. The new methodology allows the handling of preference information and the
formulation of recommendations at the comprehensive level, as well as at all intermediate
levels of the hierarchy of criteria. A case study on bank performance rating is used to illustrate
the proposed methodology.
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1 Introduction

In many decision making problems, decisions concerning a set of alternatives are based on
different evaluation criteria organized in a hierarchical structure. Such a hierarchy introduces
a decomposition of the primary objective into separate dimensions, which are then further
analyzed in sub-dimensions, up to the lowest level of the hierarchy, which consists of the
elementary criteria. Structuring decision problems following such a hierarchical scheme is
particularly useful in situations that require consideration of large sets of criteria describ-
ing different aspects of the problem at hand. Dealing with complex families of criteria of
diverse nature, poses significant cognitive burden to decision makers (DMs). Thus, using
a hierarchical decomposition facilitates the analysis as it allows DMs to deal with more
manageable elementary dimensions. Furthermore, working with such a hierarchy provides
detailed insights on all partial dimensions of the problem, instead of focusing solely on the
comprehensive level.

A common approach to deal with hierarchies of criteria inMCDA is the analytic hierarchy
process (Saaty 2005), but its fundamental problems arewell-documented in the literature (see,
for example, Bana e Costa and Vansnick 2008). Recently, the Multiple Criteria Hierarchy
Process (MCHP) has been introduced as an alternative (Angilella et al. 2013; Corrente et al.
2012, 2013). The MCHP introduces a new modeling framework that allows the construction
of sound decision models in decision problems with a hierarchical structure, through MCDA
techniques based on the preference disaggregation paradigm (Jacquet-Lagrèze and Siskos
2001). The MCHP is able to take into account preference information not only at a compre-
hensive level but also at all lower levels of the hierarchy, and provide recommendations in a
similar form.

In previous studies, the MCHP has been introduced in the context of choice and ranking
problems, where the objective is either to choose the best alternative(s) among those consid-
ered (choice) or to rank-order the alternatives from the best to theworst ones. In these contexts,
the MCHP has been employed to construct decision models with outranking methods such
as ELECTRE and PROMETHEE (Corrente et al. 2013), value function models (Corrente
et al. 2012), as well as with the Choquet integral preference model (Angilella et al. 2013).

In this study, we extend the MCHP framework to multiple criteria sorting (classification)
problems, where the objective is to assign a set of alternatives to predefined (ordinal) decision
classes. Such problems often arise in many domains (Zopounidis and Doumpos 2002) and
they have attracted much interest inMCDA over the past decade. Sorting problems have been
dealt in the literature using outranking relations (e.g., the ELECTRE Tri method Yu 1992),
value functions, and decision rules (Greco et al. 1999, 2001, 2002, Słowiński et al. 2002). In
this paper, we focus on value function models, which constitute a convenient and easy way
of modeling DMs preferences in MCDA problems. The best-known method based on this
modeling approach for multiple criteria sorting problems is the UTADIS method (UTilités
Additives DIScriminantes) and its variants (Devaud et al. 1980; Doumpos and Zopounidis
2002; Zopounidis and Doumpos 1999). In this paper, we extend the UTADIS method to
problems having a hierarchical structure by applying the MCHP framework. In order to
reduce the cognitive effort of the DM, we also extend the UTADISGMS method (Greco
et al. 2010) multiple putting it in the MCHP framework. UTADISGMS is the generalization
of UTADIS to the Robust Ordinal Regression (ROR) setting (Corrente et al. 2013, 2014;
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Greco et al. 2008). ROR is a family of methods taking into account not only one but all
instances of an assumed preference model being compatible with the preference information
provided by the DM. In that regard, this study contributes to the literature on multiple criteria
sorting through the extension of existing techniques for inferring decisionmodels fromsorting
decision examples, using a formal framework of MCHP, which allows the input preference
information to be decomposed into smaller and more manageable aspects of the problem. In
order to illustrate the proposed methodology, we employ a case study involving a financial
decision problem, namely the performance rating of banks. In a supervisory context, bank
rating is a complex process that requires the consideration of all aspects of bank operation,
financial status, and risk profile. This case study fits well the framework of MCHP and
multiple criteria sorting, and thus, it illustrates well the potentials of the proposed modeling
approach in practice.

The rest of the paper is organized as follows: In the next section, a general problem
setting is provided. Section 3 describes the MCHP extension of the UTADIS method to
decision problems with a hierarchical structure, while in Sect. 4 the integration of MCHP
and UTADISGMS is explained in detail. The application to bank performance evaluation is
presented in Sect. 5. Finally, Sect. 6 concludes the paper and provides some future research
directions.

2 General setting

A set of alternatives A = {a, b, . . .} is evaluated on a set of criteria structured in a hierarchical
way in l different levels. The complete set of criteria (from all levels) will be denoted by G,
while the set of indices of criteria will be denoted by IG . The criteria at the lowest level of
the hierarchy will be called elementary criteria and the alternatives will be directly evaluated
on these criteria only. The set of indices of elementary criteria will be denoted by EL , while
the set of indices of elementary criteria descending from node Gr of the hierarchy (r ∈ IG),
will be denoted by E(Gr). Each node of the hierarchy represents a particular sub-dimension
of the problem, with G0 corresponding to the root of the hierarchy (i.e., G0 = G). Without
loss of generality, we shall suppose that all elementary criteria are to be maximized (i.e.,
preference increases with the value of each criterion).

Furthermore, by n(r)we shall denote the number of criteriaG(r,1), . . . ,G(r,n(r)) descend-
ing from Gr in the next (lower) level of the hierarchy. Obviously, the elementary criteria are
not further decomposed into subcriteria. By LBO we shall denote the indices of the criteria
from the next-to-last level of the hierarchy, while LB(Gr) will denote the set of indices of
criteria descending from Gr and located at the next-to-last level.

Assuming that the set of elementary criteria is mutually preferentially independent
(Keeney and Raiffa 1993; Wakker 1989), their aggregation is possible with an additive value
function U : A → [0, 1], such that:

U (a) =
∑

t∈EL

ut(gt(a))

where ut are marginal value functions related to elementary criteria gt.
In the MCHP context, assuming that at each level criteria are preferentially independent,

it is possible to consider a partial value function for each (non-elementary) criterion Gr,
r ∈ IG as follows:
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Ur(a) =
∑

t∈E(Gr)

ut(gt(a)).

An obvious consequence is that

Ur(a) =
n(r)∑

j=1

U(r, j)(a) (1)

whereU(r, j)(a) represents the value of alternative a according to the j th subcriterion of Gr,
for all r ∈ IG\EL (more details on MCHP can be found in Corrente et al. 2012).

For each criterion Gr above the level of elementary criteria, the sorting procedure with
respect to subcriteria descending directly fromGr consists in assigning each alternative from
A to one among pr decision classes C1, . . . ,Cpr , where Cpr is the class of top performing
alternatives and C1 is the class of the worst alternatives. Note that the sorting with respect
to subcriteria descending directly from different criteria Gr could involve different values of
pr, i.e., the number of classes to which an alternative can be assigned could depend on Gr.
For each criterion Gr above the elementary level, class Ch (h ∈ {1, . . . , pr}) is defined by
lower and upper value thresholds br

h−1 and br
h , such that br

h−1 < br
h , defined on the value

function scale. It follows that 0 = br
0 < br

1 < . . . < br
pr−1 < br

pr
= ∑

t∈E(Gr)

ut(x
mt
t ), where

the value of br
pr

is the maximum level of the value function for Gr (with xmt
t being the best

performance on elementary criterion gt over all alternatives from A).

3 MCHP and the UTADIS method

Consider an assignment of alternative a ∈ A to class Ch (h ∈ {1, ..., pr}) with respect to
subcriteria descending directly from criterion Gr (r ∈ IG\EL). In the following, instead of
criterion Gr, we shall often use the term node Gr, in order to stress that the assignment takes
place in a particular place of the hierarchy tree.

Moreover, the assignment of alternatives with respect to subcriteria descending directly
from criterion Gr (r ∈ IG\EL) will be called the assignment in node Gr.

Definition 3.1 In node Gr (r ∈ IG\EL), alternative a is assigned to class Ch (h =
1, . . . , pr)

(
denoted as a −→

r
Ch

)
, iff br

h−1 ≤ Ur(a) < br
h .

As a consequence, in node Gr,

• a is assigned to at least class Ch

(
a −→

r
C≥h

)
, iff Ur(a) ≥ br

h−1,

• a is assigned to at most class Ch

(
a −→

r
C≤h

)
, iff Ur(a) < br

h (the inequality becomes

weak if h = pr, that is Ur(a) ≤ br
pr
),

• a is assigned to some class in the interval [Ch1 ,Ch2 ] (1 < h1 < h2 < pr)(
a −→

r
[Ch1 ,Ch2 ]

)
, iff br

h1−1 ≤ Ur(a) < br
h2
.

In what follows, in order to simplify the presentation and without loss of generality, we
assume that the same classes apply in all nodes of the hierarchy tree. This means that the
number of classes pr to which each alternative can be assigned does not depend on the
considered node Gr. Consequently, pr = p for all r ∈ IG\EL .

A first desirable coherence property for hierarchical multiple criteria sorting methods is
the following. If an alternative a ∈ A is assigned to class Ch in all nodes directly descending
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from Gr, then it should also be assigned to the same class in node Gr. For example, if
student S is assigned to the class of good students in the nodes corresponding to Algebra
and Analysis, being the only two subcriteria of the criterion Mathematics, then S has to be
assigned to the class of good students also in the node of Mathematics. Henceforth, we shall
refer to this property as the first coherence property of hierarchical multiple criteria sorting.

A second desirable coherence property for hierarchical multiple criteria sorting methods
is the following. If an alternative a ∈ A is assigned to at least class Ch , i.e., to class Ch or
better, in all nodes directly descending from Gr, then it should also be assigned to at least
class Ch in node Gr. Coming back to the previous example, if student S is assigned to at
least medium class of students in the nodes corresponding to Algebra and Analysis, then S
has also to be assigned to at least the medium class of students in the node of Mathematics.
Let us call this property second coherence property of hierarchical multiple criteria sorting.
Of course, another coherence property for hierarchical multiple criteria sorting methods is
symmetric to the second property, i.e., if an alternative a ∈ A is assigned to at most class
Ch (to class Ch or worse), in all nodes directly descending from Gr, then it should also be
assigned to at most class Ch in node Gr. Henceforth, this property will be referred to as
the third coherence property of hierarchical multiple criteria sorting. The second and third
coherence properties of hierarchical multiple criteria sorting can be synthesized as follows:
in node Gr, an alternative a ∈ A should be assigned to an interval of contiguous classes,
included in the interval of classes having as extrema the worst and the best classes to which
a is assigned in nodes directly descending from Gr. For example, if student S is assigned
to the interval of classes from moderate to relatively good students in the node of Algebra,
and to the interval of classes from medium to good students in the node of Analysis, then
student S has to be assigned to an interval of classes from moderate to good students in the
node of Mathematics. Even if this coherence property is the mere synthesis of the above
second and third coherence properties, we shall refer to it as the fourth coherence property
for hierarchical multiple criteria sorting methods, because it will be useful to recall it in the
subsequent discussion.

Proposition 3.1 given below says that the first and the fourth coherence properties for
hierarchical multiple criteria sorting methods coincide, and that they hold if and only if the
value thresholds separating the classes in node Gr are equal to the sum of the corresponding
value thresholds separating the classes in the nodes directly descending from Gr (see the
Appendix for the proofs). Indeed, this condition is expressed as statement 1 of Proposition
3.1, whereas the first and the fourth coherence properties for hierarchical multiple criteria
sorting methods correspond to statements 2 and 3, respectively.

Proposition 3.1 The three following statements are equivalent:

1. In each node Gr, r ∈ IG\EL, br
h =

n(r)∑
j=1

b(r, j)
h for all h = 0, . . . , p,

2. In each node Gr, r ∈ IG\EL, if a −−→
(r, j)

[Ch j ,Ck j ] for all j = 1, . . . , n(r), then

a −→
r

[Ch,Ck] where h = min j=1,...,n(r) h j , and k = max j=1,...,n(r) k j ,

3. In each node Gr, r ∈ IG\EL, if a −−→
(r, j)

Ch for all j = 1, . . . , n(r) then a −→
r

Ch.

Since wewould like our hierarchical sorting approach to respect points 2 and 3 of Proposi-

tion 3.1,we shall assume that br
h =

n(r)∑
j=1

b(r, j)
h in each nodeGr, r ∈ IG\EL . As a consequence

of this choice, it is sufficient to define the value thresholds in nodes from the next-to-last of

123



122 Ann Oper Res (2017) 251:117–139

the hierarchy, because for any other higher level node Gr, r ∈ IG\{EL ∪ LBO} it holds
that

br
j =

∑

s∈LB(Gr)

bs
j , for all j = 0, . . . , p.

In order to construct the additive value function and define the value thresholds, one
can use a direct or an indirect approach. In the former case, the DM is asked to specify
explicitly the parameters of the model (value thresholds in this case), following a direct
assessment protocol designed specifically for the type of model under consideration (for
example of such a protocol for additive value models see Bouyssou and Marchant 2010).
On the other hand, in an indirect approach (Jacquet-Lagrèze and Siskos 2001) the DM is
asked to provide some comprehensive preference information on the assignment of some
reference alternatives (i.e., taking into account the full set of criteria present in the hierarchy)
and/or partial preference information (i.e., considering a particular dimension of the problem,
corresponding to criterion Gr, being an intermediate node in the hierarchy tree). With such
preference information at hand, it is possible to infer values for the parameters of the model
that are compatiblewith the judgments provided by theDM.This can be achieved considering
the following set of constraints (in accordance with Greco et al. 2010, henceforth (U, b) will
be used to denote a value function and a set of value thresholds compatiblewith the preferences
of the DM, whereas U will denote the set of all compatible instances of this model):

Ur(a) ≥ br
h−1,

Ur(a) − br
h ≤ −ε

}
if a −→

r
Ch

Ur(a) ≥ br
h−1, if a −→

r
C≥h

Ur(a) − br
h ≤ −ε, if a −→

r
C≤h

Ur(a) ≥ br
h1−1,

Ur(a) − br
h2

≤ −ε

}
if a −→

r
[Ch1 ,Ch2 ]

ut(xkt ) ≥ ut(x
k−1
t ), k = 1, . . . ,mt, for all t ∈ EL ,

ut(x0t ) = 0, for all t ∈ EL , and
∑

t∈EL ut(x
mt
t ) = 1

bs
h ≥ bs

h−1 + ε, h = 1, . . . , p, for all s ∈ LBO,

bs
0 = 0, and bs

p = ∑
t∈E(Gs)

ut(x
mt
t ), for all s ∈ LBO,

br
h = ∑

s∈LB(Gr)
bs
h, for all h = 0, . . . , p, and for all r ∈ IG\{EL ∪ LBO}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E AR

where xkt , k = 0, . . . ,mt , are the mt + 1 different performances on elementary criterion
gt attained by alternatives in A (arranged in ascending order); x0t and xmt

t are, respectively,
the worst and the best performances of alternatives on elementary criterion gt, while ε is
an auxiliary variable used to translate the strict inequality constraints to weak inequality
constraints.

If E AR
is feasible and ε∗ > 0, where ε∗ = max ε subject to E AR

, then there exists at least
one instance (U, b) compatible with the preferences provided by the DM. The readers inter-
ested to conditions ensuring the existence of an additive representation of ordered partitions
could look at Bouyssou and Marchant (2010).

Remark 3.1 Let us observe that if the number of classes considered in each node Gr is
different (different values of pr for all Gr), then the direct and the indirect approaches
explained above remain valid. In particular, in the indirect approach, one has to consider the
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set of constraints E AR

1 obtained from E AR
by replacing the last three constraints with the

following ones:

br
h ≥ br

h−1 + ε, h = 1, . . . , pr, for all r ∈ IG\EL , (2)

br
0 = 0, and br

pr
=

∑

t∈E(Gr)

ut(x
mt
t ), for all r ∈ IG\EL . (3)

The last constraint in E AR
does not hold anymore [except for the case h = 0 and h = pr in

consequence of Eq. (3)], since the number and meaning of the different thresholds obviously
depend on the number of classes to which each alternative can be assigned in node Gr. For
example, let us consider a small hierarchy in which a root criterionG0 has subcriteriaG1 and
G2, and each alternative can be assigned to two classes in node G0 (p0 = 2) while it can be
assigned to three and four classes in nodes G1 and G2, respectively (p1 = 3 and p2 = 4). In
this case, there will be three value thresholds in nodeG0

({
b00, b

0
1, b

0
2

})
, four value thresholds

in node G1
({
b10, b

1
1, b

1
2, b

1
3

})
, and five value thresholds in node G2

({
b20, b

2
1, b

2
2, b

2
3, b

2
4

})
.

4 MCHP and the UTADISGMS method

In general, more than one instance of the preference model could be compatible with the
preference information provided by the DM. Each of these instances restores the given
information in the same way, but each one of them could provide different recommendations
on alternatives outside the reference set. In this case, choosing a single compatible instance
of the preference model may lead to a loss of possibly important information. For this reason,
Robust Ordinal Regression (ROR) (Corrente et al. 2013, 2014, Greco et al. 2008) takes into
account the whole set of instances of the preference model compatible with the preference
information provided by the DM, by building necessary and possible preference relations
that hold for all or for at least one compatible instance of the preference model.

In the MCHP context, the DM could be therefore interested to know not only to which
class an alternative could be necessarily or possibly assigned taking into account the whole
set of criteria, but also to which class it could be necessarily or possibly assigned with respect
to a criterion corresponding to a particular node of the hierarchy tree.

In this section, we extend UTADISGMS (Greco et al. 2010) to the MCHP context, by
reformulating the definition of the necessary and possible assignments as follows:

Definition 4.1 In any node Gr, (r ∈ IG\EL) in the hierarchy tree,

• a ∈ A is necessarily assigned to at least class Ch , denoted by a
N−→
r

C≥h , iffUr(a) ≥ br
h−1

for all compatible (U, b),

• a ∈ A is possibly assigned to at least class Ch , denoted by a
P−→
r

C≥h , iff Ur(a) ≥ br
h−1

for at least one compatible (U, b),

• a ∈ A is necessarily assigned to at most class Ch , denoted by a
N−→
r

C≤h , iff Ur(a) < br
h

for all compatible (U, b),

• a ∈ A is possibly assigned to at most class Ch , denoted by a
P−→
r

C≤h , iff Ur(a) < br
h for

at least one compatible (U, b).

The above necessary and possible preference relations can be computed as follows:
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• a
N−→
r

C≥h iff the set of constraints EN
(
a −→

r
C≥h

)
is infeasible or if ε

(
a

N−→
r

C≥h

)
≤ 0,

where EN
(
a −→

r
C≥h

)
= E AR ∪ {

Ur(a) + ε ≤ br
h−1

}
and ε

(
a

N−→
r

C≥h

)
= max ε, s.t.

EN
(
a −→

r
C≥h

)
;

• a
P−→
r

C≥h iff the set of constraints EP
(
a −→

r
C≥h

)
is feasible and ε

(
a

P−→
r

C≥h

)
> 0,

where EP
(
a −→

r
C≥h

)
= E AR ∪ {

Ur(a) ≥ br
h−1

}
and ε

(
a

P−→
r

C≥h

)
= max ε, s.t.

EP
(
a −→

r
C≥h

)
;

• a
N−→
r

C≤h iff the set of constraints EN
(
a −→

r
C≤h

)
is infeasible or if ε

(
a

N−→
r

C≤h

)
≤ 0,

where EN
(
a −→

r
C≤h

)
= E AR ∪ {

Ur(a) ≥ br
h

}
and ε

(
a

N−→
r

C≤h

)
= max ε, s.t.

EN
(
a −→

r
C≤h

)
;

• a
P−→
r

C≤h iff the set of constraints EP
(
a −→

r
C≤h

)
is feasible and ε

(
a

P−→
r

C≤h

)
> 0,

where EP
(
a −→

r
C≤h

)
= E AR ∪ {

Ur(a) + ε ≤ br
h

}
and ε

(
a

P−→
r

C≤h

)
= max ε, s.t.

EP
(
a −→

r
C≤h

)
.

Robust hierarchical multiple criteria sorting methods should satisfy some desirable prop-
erties. The first two properties are logical properties, that, in fact, have to be satisfied even
when there is no hierarchical structure. These properties state that for all a ∈ A and for any
non-elementary criterion Gr,

1R) either a is necessarily assigned to at least class Ch , or a is possibly assigned to at most
class Ch−1, h ∈ {2, . . . , p},

2R) either a is necessarily assigned to at most class Ck , or a is possibly assigned to at least
class Ck+1, k ∈ {1, . . . , p − 1}.

Conditions 1R) and 2R) can be considered as completeness properties for robust hier-
archical multiple criteria sorting corresponding to completeness properties for “flat”
(non-hierarchical) sorting problems, according to which for all a ∈ A:

1B) either a is assigned to at least class Ch , or a is assigned to at most class Ch−1,

h ∈ {2, . . . , p},
2B) either a is assigned to at most class Ck , or a is assigned to at least class Ck+1,

k ∈ {1, . . . , p − 1}.
On the basis of this observation, we shall call properties 1R) and 2R), first and second com-
pleteness properties of robust hierarchical multiple criteria sorting. Observe that removing
the reference to nodeGr of the hierarchy tree, the first and the second completeness properties
should hold for any robust multiple criteria sorting method.

Other desirable properties are related to the hierarchical nature of the robust sorting,
and can be seen as counterparts of the robust multiple criteria sorting of the coherence
properties considered in Sect. 3 for non-hierarchical multiple criteria sorting. The coherence
properties for robust hierarchical multiple criteria sorting methods that we shall consider are
the following:

• If a is necessarily assigned to at least class Ch in all nodes directly descending from Gr,
then it is necessarily assigned to at least class Ch in node Gr. For example, if student

123



Ann Oper Res (2017) 251:117–139 125

S is necessarily assigned to at least class medium in both Algebra and Analysis, then
S has to be assigned to at least class medium also in the node of Mathematics. Let us
call this property first coherence property for robust hierarchical multiple criteria sorting
methods.

• If a is necessarily assigned to at most class Ck in all nodes directly descending from Gr,
then it is necessarily assigned to at most class Ck in node Gr. For example, if student S
is necessarily assigned to at most class moderate in both Algebra and Analysis, then S
has to be assigned to at most class moderate also in the node of Mathematics. Let us call
this property second coherence property for robust hierarchical multiple criteria sorting
methods.

• If a is necessarily assigned to at least class Ch in all nodes directly descending from Gr,
with the possible exception of node j for which a is possibly assigned to at least class
Ch , then a is possibly assigned to at least class Ch in node Gr. For example, if student
S is assigned to at least class medium necessarily in the node of Algebra, and possibly
in the node of Analysis, then S has to be possibly assigned to at least class medium also
in the node of Mathematics. Let us call this property third coherence property for robust
hierarchical multiple criteria sorting methods.

• If a is necessarily assigned to at most class Ck in all nodes directly descending from Gr,
with the possible exception of node j for which a is possibly assigned to at most class
Ck , then a is possibly assigned to at most class Ck in node Gr. For example, if student S
is assigned to at most class moderate necessarily in the node of Algebra, and possibly in
the node of Analysis, then S has to be possibly assigned to at most class moderate also
in the node of Mathematics. Let us call this property fourth coherence property for robust
hierarchical multiple criteria sorting methods.

Proposition 4.1 given below says that the above two completeness properties, as well as the
four coherence properties hold for the hierarchical UTADISGMS we are proposing. Notice
that the four coherence properties are satisfied because statement 1 in Proposition 3.1 holds,
i.e., because the value thresholds separating the classes in nodeGr are equal to the sum of cor-
responding value thresholds separating the classes in all nodes directly descending from Gr.

Proposition 4.1 In any node Gr, r ∈ IG\EL, of the hierarchy tree,

1. For all a ∈ A, and h = 2, . . . , p, either a
N−→
r

C≥h or a
P−→
r

C≤h−1,

2. For all a ∈ A, and k = 1, . . . , p − 1, either a
N−→
r

C≤k or a
P−→
r

C≥k+1,

3. If a
N−−→

(r, j)
C≥h j , j = 1, . . . , n(r), then a

N−→
r

C≥h where h = min j=1,...,n(r) h j ,

4. If a
N−−→

(r, j)
C≤k j , j = 1, . . . , n(r), then a

N−→
r

C≤k where k = max j=1,...,n(r) k j ,

5. If a
N−−→

(r, j)
C≥h j , j ∈ {1, . . . , n(r)} \ {

j
}
and a

P−−→
(r, j)

C≥h j
, then a

P−→
r

C≥h where

h = min j=1,...,n(r) h j ,

6. If a
N−−→

(r, j)
C≤k j , j ∈ {1, . . . , n(r)} \ {

j
}
, and a

P−−→
(r, j)

C≤k j then a
P−→
r

C≤k where

k = max j=1,...,n(r) k j .

An obvious consequence of Proposition 4.1 is that if a
N−−→

(r, j)
Ch, j = 1, . . . , n(r), then

a
N−→
r

Ch .
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In order to possibly or necessarily assign an alternative a ∈ A to an interval of classes in
node Gr of the hierarchy tree, the following indices can be defined:

LU,P
r (a) = max

(
{1} ∪

{
h ∈ H : a N−→

r
C≥h

})
,

RU,P
r (a) = min

(
{p} ∪

{
h ∈ H : a N−→

r
C≤h

})
(4)

LU,N
r (a) = max

(
{1} ∪

{
h ∈ H : a P−→

r
C≥h

})
,

RU,N
r (a) = min

(
{p} ∪

{
h ∈ H : a P−→

r
C≤h

})
. (5)

On the basis of Proposition 4.1, we can prove the following results:

Proposition 4.2 In any node Gr (r ∈ IG\EL) of the hierarchy tree, and a ∈ A,

1. LU,P
r (a) ≥ min j=1,...,n(r)

{
LU,P

(r, j)(a)
}

,

2. RU,P
r (a) ≤ max j=1,...,n(r)

{
RU,P

(r, j)(a)
}

.

5 Application to bank performance rating

5.1 Problem context

In order to illustrate the applicability of the proposed approaches, this section presents results
from a case study involving bank performance rating, in a context of prudential supervision.
Under the existing financial regulatory framework ofBasel II, the banking supervisory author-
ities of each country (e.g. central banks) should conduct performance assessments on a regular
basis for banks operating in the country, in order to ensure the stability of the country’s bank-
ing system. Given that bank defaults are rare events, adequate historical data are usually not
available to fit statistical models for estimating the likelihood of financial distress for bank-
ing institutions. Therefore, supervisors mainly rely on judgmental peer assessment systems,
which take into account all aspects of a bank’s operations and risk profile (Comptroller of
the Currency 2007; Sahajwala and Van den Bergh 2000; Greuning and Brajovic Bratanovic
2009). The application of theMCDA iswell-suited in this context, as it provides bank analysts
and supervisors with a formal framework and analytic techniques for constructing compos-
ite performance indicators, exploring the trade-offs between different risk and performance
factors, conducting robustness checks, and exploring stress testing scenarios.

Typically, bank rating systems consider six major dimensions, which define a compre-
hensive assessment framework referred to as CAMELS:

(1) capital adequacy,
(2) asset quality,
(3) management competence,
(4) earning generating ability,
(5) liquidity,
(6) sensitivity to market risks.

These dimensions are further decomposed into elementary criteria, which are specified
according to particular characteristics of the banking system in a country. Thus, the problem
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G(0)

CA
G1

CA1
G(1,1)

· · · CA3
G(1,3)

AS
G2

AS1
G(2,1)

· · · AS5
G(2,5)

MC
G3

MC1
G(3,1)

· · · MC12
G(3,12)

ER
G4

ER1
G(4,1)

· · · ER5
G(4,5)

LQ
G5

LQ1
G(5,1)

· · · LQ4
G(5,4)

SM
G6

SM1
G(6,1)
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Fig. 1 Hierarchy of criteria

has a hierarchical structure and the bank rating assessment process should provide results
not only at the comprehensive level, but also at each one of the above main dimensions. The
results are commonly expressed in a 5-point rating scale. Thus, the context of bank rating
fits well the MCHP sorting framework developed in this study.

5.2 Data and criteria

The data used in the analysis are taken from Doumpos and Zopounidis (2010) and they
originate from the Bank of Greece (the supervisory authority responsible for the Greek bank-
ing system). They involve 18 Greek banks between 2001 and 2005 (overall 85 bank-year
observations1, which correspond to the alternatives). The banks have been evaluated on 31
criteria structured in a hierarchical way following the CAMELS framework, as shown in
Fig. 1. The six CAMELS dimensions (Capital-CA, Assets-AS, Management-MC, Earnings-
ER, Liquidity-LQ, and Sensitivity to market risks-SM) are the first level criteria, each
analyzed through multiple subcriteria in the subsequent level. These subcriteria serve as
the elementary decision attributes in the MCHP framework, for which the data are available
for the banks in the sample.

The definition of the elementary criteria is given in Table 1. These include 17 financial
ratios that describe quantitative aspects of bank operation, whereas the remaining 14 criteria
describe qualitative issues (but these are still measured on a 0.5–5.5 cardinal scale defined by
analysts at the Bank of Greece, with lower values indicating higher performance). Criteria
whose type is indicated in Table 1 as “max” are positively related to the performance of
banks, whereas “min” criteria are those that are negatively related to bank performance.
For each elementary criterion gt, we considered a linear marginal value function:

ut(a) = ut
(
xmt

t

) gt(a) − x0t
xmt

t − x0t
(6)

where the best (xmt
t ) and worst (x0t ) performances are defined as follows:

Maximization criteria: xmt
t = max {gt(a), a ∈ A} and x0t = min {gt(a), a ∈ A}

Minimization criteria: xmt
t = min {gt(a), a ∈ A} and x0t = max {gt(a), a ∈ A} .

It should be noted that the use of linear marginal value functions in the setting of this case
study, is actually in accordance with the CAMELS modeling framework as implemented
by the Bank of Greece. Furthermore, similar linear scoring and risk monitoring systems are
widely used by bank supervisory agencies worldwide.

In accordance with the policy followed by analysts at the Bank of Greece during the period
under consideration, the following points are taken into consideration:

1 For some banks the data were not available for all years.
The data are available at: http://www.fel.tuc.gr/BankData.xlsx
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Table 1 Evaluation criteria and their indices used in Fig. 1

Category Index Abbr. Type Index Criterion name

Capital 1 CA1 Max (1, 1) Capital adequacy ratio

CA2 Min (1, 2) TIER II capital/TIER I

CA3 Min (1, 3) Qualitative∗
Assets 2 AS1 Min (2, 1) Risk-weighted assets/assets

AS2 Min (2, 2) (non performing loans – provisions)/Loans

AS3 Min (2, 3) Large exposures/(TIER I + TIER II capital)

AS4 Min (2, 4) [0.5 (non performing loans) –
provisions]/equity

AS5 Min (2, 5) Qualitative∗
Management 3 MC1 Min (3, 1) Operating expenses/operating income

MC2 Min (3, 2) Staff cost/assets

MC3 Max (3, 3) Operating income/business units

MC4 Min (3, 4) Top management competencies,
qualifications and continuity

MC5 Min (3, 5) Managers’ experience and competence

MC6 Min (3, 6) Resilience to change, strategy, long term
horizon

MC7 Min (3, 7) Management of information systems

MC8 Min (3, 8) Internal control systems

MC9 Min (3, 9) Financial risk management system

MC10 Min (3, 10) Internal processes charter—implementation
monitoring

MC11 Min (3, 11) Timely and accurate data collection

MC12 Min (3, 12) Information technology systems

Earnings 4 ER1 Max (4, 1) Net income/assets

ER2 Max (4, 2) Net income/equity

ER3 Max (4, 3) Interest revenue/assets

ER4 Max (4, 4) Other operating revenue/assets

ER5 Min (4, 5) Qualitative∗
Liquidity 5 LQ1 Max (5, 1) Cash/assets

LQ2 Min (5, 2) (loans – provisions)/deposits

LQ3 Min (5, 3) Real funding from credit institutions/assets

LQ4 Min (5, 4) Qualitative∗
Market 6 SM1 Min (6, 1) Risk-weighted assets II/risk-weighted assets

(I & II)

SM2 Min (6, 2) Qualitative∗

∗ Undisclosed criteria related to qualitative aspects of the banks’ operation

• The importance of quantitative criteria should be at least equal to 70%. Even though
criteria related to qualitative aspects of bank operation are particularly useful for describing
important performance and risk factors in the medium-long term, they clearly entail some
subjectivity on the way they are modeled and assessed. On the other hand, financial
quantitative criteria, despite their shortcomings (e.g., potential manipulation of accounting
reporting standards), are hard data widely used in prudential supervision research and
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practice all over the world. In that regard, this requirement is imposed to ensure that the
resulting evaluation does not overweight the qualitative aspects of bank operation over the
actual financial results.
Denoting by IGQual the set of indices of qualitative elementary criteria, that is

IGQual = {(1, 3), (2, 5), (4, 5), (5, 4), (6, 2)}

and by IGQuan the set of indices of all quantitative elementary criteria (IGQual ∪ IGQuan =
IG), the previous piece of preference information can be translated to the following con-
straint: ∑

t∈IGQuan

ut(x
mt
t ) ≥ 0.7. (7)

This implies that a bank having the best performance on all quantitative elementary criteria
should have a comprehensive value not less than 0.7.

• Capital and assets are the most important dimensions, whereas market risk is the least
important one. Capital adequacy and asset quality are critical factors for ensuring the
financial soundness of a bank. They are both closely monitored on a regular basis by
supervisors, and actions are taken whenever a bank does not have adequate capital (see for
example the stress tests conducted by the European Banking Authority) or when its loan
portfolio is particularly troublesome. Liquidity is also an important issue, but during the
period of the analysis (2001–2005) there were no indications that liquidity risk could be a
critical factor in the foreseeable future for Greek banks. Therefore, liquidity is considered
to be of lower importance for this analysis, compared to capital adequacy and asset quality.
The same applies to earning power and management competence, too. Earning power is
an important dimension for the success of banking institutions as it indicates how they
perform in multiple areas. Furthermore, a strong stream of earnings constitutes the first
line of defense against loan losses. However, the period of the analysis was a time of
transition for Greek banks in terms of their profitability, mainly due to the introduction
of the Euro and the adoption of the international accounting standards by the largest
banks. Due to the challenges that these issues created in assessing the earnings of Greek
banking institutions over the period under consideration, its relative importance was set
below capital and assets. On the other hand, management competence is mostly related to
qualitative aspects of bank operation, which, as explained above, are given lower priority.
Finally, the data set only involves commercial banks, whose exposure to market risks is
limited. Therefore, the market risk dimension is assumed to be the least important one
among the six criteria categories.
Using the notation introduced in Sect. 2 and indices of criteria shown in Table 1, the given
three pieces of preference information can be translated to the following sets of constraints

∑

t∈E(G1)

ut(x
mt
t ) ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
t∈E(G3) ut(x

mt
t ) + ε,∑

t∈E(G4) ut(x
mt
t ) + ε,∑

t∈E(G5) ut(x
mt
t ) + ε,∑

t∈E(G6) ut(x
mt
t ) + ε,

∑

t∈E(G2)

ut(x
mt
t ) ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
t∈E(G3) ut(x

mt
t ) + ε,∑

t∈E(G4) ut(x
mt
t ) + ε,∑

t∈E(G5) ut(x
mt
t ) + ε,∑

t∈E(G6) ut(x
mt
t ) + ε,

(8)

∑

t∈E(G6)

ut(x
mt
t ) ≤

⎧
⎪⎨

⎪⎩

∑
t∈E(G3) ut(x

mt
t ) − ε,∑

t∈E(G4) ut(x
mt
t ) − ε,∑

t∈E(G5) ut(x
mt
t ) − ε,

(9)
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Table 2 Initial set of the expert’s
comprehensive judgments

Alternatives Class

A16, A17, A18 C1

A10, A21, A22 C2

A7, A8, A9 C3

A1, A2, A6 C4

A3, A4, A5 C5

where the constraints (8) say that criteria categories capital and assets are more important
than the other four criteria categories, while the constraints (9) say that market risk is the
least important criteria category. Let us notice that the constraints saying that market risk is
less important than capital and assets are missing in (9) since these constraints are already
present in (8).

5.3 Discussion of results

In addition to the above preference information, an expert banking analyst (DM) familiar with
the Greek banking sector provided global assessments for a small set of banks, as shown in
Table 2. These are banks for which the DMwas familiar with their strengths and weaknesses
over the examined period. For example, alternatives A3, A4, and A5 correspond to a leading
Greek bank in terms of its market niche and financial strength over a three years period
(2003–2005), alternatives A7, A8, and A9 involve a state-owned bank being in transition
towards privatization, whereas A16, A17, and A18 correspond to a recently privatized bank
that faced significant operating challenges moving to a new corporate plan.
Since each bank can be assigned to one of five classes at the level of macro-criteria and at the
comprehensive level, then six thresholds have to be specified for each macro-criterion (bs0,
bs1, b

s
2, b

s
3, b

s
4, b

s
5), such that b

s
0 = 0 and bs5 = ∑

t∈E(Gs )
ut(x

mt
t ) for all s ∈ {1, 2, 3, 4, 5, 6}.

Consequently, following Proposition 3.1, the thresholds for criterion G0 are obtained as the
sum of the corresponding thresholds for the six macro-criteria, that is b0h = ∑6

s=1 b
s
h , for all

h = 0, . . . , 5.
Having defined the thresholds for the six macro-criteria, the preferences shown in Table

2 are translated to constraints as explained in Sect. 3. For example, the assignment at a
comprehensive level of bank Ax to class Ch is translated to the constraints

U0(Ax ) ≥ b0h−1,

U0(Ax ) − b0h ≤ −ε.

}
(10)

Consequently, the set E AR
containing the constraints translating the preferences of the DM

and the technical constraints will be the following:

(7) − (10),

ut(x0t ) = 0, for all t ∈ EL , and
∑

t∈EL ut(x
mt
t ) = 1

ut(x
mt
t ) ≥ ut(x0t ), for all t ∈ EL,

bs
h ≥ bs

h−1 + ε, h = 1, . . . , 5, for all s ∈ {1, . . . , 6},
bs
0 = 0, and bs

5 = ∑
t∈E(Gs)

ut(x
mt
t ), for all s ∈ {1, . . . , 6},

b0
h = ∑

s∈{1,...,6} bs
h, for all h = 0, . . . , 5.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Table 3 Results after the first
stage Alternatives

[
LU ,P

0 , RU ,P
0

]

A23, A54, A61, A68 [C1,C4]

A36, A80, A81
[
C2,C5

]

Table 4 Information provided by the expert in the second stage

Capital adequacy Asset quality Management competence

Alternative Assignment Alternative Assignment Alternative Assignment

A67 [C1,C2] A60 [C1,C2] A17 C2

A19 [C2,C3] A41 [C2,C3] A60 C3

A7 C3 A11 [C3,C4] A1 C4

A1 C4 A5
[
C4,C5

]

A4 C5

Alternative Assignment Alternative Assignment Alternative Assignment

A19 C1 A82 C1 A76 [C1,C2]

A20 C2 A28 C2 A33 C3

A3 C3 A79 C3 A22 C4

A26 C4 A78 [C3,C4] A47
[
C4,C5

]

A36 C5 A55 C5

Note that in this case we do not need the monotonicity constraint ut(xkt ) ≥ ut(x
k−1
t ), k =

1, . . . ,mt, for any t ∈ EL because, as shown in Eq. (6), we are considering a linear marginal
value function for each elementary criterion, and this function is defined by the marginal
value ut(xt) and by the worst and the best performances of the banks on each elementary
criterion.

Solving the LP problem ε∗ = max ε, s.t. E AR
, we find that E AR

is feasible and ε∗ > 0.
This leads to the conclusion that there are multiple different instances of the preference
model compatible with the above comprehensive judgments and preferential inputs. Clearly,
the choice of a single decision instance from such limited information is likely to lead
to conclusions that are not robust. Combining ROR with the modeling framework of the
UTADIS method under the hierarchical structuring of the family of criteria, enables the
formulation of results taking into account the full set of possible instances.

Applying (4), we computed the lowest and the highest possible class assignment for each
alternative. Apart from the seven banks shown in Table 3, all the others could be possibly
assigned to the whole range of classes. Moreover, applying (5), we computed the lowest
and highest necessary assignment for each alternative. It appears that the set of necessary
assignments is empty for all banks, since LU,N

0 > RU,N
0 for all of them. It is evident that at

this stage of the analysis, the obtained results are not conclusive enough.
In order to get a more clear recommendation, the expert analyst has to provide more

detailed preference information. Then, the DM provided partial judgments involving the
main CAMELS dimensions, as shown in Table 4. These partial judgments are easier for the
DM to define, as each main dimension comprises a much smaller set of criteria compared to
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Table 5 Summary of possible
assignments from the second
stage of the analysis
(non-reference alternatives)

Assignments Overall CA AS MC ER LQ SM

C1 – – 1 – – – –

[C1,C2] – – 1 – 5 2 2

[C1,C3] – – – 4 10 26 5

[C1,C4] 11 – 2 22 9 8 11

[C1,C5] 40 – 56 18 28 25 –

C2 – 2 – – – – –

[C2,C3] – 13 – – – – –

[C2,C4] – 2 – 7 – – –

[C2,C5] 16 28 17 24 15 19 –

[C3,C5] 3 34 4 7 9 – 33

[C4,C5] – 3 – – 3 – 30

C5 – – – – 1 – –

Mean range 4.5 3.1 4.6 4.0 3.9 3.9 2.7

the 31 criteria required for the comprehensive assignment decisions provided in the previous
stage. The calculation of the new recommendation is performed analogously to the first stage.

With the new preference information, the integration of MCHP with the UTADISGMS

method was employed again to get a new set of assignments. Table 5 reports the number of
non-reference cases (i.e., banks-year observations not included in the assignments provided
by the expert analyst), by the type of their assignment result (range of classes) at the compre-
hensive level and at all lower-level dimensions. In addition, the table also presents the mean
range of the assignments as an indicator of the imprecision that describes the obtained results.
The mean range is calculated from the number of classes in the sets of possible assignments,
averaged over all non-reference bank-year observations.

It is evident that evenwith the new information, the sorting decisions at the comprehensive
level are still characterized by ambiguity, as 40 (out of 70) cases can be assigned in any
of the five rating classes. The examination of the partial assignments for each of the six
main dimensions provides some insights on the decomposition of the banks’ comprehensive
performance and the sources of ambiguity in the assignments at the comprehensive level.

In particular, the partial assignments for capital adequacy (CA) and sensitivity to market
risks (SM) are more precise compared to the other dimensions. In terms of capital adequacy,
all banks are consistently rated in class C2 or better (throughout the years), with 37 cases
being in at least medium condition (i.e., belonging to categories C3–C5). This result is
concordant with the characteristics of Greek banks during the period of the analysis, as prior
to the outbreak of the Greek sovereign debt crisis in 2010, they have been generally well
capitalized.

As far as their sensitivity to market risks is concerned, the banks also performed rather
well over the period under consideration. In particular, 63 cases are considered as having at
least medium performance on this dimension. There are, however, a few cases corresponding
to banks that seem to be exposed to market risks (i.e., their assignment includes the high
risk class C1). These are mostly smaller banks, which have indeed developed some risky
investment activities and financial products during that period.

Asset quality seems to be the main factor explaining the ambiguity in the assignment
at the comprehensive level. In the majority of cases (56 out of 81), the assignments in this
dimension span all five rating classes, which indicates that in order to obtain more precise
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Fig. 2 Mean ranges of the assignments over time

Table 6 Summary of assignment
results with the most discriminant
value function (number of
assignments by each class)

Class Comprehensively CA AS MC ER LQ SM

C1 6 0 26 21 8 20 6

C2 23 22 9 29 24 38 4

C3 19 17 7 30 29 15 15

C4 32 43 7 5 15 8 42

C5 5 3 36 0 9 4 18

conclusions on the asset quality dimension, further analysis is required using additional input
information. The same applies (yet to a smaller extend) tomanagement competence, earnings,
and liquidity.

A further examination of the time trends in the range of the assignments over time (Fig. 2)
reveals that the imprecision in the assignments at the comprehensive level has increased over
time. This can be interpreted as a warning signal, as it implies that deriving clear conclusions
on the overall performance of the banks became more difficult over the years. This trend
was primarily driven by the increasing ambiguity in the evaluations with respect to capital
adequacy (after 2002), asset quality (mostly in 2001–2002), and management competence.
On the other hand, the imprecision in the evaluationswith respect to themarket risk dimension
followed a declining trend, as the introduction of Greece to the Eurozone area in 2002 and
the improving conditions in the global financial markets (particularly after 2003) contributed
to the minimization of the exposure of Greek banks to external market risks.

The information derived from the imprecise assignments of the UTADISGMS method can
be further enriched and complemented through the construction of the most discriminant
additive value model, which is obtained through the solution of the optimization prob-
lem: max ε, subject to E AR

. Table 6 presents the number of assignments with the obtained
model, both at the comprehensive level and at the level of the six performance dimensions.
According to the results, there are six cases involving very high risk banks (class C1), five
cases of top performing banks (class C5), whereas most banks are assigned to classes C2–
C5. The distribution of the assignments for the capital adequacy dimension resembles the
assignment at the comprehensive level, whereas in terms of asset quality it is interesting
to note that there is a considerable concentration in the two extreme rating classes. This
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Table 7 The relationship between the results of UTADISGMS and the assignments of the most discriminant
model at the comprehensive level

Mean value Most discriminant assignments

C1 C2 C3 C4 C5

[C1,C4] 0.400 9.1% 90.9% – – –

[C1,C5] 0.483 5.0% 25.0% 40.0% 27.5% 2.5%

[C2,C5] 0.567 – – – 93.8% 6.2%

[C3,C5] 0.603 – – – 100.0% –

Mean value 0.337 0.423 0.482 0.559 0.642

is in accordance with the large number of imprecise assignments in this dimension, as
discussed earlier. In terms of management competence and liquidity there is a concentra-
tion in classes C1–C3 (at most medium performance), whereas the results for market risk
verify the remarks made earlier on the low exposure of Greek banks to external market
risks as there is a clear concentration in classes C4–C5 (above average performance). The
Kendall’s τ rank correlations between the comprehensive assignment and the partial ones
were higher for capital adequacy (0.725) and asset quality (0.653), which is concordant with
the information that the expert analyst provided on the high importance of these criteria.
The correlations of the comprehensive assignment to those of the other dimensions were
lower (0.2–0.3).

Table 7 presents further results on the relationship of the imprecise assignments obtained
by UTADISGMS with the ones of the most discriminant model at the comprehensive level.
In particular, for banks assigned to different ranges of classes according to UTADISGMS ,
we report their mean global values (i.e., performance scores) according to the most repre-
sentative model (second column), as well as their distribution in the classes resulting from
the most discriminant model (frequencies). For instance, the mean performance score for
banks assigned to the range of classes [C1,C4] is 0.4, and most of such instances (90.9%)
are assigned to class C2 by the most discriminant model. The last row in the table presents
the mean comprehensive value for banks assigned to different classes by the most discrim-
inant model. The results indicate that most banks assigned to [C1,C4] by UTADISGMS are
considered as low performance banks by the most discriminant model. Banks for which
their assignment is completely imprecise according to UTADISGMS span the whole range
of classes with the most discriminant model, but most of them are assigned to the medium
performance classC3. On the other hand, banks assigned to the range of classes [C2,C5] and
[C3,C5] according to UTADISGMS are assigned to classC4 by the most discriminant model.
However, the mean value of banks in [C2,C5] is 0.567, which is very similar to the mean per-
formance (0.559) of banks assigned toC4 by themost discriminant model (i.e., they resemble
typically good banks), whereas banks assigned to [C3,C5] have a mean performance value
of 0.603, which is higher that the mean of class C4 but lower that the mean of the top rating
class C5 (0.642).

6 Conclusions

Several methods are able to deal with multiple criteria sorting problems, but they all assume
a single-level organization of the family of criteria. In this paper, we proposed an extension
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of the MCHP approach to sorting problems with a hierarchical structure of the family of
criteria. The MCHP is a methodology that allows the decomposing of decision making prob-
lems into smaller dimensions (each taking into account different aspects of the problem).
In this context, we introduced modeling formulations that allow the inference of a pref-
erence model from decision examples through preference disaggregation techniques based
on an additive value function model (UTADIS and UTADISGMS methods). MCHP com-
bined with UTADIS and UTADISGMS allows the consideration of both global and partial
preference judgments, which adds flexibility to the specification of the input preference
information required in the decision aiding process. The applicability of the MCHP-
based methods was illustrated through an application regarding the assessment of bank
performance.

Future research can be extended towards a number of different directions. First, similar
approaches could be considered for other types of preference models for sorting prob-
lems, including outranking relation (Corrente et al. 2014), Choquet integral (Grabisch and
Labreuche 2010), and rule-based models (Greco et al. 2010; Słowiński et al. 2000). That
would be particularly useful, as it would yield a much more general MCHP framework,
covering situations where different aspects of a decision problem require the adoption of
different types of models. Group decision making problems can also be considered in such
a context. Combinations with simulation methods (Kadziński and Tervonen 2013) could
also be useful to enhance the assignment recommendations with probabilistic information,
whereas further analysis could also focus on building good representative preference models
in sorting problems with hierarchical structure, using the techniques presented in previ-
ous studies (Doumpos et al. 2014; Greco et al. 2011). In addition to these methodological
extensions, further testing on other case studies and through experimental computational
analyses could provide further insights into the properties of the MCHP-based sorting
schemes. Introduction of procedures guiding the elicitation of preference information by
the DM in the spirit of active learning would also be useful to reduce the cognitive effort
required during the decision aiding process and make such techniques easier to apply in
practice.
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Appendix

Proof of Proposition 3.1

(1) ⇒ (2) Let a −−→
(r, j)

[
Ch j ,Ck j

]
for all j = 1, . . . , n(r). This means that b(r, j)

h j−1 ≤
U(r, j)(a) < b(r, j)

k j
for all j = 1, . . . , n(r). Let us consider h = min j=1,...,n(r) h j and k =

max j=1,...,n(r) k j . For themonotonicity of the thresholds,we shall have for all j = 1, . . . , n(r)

that b(r, j)
h−1 ≤ b(r, j)

h j−1 ≤ U(r, j)(a) < b(r, j)
k j

≤ b(r, j)
k for all j = 1, . . . , n(r) and, consequently,

b(r, j)
h−1 ≤ U(r, j)(a) < b(r, j)

k . Adding up with respect to j , we get

br
h−1 =

n(r)∑

j=1

b(r, j)
h−1 ≤

n(r)∑

j=1

U(r, j)(a) <

n(r)∑

j=1

b(r, j)
k = br

k .
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From Eq. (1), it follows that br
h−1 ≤ Ur(a) < br

k and, consequently, a −→
r

[Ch,Ck].

(2) ⇒ (3) follows directly by setting h j = k j = h for all j = 1, . . . , n(r).

(3) ⇒ (1) follows by contradiction, when we suppose that br
h 	= ∑n(r)

j=1 b
(r, j)
h for some h.

This implies that br
h >

∑n(r)
j=1 b

(r, j)
h or br

h <
∑n(r)

j=1 b
(r, j)
h .

Let br
h >

∑n(r)
j=1 b

(r, j)
h and a ∈ A an alternative, such that

U(r, j)(a) = b(r, j)
h for all j = 1, . . . , n(r). (11)

Obviously, this implies that a −−→
(r, j)

Ch+1 for all j = 1, . . . , n(r). Adding up with respect

to j in the two members of Eq. (11), we get Ur(a) = ∑n(r)
j=1U(r, j)(a) = ∑n(r)

j=1 b
(r, j)
h < br

h
and, consequently, a −→

r
C≤h , being in contradiction with the hypothesis.

Now, let br
h <

∑n(r)
j=1 b

(r, j)
h and a ∈ A an alternative, such that

U(r, j)(a) = b(r, j)
h − ε

n(r)
for all j = 1, . . . , n(r) (12)

where ε > 0. This choice implies that a −−→
(r,j)

C≤h , for all j = 1, . . . , n(r). Now, adding

up with respect to j in the two members of Eq. (12), we get Ur(a) = ∑n(r)
j=1U(r, j)(a) =

∑n(r)
j=1

[
b(r, j)
h − ε

n(r)

]
= ∑n(r)

j=1 b
(r, j)
h − ε. If we choose ε such that

0 < ε ≤ min

⎧
⎨

⎩min
{
n(r) ·

[
b(r, j)
h − b(r, j)

h−1

]
, j = 1, . . . , n(r)

}
,

n(r)∑

j=1

b(r, j)
h − br

h

⎫
⎬

⎭

we obtain that b(r, j)
h−1 ≤ U(r, j)(a) < b(r, j)

h for all j = 1, . . . , n(r)2 andUr(a) > br
h
3 implying

that a −−→
(r, j)

Ch for all j = 1, . . . , n(r) and a −→
r

C≥h+1, thus leading to a contradiction. 
�

Proof of Proposition 4.1

1. Let a ∈ A, r ∈ IG\EL and h = 2, . . . , p such that not
(
a

N−→
r

C≥h

)
. This means that

there exists at least one (U, b) such that Ur(a) < br
h−1. Therefore a

P−→
r

C≤h−1. Let us

observe that a
N−→
r

C≥h and a
P−→
r

C≤h−1 do not hold simultaneously because, otherwise,

a couple (U , b) should exist, such that U r(a) ≥ b
r
h−1 and U r(a) < b

r
h−1, which is

impossible.

2. Let a ∈ A, r ∈ IG\EL and k = 1, . . . , p − 1 such that not
(
a

N−→
r

C≤k

)
. This means

that there exists at least one (U, b) such that Ur(a) ≥ br
k . Therefore a

P−→
r

C≥k+1. Let us

observe that a
N−→
r

C≤k and a
P−→
r

C≥k+1 do not hold simultaneously because, otherwise,

a couple (U , b) should exist, such thatU r(a) < b
r
k andU r(a) ≥ b

r
k , which is impossible.

2 Because ε ≤ min j=1,...,n(r) n(r)
[
b(r, j)
h − b(r, j)

h−1

]
.

3 Because ε ≤ ∑n(r)
j=1 b

(r, j)
h − br

h and, consequently
∑n(r)

j=1 b
(r, j)
h − ε > br

h .
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3. a
N−−→

(r, j)
C≥h j for all j = 1, . . . , n(r) implies that U(r, j)(a) ≥ b(r, j)

h j−1 for all (U, b) and

for all j = 1, . . . , n(r). Considering h = min j=1,...,n(r) h j , for the monotonicity of the

thresholds we have thatU(r, j)(a) ≥ b(r, j)
h−1 for all (U, b) and for all j . As a consequence,

adding up with respect to j , we getUr(a) = ∑n(r)
j=1U(r, j)(a) ≥ ∑n(r)

j=1 b
(r, j)
h−1 = br

h−1 for
all (U, b), which proves point 2.

4. a
N−−→

(r, j)
C≤k j for all j = 1, . . . , n(r) implies that U(r, j)(a) < b(r, j)

k j
for all (U, b) and

for all j = 1, . . . , n(r). Considering k = max j=1,...,n(r) k j , for the monotonicity of the

thresholds we have thatU(r, j)(a) < b(r, j)
k for all (U, b) and for all j . As a consequence,

adding up with respect to j , we get Ur(a) = ∑n(r)
j=1U(r, j)(a) <

∑n(r)
j=1 b

(r, j)
k = br

k for
all (U, b), which implies point 3.

5. a
N−−→

(r, j)
C≥h j , for all j ∈ {1, . . . , n(r)} \ {

j
}
implies that for all (U, b), U(r, j)(a) ≥

b(r, j)
h j−1 for all j ∈ {1, . . . , n(r)} \ {

j
}
. Analogously, a

P−−→
(r, j)

C≥h j
implies that there exists

at least one (U , b) such that U (r, j)(a) ≥ b
(r, j)
h j−1. Considering h = min j=1,...,n(r) h j , for

(U , b) and for the monotonicity of the thresholds we have that U (r, j)(a) ≥ b
(r, j)
h−1 for

all j = 1, . . . , n(r). Adding up with respect to j we get U r(a) = ∑n(r)
j=1U (r, j)(a) ≥

∑n(r)
j=1 b

(r, j)
h−1 = b

r
h−1, which proves point 4.

6. a
N−−→

(r, j)
C≤k j , for all j ∈ {1, . . . , n(r)} \ {

j
}
implies that for all (U, b),U(r, j)(a) < b(r, j)

k j

for all j ∈ {1, . . . , n(r)} \ {
j
}
. Analogously, a

P−−→
(r, j)

C≤k j implies that there exists at

least one (U , b) such that U (r, j)(a) < b
(r, j)
k j

. Considering k = max j=1,...,n(r) k j , for

(U , b) and for the monotonicity of the thresholds we have that U (r, j)(a) < b
(r, j)
k for

all j = 1, . . . , n(r). Adding up with respect to j we get U r(a) = ∑n(r)
j=1U (r, j)(a) <

∑n(r)
j=1 b

(r, j)
k = b

r
k , which proves point 5. 
�

Proof of Proposition 4.2

1. Let LU,P
(r, j)(a) = h j for all j = 1, . . . , n(r). This means that a

N−−→
(r, j)

C≥h j and

not

(
a

N−−→
(r, j)

C≥l

)
with l > h j for all j = 1, . . . , n(r). By Proposition 4.1 we get

a
N−→
r

C≥h with h = min j=1,...,n(r) h j . As a consequence we get the thesis.

2. Let RU,P
(r, j)(a) = k j for all j = 1, . . . , n(r). This means that a

N−−→
(r, j)

C≤k j and

not

(
a

N−−→
(r, j)

C≥l

)
with l > k j for all j = 1, . . . , n(r). By Proposition 4.1 we get

a
N−→
r

C≥k with k = max j=1,...,n(r) k j . As a consequence we get the thesis. 
�
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Corrente, S., Greco, S., Kadziński,M.,&Słowiński, R. (2013). Robust ordinal regression in preference learning
and ranking. Machine Learning, 93, 381–422.
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