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Abstract The Taguchi method for robust parameter design traditionally deals with single
characteristic parameter design problems. Extending the Taguchimethod to the case ofmulti-
characteristic parameter design (MCPD) problems requires an overall evaluation of multiple
characteristics, for which the principal component analysis (PCA) has been frequently used.
However, since the PCA is based on a linear transformation, it may not be effectively used
for the data with complicated nonlinear structures. This paper develops a kernel PCA-based
method that allows capturing nonlinear relationships among multiple characteristics in con-
structing a single aggregate performance measure. Applications of the proposed method to
simulated and real experimental data show the advantages of the kernel PCA over the original
PCA for solving MCPD problems.

Keywords Kernel principal component analysis · Multiple performance characteristics ·
Robust parameter design · SN ratio · Taguchi method

1 Introduction

The objective of the Taguchi parameter design (Taguchi and Yokoyama 1993) is to determine
optimal settings of design parameters such that the performance characteristics become robust
to uncontrollable noise variables. It utilizes orthogonal arrays as experimental designs to
study a large number of variables with a relatively small number of experimental runs. Once
experimental data are collected, a performance measure called the signal-to-noise (SN) ratio
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is calculated for each run and used to determine the optimal settings of design parameters.
Taguchi method is traditionally used to deal with single characteristic parameter design
(SCPD) problems. Even though problems with multiple characteristics are more common in
practice, they are much more difficult to solve compared to SCPD problems. In fact, a higher
SN ratio for one characteristic may correspond to a lower SN ratio for another in determining
optimal settings of design parameters. Consequently, an overall evaluation of multiple SN
ratios is required for solving multi-characteristic parameter design (MCPD) problems.

Principal component analysis (PCA) has been widely used for solving MCPD problems.
PCA is a dimensionality reduction technique that linearly transforms a number of possibly
correlated variables into a small number of uncorrelated variables called principal compo-
nents (Jolliffe 2002). For solving MCPD problems, Su and Tong (1997) applied PCA to
multiple SN ratios and then selected principal component scores which correspond to the
eigenvalues greater than 1 as aggregate performance measures. However, if more than one
principal component score is selected, the problem still involves multiple performance mea-
sures, not a single aggregated one. Moreover, the ignored principal component scores which
correspond to the eigenvalues less than 1 might still contain useful information. To overcome
these problems, Jean and Wang (2006) used all principal component scores to construct a
single aggregate performance measure by taking the logarithm of the sum of all principal
component scores. Liao (2006) proposed the weighted sum of principal component scores
as a single aggregate performance measure. The weight of each principal component score
is chosen as the ratio of the variance of each principal component to the total variance of
all principal components. Datta et al. (2009) proposed a single aggregate performance mea-
sure by taking the geometric mean of principal component scores. Sibalija and Majstorovic
(2009) performed the grey relational analysis (GRA) (Wang et al. 1996), another popular
dimensionality reduction method, on all principal component scores to construct a single
aggregate performance measure.

The above PCA-based methods have shown good performance in solving MCPD prob-
lems by converting them to SCPD ones. However, if the data have complicated structures
that cannot be well represented in a linear subspace, the original PCA may not work well for
MCPD problems. To address this problem, a kernel PCA-based method is proposed in this
paper. The kernel PCA (Schölkopf et al. 1998), a generalization of the original PCA, allows
nonlinear feature extraction using kernel methods. By employing the kernel PCA, an effec-
tive single aggregate performance measure can be constructed even if multiple performance
characteristics are nonlinearly related with each other.

Even though this paper focuses on PCA-based approaches, it is worth mentioning other
approaches for MCPD problems. The GRA was first employed in Lin and Tarng (1998) and
has been applied for solving MCPD problems in various fields by Lin and Lin (2002), Tarng
et al. (2002), Lin (2004), Tzeng et al. (2009), Jung and Kwon (2010) and Yang et al. (2014).
Artificial intelligence techniques have been also used, including artificial neural network
(ANN) (Sukthomya and Tannock 2005; Tsao and Hocheng 2008), genetic algorithm (GA)
(Forouraghi 2000; Jeyapaul et al. 2006; Yildiz et al. 2007), and fuzzy theory (Tong and Su
1997; Lin et al. 2000; Sharma et al. 2011). Some dimensionality reduction approaches have
been combined with another as a hybrid approach. They include a PCA-GRA approach by
Sibalija and Majstorovic (2009), ANN-Fuzzy approach by Antony et al. (2006), ANN-PCA
approach by Hsu (2001), GRA-Fuzzy approach by Lin and Lin (2005), ANN-GA approach
by Huang and Tang (2006), and PCA-GRA-ANN-GA approach by Sibalija and Majstorovic
(2012).

The remainder of this paper is organized as follows. Section 2 introduces the PCA and
kernel PCA. A brief account of the PCA is given in Sect. 2.1. A basic concept of the kernel
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function and the kernel PCA algorithm are introduced in Sects. 2.2 and 2.3, respectively.
Then, the kernel PCA-basedmethod forMCPDproblems is proposed in Sect. 3. The proposed
method is applied to simulated and real experimental data in Sects. 4 and 5, respectively. The
paper concludes with a discussion in Sect. 6.

2 PCA and kernel PCA

2.1 PCA

Using orthogonal linear projection, PCA transforms a set of observations of possibly corre-
lated variables into a set of the values of uncorrelated variables called principal components.
The first principal component is required to have the largest possible variance, and the second
principal component has the second largest variance not represented by thefirst principal com-
ponent, and so on. The values of these new variables are called principal component scores
which are actually the projections of the observations onto the principal component space.
By representing data with only the first few principal components, the dimensionality of the
data can be reduced.

PCA is performed as follows. LetRp be the space of p-dimensional real vectors. Suppose
that xi = (xi1, xi2, . . . , xip)′ ∈ R

p is centered as

x̃i = (xi1 − x̄1, xi2 − x̄2, . . . , xip − x̄ p)
′, i = 1, . . . , n

where x̄ j = 1
n

n∑

i=1
xi j , j = 1, . . . , p. A sample variance-covariance matrix of x̃i is defined

as

�̂x̃ = 1

n − 1

n∑

i=1

x̃i x̃′
i .

Then, the eigenvalue problem for �̂x̃ is constructed as follows.

�̂x̃v j = λ jv j , j = 1, . . . , p (1)

where λ j and v j = (v1 j , v2 j , . . . , vpj )
′ are the j th largest eigenvalue and the corresponding

eigenvector of �̂x̃, respectively. v j is also called the j th principal component. Then, x̃i is
transformed by orthogonal linear projection as follows.

ti j = v′
j x̃i = v1 j x̃i1 + v2 j x̃i2 + · · · + vpj x̃i p, j = 1, . . . , p

where ti j is a linearly projected value on v j and is called a principal component score.
When the data are geometrically distributed as an ellipsoidal form (e.g., normal distribu-

tion), it can be easily represented by linear principal components. In practice, however, the
data may have a complicated structure that cannot be explained well enough by conventional
linear principal components. An example of this situation is illustrated in Fig. 1a in which
the first principal component of the data is indicated as a solid line. It appears that the first
principal component does not adequately explain the major structure of the data. In other
words, when the data have complicated structures, the original PCA, which only allows lin-
ear extraction, may result in an unreasonable representation of the data. The kernel PCA is
a nonlinear generalization of the original PCA. In the kernel PCA, the data in the original
space are mapped into a higher dimensional feature space where the data can be linearly
modeled (see Fig. 1b). Then, the original PCA can be performed in the feature space via the
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Fig. 1 Basic idea of kernel PCA

so called kernel trick (see Sect. 2.2), and the linearly extracted principal components in the
feature space can better explain the nonlinear structure of the data in the original space (see
Fig. 1c).

2.2 Kernel functions and kernel tricks

If the data in the original input space are transformed into potentiallymuchhigher dimensional
feature space through a nonlinear mapping, then the nonlinear relations of the data in the
original spacemay be discovered using linear learning algorithms in the feature space. Define
such a nonlinear mapping � as follows.

� : Rp → F

x �→ �(x)

where F is the feature space, the dimension of which is higher than that of the original space,
x is the p-dimensional input data, and �(x) is the mapped data by a nonlinear mapping
function �(·).

In general, the feature space has a very high or even infinite dimension, and therefore,
it is cumbersome to construct the mapping function �(·) and evaluate the mapped data.
Fortunately, many linear algorithms including the PCA can be reformulated in such a way
that the inner product arises naturally (Bishop 2006). The inner product in the feature space
can be calculated directly as a function of the original input. Consider the followingmapping.

� : (x1, x2)
′ → (x21 ,

√
2x1x2, x

2
2 )

′

Then, the inner product in the feature space can be reformulated in terms of an algebraic
expression in the original space as follows (Müller et al. 2001).

�(x)′�(y) =
(
x21 ,

√
2x1x2, x

2
2

) (
y21 ,

√
2y1y2, y

2
2

)′

= (
(x1, x2) (y1, y2)

′)2

= (
x′y

)2

= k(x, y) (2)

where k(x, y) is called a kernel function. The inner product of mapped data is replaced by
the kernel function in the original space, and therefore, the inner product in the feature space
can be calculated in the original space without performing the nonlinear mapping �(·). This
procedure is called the kernel trick (Schölkopf and Smola 2002).

123



Ann Oper Res (2018) 263:69–91 73

Table 1 Common kernel functions

Name Kernel functions Parameters

Linear kernel k(x, y) = x′y
Homogeneous polynomial kernel k(x, y) = (

x′y
)d d ≥ 2

Non-homogeneous polynomial kernel k(x, y) = (
x′y + c

)d d ≥ 2, c > 0

Gaussian kernel k(x, y) = exp

(

−||x−y||2
2σ2

)

σ > 0

There are various kernel functions, and the performance of kernel-based algorithms
depends on the type of kernel functions. Commonly used kernel functions are summarized
in Table 1. The Mercer’s theorem guarantees that there exists a mapping �(·) which satisfies
k(x, y) = �(x)′�(y) for such kernel functions (Müller et al. 2001).

2.3 Kernel PCA

The kernel PCA algorithm proceeds as follows Schölkopf et al. (1998). Suppose that xi ∈
R

p, i = 1, . . . , n, are mapped into a feature space as �(xi ), i = 1, . . . , n. Assume further
that�(xi )’s are centered. For notational convenience, the samenotation�(xi ), i = 1, . . . , n,

will be used to denote �(xi )’s after centering. Then, the following holds.

n∑

i=1

�(xi ) = 0 (3)

In addition, the sample variance-covariance matrix �̂�(x) in the feature space is defined as

�̂�(x) = 1

n

n∑

i=1

�(xi )�(xi )′ (4)

In order to perform the PCA in the feature space, the eigenvalue λ and the corresponding
eigenvector v for �̂�(x) are computed by solving the following eigenvalue problem:

�̂�(x)v = λv (5)

Since an eigenvector v lies in the span of �(x1), . . . , �(xn), the following holds.

v =
n∑

l=1

αl�(xl) (6)

Multiplying both sides of Eq. (5) by �(xk) yields

�(xk)′�̂�(x)v = λ�(xk)′v, k = 1, . . . , n (7)

Inserting Eqs. (4) and (6) into Eq. (7) yields

K2α = nλKα (8)
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where K, which is called the gram matrix, is defined as

K =
⎡

⎢
⎣

�(x1)′�(x1) · · · �(x1)′�(xn)
...

. . .
...

�(xn)′�(x1) · · · �(xn)′�(xn)

⎤

⎥
⎦ (9)

and α = (α1, . . . , αn)
′. Solving a generalized eigenvalue problem in Eq. (8) is equivalent to

solving the following eigenvalue problem:

Kα = nλα (10)

Since K is positive semidefinite, there are n nonnegative eigenvalues and the correspond-
ing eigenvectors. Let nλk be the kth largest eigenvalue and αk = (α1k, . . . , αnk)

′ be the
corresponding eigenvector for k = 1, . . . , n. Then, αk is normalized by normalizing the
eigenvector vk in the feature space as follows.

1 = v′
kvk =

n∑

i,l=1

αikαlk(�(xi )′�(xl)) = α′
kKαk = nλk(α

′
kαk)

In order to extract the principal component score tik, �(xi ) is projected onto the eigenvector
vk as follows [see Eq. (6)].

tik = v′
k�(xi ) =

n∑

l=1

αlk�(xl)′�(xi ) =
n∑

l=1

αlkK(xl , xi ), k = 1, . . . , n (11)

where K(xl , xi ) is the (l, i)th element of the gram matrix, namely, �(xl)′�(xi ). As shown
in Eq. (2), �(xl)′�(xi ) can be replaced by a kernel function k(xl , xi ) such as the one in
Table 1, and therefore, the explicit form of �(xi ) is not required.

In the PCA algorithm, it is assumed that the mapped data are centered as in Eq. (3). How-
ever, the explicit form of �(·) is unknown in practice, and therefore, the mean of uncentered
�(xi ) cannot be calculated. This implies that the matrix K in Eq. (9), which is based on
centered�(xi )’s, cannot be constructed directly. Fortunately, however,K can be constructed
as follows without actually centering �(xi )’s (Schölkopf et al. 1998).

K = Ku − 1nKu − Ku1n + 1nKu1n (12)

where Ku is the gram matrix with uncentered �(xi )’s and its (l, i)th element is k(xl , xi ),
and (1n)i j = 1/n.

The procedure of the kernel PCA to obtain the principal component scores requires to
solve a similar eigenvalue problem as in Eq. (1) for the original PCA. The only difference is
that the kernel PCA has to deal with a grammatrixK instead of a sample variance-covariance
matrix �̂x̃. The kernel PCA algorithm is applied to solve MCPD problems in Sect. 3.

3 Proposed method

A kernel PCA-based method is developed to deal with MCPD problems. The proposed
method allows to capture nonlinear relationships amongmultiple performance characteristics
in constructing a single aggregate performance measure. The proposed method proceeds
according to the following steps.

(1) Calculate the SN ratio for each performance characteristic
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Let y be a performance characteristic. Then, the Taguchi SN ratio is calculated for each
y. Depending on the type of y, the expected loss and the corresponding SN ratio are defined
in a different manner as in Table 2 (Yum et al. 2013).

For y of the NB type, it is assumed that the mean is adjusted to the target using an
adjustment parameter, and therefore, the expected loss after adjustment is considered. Note
from Table 2 that maximizing an SN ratio is equivalent to minimizing the corresponding
expected loss (after adjustment when applicable).

(2) Standardize the SN ratio
For each performance characteristic, the estimated SN ratio is standardized as follows.

SN N
i j = SNi j − SN j

SNs
j

(13)

where SNi j is the SN ratio at the i th experimental run for the j th performance characteristic
for i = 1, . . . , n and j = 1, . . . , p, and SN j and SNs

j are respectively themean and standard
deviation of SNi j ’s for the j th performance characteristic.

(3) Perform the kernel PCA on the standardized SN ratios
Let xi = (SN N

i1 , SN N
i2 , . . . , SN N

ip )
′ for i = 1, . . . , n. Then, the matrix Ku is con-

structed using a selected kernel function, and subsequently K is constructed using Eq. (12).
Any commonly used kernel functions in Table 1 can be chosen. The eigenvector αk =
(α1k, . . . , αnk)

′, k = 1, . . . , n, for K is calculated by solving the eigenvalue problem in
Eq. (10). Principal component scores tik, k = 1, . . . , n, are then calculated using Eq. (11),
and combined to have an aggregate performance measure (APM) as follows.

APMi =
n∑

k=1

wk tik (14)

where APMi is the value of the aggregate performance measure at the i th experimental run,
wk is the proportion of variance explained by the eigenvector corresponding to the kth largest
eigenvalue for K. That is,

wk = nλk
∑n

k=1 nλk
= λk

∑n
k=1 λk

where λk is the kth largest eigenvalue of �̂�(x).
If some λk’s are small (e.g., see the simulated example in Sect. 4), the contributions of the

corresponding tik’s to the APMi are negligible, and therefore, the corresponding tik’s can
be ignored when calculating the APMi for computational convenience. Also note that for y
of the NB type, the adjustment is considered when the corresponding SN ratio is calculated
before the kernel PCA is performed on the standardized SN ratios.

(4) Determine the optimal levels of design parameters
The APMi can be statistically analyzed (e.g., analysis of variance) to identify those

design parameters that have a significant effect on it. The optimal level of such a significant
parameter is chosen as the one atwhich the APMi ismaximized. The level of a non-significant
parameter may be selected based on such non-statistical factors as the ease of operation, cost
for maintaining the level, etc. If such non-statistical information is not available or if the
levels of a design parameter are indifferent with respect to those non-statistical factors, then
the optimal level of a design parameter may be simply chosen as the one at which the APM
is maximized (e.g., see the simulated example in Sect. 4).
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4 Simulated example

The proposed method is applied to the simulated example for L18 orthogonal array experi-
mental design. The homogeneous polynomial kernel is employed since it allows sufficient
flexibility in capturing nonlinear structures of the data (Ben-Hur and Weston 2010). Also
notice that the kernel PCA which employs the homogeneous polynomial kernel with the
degree d = 1 reduces to the original PCA. Although the simulated examples in this sec-
tion adopted the homogeneous polynomial kernel, it is also possible to employ other kernel
functions.

Suppose that there are two performance characteristics y j , j = 1, 2, of which y1 is an NB
type and y2 is an SB type. Experimental data are generated using the L18 orthogonal array
for six design parameters (A, B, C, D, E, and F) with three levels each. Interaction effects
among design parameters are assumed to be negligible. Let y1,i jklmn be the observation of
y1 when the design parameters A, B, C, D, E, and F are at the levels i, j, k, l, m, and n
(i.e., AiB jCkDlEmFn), respectively. Then, y1,i jklmn is generated from a normal distribution
as follows.

y1,i jklmn ∼ N (μ1,i jklmn, σ
2
1,i jklmn) (15)

where μ1,i jklmn and σ1,i jklmn are the true mean and standard deviation of y1, respectively, at
AiB jCkDlEmFn . The Taguchi SN ratio for the NB type performance characteristic depends
on σ/μ (see Table 2), and therefore, in generating simulated data for y1, (σ1/μ1)i jklmn and
μ1,i jklmn are specified, and σ1,i jklmn is determined using the following relationship.

σ1,i jklmn = (σ1/μ1)i jklmn × μ1,i jklmn

When the generated y1,i jklmn is negative, it is replaced with 0. Similarly, let y2,i jklmn be the
observation of y2 at AiB jCkDlEmFn . Then, y2,i jklmn is generated from a normal distribution
as follows.

y2,i jklmn ∼ N (μ2,i jklmn, σ
2
2,i jklmn) (16)

where μ2,i jklmn and σ2,i jklmn are the true mean and standard deviation of y2,i jklmn , respec-
tively, at AiB jCkDlEmFn . When the generated y2,i jklmn is negative, it is replaced with 0.

The effects of design parameters on σ1/μ1, μ1, σ2 and μ2 are assumed to be additive.
For example, σ1/μ1 at AiB jCkDlEmFn is assumed as

(σ1/μ1)i jklmn = m + ai + b j + ck + dl + em + fn, i, j, k, l,m, n = 1, 2, 3 (17)

where m is the overall mean, and ai , b j , ck, dl , em , and fn denote the effects of respective
design parameters on (σ1/μ1)i jklmn at AiB jCkDlEmFn , and it is assumed that

∑3
i=1 ai =

∑3
j=1 b j = ∑3

k=1 ck = ∑3
l=1 dl = ∑3

m=1 em = ∑3
n=1 fn = 0. Similarly, μ1, σ2, and μ2

at AiB jCkDlEmFn are modeled in terms of the effects of design parameters as in Eq. (17).
The effects of each design parameter on σ1/μ1 and μ1 for y1, and on σ2 and μ2 for y2 are
summarized in Tables 3a, b, respectively. ‘–’ indicates that the corresponding design para-
meter has no effect. Then, the true means and standard deviations at each run are determined
as shown in Table 4.

Using μ’s and σ ’s in Table 4, the true SN ratios can be calculated based on the formulas
in Table 2. Figure 2 shows a scatter plot of the true standardized SN ratios of the two
performance characteristics. It is observed that the standardized SN ratios do not have an
ellipsoidal structure,whichmeans that the structure of the simulateddatamaynot be explained
well by the principal components of the original PCA.
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Table 3 Effects of design parameters on (a) σ1/μ1 and μ1 of y1, (b) σ2 and μ2 of y2

Effects of parameters σ1/μ1 μ1

1 2 3 1 2 3

(a)

a −0.1 0 0.1 5 0 −5

b 0 0.05 −0.05 0 −3 3

c 0.1 −0.1 0 − − −
d 0.05 0 −0.05 − − −
e −0.1 0 0.1 −5 5 0

f − − − −2 0 2

m 0.6 60

Effects of parameters σ2 μ2

1 2 3 1 2 3

(b)

a − − − 2 −2 0

b −0.05 0 0.05 − − −
c −0.1 0.1 0 −2 0 2

d 0.2 0 −0.2 − − −
e 0 0.05 −0.05 2.5 0 −2.5

f − − − 0 1.5 −1.5

m 0.6 10

To evaluate the performance of the proposed method, a total of 10 simulated datasets
are generated. One dataset consists of nine replicates of y1 and of y2 at each experimental
run, which are generated respectively by Eqs. (15) and (16) using the parameter values in
Table 4. This section illustrates the procedure of the proposed method with a dataset which
is shown in Tables 5a, b for y1 and y2, respectively. First, the sample mean, sample standard
deviation, SN ratio, and standardized SN ratio for each performance characteristic at each run
are calculated as in Table 6, where the SN ratios are estimated based on formula in Table 2
and then standardized using Eq. (13).

Next, the kernel PCA is performed on the standardized SN ratios. The homogeneous
polynomial kernel of degree d is chosen, and three caseswhere d = 1, 2, and 3 are considered.
When d = 1, the kernel PCA is reduced to the original PCA. When d = 2 and d = 3, the
data structure can be explained by quadratic and cubic polynomial models, respectively.
For each case, the matrix Ku is constructed using the homogeneous polynomial kernel in
Table 1 and the matrix K is constructed using Eq. (12). Then, the eigenvalue problem for K
is solved to find the eigenvalue λk and the corresponding eigenvector αk for k = 1, . . . , n.
A total of eighteen eigenvalues and the corresponding eigenvectors are actually obtained for
K since K is a 18 × 18 matrix. However, the eigenvalues which are close to zero (less than
10−10in this example) and the corresponding eigenvectors are ignored for computational
convenience since their contributions to the APM in Eq. (14) are negligible. Table 7 shows
the computational results.

Now the standardized SN ratios are converted into the principal component scores using
Eq. (11),which are then combined as the aggregate performancemeasureAPM usingEq. (14).
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Table 4 True means and
standard deviations of simulated
data

Run A B C D E F μ1 μ2 σ1 σ2

1 1 1 1 1 1 1 58 12.5 31.90 0.65

2 1 2 2 2 2 2 67 13.5 30.15 0.75

3 1 3 3 3 3 3 70 10.0 35.00 0.40

4 2 1 1 2 2 3 67 4.5 46.90 0.50

5 2 2 2 3 3 1 55 5.5 33.00 0.45

6 2 3 3 1 1 2 58 14.0 29.00 0.85

7 3 1 2 1 3 3 57 6.0 42.75 0.80

8 3 2 3 2 1 1 45 14.5 29.25 0.60

9 3 3 1 3 2 2 63 9.5 44.10 0.40

10 1 1 3 3 2 1 68 14.0 30.60 0.40

11 1 2 1 1 3 2 62 9.0 49.60 0.65

12 1 3 2 2 1 3 65 13.0 16.25 0.75

13 2 1 2 3 1 2 55 12.0 19.25 0.45

14 2 2 3 1 2 3 64 8.5 44.80 0.85

15 2 3 1 2 3 1 61 3.5 45.75 0.50

16 3 1 3 2 3 2 55 11.0 44.00 0.50

17 3 2 1 3 1 3 49 9.0 34.30 0.30

18 3 3 2 1 2 1 61 10.0 36.60 1.00

Fig. 2 Scatter plot of standardized SN ratios of simulated data
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Table 5 Nine replicates of (a) y1 and (b) y2 in a dataset

Run A B C D E F Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Rep 9

(a)

1 1 1 1 1 1 1 37.2 75.1 88.0 65.2 63.2 58.9 53.8 63.2 46.5

2 1 2 2 2 2 2 14.8 99.2 47.7 64.0 62.0 86.2 112.3 1.1 75.7

3 1 3 3 3 3 3 55.8 22.0 57.4 64.4 148.1 18.7 137.6 71.0 99.1

4 2 1 1 2 2 3 46.8 17.6 97.9 103.8 110.1 55.8 113.5 57.7 128.8

5 2 2 2 3 3 1 59.8 46.8 0.0 130.8 78.7 41.3 61.7 44.5 34.3

6 2 3 3 1 1 2 34.2 12.8 97.8 83.1 52.3 46.9 87.1 4.4 0.0

7 3 1 2 1 3 3 20.3 15.8 117.1 20.5 0.0 0.0 35.9 86.8 0.0

8 3 2 3 2 1 1 29.7 22.5 79.1 105.6 60.8 66.6 26.3 14.9 42.4

9 3 3 1 3 2 2 96.2 160.6 74.8 19.8 20.0 13.5 91.4 79.8 69.5

10 1 1 3 3 2 1 82.7 65.1 51.5 81.4 86.0 36.5 0.0 47.9 32.6

11 1 2 1 1 3 2 17.3 110.4 24.4 56.5 204.5 63.1 12.7 72.9 0.0

12 1 3 2 2 1 3 52.6 56.1 65.2 84.6 67.5 61.8 68.7 45.5 71.7

13 2 1 2 3 1 2 42.9 64.5 48.1 37.5 21.8 58.1 63.9 43.8 28.7

14 2 2 3 1 2 3 11.7 110.2 30.9 76.7 63.3 108.6 39.3 64.9 141.7

15 2 3 1 2 3 1 94.8 161.2 71.7 92.6 111.7 105.7 18.3 0.0 87.7

16 3 1 3 2 3 2 17.6 148.8 78.9 86.0 87.0 105.8 41.8 52.1 64.8

17 3 2 1 3 1 3 85.3 65.9 31.1 81.8 58.6 14.6 50.1 10.2 23.5

18 3 3 2 1 2 1 82.8 0.0 8.7 112.3 76.5 84.7 99.3 106.9 72.0

(b)

1 1 1 1 1 1 1 13.1 12.0 12.3 12.3 12.1 12.2 12.8 12.3 12.6

2 1 2 2 2 2 2 13.2 13.5 14.2 12.2 14.5 13.9 14.6 14.3 12.6

3 1 3 3 3 3 3 9.9 9.8 9.4 10.6 9.9 9.9 10.4 9.9 9.9

4 2 1 1 2 2 3 4.7 4.8 4.9 4.8 4.9 4.3 3.6 5.5 4.2

5 2 2 2 3 3 1 6.2 6.2 5.9 5.8 5.6 5.4 5.3 5.2 5.2

6 2 3 3 1 1 2 15.4 12.3 13.8 13.7 14.8 14.2 13.2 15.1 15.3

7 3 1 2 1 3 3 6.2 6.1 6.3 5.6 7.1 4.5 7.2 5.4 5.3

8 3 2 3 2 1 1 14.6 14.7 14.8 14.9 13.7 14.9 14.9 14.9 14.6

9 3 3 1 3 2 2 9.6 9.2 9.5 9.8 8.9 9.3 9.0 10.0 9.7

10 1 1 3 3 2 1 14.5 13.9 14.2 14.2 14.4 14.1 14.2 13.3 14.5

11 1 2 1 1 3 2 8.7 8.6 7.9 9.1 9.1 9.2 9.4 8.8 9.7

12 1 3 2 2 1 3 12.7 12.1 12.7 12.5 13.1 13.3 12.2 13.2 12.6

13 2 1 2 3 1 2 12.4 11.7 12.0 11.8 11.9 12.2 11.7 11.4 11.6

14 2 2 3 1 2 3 7.4 8.9 8.7 9.1 7.8 8.8 8.0 9.0 9.0

15 2 3 1 2 3 1 3.6 4.5 3.0 3.4 3.5 3.6 3.9 4.2 3.2

16 3 1 3 2 3 2 11.1 10.0 10.2 11.1 11.0 10.7 10.2 10.8 11.5

17 3 2 1 3 1 3 9.1 8.7 9.0 9.3 9.2 8.3 9.1 9.2 9.0

18 3 3 2 1 2 1 8.9 10.2 10.4 9.5 9.7 10.0 10.4 10.4 10.6
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Table 6 Sample means, sample standard deviations, estimated SN ratios, and standardized SN ratios of
simulated data

Run A B C D E F ȳ1 s1 SN1 SN N
1 ȳ2 s2 SN2 SN N

2

1 1 1 1 1 1 1 61.24 14.94 12.25 1.83 12.40 0.35 −21.87 −0.72

2 1 2 2 2 2 2 62.55 36.79 4.61 −0.16 13.67 0.86 −22.73 −0.97

3 1 3 3 3 3 3 74.90 45.59 4.31 −0.23 9.98 0.34 −19.99 −0.16

4 2 1 1 2 2 3 81.34 37.68 6.68 0.38 4.64 0.53 −13.39 1.78

5 2 2 2 3 3 1 55.33 35.68 3.81 −0.36 5.65 0.39 −15.07 1.28

6 2 3 3 1 1 2 46.53 36.88 2.02 −0.83 14.20 1.08 −23.07 −1.07

7 3 1 2 1 3 3 32.94 41.61 −2.03 −1.88 5.98 0.86 −15.62 1.12

8 3 2 3 2 1 1 49.78 30.29 4.31 −0.23 14.67 0.39 −23.33 −1.14

9 3 3 1 3 2 2 69.53 47.02 3.40 −0.47 9.45 0.39 −19.51 −0.02

10 1 1 3 3 2 1 53.76 28.38 5.55 0.09 14.15 0.37 −23.02 −1.05

11 1 2 1 1 3 2 62.42 63.72 −0.18 −1.40 8.93 0.52 −19.04 0.12

12 1 3 2 2 1 3 63.76 11.50 14.87 2.51 12.71 0.44 −22.09 −0.78

13 2 1 2 3 1 2 45.49 14.91 9.69 1.16 11.84 0.33 −21.47 −0.60

14 2 2 3 1 2 3 71.91 42.13 4.64 −0.15 8.52 0.63 −18.63 0.24

15 2 3 1 2 3 1 82.64 48.63 4.61 −0.16 3.64 0.48 −11.30 2.39

16 3 1 3 2 3 2 75.87 38.24 5.95 0.19 10.73 0.51 −20.62 −0.35

17 3 2 1 3 1 3 46.78 28.26 4.38 −0.22 8.99 0.31 −19.08 0.10

18 3 3 2 1 2 1 71.47 40.44 4.95 −0.07 10.01 0.57 −20.02 −0.17

Table 7 GrammatrixK and the solution of eigenvalue problemwith respect to the degree of the homogeneous
polynomial kernel

d K λ α

1
⎡

⎢
⎣

3.8642 · · · −0.0033
.
.
.

. . .
.
.
.

−0.0033 · · · 0.0343

⎤

⎥
⎦

18×18

1.2918 (0.0774, . . . , 0.0031)′1×18

0.7082 (0.0619, . . . , 0.0134)′1×18

2
⎡

⎢
⎣

7.8450 · · · −2.4857
.
.
.

. . .
.
.
.

−2.4857 · · · 2.1167

⎤

⎥
⎦

18×18

3.8473 (0.0404, . . . , 0.0130)′1×18

1.8845 (0.0007, . . . , 0.0332)′1×18

0.2754 (0.0115, . . . , 0.0392)′1×18

3
⎡

⎢
⎣

47.7877 · · · −4.1428
.
.
.

. . .
.
.
.

−4.1428 · · · 1.6270

⎤

⎥
⎦

18×18

27.3130 (−0.0140, . . . , 0.0013)′1×18
11.5765 (0.0012, . . . , 0.0051)′1×18

0.9328 (0.0195, . . . , 0.0140)′1×18

0.4548 (−0.0156, . . . , 0.0131)′1×18
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Table 8 shows the resulting principal component scores and APM. The ANOVA is performed
on APM to identify statistically significant parameters. A design parameter whose F ratio is
larger than two is considered to be statistically significant (Phadke 1989). When d = 1 or 3,
the design parameter E is identified as significant, while the design parameters A, C, and E are
identified as significant when d = 2. To determine the optimal levels of design parameters,
the main-effect plots are constructed. Figure 3 shows the main-effect plots for APM with
respect to the degree d of the homogeneous polynomial kernel. It is observed that the optimal
levels of design parameters for d = 1, 2, and 3 are A1B1C2D2E1F1, A1B1C2D1E1F3, and
A1B3C2D2E1F3, respectively.

The SN ratio for each performance characteristic at the optimal levels is calculated based
on the formula in Table 2 to see whether the proposed method performs effectively for each
performance characteristic. For example, for d = 1, the SN ratio for each performance
characteristic is calculated as follows.

σ1

μ1
= 0.6 − 0.1 − 0.1 − 0.1 = 0.3 from Table 3(a),

μ2 = 10 + 2 + 2.5 = 14.5 and σ2 = 0.6 − 0.05 + 0.1 = 0.65 from Table 3(b),

SN1 = −10 log

(
σ 2
1

μ2
1

)

= −10 log
(
0.32

) ≈ 10.4576,

SN2 = −10 log
[
E

(
y2

)] = −10 log
(
μ2
2 + σ 2

2

) = −10 log
(
14.52 + 0.652

) ≈ −23.2361.

Similarly, SN1 and SN2 at the optimal levels for d = 2 are calculated as 9.1186 and -22.2974,
respectively, and for d = 3 as 12.0412 and -22.2933, respectively.

The proposed method is then applied to the remaining nine datasets using the same pro-
cedures as above. Table 9 shows separate SN ratios for each performance characteristic at
the optimal conditions. The largest SN ratio is italicized in each trial, and the kernel PCA
produces largest SN ratios for both performance characteristics at trials 1, 2, 4, 6, 7, 9,
and 10, while the original PCA never produces largest SN ratios simultaneously for both
characteristics.

The proposed method is also applied to the case of L9 orthogonal array simulated experi-
mental design under the same assumptions on the performance characteristics as for the L18

case. Table 10 shows the results for the L9 case. The largest SN ratio is italicized in each
trial. It is observed that the kernel PCA-based method usually leads to larger SN ratio for
each characteristic than those from the original PCA-based method.

5 Low-pressure cold spray process example

The proposed method is also applied to the analysis of the low-pressure cold spray (LPCS)
process data (Goyal et al. 2013). The experiments were performed to determine the optimal
levels of LPCS parameters with respect to three performance characteristics, namely, coating
thickness (y1) which is the LB type, coating density (y2) which is the LB type, and surface
roughness (y3)which is the SB type performance characteristic. Five LPCS parameters were
considered using the L18 orthogonal array.

Figure 4 shows a scatter plot of standardizedSN ratios of three performance characteristics.
The estimated SN ratios for each type are standardized using Eq. (13). It is observed that the
standardized SN ratios do not have an ellipsoidal structure, which means that the structure of
the LPCS data may not be explained well enough by the principal components of the original
PCA.

123



Ann Oper Res (2018) 263:69–91 83

Ta
bl
e
8

Pr
in
ci
pa
lc
om

po
ne
nt

sc
or
es

t
an
d
A
P
M

of
th
e
si
m
ul
at
ed

da
ta
se
tw

ith
re
sp
ec
tt
o
th
e
de
gr
ee

of
th
e
ho

m
og

en
eo
us

po
ly
no

m
ia
lk

er
ne
l

d
1

2
3

λ
1.
29

2
0.
70

8
3.
84

7
1.
88

5
0.
27

5
27

.3
1

11
.5
8

0.
93

3
0.
45

5

w
0.
64

6
0.
35

4
0.
64

0
0.
31

4
0.
04

6
0.
67

8
0.
28

7
0.
02

3
0.
01

1

#
t 1

t 2
A
P
M

t 1
t 2

t 3
A
P
M

t 1
t 2

t 3
t 4

A
P
M

1
1.
80

1
0.
78

9
1.
44

2
2.
80

0
0.
02

3
−0

.0
57

1.
79

8
6.
90

0
0.
24

1
−0

.3
28

−0
.1
28

4.
73

9

2
0.
57

4
−0

.7
96

0.
08

9
−1

.1
32

0.
25

5
0.
03

5
−0

.6
44

−0
.5
42

1.
96

0
0.
00

9
−0

.0
19

0.
19

6

3
−0

.0
50

−0
.2
80

−0
.1
32

−0
.8
76

1.
12

8
−0

.1
37

−0
.2
14

−0
.6
51

1.
06

9
−0

.2
37

0.
08

8
−0

.1
39

4
−0

.9
85

1.
52

6
−0

.0
96

−1
.7
65

−1
.8
42

0.
85

7
−1

.6
69

−1
.2
59

−4
.4
54

−2
.1
38

1.
30

9
−2

.1
68

5
−1

.1
66

0.
65

0
−0

.5
23

−0
.7
21

−0
.5
71

−0
.6
23

−0
.6
69

−1
.3
99

−0
.9
93

0.
63

9
−0

.1
82

−1
.2
22

6
0.
16

7
−1

.3
42

−0
.3
67

−1
.1
17

0.
11

6
1.
27

8
−0

.6
20

−0
.6
22

2.
29

7
0.
64

0
−1

.8
49

0.
23

3

7
−2

.1
25

−0
.5
39

−1
.5
63

3.
40

8
−0

.8
82

−0
.8
89

1.
86

5
−1

0.
75

1.
10

0
2.
52

1
1.
21

0
−6

.9
04

8
0.
64

4
−0

.9
74

0.
07

1
−1

.2
50

−0
.0
93

0.
21

1
−0

.8
20

−0
.4
82

2.
54

2
0.
25

1
−0

.1
87

0.
40

8

9
−0

.3
18

−0
.3
50

−0
.3
29

−0
.7
10

1.
12

9
−0

.0
86

−0
.1
04

−0
.7
29

1.
08

0
−0

.2
82

0.
06

2
−0

.1
90

10
0.
80

6
−0

.6
83

0.
27

9
−1

.0
04

0.
04

4
−0

.2
59

−0
.6
41

−0
.4
20

2.
21

3
−0

.3
35

0.
19

9
0.
34

6

11
−1

.0
75

−0
.9
08

−1
.0
16

0.
89

6
0.
88

4
0.
59

4
0.
87

8
−3

.1
03

1.
51

3
−1

.2
11

−0
.6
48

−1
.7
05

12
2.
32

7
1.
22

7
1.
93

7
5.
75

9
−0

.5
27

0.
68

2
3.
55

4
17

.2
9

−1
.4
06

1.
49

9
0.
58

2
11

.3
62

13
1.
24

4
0.
40

1
0.
94

6
0.
69

0
0.
51

9
−0

.3
42

0.
58

9
1.
54

5
0.
95

0
−0

.6
12

−0
.0
82

1.
30

5

14
−0

.2
71

0.
06

2
−0

.1
53

−0
.8
58

1.
08

9
−0

.2
41

−0
.2
19

−0
.6
60

1.
05

2
−0

.2
24

0.
11

0
−0

.1
49

15
−1

.8
02

1.
57

9
−0

.6
05

−1
.5
49

−4
.5
48

−0
.3
46

−2
.4
35

−3
.1
93

−1
2.
40

0.
55

2
−0

.7
99

−5
.7
25

16
0.
38

2
−0

.1
10

0.
20

8
−0

.8
33

1.
01

7
−0

.2
68

−0
.2
27

−0
.6
15

1.
10

3
−0

.2
74

0.
11

4
−0

.1
05

17
−0

.2
26

−0
.0
80

−0
.1
75

−0
.8
38

1.
13

3
−0

.2
15

−0
.1
91

−0
.6
61

1.
06

5
−0

.2
36

0.
11

1
−0

.1
46

18
0.
07

3
−0

.1
70

−0
.0
13

−0
.9
01

1.
12

6
−0

.1
94

−0
.2
33

−0
.6
47

1.
06

9
−0

.2
35

0.
10

8
−0

.1
36

123



84 Ann Oper Res (2018) 263:69–91

Fig. 3 The means of APM at each level of design parameters with respect to the degree of the homogeneous
polynomial kernel
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Table 9 Separate SN ratios for
each performance characteristic
at the optimal conditions with
respect to the degree of the
homogeneous polynomial kernel
for L18 case

Trials d = 1

Optimal levels SN1 SN2

1 A1B1C2D2E1F1 10.4576 −23.2361

2 A1B3C2D2E1F2 12.0412 −24.0619

3 A1B3C2D3E1F2 13.9794 −24.0875

4 A1B1C2D2E1F2 10.4576 −24.0896

5 A1B3C3D3E1F2 10.4576 −25.1082

6 A1B3C2D2E1F2 12.0412 −24.0919

7 A1B3C2D2E1F2 12.0412 −24.0919

8 A1B1C2D2E1F3 10.4576 −22.2897

9 A1B3C2D2E1F3 12.0412 −22.2933

10 A1B3C3D3E1F2 10.4576 −25.1082

Trials d = 2

Optimal levels SN1 SN2

1 A1B1C2D1E1F3 9.1186 −22.2974

2 A1B3C2D2E1F3 12.0412 −22.2933

3 A1B3C2D2E1F3 12.0412 −22.2933

4 A1B3C2D2E1F3 12.0412 −22.2933

5 A2B3C2D2E1F3 9.1186 −19.1149

6 A1B3C2D2E1F3 12.0412 −22.2933

7 A1B3C2D3E1F3 13.9794 −22.2866

8 A1B3C2D2E1F3 12.0412 −22.2933

9 A1B3C2D3E1F3 13.9794 −22.2866

10 A1B3C2D2E1F3 12.0412 −22.2933

Trials d = 3

Optimal levels SN1 SN2

1 A1B3C2D2E1F3 12.0412 −22.2933

2 A1B3C2D2E1F3 12.0412 −22.2933

3 A1B3C2D2E1F3 12.0412 −22.2933

4 A1B3C2D2E1F3 12.0412 −22.2933

5 A1B2C2D3E1F2 10.4576 −24.0866

6 A1B3C2D2E1F3 12.0412 −22.2933

7 A1B3C2D2E1F3 12.0412 −22.2933

8 A1B3C2D2E1F3 12.0412 −22.2933

9 A1B3C2D2E1F3 12.0412 −22.2933

10 A1B3C2D2E1F3 12.0412 −22.2933
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Table 10 Separate SN ratios for
each performance characteristic
at the optimal conditions with
respect to the degree of the
homogeneous polynomial kernel
for L9 case

Trials d = 1

Optimal levels SN1 SN2

1 A2B2C2D1 12.0412 −12.1722

2 A3B2C3D2 12.0412 −15.5823

3 A2B2C3D1 12.0412 −12.1378

4 A2B2C2D1 12.0412 −12.1722

5 A3B2C3D1 16.4782 −16.9338

6 A2B2C2D1 12.0412 −12.1722

7 A2B2C3D1 12.0412 −12.1378

8 A2B2C3D1 12.0412 −12.1378

9 A1B1C1D1 7.9588 −20.0088

10 A2B2C2D1 12.0412 −12.1722

Trials d = 2

Optimal levels SN1 SN2

1 A2B2C3D1 12.0412 −12.1378

2 A2B2C3D1 12.0412 −12.1378

3 A2B2C1D1 12.0412 −12.1085

4 A2B2C3D1 12.0412 −12.1378

5 A2B2C3D1 12.0412 −12.1378

6 A2B2C3D1 12.0412 −12.1378

7 A2B2C3D2 9.1186 −9.6190

8 A2B2C3D1 12.0412 −12.1378

9 A2B2C3D2 9.1186 −9.6190

10 A2B2C3D1 12.0412 −12.1378

Trials d = 3

Optimal levels SN1 SN2

1 A2B2C3D1 12.0412 −12.1378

2 A3B2C3D1 16.4782 −16.9338

3 A2B2C3D1 12.0412 −12.1378

4 A2B2C3D1 12.0412 −12.1378

5 A2B2C3D1 12.0412 −12.1378

6 A2B2C3D1 12.0412 −12.1378

7 A2B2C3D1 12.0412 −12.1378

8 A2B2C3D1 12.0412 −12.1378

9 A3B2C2D3 9.1186 −13.9950

10 A2B2C3D1 12.0412 −12.1378
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Fig. 4 Scatter plot of standardized SN ratios of LPCS data

The homogeneous polynomial kernel is chosen, and the optimal levels of the design
parameters are determined using the proposed method as illustrated in Sect. 4. Table 11
shows the eigenvalue λk and the corresponding eigenvector αk for the solution of the gram
matrix K in the LPCS process example. The eigenvalues which are close to zero (less than
10−10 in this example) and the corresponding eigenvectors are ignored for computational
convenience.

Then, the principal component scores are calculated using Eq. (11), and they are combined
as the aggregate performance measure APM using Eq. (14). Table 12 shows the APM values
for each degree d of the homogeneous polynomial kernel.

The optimal levels of design parameters are determined based on the main-effect plots
of the APM as in Fig. 3. Since it is in general impossible for a reported case to evaluate the
performance of the method in terms of the true parameter values, the SN ratio for each per-
formance characteristic at the optimal condition is predicted instead. To predict the SN ratio
for each performance characteristic, an additive model is used. For example, suppose that the
optimal levels of the design parameters A ∼ E are identified as AiB jCkDlEm , and the design
parameters A and B have a significant effect on the SN ratio of a performance characteristic.
Then, the SN ratio of this performance characteristic at AiB jCkDlEm is predicted as follows.

ŜNopt = SN + (
SN Ai − SN

) + (
SN Bj − SN

)

where SN is an overall mean of the SN ratios, SN Ai and SN Bj are the means of the SN
ratios when the design parameters A and B are at levels i and j , respectively.

The significance of the design parameters is identified by checking the F ratio from the
results of the analysis of variance (ANOVA). In general, if the F ratio is less than two, the
corresponding effect is considered insignificant. The F ratio larger than two indicates that
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Table 11 GrammatrixK and the solutionof eigenvalue problemwith respect to the degree of the homogeneous
polynomial kernel for LPCS process example

d K λ α

1
⎡

⎢
⎣

7.2301 · · · −1.1499
.
.
.

. . .
.
.
.

−1.1499 · · · 9.5927

⎤

⎥
⎦

18×18

1.7669 (0.0337, . . . , 0.0831)′1×18

1.0478 (0.1307, . . . ,−0.0857)′1×18

0.1852 (0.0051, . . . ,−0.0074)′1×18

2
⎡

⎢
⎣

39.7223 · · · −17.8980
.
.
.

. . .
.
.
.

−17.8980 · · · 66.1312

⎤

⎥
⎦

18×18

10.2919 (0.0046, . . . ,−0.0296)′1×18

3.7447 (−0.0716, . . . , 0.0772)′1×18

2.0132 (0.1091, . . . , 0.0829)′1×18

0.2258 (0.0150, . . . , −0.0377)′1×18

0.1610 (0.1072, . . . , −0.0235)′1×18

0.0500 (−0.0798, . . . , 0.0926)′1×18

3
⎡

⎢
⎣

352.1451 · · · −84.3581
.
.
.

. . .
.
.
.

−84.3581 · · · 742.8457

⎤

⎥
⎦

18×18

137.6336 (0.7938, . . . ,−15.5719)′1×18

34.8204 (−6.7843, . . . , 21.9270)′1×18

20.6261 (17.4727, . . . , 4.4008)′1×18

1.7020 (−0.1060, . . . , 0.3540)′1×18

0.4287 (−0.3356, . . . , 0.2694)′1×18

0.2367 (0.2369, . . . , 0.0009)′1×18

0.1282 (0.0854, . . . , 0.0055)′1×18

0.0816 (−0.0288, . . . , 0.0142)′1×18

0.0346 (0.0530, . . . , −0.0537)′1×18

0.0120 (0.0453, . . . ,−0.0090)′1×18

the corresponding effect is not quite small, whereas the F ratio larger than four means that
the corresponding effect is statistically significant (Phadke 1989). In this paper, a design
parameter whose F ratio is larger than two is considered as statistically significant.

Table 13 shows the predicted SN ratio for each performance characteristic at the optimal
condition. The ANOVA results indicate that all design parameters A ∼ E have a significant
effect on each SN ratio, and therefore, all of their effects are reflected to predict the SN ratios.
The largest predicted SN ratio is italicized for each degree d of the homogeneous polynomial
kernel.

In Table 13, the original PCA (d = 1) produces a larger predicted SN ratio for the first
performance characteristic, while the kernel PCA (d = 2, 3) yields larger predicted SN ratios
for the second and third performance characteristics. Although neither the original PCA nor
the kernel PCA produces consistently larger SN ratios for all performance characteristics, the
kernel PCA-based method would be preferred unless the importance of the first performance
characteristic is substantially higher than the others.
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Table 12 APM of the LPCS
process data with respect to the
degree of the homogeneous
polynomial kernel

Run A B C D E d = 1 d = 2 d = 3

1 1 1 1 1 1 0.2304 −0.0827 1.1914

2 1 1 2 2 2 0.8875 1.2278 1.9143

3 1 1 3 3 3 0.6076 0.0956 3.2506

4 1 2 1 1 2 0.6469 1.0765 1.9611

5 1 2 2 2 3 0.0756 1.0402 1.9668

6 1 2 3 3 1 −0.8102 0.5379 1.3514

7 1 3 1 2 1 −1.9746 −7.6404 −32.7749

8 1 3 2 3 2 −0.2133 0.9190 1.9352

9 1 3 3 1 3 −0.2714 1.0050 1.8931

10 2 1 1 3 3 0.9675 0.1226 3.3394

11 2 1 2 1 1 0.4700 1.1000 1.9612

12 2 1 3 2 2 0.7226 0.4345 2.6689

13 2 2 1 2 3 0.2265 1.0650 1.9706

14 2 2 2 3 1 −0.4170 1.0753 1.9715

15 2 2 3 1 2 0.7606 −1.7962 7.7764

16 2 3 1 3 2 −0.0136 1.0137 1.9709

17 2 3 2 1 3 0.2271 0.6794 2.2346

18 2 3 3 2 1 −2.1221 −1.8732 −6.5825

Table 13 Predicted SN ratios for
each performance characteristic
at the optimal levels of LPCS
parameters with respect to the
degree of the homogeneous
polynomial kernel

Parameter Optimal levels ŜN1 ŜN2 ŜN3

d = 1 A2B1C2D1E2 38.6878 63.6506 −18.8717

d = 2 A2B2C2D3E3 36.4828 70.4489 −16.5267

d = 3 A2B2C2D1E2 36.9778 66.6272 −17.5367

6 Conclusion

A kernel PCA-based method is developed to deal with the MCPD problems. The proposed
method allows to capture possible nonlinear relationships amongmultiple performance char-
acteristics in constructing a single aggregate performance measure, and therefore, is more
flexible than the existing original PCA-based methods that only allow linear feature extrac-
tion.

Computational results for the problems with simulated data indicate that the kernel PCA-
based method generally performs better than the original PCA-based method. Application
of the proposed method to a real dataset also shows its potential for better performance than
the original PCA.

The performance of the proposed method depends on the choice of a kernel function
and its parameters. However, there are no universally accepted guideline on how to choose
the proper kernel function (Lampert 2009). Instead, there are some heuristic approaches
(e.g., see Hsu et al. 2003) for determining the kernel parameters using the so called cross
validation. However, those approaches are usually applicable for large datasets, and may
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not be adequate for the experimental data in MCPD problems. Further research needs to be
conducted to provide guidelines for selecting kernel parameters as well as kernel functions
in solving various MCPD problems.

The proposed method was applied to the simulated and real datasets. For a more thorough
evaluation, it is desired that the proposed method be tested and compared with other existing
methods for the MCPD problems with various experimental designs and a diverse type and
number of performance characteristics.
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