
Ann Oper Res (2015) 235:543–558
DOI 10.1007/s10479-015-1878-5

A genetic algorithm using a finite search space for solving
nonlinear/linear fractional bilevel programming
problems

Hecheng Li1

Published online: 3 May 2015
© Springer Science+Business Media New York 2015

Abstract The bilevel programming problem is strongly NP-hard and non-convex, which
implies that the problem is very challenging for most canonical optimization approaches
using single-point search techniques to find global optima. In the present paper, a class of
nonlinear bilevel programming problems are considered where the follower is a linear frac-
tional program.Based on a novel coding scheme, a genetic algorithmwith global convergence
was developed. First, potential bases of the follower’s problem were taken as individuals,
and a genetic algorithmwas used to explore these bases. In addition, in order to evaluate each
individual, a fitness function was presented by making use of the optimality conditions of
linear fractional programs. Also, the fitness evaluation, as a sub-procedure of optimization,
can partly improve the leader’s objective. Finally, some computational examples were solved
and the results show that the proposed algorithm is efficient and robust.

Keywords Bilevel programming · Genetic algorithm · Optimal solutions · Bases

1 Introduction

A bilevel programming problem (BLPP) is a hierarchical optimization problem consisting
of two levels, in which the first level is dominant over the second level. Consequently, the
bilevel programming problem can be divided into two optimization problems located at dif-
ferent levels, the leader’s and the follower’s problems. Unlike other mathematical programs,
the constraints of the bilevel programming problem always involve the optimality to the fol-
lower’s problem. In other words, any feasible solution must satisfy the requirement that the
follower’s variable values are optimal to the follower’s problem when the leader’s variables
are fixed. The problem can be formulated as follows

B Hecheng Li
hclwxy@aliyun.com

1 Department of Mathematics, Qinghai Normal University, Xining 810008, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-015-1878-5&domain=pdf

544 Ann Oper Res (2015) 235:543–558

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
x∈X F(x, y)

s.t. G(x, y) ≤ 0

min
y∈Y f (x, y)

s.t. g(x, y) ≤ 0

(1)

where x ∈ Rn, y ∈ Rm . In this problem,

{
min
x∈X F(x, y)

s.t. G(x, y) ≤ 0.
(2)

and ⎧
⎨

⎩

min
y∈Y f (x, y)

s.t. g(x, y) ≤ 0
(3)

are the leader’s and the follower’s problems, respectively. The variables of problem (1) are
divided into the leader’s variables x = (x1, . . . , xn)T and the follower’s variables y =
(y1, . . . , ym)T . Similarly, F and f are known as the leader’s and the follower’s objective
functions respectively, whereas the vector-valued functions G: Rn × Rm → Rp and g: Rn ×
Rm → Rq are called the leader’s and the follower’s constraints, respectively. The sets X and
Y place additional constraints on the variables, such as upper and lower bounds or integrality
requirements etc.

The decision-making process of (1) can be stated as follows: The leader first selects a
strategy x to optimize his/her objective, then the follower observes the leader’s selection
and finds a strategy y to optimize his/her own objective. When such pair (x, y) satisfies the
leader’s constraints, it is called feasible in a bilevel decision-making procedure. The purpose
of solving (1) is to optimize F(x, y) on the set of all feasible points.

In the optimization procedure, if the follower has more than one optimal solution for some
x , decision-makers have to select one in the optimal solution set to match x . Two extreme
cases are optimistic and pessimistic models (Dempe 2002, 2003). In the paper, we assume
that the follower has a unique solution for any x , which can make problem (1) stable (Bard
1998).

Over the past 20 years or so, the field of bilevel optimization has received a lot of attention
in developing efficient algorithms and applying bilevel models to deal with hard real-world
problems.

When all functions involved in (1) are linear, it is called a linear bilevel programming
problem (Bard 1998; Calvete et al. 2008; Glackin et al. 2009). Some classical optimization
techniques, such as “k-th best” algorithms, branch-and bound approaches, base-enumerating
methods and penalty methods, etc, have been proposed for this kind of problems (Dempe
1987; Bard 1998; Colson et al. 2007). For nonlinear BLPPs, most of researches so far focus
on convex and differential BLPPs in which all functions involved are convex and twice
continuously differential (Colson et al. 2007, 2005; Andreani et al. 2009; Dempe 2002;
Mersha and Dempe 2011; Wang et al. 2010), especially on convex quadratic BLPPs (Etoa
2010, 2011; Muu and Quy 2003). In addition, other types of BLPPs have been dealt with,
e.g., bilevel multiobjective programming problems in which F and/or f are vector-valued
functions (Deb and Sinha 2009), and bilevel (mixed-) integer programs where some variables
are restricted into the integer set (Gümüs and Floudas 2005; Li and Wang 2008b; Shim et al.
2013), etc.

123

Ann Oper Res (2015) 235:543–558 545

Applications have been stimulating factors for the development of BLPPs. Some inter-
esting results have been presented for dealing with a variety of intractable problems in real
world, such as the investigation of network of oligopolies (Dempe 2003; Abdou-Kandil and
Bertrand 1987), the traffic planning (Migdalas 1995; Calvete et al. 2011), the road pricing
problem (Dempe and Zemkoho 2012), the tax credits problem for biofuel production (Bard
et al. 2000), the network design problem (Ben-Ayed et al. 1988), and the terrorist threat prob-
lem (Scaparra and Church 2008; Arroyo and Galiana 2009). Other applications of BLPPs
can be found in Dempe (2003), Bard (1998), Colson et al. (2007).

In spite of the fact that there are lots of theoretic results and efficient methods for BLPPs,
it does not mean the problem can be solved easily. From a computational point of view,
the computational complexity of the problem can be analyzed by the following three items
(Dempe 2003; Bard 1998; Colson et al. 2007).

– BLPP is strongly NP-hard;
– Feasible region is non-convex, making the problem non-convex;
– Solution functions of the follower’s problemmay be non-differential, it implies that BLPP

is non-differential.

Item 1 shows this class of problems are intrinsically hard to solve. Items 2–3 mean the
algorithmic approaches based on single-point search can’t find out the globally optimal
solutions very well. The fact leads researchers to adopt some intelligent algorithms using
population-search which don’t put any requirements for the differentiability and convexity
of functions, e.g. evolutionary algorithms(EAs)/genetic algorithms(GAs) (Calvete et al. 2008;
Wang et al. 2005; Li and Wang 2008a, 2011; Calvete et al. 2009; Wang et al. 2011), and
artificial neural network(ANN) (Lan et al. 2007). etc. These algorithms can be divided into
three classes. The first always begins with leader’s variables, and for each selected value of x ,
to solve the follower’s problem for y (Li andWang 2008a;Wang et al. 2011). The second class
of approaches uses some techniques to transform BLPP into a single-level program, such as
penalty functions or K-K-T conditions (Wang et al. 2005). The third is to design the algorithm
using problem-specific optimality results (Dempe 1987; Calvete andGale 1998; Calvete et al.
2009, 2008; Li andWang 2011). When a BLPP is large-scale, the first and the second classes
of algorithms are time-consuming since there are too large search spaces to explore. Using
the optimality results of linear/linear fractional BLPPs, Calvete proposed base-based GAs for
these two classes of problems (Calvete et al. 2008, 2009), and the experiment results show
that it is efficient in solving large-scale problems. It implies the third seems to be promising
for solving large-scale problems. Unfortunately, the methods can’t deal with other BLPPs.

In the present paper, we deal with a special class of BLPPs in which the follower is a
fractional program, whereas the leader’s problem is simply solvable. Obviously, the model is
more general than the linear and fractional BLPPs discussed by Calvete et al. (2008, 2009).
We present a GA-based global optimization algorithm for the bilevel programming problem.
First, the proposed algorithm begins with the bases of the follower’s problem, and these bases
are taken as individuals of GA. Given any individual (base), we consider the set of values
of x on which the base is always feasible and optimal. For any x in the set, the follower’s
solution y(x) can be represented as a linear function of x . Then, an optimization method
is adopted to find out the best x̄ in the set such that F is minimal, and the objective value
F(x̄, y(x̄)) is taken as the fitness value of the individual. After all bases are checked, the
bilevel programming problem is solved. Since the number of bases will increase fast as the
scale of the problem become larger, the algorithms using completely enumerating schemes
are far from being efficient. In our algorithm, an efficient GA is designed and used to explore
these bases.

123

546 Ann Oper Res (2015) 235:543–558

The proposed algorithm is different from the existing algorithms mainly in two ways: (1)
our algorithm begins with the follower’s problem and the search space is the set of feasible
bases of the follower’s program. It means that the search space of the algorithm is finite
and smaller than those of other algorithms (Calvete et al. 2008, 2009; Deb and Sinha 2009;
Wang et al. 2005, 2011); (2) when the fitness is evaluated, a sub-procedure of optimization
is implicitly executed by which the leader’s objective value can be improved.

This paper was organized as follows. Some notations and discussed problem were stated
in Sects. 2 and 3 gave a profile of algorithmic approach. Genetic operators were designed
in Sect. 4, and then based on these operators, Sect. 5 presented our algorithm. In Sect. 6,
the convergence was analyzed, and some computational examples were given and solved in
Sect. 7. We finally concluded our paper in Sect. 8.

2 Discussed problem and basic notations

In this paper a specific BLPP is considered, that is, the follower is a linear fractional program
and the leader’s problem is solvable. Let us denote the problems by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
x∈X F(x, y)

s.t. G(x, y) ≤ 0

min
y

f (x, y) = c1x + d1y + e1
c2x + d2y + e2

s.t. Ax + By ≤ b, y ≥ 0

(4)

where A is a q × n-matrix, B is a q × m-matrix, and b ∈ Rq . X is a box set as follows:

X = {(x1, x2, . . . , xn)T ∈ Rn |xi ∈ [li , ui], i = 1, . . . , n}
where li , ui are real constants.

Now we introduce some related definitions and notations as follows Bard (1998).

1) Constraint region: S = {(x, y)|x ∈ X,G(x, y) ≤ 0, Ax + By ≤ b, y ≥ 0}.
2) Feasible region of follower’s problem for x fixed: S(x) = {y|Ax + By ≤ b, y ≥ 0}.
3) Projection of S onto the leader’s decision space: S(X) = {x ∈ X |∃y, (x, y) ∈ S}.
4) Follower’s rational reaction set for each x ∈ S(X):M(x) = {y|y ∈ argmin{ f (x, y), v ∈

S(x)}}.
5) Inducible region: IR = {(x, y) ∈ S|y ∈ M(x)}.
In terms of aforementioned definitions, problem (4) can also be written as:

min{F(x, y)|(x, y) ∈ IR}
Definition 1 (Dempe 1987) (Feasible solution) (x, y) is said to be a feasible solution to (4)
if and only if (x, y) ∈ IR.

Definition 2 (Dempe 1987) (Optimal solution) (x∗, y∗) is said to be an optimal solution to
(4) if (x∗, y∗) ∈ IR and satisfies

F(x∗, y∗) ≤ F(x, y), ∀(x, y) ∈ IR.

In the remainder, we always assume that

123

Ann Oper Res (2015) 235:543–558 547

A1. For all decisions taken by the leader, each follower has some room to react, that is,
S(x) 	= φ.

A2. The rank of matrix B is q.
A3. c2x + d2y + e2 	= 0 for ∀x ∈ X .

In these assumptions, A1 is a common assumption for bilevel programming problems,
which makes the bilevel programming problem well posed. Assumptions A2 and A3 are
often presented in algorithmic approaches to linear fractional programs (Calvete et al. 2009;
Swarup 1965), which can simplify the description of algorithms.

Also, in order to solve problem (4) easily, we further assume the leader’s problem can be
easily solved, that is to say, there exists at least one deterministic approach by which one can
obtain the optima of the leader’s problem. There are lots of problems of this type, such as
linear programs, convex quadratic programs, and linear fractional programs, etc. In fact, the
assumption is necessary to almost all bilevel program solvers, otherwise, problem (1) can
not be easily solved.

3 Optimality conditions and profile of the proposed approach

First, we take advantage of the characteristics of the follower’s problem to present some
optimality results. Then, based on these results, we provide an algorithmic profile for solving
BLPP (4).

3.1 Transformation of BLPP

Since linear inequalities can be converted to equalities by adding some slack variables at
left-hand side. Without any loss of generality, (4) can be rewritten as follows

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
x∈X F(x, y)

s.t. G(x, y) ≤ 0

min
y

c1x + d1y + e1
c2x + d2y + e2

s.t. Ax + By = b, y ≥ 0

(5)

in which the follower is a linear fractional programming problem with parameter vector x as
follows ⎧

⎨

⎩

min
y

c1x + d1y + e1
c2x + d2y + e2

s.t. By = b − Ax, y ≥ 0.
(6)

Also, B is still a q × m-matrix.

3.2 Optimality results

In the subsection, at first, the optimality results of the linear fractional problems are discussed.
Then, these optimality results are used to deal with BLPP (5).

Theorem 1 (Swarup 1965) For each x ∈ S(X), the optimal value of (6) can occur at an
extreme point of S(x).

123

548 Ann Oper Res (2015) 235:543–558

Theorem 1 implies that one can find the optima of (6) for each x by enumerating all bases
associated with extreme points. Next, we present an optimality criterion by which one can
judge whether a basic feasible solution is optimal.

Let B = (B̄, N), and without loss of generality, B̄, as a base, is composed of the first q
columns of B. Then yB̄ = B̄−1(b − Ax) − B̄−1NyN . Further,

ci x + di y + ei

= di B̄ yB̄ + diN yN + ci x + ei

= di B̄ B̄
−1(b − Ax) + ci x + ei + (diN − di B̄ B̄

−1N)yN (7)

Here, i = 1, 2. Set u0 = d1B̄ B̄
−1(b − Ax) + c1x + e1, v0 = d2B̄ B̄

−1(b − Ax) + c2x + e2,
μ = d1N −d1B̄ B̄

−1N and ν = d2N −d2B̄ B̄
−1N . Then the following theorem can be inferred.

Theorem 2 For the base B̄ and any x fixed , if inequalities π = v0μ − u0ν ≥ 0 and
B̄−1(b − Ax) ≥ 0 hold, then the base is optimal, and the basic components of the optimal
solution are B̄−1(b − Ax), whereas other components are 0.

Proof When the denominator of the objective function is positive in (6), Theorem 2 is true
Swarup (1965). For the case that the denominator is negative, both the denominator and the
numerator of f (x, y) are multiplied by −1. Set c′

i = −ci , d ′
i = −di , and e′

i = −ei , then
π ′ = v′

0μ
′ − u′

0ν
′ = −v0(−μ) − (−u0)(−ν) = v0μ − u0ν = π . This completes the proof.

��
3.3 Sub-procedure of optimization

As discussed above, for any base B̄ and some x’s in X , if the following inequalities

B̄−1(b − Ax) ≥ 0 (8)

and
π ≥ 0 (9)

are satisfied, then a subregion of X is determined in which for each x , y(x) = (B̄−1(b −
Ax), 0)T is the optimal solution to the follower’s problem. In order to obtain the optima of
F(x, y), we consider the following nonlinear problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
x∈X F(x, y(x))

s.t.G(x, y(x)) ≤ 0,

B̄−1(b − Ax) ≥ 0,

π ≥ 0.

(10)

If (10) is further solved, and an optimal solution x0 is obtained, this means that x0 is the
best one in all x’s to which B̄ is feasible and optimal. Such point (x0, y(x0)), in fact, is a
“locally optimal” solution to (5) (quotation mark means it isn’t really a locally optimal point
in mathematical meaning of neighborhood), and called a base-optimal point. Figure 1 gives
an example for illustrating the relationships, where the elliptic region represents S(X) and
the total number of bases is 3. First of all, all bases of the follower’s problem are denoted
by Bi , i = 1, 2, 3. Then, the value region of x is divided into three subregions according
to these bases, it implies that for any point in Subregion i (i =I, II, III), the optimal base of
the follower’s problem is Bi , i = 1, 2, 3, respectively. Further, xi is the “best” one in each
subregion, which means the points (xi , y(xi)), i = 1, 2, 3, are base-optimal points. As a
result, the optimal solutions to (5) must be one of these basis-optimal points.

123

Ann Oper Res (2015) 235:543–558 549

x1

x2

x3

Base B1

Base B2

Base B3

Subregion I

Subregion II

Subregion III

(x1,y1)

(x2,y2)

(x3,y3)

X Set of bases Local_opt_points

Fig. 1 Relationships between the bases and the basis-optimal points of BLPP

3.4 Profile of algorithmic approach

For any base B̄ of the follower’s problem, (10) is first solved. If there exists no solution,
then the base is removed from the set of all bases. Otherwise, the objective value is used to
evaluate the base. When all bases are evaluated, the “best” base can be found, and then (5) is
solved. In fact, the base-optimal point corresponding to the “best” base is an optimal solution
to (5). In the profile, a genetic algorithm is designed to explore all bases.

4 Design of genetic algorithm

In this section, we begin with chromosomes encoding, present the fitness evaluation scheme,
and then design crossover and mutation operators.

4.1 Chromosome encoding and initial population

Since GA is used to search all bases of the follower’s problem, we encode each base of (6)
as individual of population. Let V = {1, 2, . . . ,m} be the set of all column indices of B.
q elements are selected from V and denoted by l = {i1, i2, . . . , iq}. Furthermore, if these
columns are linearly independent, then l is taken as an individual. An initial population with
the size of Np can be generated by lexicographically selecting Np individuals.

But it is computationally expensive if the determinant method is used for each l to judge
whether the selected columns are linearly independent. We present a simplified approach by
the following example. Let

B =
(
b11 b12 b13 b14
b21 b22 b23 b24

)

(11)

Here, q = 2,m = 4. For convenience, we denote by B{i, j} the matrix consisting of the i-th
and j-th columns of B. Without loss of generality, set

B{1, 2} =
(
b11 b12
b21 b22

)

(12)

be nonsingular, then we get an individual l = {1, 2}. Further, we let

B{1, 2}−1B =
(
1 0 b̄13 b̄14
0 1 b̄23 b̄24

)

(13)

123

550 Ann Oper Res (2015) 235:543–558

If b̄23 	= 0, then B{1, 3} is nonsingular, that is, l ′ = {1, 3} is also an individual, otherwise, l ′
is ignored. The same procedure can be applied to judge whether l ′′ = {1, 4} is an individual.

If B{1, 3} is nonsingular, based on the B{1, 2}−1, we can utilize the pivoting algorithm to
obtain B{1, 3}−1 as in the simplex method.

4.2 Fitness function

For any individual l = {l1, l2, . . . , lq}, without loss of generality, the basic matrix associated
with l is also denoted by B̄. Recall that the leader’ problem is solvable, y(x) is linear and
the added constraints, B̄−1(b − Ax) ≥ 0 and π ≥ 0, are also linear, it follows that (10) is
solvable with respect to x . Hence, some deterministic methods can be selected to solve the
problem (10) and the optimal objective value is taken as the fitness of the individual.

4.3 Crossover and mutation operators

Crossover operator Let l = {l1, l2, . . . , lq} and l ′ = {l ′1, l ′2, . . . , l ′q} be parents selected for
crossover. First, we give a cross-position in l ′ as in one-point crossover operator. Then the
components at left-hand side of the cross position are, one by one, taken as entering elements
for l and some components in l are removed as leaving elements, which follows the same
procedure as in the simplex method except for the minimum ratio rule, and makes the total
of elements in l keep constant. For any entering element which is also in l, the replacement is
ignored. When all entering procedures are finished, a crossover offspring is generated. When
a cross-position is given in l, some elements in l ′ will be replaced and the other offspring can
be generated.

As an example, we let l = {1, 2} and l ′ = {3, 4} be parents for crossover in the above
example, and the cross-position is selected at random as follows.

l = {1 | 2}, l ′ = {3 | 4}
It means that 3 should be put into l, and 1 or 2 will be removed from l. Let us re-check the
matrix (13). Any nonzero element is chosen in the 3-th column of the matrix. If b̄i3 is chosen,
then the i-th element in l should be replaced, i = 1, 2. after doing so, a crossover offspring
is generated.

As discussed in the above subsection, when the replacements are executed one by one,
the inverse matrices associated with individuals can be gotten by the pivot algorithm.

In order to generate offspring as well as possible, we always take the best individual as
one of parents in each crossover process.

Mutation operator Let l̄ = {l1, l2, . . . , lq} be a parent individual selected for mutation, and
B̃ = B{l1, l2, . . . , lq}. First, generate randomly a integer z(1 ≤ z ≤ q) and select z indices
from the set V \l̄, and then put these indices, one by one, into l̄ as done in the crossover
operation. As a consequence, z indices are replaced, and a mutation offspring is obtained.

5 Proposed algorithm

In this section, we present a genetic algorithm using a finite search space(GA-FSS), which
is described as follows.

Step 0 Some parameters are given, population size Np , crossover probability pc, mutation
probability pm , = φ and an integer K ;

123

Ann Oper Res (2015) 235:543–558 551

Step 1 Np individuals are generated, these individuals form an initial population denoted
by pop(0). Let k = 0;

Step 2 The fitness is evaluated for each individual, and the best individual lbest in pop(k)
is recorded with its fitness value Fbest . These individuals with fitness values are put
into ;

Step 3 Crossover is applied to each individual in pop(k) according to crossover probability
pc, and crossover offspring set is denoted by Oc;

Step 4 Mutation is executed to each each individual in pop(k) according to mutation prob-
ability pm , and mutation offspring set is represented as Om ;

Step 5 Evaluate offspring generated by crossover and mutation operators. If some offspring
belong to , the evaluation can be ignored. Select the best Np individuals from
pop(k) ∪ Oc ∪ Om as next population pop(k + 1), and update Fbest as well as lbest .
Also, select some offspring for which the fitness evolution is computation-complex,
then put these offspring into the set until there are K points.

Step 6 If the stopping criterion is satisfied, then output lbest and Fbest ; otherwise, let k =
k + 1, return to Step 3.

The procedure shows at least two advantages: one is that the search space has at most Cq
m

points, which is far smaller than those of most existing algorithms; the other is that there
exists a local searching process in the optimization of (10), which, as a sub-procedure of
optimization, is helpful for GA-FSS to improve the value of F .

Since the design of GA-FSS depends mainly on the follower problem, it can be used to
deal with more general BLPPs than the approaches in Calvete et al. (2008, 2009). When the
denominator of f (x, y) is 1 and the leader’s problem is linear, the problem becomes a linear
BLPP, which is the simplest case for GA-FSS.

6 Convergence analysis

In order to analyze the convergent of the proposed algorithm, some preliminaries are first
given Wang (2011), Bäck (1996):

Definition 3 (Monotonic) If F(lbest (k + 1)) ≤ F(lbest (k)), then population sequence
{pop(k), k = 0, 1, 2, . . . , } is said to be monotonic.

Here, lbest (k) stands for the best individual in pop(k), and F(l) is the fitness of individual l.

Lemma 1 (Wang 2011; Bäck 1996) If a genetic algorithm satisfies: (i) the search space is
finite, (ii) population sequence is monotonic, and (iii) for ∀l, l ′ ∈ Ω̄ , ∃p0 > 0 such that
prob{l ′ = mut (l)} ≥ p0, then it converges to a globally optimal solution with probability
one.

Here, Ω̄ stands for the search space, prob{A} is the probability of A and mut (l) represents
the mutation offspring of l.

In the proposed GA-FSS, the search process, in fact, is executed at two levels. The first-
level search is to explore the set of potential bases of the follower, whereas the second-level
search is to find the best point (x, y) related to each basis. Recall that we always assume that
the leader problem is solvable, it implies that one can obtain the optima of (4) once he finds
out the ’best’ basis in the first-level search. Applying Lemma 1, we have

Theorem 3 The proposed GA-FSS converges to global optima with probability one.

123

552 Ann Oper Res (2015) 235:543–558

Proof Notice that the search space of GA-FSS only includes at most Cq
m points, it leads to

that (i) is satisfied. According to the selection operator, the best individuals found so far are
always selected for the next generation of population, hence, (ii) is also satisfied. Next, we
need to verify that (iii) holds.

Without any loss of generality, let

l = (i1, . . . , is, is+1, . . . , iq), l
′ = (i1, · · · , is, js+1, . . . , jq),

that is, there are q − s different entries. Now we compute prob{l ′ = mut (l)}. First, the
probability of selecting (js+1, . . . , jq) from V \l is 1

q
1

Cq−s
m−q

. Here, 1q means the probability of z

being taken asq−s, i.e., the totalq−s indiceswill be put into l,whereas 1
Cq−s
m−q

is the probability

of (js+1, . . . , jq) being chosen for entering basis. Next, when jv(v ∈ {s + 1, . . . , q}) is put
into l, we denote by p̂v the probability of the replaced element belonging to (is+1, . . . , iq),
it is obvious that p̂v ≥ 1

q . It follows that when js+1, . . . , jq , one by one, are put into l, the

probability of (is+1, . . . , iq) being replaced is not less than 1
qq−s . As a result, we have

prob{l ′ = mut (l)} ≥ pm × 1

q

1

Cq−s
m−q

× 1

qq−s
> 0

This completes the proof. ��

7 Computational experiments

The computational experiments were carried out on two groups of bilevel programming
problems with different scales, small and larger-sized problems. First, we executed GA-FSS
on 4 small-sized problems which were frequently solved to illustrate the performance of
algorithmic methods in literatures. In addition, we randomly generated four moderate-sized
problems on which GA-FSS with different parameter configurations was tested. By com-
paring the computational results, we confirmed the reasonable parameter setting. Finally,
GA-FSS with confirmed configuration was applied to solve some larger-sized bilevel pro-
grams and computational costswere compared.All computationswere executed on a Pentium
IV 2.66 processor with 256M RAM running Windows XP.

First, four small scale problems are given as follows.

Example 1 (Wang et al. 2005)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x≥0

−8x1 − 4x2 + 4y1 − 40y2 − 4y3

min
y≥0

1 + x1 + x2 + 2y1 − y2 + y3
6 + 2x1 + y1 + y2 − 3y3

s.t. − y1 + y2 + y3 + y4 = 1,

2x1 + y1 + 2y2 − 0.5y3 + y5 = 1,

2x2 + 2y1 − y2 − 0.5y3 + y6 = 1.

(14)

123

Ann Oper Res (2015) 235:543–558 553

Fig. 2 Network for Toll 1

1 2 3 4 5
link 1
c1=2

link 4
c4=0

link 6
c6=2

link 8
c8=0

link 2
c2=6

link 7
c7=6

link 5
c5=4

link 3
c3=5

Example 2 ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x≥0

(−8x1 − 4x2 + 4y1 − 40y2 − 4y3 + 29.2)2

min
y≥0

1 + x1 + x2 + 2y1 − y2 + y3
6 + 2x1 + y1 + y2 − 3y3

s.t. − y1 + y2 + y3 + y4 = 1,

2x1 + y1 + 2y2 − 0.5y3 + y5 = 1,

2x2 + 2y1 − y2 − 0.5y3 + y6 = 1.

(15)

Example 3 (Lan et al. 2007)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max
x≥0

−2x + 11y

max
y≥0

−x − 3y

s.t. x − 2y ≤ 4, 2x − y ≤ 24, 3x + 4y ≤ 96,

x + 7y ≤ 126,−4x + 5y ≤ 65, x + 4y ≥ 8.

(16)

Example 4 (Toll 1 in Colson et al. (2005), a toll-setting problem) The network and the costs
are shown in Figure 2. Nodes 1 and 5 constitute its unique origin-destination pair. In this
problem, n = 3,m = 8, p = 3, and q = 13. For the more detailed description of the
problem, refer to Colson et al. (2005).

For Example 1, we enumerated all 20 potential bases, in which only 4 bases are available.
The optimal objective value is −29.2. Example 2 is as same as Example 1 except that F
is nonlinear. Obviously, the problem has the same optimal solution as Example 1, and the
optimal value is 0. Example 3 is a linear programming problem, the optimal objective value
reported in the literature is 85.0855. As a real-world example, the reported maximal profit
of Example 4 is 7.

For these small-scale problems, the parameters were given as follows: pc = 0.8, pm =
0.1, Np = 5 and K = Np ∗ 3. The maximum number of generations(MaxG) was taken as
10. For each example, 10 independent runs were executed, the computational results were
presented in Table 1. In this Table, F̄ and std stand for the mean of objective values and
standard deviation in 10 runs, respectively. Also, in order to measure the convergent speed of
GA-FSS, we considered the number of generations(G) and CPU time(T), and recorded the
means of G and T. These two means are represented by Ḡ and T̄ , respectively. In column T̄ ,
the numbers in square brackets are CPU time needed by the compared algorithms(Despite
fact that CPU time was obtained on different hardware equipments, we listed them in the
table as a reference). “−” means the item does not exist.

123

554 Ann Oper Res (2015) 235:543–558

Table 1 Computational results by GA-FSS and comparison

No. GA-FSS Compared algorithms

F̄ ± std Ḡ T̄ (s) Solutions F∗ Methods

1 −29.2 ± 0 2.3 0.81[107] (0, 0.9, 0, 0.6, 0.4, 0, 0, 0) −29.2 EA

2 0 ± 0 2.1 0.95 (0, 0.9, 0, 0.6, 0.4, 0, 0, 0) 0 −
3 85.0909 ± 0 1.7 0.40 (17.4545, 10.9091) 85.0855 ANN

4 7 ± 0 4.7 0.57[2.4] Ta∈A1 = (7, 9.9, 9.3)
Optimal path: 1 → 5

7 Trust region

Table 2 Mean objective values
at different parameter
configurations

No. Np pc pm p1 p2 p3 p4

c1 50 0.5 0.05 −919.4 −154.2 −351.4 −699.0

c2 50 0.5 0.10 −919.4 −255.2 −344.2 −883.9

c3 50 0.8 0.05 −919.4 −144.4 −351.4 −755.5

c4 50 0.8 0.10 −919.4 −255.2 −351.4 −907.5

c5 100 0.5 0.05 −919.4 −144.4 −268.1 −763.2

c6 100 0.5 0.10 −919.4 −255.2 −466.1 −909.7

c7 100 0.8 0.05 −919.4 −255.2 −382.3 −907.5

c8 100 0.8 0.10 −919.4 −154.2 −390.0 −876.0

In addition, in order to obtain a reasonable parameter configuration, we randomly gener-
ated 4 moderate-sized bilevel programs with the following type.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
x≥0

cx + dy

min
c1x + d1y + e1
c2x + d2y + e2

s.t. Ax + By = b, y ≥ 0

(17)

All coefficients were generated from uniform distributions. c, d were randomly generated
in [−10, 10]. The coefficients of fractional objectives were taken as follows: c1, d1 and e1
were randomly generated in [30,40] and c2, d2, e2 were taken randomly in [10, 20]. A and
B were generated in [−10, 10] except for the first row generated in [0, 10], which can
guarantee the constraint region is bounded. Also, b was obtained by taking the sum of the
absolute values of the coefficients of each constraint. Considering that the search space is
composed of potential bases of the follower’s problemand the leader’s problems can be solved
determinately, we uniformly took n = 10. m was taken as 10, 20, 30 and 40 respectively,
and q is 50% of m, then 4 problems with different scales(p1− p4) were generated. In GA-
FSS, three main parameters are population size Np , crossover probability pc and mutation
probability pm . In order to find a reasonable configuration of these parameters, we consulted
the procedure in Calvete et al. (2008) and took two levels for each parameter as follows:
Np = 50 or 100, pc = 0.5 or 0.8 and pm = 0.05 or 0.1. Each of parameters has 2 levels,
total 23 configurations(c1 − c8) should be considered, see Table 2. For each configuration,
we executed GA-FSS 10 independent runs on each generated problem and when a fixed
number of individual evaluations was satisfied, the algorithm was stopped. It follows that
total 4 × 10 × 8 runs of GA-FSS need to be executed. The mean objective values of all

123

Ann Oper Res (2015) 235:543–558 555

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Configurations

N
F

p1
p2
p3
p4

Fig. 3 Computational results at all parameter configurations

problems (p1 − p4) are shown in Table 2. In order to show clearly which is the best one
among all configurations, we normalized the data on each of columns p2 − p4 by

Λ∗
i = Λmax − Λi

Λmax − Λmin

Here,Λ = (Λ1, . . . , Λ8) is a column vector, andΛ∗ is a normalized vector. According to the
normalization procedure, theminimum in each column is normalized as 1. For column p1, we
directly take 1 as normalization result. The process canmake all computational results plotted
clearly in one figure, see Fig. 3, where NF stands for the normalized values of ojectives.
From the figure, one can see that c6 is the best one in that all 4 problems achieve 1. As a
result, we select the following parameter setting: Np = 100, pc = 0.5 and pm = 0.1.

The third part of the computational experiment is to test the performance of GA-FSS on
moderate- and larger-scale problems. In these examples, the maximum number of variables
is up to 150, few algorithms were tested on the scale. Using the same procedure as in Calvete
et al. (2009), we generated seven types of linear fractional bilevel programming problems,
and compared the scales of the search spaces used by GA-FSS and by EPHS(proposed in
Calvete et al. (2009), and executed on a PC Pentium 4 at 3.0 GHz having 3.5 GB of RAM),
see Table 3, where Num-P represents the number of points in the search space. Obviously, for
each problem the search space of GA-FSS is much smaller than that of EPHS. We executed
GA-FSS with the selected parameter values 10 independent runs on each problem, and the
termination criterion was taken as follows: when GA-FSS can’t improve the objective value
in successive 50 iterations, the algorithm stops. For each problem there exists no optimal
solution as a reference, we took the smallest value in all 10 runs as the best solution to the
problem.

In the experiment, for each problem, when the best result appears for the first time, we
recorded: (1) the mean of the individual numbers(Num-Ind) evaluated by GA-FSS; and (2)
the mean of the CPU time(CPU) invested by the algorithm. All results are shown in Table 4.
In order to compare our results with those provided by EPHS, in accordance with EPHS, we
calculated the expectancy of the individual numbers required for finding the best solutions.
Besides, we listed the numbers(NR) of runs giving the best solutions for each problem.

123

556 Ann Oper Res (2015) 235:543–558

Table 3 Scales of problems and
comparison of the search spaces
used by GA-FSS and EPHS

No. Scales Num-P

n-m-q GA-FSS EPHS

1 20-20-16 4845 6.2e+10

2 12-28-16 3.0e+07 6.2e+10

3 35-35-28 6.7e+06 2.7e+19

4 21-49-28 3.9e+13 2.7e+19

5 50-50-40 1.0e+10 1.3e+28

6 30-70-40 5.5e+19 1.3e+28

7 75-75-60 2.2e+15 4.6e+42

8 45-105-60 1.0e+30 4.6e+42

Table 4 Mean CPU time(CPU),
mean of the individual
numbers(Num-Ind) and the
number of runs(NR) giving the
best solutions

No. CPU(s) Num-Ind NR

GA-FSS EPHS GA-FSS EPHS GA-FSS EPHS

1 4.7 2.8 1420 7722 10 10

2 5.1 3.5 2380 7457 10 10

3 17.3 58.7 2260 13,543 10 9

4 42.1 125.9 5220 15,433 10 10

5 59.2 184.2 4560 17,285 8 9

6 172.8 747.7 7040 24,127 9 10

7 550.4 − 7762 − 8 −
8 978.3 − 10,982 − 6 −

InTable 4, one can see that the individual number (Num-Ind) requiredbyGA-FSS is far less
than that by EPHS, which is mainly due to GA-FSS using a sub-procedure of optimization for
the leader objective and having smaller search space than EPHS. For the number of runs(NR)
giving the best solutions, based on the analysis of variances, we conclude that the proposed
algorithm is almost the same stable and effective as EPHS. In the table “−” means that the
values are not provided in the corresponding reference.

We also executedGA-FSS on two kinds of BLPPswith F(x, y) = cx + dy + e, x ∈ {0, 1}
and F(x, y) = (cx + dy + e)2 respectively. The computational results show there is no
evident difference from the linear fractional case expect for CPU time, which can be easily
explained in that the CPU time can be affected by selecting different optimization methods
to solve the leader’s problems.

Besides, it should be noted that GA-FSS can deal with more general BLPPs than EPHS,
for example, when the leader’s problem is convex, EPHS can’t be used to solve this kind of
problems.

8 Conclusion

It is very difficult for us to design an efficient algorithm for nonlinear BLPPs with global
convergence, especially when the scale of problem is very large. As a consequence, some
theoretical results of optimality or the features of problems should be considered in the design

123

Ann Oper Res (2015) 235:543–558 557

of approaches. In this paper we presented an efficient genetic algorithm by making use of
the optimality results of linear fractional programs, and in this algorithmic approach, there
are no any restrictions on the leader except that it is solvable. In future work, some BLPPs
with other follower will be considered, such as quadratic programming problem, etc.

Acknowledgments The research work was supported by the National Natural Science Foundation of China
under Grant Nos. 61463045 and 61065009, the Natural Science Foundation of Qinghai Provincial under Grant
No. 2013-z-937Q, and the National Social Science Fund of China under Grant No. 13BXW037.

References

Abdou-Kandil, H., & Bertrand, P. (1987). Government-private sector relations as a stackelberg game: A
degenerate case. Journal of Economic Dynamics and Control, 11, 513–517.

Andreani, R., Castro, S. L. C., Chela, J. L., Friedlande, A., & Santos, S. A. (2009). An inexact-restoration
method for nonlinear bilevel programming problems.Computational Optimization and Applications, 43,
307–328.

Arroyo, J. M., & Galiana, F. D. (2009). On the solution of the bilevel programming formulation of the terrorist
threat problem. IEEE Transactions on Power Systems, 20(2), 789–797.

Bäck, T. (1996). Evolutionary algorithms in theory and practice. Oxford: Oxford University Press.
Bard, J. F. (1998). Practical bilevel optimization: Algorithms and applications. Dordrecht: Kluwer Academic

Publishers.
Bard, J. F., Plummer, J. C., & Sourie, J. C. (2000). A bilevel programming approach to determining tax credits

for biofuel production. European Journal of Operational Research, 120, 30–43.
Ben-Ayed, O., Boyce, D., & Blair, C. (1988). A general bilevel linear programming formulation of the network

design problem. Transportation Research, 22B, 311–318.
Calvete, H. I., & Gale, C. (1998). On the quasiconcave bilevel programming problem. Journal of Optimization

Theory and Applications, 98, 613–622.
Calvete, H. I., Gale, C., & Mateo, P. M. (2008). A new approach for solving linear bilevel problems using

genetic algorithms. European Journal of Operational Research, 188, 14–28.
Calvete, H. I., Gale, C., & Mateo, P. M. (2009). A genetic algorithm for solving linear fractional bilevel

problems. Annals of Operations Research, 166, 39–56.
Calvete, H. I., Gale, C., & Oliveros, M. (2011). Bilevel model for production-distribution planning solved by

using ant colony optimization. Computers and Operations Research, 38, 320–327.
Colson, B., Marcotte, P., & Savard, G. (2007). An overview of bilevel optimization. Annals of Operations

Research, 153, 235–256.
Colson, B., Marcotte, P., & Savard, G. (2005). A trust-region method for nonlinear bilevel programming:

Algorithm and computational experience. Computational Optimization and Applications, 30, 211–227.
Deb, K., & Sinha, A. (2009). An evolutionary approach for bilevel multi-objective problems.Communications

in Computer and Information Science, 35, 17–24.
Dempe, S. (1987). A simple algorithm for the linear bilevel programming problem.Optimization, 18, 373–385.
Dempe, S. (2002). Foundations of bilevel programming. Dordrecht: Kluwer Academie Publishers.
Dempe, S. (2003). Annotated bibliography on bilevel programming and mathematical programs with equilib-

rium constraints. Optimization, 52(3), 333–359.
Dempe, S., & Zemkoho, A. B. (2012). Bilevel road pricing: Theoretical analysis and optimality conditions.

Annals of Operations Research, 196, 223–240.
Etoa, J. B. E. (2010). Solving convex quadratic bilevel programming problems using an enumeration sequential

quadratic programming. Journal of Global Optimization, 47, 615–637.
Etoa, J. B. E. (2011). Solving quadratic convex bilevel programming problems using a smoothing method.

Applied Mathematics and Computation, 217, 6680–6690.
Glackin, J., Ecker, J. G., & Kupferschmid, H. (2009). Solving bilevel linear programs using multiple objective

linear programming. Journal of Optimization Theory and Applications, 140, 197–212.
Gümüs, Z. H., & Floudas, C. A. (2005). Global optimization of mixed-integer bilevel programming problems.

Computational Management Science, 2, 181–212.
Lan, K. M., Wen, U. P., & Shih, H. S. (2007). A hybrid neural network approach to bilevel programming

problems. Applied Mathematics Letters, 20, 880–884.
Li, H., & Wang, Y. (2008a). An interpolation-based genetic algorithm for solving nonlinear bilevel program-

ming problems. Chinese Journal of Computers, 31(6), 910–918.

123

558 Ann Oper Res (2015) 235:543–558

Li, H., &Wang, Y. (2008b). Exponential distribution-based genetic algorithm for solvingmixed-integer bilevel
programming problems. Journal of Systems Engineering and Electronics, 19(6), 1159–1164.

Li, H., & Wang, Y. (2011). A real-binary coded genetic algorithm for solving nonlinear bilevel program-
ming with nonconvex objective functions. In The proceedings of 2011 IEEE congress on evolutionary
computation (CEC) (pp. 2496–2500). New Orleans, USA.

Mersha,A.G.,&Dempe, S. (2011).Direct search algorithm for bilevel programming problems.Computational
Optimization and Applications, 49, 1–15.

Migdalas, A. (1995). Bilevel programming in traffic planning: Models, methods and challenge. Journal of
Global Optimization, 7, 381–405.

Muu, L. D., & Quy, N. V. (2003). A global optimization method for solving convex quadratic bilevel program-
ming problems. Journal of Global Optimization, 26, 199–219.

Shim, Y., Fodstad, M., Gabriel, S. A., & Tomasgard, A. (2013). A branch-and-bound method for discretely-
constrained mathematical programs with equilibrium constraints. Annals of Operations Research, 210,
5–31.

Swarup, K. (1965). Linear fractional functional programming. Operations Research, 13(6), 1029–1036.
Scaparra, M. P., & Church, R. L. (2008). A bilevel mixed-integer program for critical infrastructure protection

planning. Computers and Operations Research, 35(6), 1905–1923.
Wang, G., Zhu, K., & Wan, Z. (2010). An approximate programming method based on the simplex method

for bilevel programming problem. Computers and Mathematics with Applications, 59, 3355–3360.
Wang, Y., Jiao, Y. C., & Li, H. (2005). An evolutionary algorithm for solving nonlinear bilevel programming

based on a new constraint-handling scheme. IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, 35(2), 221–232.

Wang,Y., Li, H.,&Dang,C. (2011).A newevolutionary algorithm for a class of nonlinear bilevel programming
problems and its global convergence. INFORMS Journal on Computing, 23(4), 618–629.

Wang, Y. (2011). Theory and methodology of evolutionary computation. Beijing: Science Press.

123

	A genetic algorithm using a finite search space for solving nonlinear/linear fractional bilevel programming problems
	Abstract
	1 Introduction
	2 Discussed problem and basic notations
	3 Optimality conditions and profile of the proposed approach
	3.1 Transformation of BLPP
	3.2 Optimality results
	3.3 Sub-procedure of optimization
	3.4 Profile of algorithmic approach

	4 Design of genetic algorithm
	4.1 Chromosome encoding and initial population
	4.2 Fitness function
	4.3 Crossover and mutation operators

	5 Proposed algorithm
	6 Convergence analysis
	7 Computational experiments
	8 Conclusion
	Acknowledgments
	References

