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Abstract A vector equilibrium problem is generally defined by a bifunction which takes
values in a partially ordered vector space.When this space is endowed with a componentwise
ordering, the vector equilibrium problem can be decomposed into a family of equilibrium
subproblems, each of them being governed by a bifunction obtained from the initial one
by selecting some of its scalar components. Similarly to multi-criteria optimization, three
types of solutions can be defined for these equilibrium subproblems, namely, weak, strong
and proper solutions. The aim of this paper is to show that, under appropriate convexity
assumptions, the set of all weak solutions of a vector equilibrium problem can be recovered
as the union of the sets of proper solutions of its subproblems.

Keywords Vector equilibrium problem · Multi-criteria optimization problem · Generalized
convexity · Scalarization · Decomposition

1 Introduction

Equilibrium problems have been intensively studied in the last two decades due to their
wide range of applications. Actually, optimization problems, variational inequalities, saddle
point (minimax) problems, Nash equilibria, complementarity problems, and other important
problems, can be seen as particular instances of the general equilibrium problem (Blum and
Oettli 1994; Iusem and Sosa 2003).

The classical equilibrium problems, as introduced byMuu and Oettli (1992), are governed
by real-valued bifunctions, hence they are called scalar equilibrium problems. The vector
equilibrium problems are governed by bifunctions which take values in a partially ordered
real vector space. They have been investigated by many authors, beginning with Ansari
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(2000)—whose first draft was indeed presented in 1996 at the Second World Congress of
Nonlinear Analysts, Athens, Greece, Bianchi et al. (1997) and Oettli (1997).

In this paper we will consider a particular class of vector equilibrium problems which
are governed by bifunctions whose outcome space is a finite-dimensional real Euclidean
space, endowed with the usual componentwise ordering. This particular setting allows us to
decompose any vector equilibrium problem into a family of equilibrium subproblems, each
of them being governed by a bifunction obtained from the initial one by selecting some of
its scalar components. We investigate the relationship between three types of solutions of
these equilibrium subproblems, namely, weak, strong and proper solutions. Our main result
shows that, under suitable convexity assumptions, any weak solution of a vector equilibrium
problem is a proper (hence strong) solution for at least one of its subproblems.

The paper is organized as follows. In Sect. 2 we introduce some basic notions of multi-
criteria optimization and we establish new characterizations of weakly and proper minimal
points. Vector equilibrium problems are introduced in Sect. 3. Under appropriate generalized
convexity assumptions, we characterize their weakly and proper solutions by means of linear
scalarizations. Section 4 is devoted to our main result concerning the decomposition of vector
equilibriumproblems and its applications inmulti-criteria optimization and vector variational
inequalities.

2 Multi-criteria optimization

In general, the outcome space of a multi-criteria optimization problem is a real Euclidean
space of given dimension. However, by decomposing such a problem into subproblems we
should operate with several outcome spaces of different dimensions simultaneously. Let N

be the set of positive integers and let R+ be the set of nonnegative real numbers. For every
n ∈ N, we endow the n-dimensional real Euclidean space with three binary relations, defined
as follows. For any u, v ∈ R

n ,

u ≤ v :⇐⇒ v − u ∈ R
n+,

u < v :⇐⇒ v − u ∈ int Rn+,

u � v :⇐⇒ u ≤ v and u �= v,

where int S stands for the interior of a set S ⊆ R
n . Throughout the paper we will denote by

cl S the closure of S and we adopt the following notational conventions.
For any sets S ⊂ R

n , S′ ⊂ R
n and A ⊂ R, and for any λ ∈ R and v ∈ R

n , we denote
S ± S′ = {u ∈ R

n | ∃ (x, x ′) ∈ S × S′ s.t. u = x ± x ′}, S ± v = S ± {v}, v ± S′ = {v} ± S′,
A · S = {u ∈ R

n | ∃(α, x) ∈ A × S s.t. u = αx}, A · v = A · {v} and λS = {λ} · S.
Let S be a nonempty subset of R

n with n ≥ 2. As usual in multi-criteria optimization
(see, e.g., Göpfert et al. 2003) a point v = (v1, . . . , vn) ∈ S is called:

– weakly minimal if there is no u ∈ S such that u < v.
– strongly minimal if there is no u ∈ S such that u � v.
– properly minimal (in the sense of Geoffrion 1968) if there exists a real number μ > 0

such that for any u = (u1, . . . , un) ∈ S and i ∈ {1, . . . , n} with ui < vi there is
j ∈ {1, . . . , n} \ {i} with μ(u j − v j ) ≥ vi − ui .

Denote byw-min S, s-min S and p-min S the sets of all weaklyminimal, stronglyminimal,
and properly minimal points of S, respectively. It is easily seen that

w-min S ⊇ s-min S ⊇ p-min S. (1)
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These sets can be characterized geometrically. To this aim we recall some notions of convex
analysis. A subset C of R

n is said to be a:

– convex set if (1 − t)C + tC = C for any t ∈ [0, 1];
– cone if R+ · C = C and 0n ∈ C , where 0n denotes the zero vector of R

n ;
– convex cone if C is a cone and a convex set, i.e., 0n ∈ C = R+ · C = C + C ;
– upward set if C + R

n+ = C , i.e., C has the free-disposal property (Debreu 1959).
– closely R

n+-convex set if cl(C + R
n+) is convex (Breckner and Kassay 1997).

Obviously R
n+ is a convex cone and we have

w-min S = {
v ∈ S | (S − v) ∩ (−int Rn+) = ∅} ; (2)

s-min S = {
v ∈ S | (S − v) ∩ (−R

n+) = {0n}
}
. (3)

According to Theorem 2.1.15 of Podinovskiı̆ and Nogin (1982), there exists a family
(�ε)ε∈ ]0,1/n] of convex cones of R

n , satisfying the following four properties:
⋂

ε∈ ]0,1/n]
�ε = R

n+; (4)

0n /∈ int�ε, for any 0 < ε ≤ 1/n; (5)

�ε \ {0n} ⊆ int�ε̃, for any 0 < ε < ε̃ ≤ 1/n; (6)

p-min S =
⋃

0<ε≤1/n

{v ∈ S | (S − v) ∩ (−�ε) = {0n}} . (7)

Remark 1 Property (5) means actually that �ε �= R
n for any 0 < ε ≤ 1/n, while the

properties (4) and (6) show that

R
n+ \ {0n} ⊆ int�ε̃, for any 0 < ε̃ ≤ 1/n. (8)

Note that Henig (1982) also introduced a notion of proper efficiency with respect to a general
coneC , bymeans of certain enlarged coneswith similar properties. Actually, for the particular
coneC = R

n+, several other concepts of proper efficiency coincide with Geoffrion’s one (see,
e.g., Guerraggio et al. 1994).

The study of the minimal points of any set S can be reduced to the study of the correspond-
ing minimal points of an upward set, namely S + R

n+, by means of the following formulae
(see, e.g., Lemma 2.2.1 of Podinovskiı̆ and Nogin 1982):

w-min S = S ∩ w-min(S + R
n+);

s-min S = s-min(S + R
n+);

p-min S = p-min(S + R
n+).

Our next result shows that similar representations hold for weakly minimal and properly
minimal points if we replace the upward set S + R

n+ by its closure.

Theorem 1 For every subset S of R
n we have

w-min S = S ∩ w-min cl(S + R
n+); (9)

p-min S = S ∩ p-min cl(S + R
n+). (10)

Proof According to Proposition 2.2.6 of Luc (1989), for any B ⊆ A ⊆ R
n we have

B ∩ w-min A ⊆ w-min B and B ∩ p-min A ⊆ p-min B.
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Letting A := cl(S + R
n+) and B := S we get the inclusions “⊇” in (9) and (10).

Now suppose to the contrary that inclusion “⊆” in (9) is not true. Then, sincew-min S ⊆ S,
it would exists v ∈ (w-min S) \w-min cl(S + R

n+). Taking into account that v ∈ w-min S ⊆
S ⊆ cl(S + R

n+), we infer the existence of a point w ∈ cl(S + R
n+) such that w < v, i.e.,

w ∈ v − int Rn+. Since v − int Rn+ is open, it is a neighborhood of w, hence its intersection
with S + R

n+ is nonempty. Choose s ∈ S and u ∈ R
n+ such that s + u ∈ v − int Rn+. Then

s ∈ v − u − int Rn+ ⊆ v − R
n+ − int Rn+ = v − int Rn+, which yields s < v, contradicting the

assumption that v ∈ w-min S. Thus (9) holds.
In order to prove the inclusion “⊆” in (10), consider an arbitrary v0 ∈ p-min S. Taking into

account that v0 ∈ S, we just have to show that v0 ∈ p-min cl(S + R
n+). Since v0 ∈ p-min S,

we infer by (7) the existence of some ε̃ ∈ ]0, 1/n] such that (S − v0) ∩ (−�ε̃) = {0n}. By
(5) it follows that (S − v0) ∩ (−int�ε̃) = ∅, hence

S ∩ (v0 − int�ε̃) = ∅. (11)

Choose a number ε ∈ ]0, ε̃[. Supposing to the contrary that v0 /∈ p-min cl(S + R
n+), we infer

by (7), applied to cl(S + R
n+) in the role of S, that

v0 /∈ {
v ∈ cl(S + R

n+) | (
cl(S + R

n+) − v
) ∩ (−�ε) = {0n}

}
.

Since v0 ∈ S ⊆ cl(S + R
n+), it follows that

(
cl(S + R

n+) − v0
) ∩ (−�ε) �= {0n}, hence(

cl(S + R
n+) − v0

) ∩ (−�ε \ {0n}) �= ∅. By the choice of ε, we can deduce by (6) that(
cl(S + R

n+) − v0
) ∩ (−int�ε̃) �= ∅, i.e., cl(S + R

n+) ∩ (
v0 − int�ε̃

) �= ∅. Thus we can
choose a point w0 ∈ cl(S+ R

n+)∩ (v0 − int�ε̃). Since v0 − int�ε̃ is a neighborhood of w0,
we can find a point

w̃ := ṽ + ũ ∈ (S + R
n+) ∩ (v0 − int�ε̃)

with ṽ ∈ S and ũ ∈ R
n+. By (11) we infer that ũ �= 0n . In view of (8), it follows that

v0 − ṽ ∈ ũ + int�ε̃ ⊆ R
n+ \ {0n} + int�ε̃ ⊆ int�ε̃ + int�ε̃ = int�ε̃ , the last equality

being true since �ε̃ is a convex cone. It follows that ṽ ∈ v0 − int�ε̃, which contradicts (11)
because ṽ ∈ S. Thus (10) holds. ��
Remark 2 Proposition 2.2.6 of Luc (1989), which has been used by us in the proof of
Theorem 1, shows also that for any sets B ⊆ A ⊆ R

n we have

B ∩ s-min A ⊆ s-min B.

In particular, by letting A := cl(S + R
n+) and B := S for any set S ⊆ R

n , we get

s-min S ⊇ S ∩ s-min cl(S + R
n+). (12)

However, the inverse inclusion does not hold in general. For instance, consider

S := {(1, 0)} ∪ ]0, 1[×]0, 1[ ⊆ R
2.

It is easily seen that s-min S = {(1, 0)}while s-min cl(S+R
2+) = {(0, 0)}, hence the equality

in (12) does not hold.

We end this section by presenting some characterizations of weak minimality and proper
minimality by means of linear scalarization. The following lemma is a counterpart of some
classical results by Hurwicz (1958) and Geoffrion (1968).

In the sequel 〈·, ·〉 will represent the usual inner product in R
n .
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Lemma 1 For any nonempty set S ⊆ R
n the following assertions hold:

1◦ argminv∈S〈c, v〉 ⊆ w-min S for every c ∈ R
n with c � 0n.

2◦ argminv∈S〈c, v〉 ⊆ p-min S for every c ∈ R
n with c > 0n.

3◦ If S is convex, then

w-min S =
⋃

c�0n

argmin
v∈S

〈c, v〉; (13)

p-min S =
⋃

c>0n

argmin
v∈S

〈c, v〉. (14)

Corollary 1 If S ⊆ R
n is nonempty and closely R

n+-convex, then (13) and (14) hold.

Proof Let us show first that for every c ∈ R
n with c ≥ 0n we have

argmin
v∈S

〈c, v〉 = S ∩ argmin
v′∈cl(S+Rn+)

〈c, v′〉. (15)

Indeed, the inclusion “⊇” in (15) is true since S ⊆ cl(S+R
n+). In order to prove the inclusion

“⊆”, consider any v̄ ∈ argminv∈S〈c, v〉. Then v̄ ∈ S ⊆ cl(S + R
n+) and

〈c, v̄〉 ≤ 〈c, v〉, ∀ v ∈ S. (16)

We just have to prove that 〈c, v̄〉 ≤ 〈c, v′〉 for an arbitrary point v′ ∈ cl(S+ R
n+). There exist

two sequences of points, (vk)k∈N in S and (uk)k∈N in R
n+, such that v′ = limk→∞(vk + uk).

For each k ∈ N, by applying (16) for v := vk and recalling that c ∈ R
n+, we infer that 〈c, v̄〉 ≤

〈c, vk〉 ≤ 〈c, vk + uk〉. Passing to the limit, we deduce the desired relation: 〈c, v̄〉 ≤ 〈c, v′〉.
Thus (15) holds.

Since S is closely R
n+-convex, the set cl(S + R

n+) is convex. By Lemma 1 (3◦), applied
for cl(S + R

n+) in the role of S, we deduce that

w-min cl(S + R
n+) =

⋃

c�0n

argmin
v′∈cl(S+Rn+)

〈c, v′〉;

p-min cl(S + R
n+) =

⋃

c>0n

argmin
v′∈cl(S+Rn+)

〈c, v′〉.

By combining these two relations with Theorem 1 and relation (15), we infer

w-min S = S ∩ w-min cl(S + R
n+) =

⋃

c�0n

(S ∩ argmin
v′∈cl(S+Rn+)

〈c, v′〉) =
⋃

c�0n

argmin
v∈S

〈c, v〉;

p-min S = S ∩ p-min cl(S + R
n+) =

⋃

c>0n

(S ∩ argmin
v′∈cl(S+Rn+)

〈c, v′〉) =
⋃

c>0n

argmin
v∈S

〈c, v〉.

Thus both relations (13) and (14) hold true. ��
Remark 3 Under the hypothesis of Corollary 1, relation (13) can be also recovered as a
particular instance of Theorem 3.2 in the paper by Breckner and Kassay (1997).

3 Vector equilibrium problems and their scalarization

Throughout this section D will be a nonempty subset of a real linear space X .
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Given a real-valued bifunction ϕ : D × D → R, satisfying the property that

ϕ(x, x) = 0 for all x ∈ D, (17)

the scalar equilibrium problem governed by ϕ (as defined by Muu and Oettli 1992), consists
in finding the elements x ∈ D satisfying

ϕ(x, y) ≥ 0 for all y ∈ D.

Due to (17) the set of all solutions of the scalar equilibrium problem is given by

eq(D | ϕ) := {x ∈ D | ϕ(x, y) ≥ 0, ∀ y ∈ D}
= {x ∈ D | � y ∈ D s.t. ϕ(x, y) < 0}
= {x ∈ D | ϕ(x, D) ∩ (−int R+) = ∅}
= {x ∈ D | 0 = min ϕ(x, D)} , (18)

where ϕ(x, D) := {ϕ(x, y) | y ∈ D} and min ϕ(x, D) := min
y∈D ϕ(x, y) for any x ∈ D.

Consider now a vector-valued bifunction, f = ( f1, . . . , fn) : D × D → R
n (n ≥ 2),

which satisfies the property that

f (x, x) = 0n for all x ∈ D. (19)

By adapting the representation (18) to the minimality concepts introduced in Sect. 2 (i.e.,
letting v := 0n and S := f (x, D) in (2), (3) and (7) for any x ∈ D), we can introduce the
vector equilibrium problem governed by f , which consists in finding the elements of the
following three sets:

w-eq(D | f ) := {x ∈ D | 0n ∈ w-min f (x, D)}
= {x ∈ D | � y ∈ D s.t. f (x, y) < 0n}
= {

x ∈ D | f (x, D) ∩ (−int Rn+) = ∅} ; (20)

s-eq(D | f ) := {x ∈ D | 0n ∈ s-min f (x, D)}
= {x ∈ D | � y ∈ D s.t. f (x, y) � 0n}
= {

x ∈ D | f (x, D) ∩ (−R
n+) = {0n}

} ; (21)

p-eq(D | f ) := {x ∈ D | 0n ∈ p-min f (x, D)}
= {x ∈ D | f (x, D) ∩ (−�ε) = {0n} for some ε ∈ ]0, 1/n]} . (22)

The elements of these three sets will be called weak solutions, strong solutions, and proper
solutions of the vector equilibrium problem governed by f . Notice that, in more general
ordered spaces, Ansari (2000) and Bianchi et al. (1997) initiated the study of vector equilib-
rium problems by considering weak solutions. Later on, strong and proper solutions of vector
equilibrium problems were investigated in many papers (see, e.g., Capătă 2011 or Bigi et al.
2012 and the references therein).

Lemma 2 The following inclusions hold:

p-eq(D | f ) ⊆ s-eq(D | f ) ⊆ w-eq(D | f ).

Proof For every x ∈ D we have p-min f (x, D) ⊆ s-min f (x, D) ⊆ w-min f (x, D) in
view of (1) applied for S := f (x, D). Thus, whenever x ∈ p-eq(D | f ) it follows by
(22) that 0n ∈ p-min f (x, D) ⊆ s-min f (x, D), hence x ∈ s-eq(D | f ). Similarly, if
x ∈ s-eq(D | f ), then according to (21) we have 0n ∈ s-min f (x, D) ⊆ w-min f (x, D),
hence x ∈ w-eq(D | f ). ��
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Theorem 2 For any c ∈ R
n let 〈c, f 〉 : D × D → R be the real-valued bifunction defined

for all (x, y) ∈ D × D by

〈c, f 〉(x, y) := 〈c, f (x, y)〉.
The following assertions hold:

1◦ eq(D | 〈c, f 〉) ⊆ w-eq(D | f ) whenever c � 0n.
2◦ eq(D | 〈c, f 〉) ⊆ p-eq(D | f ) whenever c > 0n.
3◦ If the set f (x, D) is closely R

n+-convex for every x ∈ D, then

w-eq(D | f ) =
⋃

c�0n

eq(D | 〈c, f 〉); (23)

p-eq(D | f ) =
⋃

c>0n

eq(D | 〈c, f 〉). (24)

Proof Consider an arbitrary c ∈ R
n . By applying (18) forϕ := 〈c, f 〉 and taking into account

that 0n ∈ f (x, D) for any x ∈ D due to (19), we deduce that

eq(D | 〈c, f 〉) = {
x ∈ D

∣
∣ 0 = miny∈D〈c, f (x, y)〉}

= {
x ∈ D

∣
∣ 〈c, 0n〉 = miny∈D〈c, f (x, y)〉}

= {
x ∈ D

∣
∣ 0n ∈ argminv∈ f (x,D)〈c, v〉} . (25)

In order to prove 1◦ and 2◦, consider a point x ∈ eq(D | 〈c, f 〉). By (25) and Lemma
1 (1◦ and 2◦) applied for S := f (x, D) it follows that, whenever c � 0n , we have 0n ∈
argminv∈ f (x,D)〈c, v〉 ⊆ w-min f (x, D), hence x ∈ w-eq(D | f ) by (20). Similarly, if
c > 0n , then we have 0n ∈ argminv∈ f (x,D)〈c, v〉 ⊆ p-min f (x, D), hence x ∈ p-eq(D | f )
in view of (22).

Now let us prove 3◦. Assume that f (x, D) is closely R
n+-convex for every x ∈ D. By

(20), (22), (25) and Corollary 1, applied for S := f (x, D) with x ∈ D, we infer

w-eq(D | f ) = {x ∈ D | 0n ∈ w-min f (x, D)}
=

{
x ∈ D

∣
∣
∣ 0n ∈ ⋃

c�0n argminv∈ f (x,D)〈c, v〉
}

= ⋃
c�0n

{
x ∈ D

∣
∣ 0n ∈ argminv∈ f (x,D)〈c, v〉}

= ⋃
c�0neq(D | 〈c, f 〉);

p-eq(D | f ) = {x ∈ D | 0n ∈ p-min f (x, D)}
= {

x ∈ D
∣
∣ 0n ∈ ⋃

c>0n argminv∈ f (x,D)〈c, v〉}

= ⋃
c>0n

{
x ∈ D

∣
∣ 0n ∈ argminv∈ f (x,D)〈c, v〉}

= ⋃
c>0neq(D | 〈c, f 〉).

Thus both relations (23) and (24) hold. ��

Recall (see, e.g., Jeyakumar 1985 and Breckner and Kassay 1997) that a vector-valued
function g : D → R

n is said to be :

– R
n+-subconvexlike if there is e ∈ int Rn+ such that

(1 − t)g(D) + tg(D)+]0,∞[·e ⊆ g(D) + R
n+, ∀ t ∈ ]0, 1[;
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– R
n+-convex if its epigraph, defined by means of the ordering ≤ of R

n as

epi(g) := {(x, v) ∈ D × R
n | g(x) ≤ v},

is a convex subset of the linear space X × R
n .

The next lemma gathers known results (see, e.g., Breckner and Kassay 1997).

Lemma 3 For any function g = (g1, . . . , gn) : D → R
n the following assertions hold:

1◦ g is R
n+-convex if and only if D is convex and the scalar components of g are convex in

classical sense, i.e., for any i ∈ {1, . . . , n} the function gi : D → R satisfies

gi ((1 − t)x ′ + t x ′′) ≤ (1 − t)gi (x) + tgi (x), ∀ x ′, x ′′ ∈ D, ∀ t ∈ [0, 1].
2◦ g is R

n+-subconvexlike if and only if its range, g(D), is a closely R
n+-convex set, i.e., the

set cl(g(D) + R
n+) is convex.

3◦ If g is R
n+-convex, then g(D) + R

n+ is a convex set, hence g is R
n+-subconvexlike.

Remark 4 In view of Lemma 3, the hypothesis of Theorem 2 (3◦), namely that f (x, D) is
closelyR

n+-convex for every x ∈ D,means actually that the bifunction f isR
n+-subconvexlike

in its second argument, i.e., for every x ∈ D the function g = f (x, ·) : D → R
n is R

n+-
subconvexlike.

Notice that under the hypothesis of Theorem 2 (3◦) the set D is not necessarily convex. For
instance, D := {0, 1} ⊆ X := R is not convex, but the constant bifunction f : D×D → R

n ,
defined by f (x, y) = 0n for all (x, y) ∈ D×D, isR

n+-subconvexlike in its second argument.

Corollary 2 Assume that D is convex. If f is R
n+-convex in its second argument, i.e., for

every x ∈ D the function f (x, ·) : D → R
n is R

n+-convex, then (23) and (24) hold.

Proof Directly follows from Theorem 2, in view of Lemma 3 and Remark 4. ��

4 Decomposition of vector equilibrium problems

As in the previous section, we assume that f = ( f1, . . . , fn) : D × D → R
n is a vector-

valued bifunction satisfying the property (19), where D is a nonempty subset of a real linear
space X .

For convenience we introduce the index set In := {1, . . . , n}. Given any selection of
indices, I := {i1 < · · · < ik} ⊆ In , the notation f I will represent the function

f I = ( fi1 , . . . , fik ) : D × D → R
k . (26)

By analogy to multi-criteria optimization problems, which can be decomposed into a
family of optimization subproblems associated to certain selections of criteria (see, e.g.,
Popovici 2005), we will associate to each nonempty set of indices I ⊆ In the equilibrium
subproblem governed by f I , defined as follows.

If I = {i} is a singleton, then we consider the scalar equilibrium problem governed by fi ,
whose solution set is

eq(D | f I ) := eq(D | fi ).

If I has cardinality |I | = k ≥ 2, thenwe consider the vector equilibriumproblemgoverned
by f I , whose weak solutions, strong solutions and proper solutions are the elements of the
corresponding sets
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w-eq(D | f I ) := {x ∈ D | 0k ∈ w-min f I (x, D)},
s-eq(D | f I ) := {x ∈ D | 0k ∈ s-min f I (x, D)},
p-eq(D | f I ) := {x ∈ D | 0k ∈ p-min f I (x, D)},

according to (20), (21) and (22), respectively.

Lemma 4 For every nonempty subset I of In we have

p-eq(D | f I ) ⊆ s-eq(D | f I ) ⊆ w-eq(D | f I ) ⊆ w-eq(D | f ). (27)

Proof Let I ⊆ In be a nonempty set. The first two inclusions in (27) hold byLemma 2 applied
to f I in the role of f . In order to prove the third inclusion, let x ∈ w-eq(D | f I ). Suppose
to the contrary that x /∈ w-eq(D | f ). Then we have 0n /∈ w-min f (x, D) by (20). Since
0n = f (x, x) ∈ f (x, D), we infer the existence of some y ∈ D such that f (x, y) < 0n , i.e.,
fi (x, y) < 0 for all i ∈ In . It follows that f I (x, y) < 0k , contradicting the hypothesis that
x ∈ w-eq(D | f I ). ��
Theorem 3 If the bifunction f is R

n+-subconvexlike in its second argument, then

w-eq(D | f ) =
⋃

∅�=I⊆In

p-eq(D | f I ). (28)

Proof Lemma 4 shows that the inclusion “⊇” in (28) holds, even in absence of any convexity
assumption.

In order to prove the inclusion “⊆” assume that f is R
n+-subconvexlike in its second

argument. In view of Remark 4, this means that cl( f (x, D) + R
n+) is convex for every

x ∈ D. Consider an arbitrary element x̃ ∈ w-eq(D | f ). Since the hypothesis of Theorem
2 (3◦) is fulfilled, we can deduce by (23) the existence of c = (c1, . . . , cn) ∈ R

n such that
c � 0n and x̃ ∈ eq(D | 〈c, f 〉). Consider the set

Ĩ = {i ∈ In | ci > 0}.
Since c � 0n , the set Ĩ is nonempty. Denoting by m its cardinality, it can be written as Ĩ =
{i1, . . . , im} with 1 ≤ i1 < · · · < im ≤ n. Let us introduce a function f̃ = ( f̃1, . . . , f̃m) :
D × D → R

m and a vector c̃ = (c̃1, . . . , c̃m) ∈ R
m , defined for every j ∈ Im = {1, . . . ,m}

as

f̃ j = fi j and c̃ j = ci j .

Observe that 〈c, f 〉 = 〈c̃, f̃ 〉, where the inner products are defined inR
n andR

m , respectively.
Recalling that x̃ ∈ eq(D | 〈c, f 〉), we actually have x̃ ∈ eq(D | 〈c̃, f̃ 〉). Since c̃ > 0m , we
infer by 2◦ in Theorem 2 (applied for n := m, f := f̃ and c := c̃) that x̃ ∈ p-eq(D | f̃ ).
Taking into account that, by the notational convention (26), we actually have f̃ = f Ĩ , it
follows that x̃ ∈ p-eq(D | f Ĩ ) ⊆ ⋃

∅�=I⊆In p-eq(D | f I ). Thus inclusion “⊆” in (28) is true.
��

Corollary 3 Assume that D is convex. If the bifunction f is R
n+-convex in its second argu-

ment, then (28) holds.

Proof Directly follows from Theorem 3, in view of Lemma 3 and Remark 4. ��
Corollary 4 Under the hypotheses of Theorem 3 (in particular, Corollary 3), we have

w-eq(D | f ) =
⋃

∅�=I⊆In

s-eq(D | f I ). (29)
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Proof ByTheorem3 (in particular, Corollary 3) andLemma4wededuce thatw-eq(D | f ) =⋃
∅�=I⊆In p-eq(D | f I ) ⊆ ⋃

∅�=I⊆In s-eq(D | f I ) ⊆ ⋃
∅�=I⊆In w-eq(D | f I ) ⊆ w-eq(D |

f ), hence the equality (29) holds. ��
Remark 5 Given a vector-valued function, F : D → R

n , we can define a bifunction f :
D × D → R

n for all (x, y) ∈ D × D by

f (x, y) := F(y) − F(x).

In this case the vector equilibrium problem governed by f becomes a multi-criteria mini-
mization problem. Thus, as a direct consequence of Corollary 3, we recover a well-known
result in multi-criteria optimization with applications in location theory, namely Corollary 1
of Lowe et al. (1984).

Similarly, by an appropriate choice of the bifunction f , certain types of vector variational
inequalities can be also formulated as vector equilibrium problems. In particular, Theorem
13 of Popovici and Rocca (2012) as well as Theorem 4.1 of Popovici and Rocca (2013) can
be seen as counterparts of Corollary 3.

Further extensions of our results could be established by considering arcwise convexity,
as in the paper by La Torre and Popovici (2010).
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