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Abstract Multilevel Stackelberg problems are nested optimization problems which reply
optimally to hierarchical decisions of subproblems. These kind of problems are common
in hierarchical decision making systems and are known to be NP-hard. In this paper, a
systematic evolutionary algorithm has been proposed for such types of problems. A unique
feature of the algorithm is that it is not affected by the nature of the objective and constraint
functions involved in the problem as long as the problem has a solution. The convergence
proof of the proposed algorithm is given for special problems containing non-convex and non-
differentiable functions. Moreover, a new concept of (ε, δ)-approximation for Stackelberg
solutions is defined. Using this definition comparison of approximate Stackelberg solutions
has been studied in this work. The numerical results on various problems demonstrated that
the proposed algorithm is very much promising to multilevel Stackelberg problems with
bounded constraints, and it can be used as a benchmark for a comparison of approximate
results by other algorithms.

Keywords Multilevel Stackelberg problems · Hierarchical decision · Evolutionary
algorithm · Systematic sampling

1 Introduction

Many resource allocation or planning problems require compromises among the objectives of
several interacting individuals or agencies, most of the time, arranged in hierarchical adminis-
trative structure and can have independent even sometimes conflicting objectives. A decision
maker (DM) at one level of the hierarchy may have its objective function determined partly
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by variables controlled at other levels. Assuming that the decision process has a preemptive
nature and having k levels of hierarchy, we consider the decision maker at the kth level to be
the leader and those at lower levels to be followers.

Such type of decision making problems are often modeled as Stackelberg games, but
with some finite number of hierarchical levels. We refer to these problems as decentral-
ized multilevel systems or multilevel Stackelberg problems (MSPs). Such problems are also
referred to as multilevel programming problems in some literature and have got the attention
of researchers in the last four decades.

MSP was first proposed by Bracken and McGill (1973) to model a decentralized non-
cooperative decision making problems. However, the formulation of the problem in the form
of Bilevel and Multilevel programs was first used in Candler and Townsley (1982) (See
also Colson et al. (2007) for the details of the historic development of the problem). MSPs
involving random variables was also proposed first in Patriksson and Wynter (1999). These
kind of problems are known to be common in various areas of application.

The mathematical form of a general k-level Stackelberg problems can be expressed as:

min
x1∈X1

f1(x1, x2, . . . , xk)

s.t. (x1, . . . , xk) ∈ S1, where [x2, x3, . . . , xk] solves
min

x2∈X2
f2(x1, x2, . . . , xk)

s.t. (x1, . . . , xk) ∈ S2, where [x3, x4, . . . , xk] solves
min

x3∈X3
f3(x1, x2, . . . , xk) (1)

s.t. (x1, . . . , xk) ∈ S3, where [x4, . . . , xk] solves
. . .

min
xk∈Xk

fk(x1, x2, . . . , xk)

s.t. (x1, . . . , xk) ∈ Sk

For amathematical formulation ofMSPs, consider the problem in (1) composed of k-levels
each characterized by individual objective functions fi for i = 1, 2, . . . , k, which are to be
minimized by the respective DMs. Let the decision variable spaceRn be partitioned among
k-levels, such that (x1, . . . , xk) ∈ X1 ×· · ·× Xk = S ⊆ Rn , where Xi ⊆ Rni ,

∑k
i=1 ni = n

and S be a nonempty set. Assume that decisions are made sequentially beginning with the
leader DMwho has control over a vector x1 ∈ X1, followed by 2nd DMwho has control over
a vector x2 ∈ X2 down through kth DM who has control over a vector xk ∈ Xk . If there are
two DMs, in which the leader DM first makes a decision and the follower DM who knows
the decision of the opponent makes a decision next, then the problem can be formulated as
a Bilevel Stackelberg problem.

Some of the basic components in MSPs are defined below.

1. Constraint region of the MSP is

Ω = {(x1, . . . , xk) ∈ S : (x1, . . . , xk) ∈ S1 ∩ S2 ∩ · · · ∩ Sk}

2. For each given vector (x∗
1 , . . . , x∗

p) ∈ X1 × · · · × X p, 1 ≤ p < k, the feasible region of
the (p + 1), and lower order levels is given by:
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Ω(x∗
1 , . . . , x∗

p) = {(x p+1, . . . , xk) ∈ X p+1 × · · · × Xk :
(x∗

1 , . . . , x∗
p, x p+1, . . . , xk) ∈ Sp+1 ∩ · · · ∩ Sk}

3. Projection of Ω onto the 1st , . . . , pth , 1 ≤ p < k, levels decision space is given by:

Ω(X1, . . . , X p) = {(x1, . . . , x p) : ∃(x p+1, . . . , xk), (x1, . . . , xk) ∈ Ω}
4. For each (x∗

1 , . . . , x∗
p) ∈ Ω(X1, . . . , X p), 1 ≤ q < k, p = k − q , the rational reaction

set for the (p + 1) and lower order levels is given by:

M(x∗
1 , . . . , x∗

p) = {(x∗
p+1, . . . , x∗

k ) : (x∗
p+1, . . . , x∗

k )

∈ argmin{ f p+1(x∗
1 , . . . , x∗

p, x p+1, . . . , xk) :
(x p+1, . . . , xk) ∈ Ω(x∗

1 , . . . , x∗
p),

(x p+2, . . . , xk) ∈ M(x∗
1 , . . . , x∗

p, x p+1)}}
5. The Induced Region (IR) at level one is:

IR = {(x1, . . . , xk) ∈ S1 : x1 ∈ X1, (x2, . . . , xk) ∈ M(x1)}
6. Using the set IR, one can describe the MSP at level one as:

min
(x1,...,xk )∈IR

f1(x1, . . . , xk) (2)

We refer to any optimal solution of problem (2) as a Stackelberg solution of problem (1).
Because of the hierarchical structure of the rational reaction sets, MSPs are difficult to

solve. Algorithms for function optimization of such type of problems are generally limited
to convex regular functions and the solution methods proposed for MSPs are mainly for
Bilevel Stackelberg problems with linear or convex property. Moreover, the linear Bilevel
Stackelberg problem has been shown to be NP-hard in Ben-Ayed and Blair (1990) and to be
strongly NP-hard in Hansen et al. (1999). However, many functions that can possibly model
real life problems are multi-modal, discontinuous, and non-differentiable.

To solve MSPs, many numerical algorithms for linear bilevel programming problems
have been designed in the last two decades, such as implicit enumeration scheme in Candler
and Townsley (1982), k-th best algorithm in Bialas and Karwan (1984), branch and bound
algorithm in Hansen et al. (1999), grid search algorithm in Bard (1983), descent algorithm
in Savard and Gauvin (1994), penalty functions method in White and Anandalingam (1993),
fuzzy approach in Shih et al. (1996) and genetic algorithms in Liu (1998), Hejazi et al. (2002)
and Wang et al. (2011).

Calvete et al. (2009) have proposed a genetic algorithm to solve linear fractional bilevel
problems on a polyhedral constraint region. Since the population generated for the algorithm
are extreme points of the polyhedron, it cannot be extended to a general bilevel problem
with non polyhedral constraint region. On the other hand, the algorithm for nonlinear bilevel
Stackelberg problems proposed in Li and Wang (2011) assumes a unique reaction y for each
selected x by the leader DM. With this assumption, the follower’s problem is considered
to be equivalent to its stationary system based on Karush–Kuhn–Tucker (KKT) conditions.
Then, y is replaced by y(x) the solution of the KKT system, and as a result, the bilevel
Stackelberg problem is converted to a single optimization problem which involves only x
and evolutionary algorithm was applied to find an optimal value of the leader’s objective
function. If the inner problem is non-convex or convex but non-differentiable, however, the
above procedure fails to work.
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In Wang et al. (2005), another algorithm for nonlinear bilevel Stackelberg problems is
proposed by constructing an optimization problem with two objective functions, such that, a
Pareto optimal solution for the two objective optimization problem is an optimal solution for
a single optimization problem which is transformed from the bilevel Stackelberg problem
using the KKT conditions. To find the Pareto optimal solution of the equivalent two objective
optimization problem, an evolutionary algorithm was applied. However, this method works
for only special classes of bilevel Stackelberg problems as Pareto optimal points need not be
optimal for the bilevel problems and vice-versa as described in Dempe (2002).

In Hejazi et al. (2002), a genetic algorithm for linear bilevel Stackelberg problems is
proposed. However, the proposed genetic algorithm is applied only for a single level problem
which is translated from the bilevel Stackelberg problems by deriving the Kuhn–Tucker
condition for the second level problem.

The algorithms proposed in Liu (1998) and Tilahun et al. (2012) seem quite more general
for bilevel and multilevel programming problems respectively.

In Liu (1998), a genetic algorithm is proposed for solving Stackelberg-Nash equilibrium
of general bilevel programming models with multiple followers in which there might be
information exchange among the followers. The algorithm in the paper does not assume
any convexity, continuity, and differentiability in the models. However, the extension of the
algorithm to general bilevel Stackelberg problems and the convergence of the algorithm to
the desired solution is not studied for any formulation of the problem.

The algorithm proposed in Tilahun et al. (2012) tries to solve a multilevel problem by
calling a (1 + 1)-evolutionary strategy at each level while fixing the decision variables on
the other levels. However, running a (1+ 1)-evolutionary strategy at every step of movement
decreases the efficiency of the algorithm. Moreover, the convergence of the algorithm to the
required solution is not studied and the algorithm may converge to solutions which are too
far from a global optimal solution.

Recently, a solution strategy for MSPs with a very special non-convexity formulation in
the objectives of inner level problems has been proposed in Kassa and Kassa (2013). The
algorithm tries to solve the problem by convexifying the inner level problem and use a multi-
parametric programming approach to propose a branch-and-bound algorithm to find a global
approximate solution for MSPs with non-convexity at their inner levels.

In this paper, we propose a new evolutionary type algorithm for a general MSP with
bounded decision variables. A unique feature of the algorithm is that it is not affected by the
behavior of the functions included in a problem and convergence of the algorithm has been
studied for special problems containing non-convex and non-differentiable functions at any
level.

Most existing researches on MSP describe the quality of approximate solutions by just
looking at the objective function values at each level, which in-general may not be correct.
Therefore, new definitions concerning (ε, δ)-approximate Stackelberg solutions has been
presented in this paper. This definition has been used to select a best solution from a given
set of approximate Stackelberg solutions.

The paper is organized as follows. In Sect. 2, the proposed algorithm has been presented.
Section 3 presents new studies on (ε, δ)-approximate Stackelberg solutions and convergence
proof of the proposed algorithm. Numerical results of illustrative examples are given in
Sect. 4. Section 5 presents conclusive remarks of the paper.
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2 Systematic evolutionary algorithm for a general MSPs with bounded
decision variables (SEAMSP)

2.1 Description of the algorithm

SEAMSP searches Stackelberg solutions of a given MSP in a hierarchical way. Within an
iteration, the leader DM observes the reaction of lower level DMs by passing different values
of the variables under its control. We call those values, “virtual control parameters (VCPs)”
of the leader DM. Similarly for each hierarchical VCPs passed by the DMs above their level,
the other DMs observe the reactions of those DMs below their level by passing their own
VCPs separately. The reaction is made sequentially beginning from the lowest kth DM up
through the 2nd DM. The leader DM records the feedbacks corresponding to all of its VCPs
and selects the best of all based on its objective function and constraint region. The best
VCP of the leader DM with all the hierarchical reactions of the lower level DMs is placed
temporarily in a stock, being taken as the best hierarchical VCPs of the iteration. In the next
iterations, the above steps are repeated again and again until the requirements of a termination
is fulfilled. Best of the best hierarchical VCPs of the iterations, with regard to the leader’s
objective function are proposed as an approximate Stackelberg solution of the MSP.

As the number of VCPs for each level increases, the probability of getting better results
will increase, but accordingly the number of function evaluations will increase so that the
computational time of the algorithm will not be acceptable. Instead, in SEAMSP each DM
sends few but “intelligent VCPs” having a nice cooperation with the VCPs of the other DMs,
so that it can represent the whole decision spaces in a random, unique, diverse and systematic
way. The decision space of a variable is divided into equal regions of the number of VCPs,
where each VCP represents a unique region. Once representing the decision spaces using1

systematic sampling, the DMs select candidates for a decision/reaction from the representa-
tives of their spaces in a hierarchical way. Among other statistical sampling techniques we
use systematic sampling to: (1) assure representation of whole decision spaces in a random,
unique and diverse way; (2) protect a clustered selection of VCPs; (3) manage the selection
of VCPs at each iteration, so that each iteration will come with new hierarchical VCPs from
a region which didn’t have representatives before.

If a VCP is selected as a candidate for a reaction by a DM of any level below the leader,
a mutation operator is applied to search for a better local representative on the region where
the VCP is selected. The best among a candidate (parent) and its offsprings is/are selected
by the DM according to its own objective values. Every iteration comes with new VCPs of
the leader DM from a region that does not have a representative in the first decision space
and tour the same hierarchical paths for a decision.

The main idea of the proposed algorithm, more or less, depends on:

1. Systematic and Fair distribution of VCPs on S,
2. Definition of Mutation operator,
3. Selection of initial solution set and adaptation to the environment,
4. Termination criteria of the algorithm

The flowchart in Fig. 1 shows the procedures followed by the proposed algorithm to solve
a k-level Stackelberg problem (1).

1 Systematic sampling is a statistical method of selecting sample members from a larger population according
to a random starting point and a fixed, periodic interval Wikipedia (2013).
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Fig. 1 SEAMSP flowchart for MSPs

2.2 Detailed procedures of the proposed algorithm for the k-level Stackelberg
problem, SEAMSP

For the algorithm we require the following Input values: n j , m j , M j (where X j =
[m j , M j ]n j ), S j , and f j , j = 1, 2, . . . , k.

Notations:

– d j := M j − m j , for j = 1, 2, . . . , k
– X ji := {x∗ : x∗ is a VCP on X j , at iteration i} ⊆ X j , j = 1, 2, . . . , k
– 2b j := number of VCPs on a single dimension space of X j , j = 1, 2, . . . , k
– maxiter := maximum number of iterations before termination
– π j := 1 + |S j |, where |S j | denotes the number of constraint functions in S j , j =

1, 2, . . . , k
– a � b := greatest natural number a which is less than or equal to b
– a − b ≈ 0 := possible numbers a and b with minimum value of |a − b|
– d :=∏k

j=1 d
n j
j , d ′ :=∏k

j=2 d
n j
j , n :=∑k

j=1 n j

Parameters of the algorithm:

– α := a maximum number of hierarchical VCPs on S = X1 × · · · × Xk , in one iteration
– γ := a minimum number of iterations, if not terminated by maxiter
– t (< γ ) := number of nonempty initial solutions required before a start of computing

tolerance of initial solutions of an iteration based on the leader objective function
– ε1 := tolerance of a reaction, from VCPs on X j , j = 2, 3, . . . k
– ε := maximum tolerance, with respect to the leaders problem, of consecutive (γ − t)

initial solutions of iterations
– β1 := minimum number of VCPs on X1 for d1 = 1, if not terminated by tolerance
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– β2 := minimum number of iterations, if not terminated by tolerance

In the algorithm initial populations are systematically selected and processed using the above
given notations and parameter values. The procedures are described in the coming points.

1) The maximum number of VCPs on a single dimensional space of X j , a j , are selected as
follows:
To be fair on the distributions of VCPs we consider the following k equations:

k∏

j=1

a
n j
j � α (3)

γ

(
a1
d1

)n1
−
(

a j

d j

)n j

≈ 0 , where j = 2, 3, . . . , k (4)

Equation (3) indicates that the total number of hierarchical VCPs is less than or equal to α

and we recommend α to be directly proportional to d . Equation (4) indicates that,2|X ji |
is directly proportional to d j , for j = 1, . . . , k.
From Eqs. (3) and (4), we reach to the following approximations:

a1 �
[

αdn1(k−1)
1

γ k−1d ′

] 1
n1k

, a j � d j

[

γ

(
a1
d1

)n1] 1
n j

, (5)

where j = 2, 3, . . . , k. Natural numbers a j > 1, j = 1, . . . , k are chosen from (5), for
sufficiently large α.
Set b j = f loor

( a j
2

)
,3 j = 1, 2, . . . k and step-size δ j = d j

b j
, where the range [m j , M j ]

is divided into b j intervals of step-size δ j and each interval contains two subintervals

of step-size
δ j
2 . For j > 1, from the two subintervals of the first interval two VCPs

are selected randomly and the rest are distributed with a step-size of δ j from the two
randomly selected VCPs, by using systematic sampling.
To avoid repetition of VCPs on X1, the two subintervals of the first interval are divided
into distinct maxiter sub-subintervals of step size δ11, where δ11 = δ1

2maxiter . At each
iteration new VCPs are randomly selected from two unique sub-subintervals in the two
subintervals of the first interval, and distributedwith the step size of δ1 by using systematic
sampling technique (Figs. 2, 3, 4 and 5).

2) After the representatives of each decision space are chosen, every VCP on X1 is sent to
search good reactions from the VCPs on X j , where j > 1. While fixing (x∗

1 , . . . , x∗
j−1),

if f j (x∗
1 , . . . , x∗

k ) = v j denotes the minimum f j values at the hierarchical reaction from
the4V C Ps∗ on X j ×· · ·×Xk , then any point (x ′

j , . . . , x ′
k) from the V C Ps∗ on X j ×· · ·×

Xk such that (x∗
1 , . . . , x∗

i−1, x ′
i , . . . , x ′

k) ∈ Si and fi (x∗
1 , . . . , x∗

i−1, x ′
i , x∗

i+1, . . . , x∗
k ) ≤

vi + ε1(1 + | fi (x∗
1 , . . . , x∗

i−1, x ′
i , x∗

i+1 . . . , x∗
k )|), ∀i such that j ≤ i ≤ k is considered

to be an approximate reaction to (x∗
1 , x∗

2 , . . . , x∗
j−1).

Thevalues ofv j are determinedby evaluating the objective function f j from the constraint
region S j ∩ · · · ∩ Sk at the V C Ps∗ on X j paired with the hierarchical reaction from the
V C Ps∗ on X j × · · · × Xk .

2 |X ji | stands for a number of VCPs on X j .
3 In MATLAB f loor

( a j
2

)
displays the greatest integer which is less than

a j
2 .

4 V C Ps∗ of any decision space contains all representatives/ VCPs of the decision space and offsprings of the
best representatives of the decision space.
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The best, among all the representatives of the decision space X j is assumed to be a parent
and mutated to find better representatives from a region bounded by a movement scale of
the mutation operator. The best of the parent and offsprings is selected by the respective
DM.
Mutation operator is applied to all parents by considering:

(a) random movements of parents within restricted region
(b) against any repetition of offsprings

For instance, if we consider a parent λ j = [x1, . . . , xn j ] ∈ Rn j , 2 ≤ j ≤ k, then the
mutation operator is defined by:

λ
mutm
j =

⎛

⎜
⎝

x1 + (A(m, 1)δ j rand)
...

xn j + (A(m, n j )δ j rand)

⎞

⎟
⎠ ,

wherem ∈ {1, 2, . . . , 2n j }, A is a 2n j ×n j matrix having a permutation of rows of entries
1 and −1, (in MATLAB, A = rowexch(n j , 2n j ) can give us the required matrix) and
rand denotes a random number between 0 and 1.
Generally offsprings of a parent are reproduced from distinct and equal rectangular
neighbors (line-segments, rectangles, rectangular-boxes, …etc) of their parents.

3) For any fixed leader’s VCP x∗
1 , if (x∗

2 , . . . , x∗
k ) denotes the reaction from the V C Ps∗

on X2 × · · · × Xk and (x∗
1 , . . . , x∗

k ) ∈ S1, then the point (x∗
1 , . . . , x∗

k ) is selected to be
approximate point of the induced region, IR. An initial solution set is selected from all
approximate points of IR, with the minimum value of the leader’s objective function f1.
For a better adaptation of the environment, the initial solution is updated at any iteration
having a better f1 value (Table 1).
In a situation, where every representatives (x∗

1 , . . . , x∗
j−1), 1 < j ≤ k have a unique

reaction, (x∗
j , . . . , x∗

k ), from the V C Ps∗ in X j × · · · × Xk and (x∗
1 , . . . , x∗

k ) ∈ S1, the
total function evaluations in one iteration is:

k∑

j=1

π j

⎛

⎝
j∏

i=1

(2bi )
ni

⎞

⎠+
k∑

j=2

⎛

⎝π j2
n j

j−1∏

i=1

(2bi )
ni

⎞

⎠ (6)

4) The algorithm terminates whenever the number of iterations reachmaxiter or tol(p) < ε

for any p ∈ {1, 2, 3, . . .}, where

maxiter = max

(

β1

(
d1
2b1

)n1
, β2

)

,

tol(p) =
t+(γ−t)p∑

i=t+(γ−t)(p−1)+1

f1(xi
1, . . . , xi

k) − f1(xi+1
1 , . . . , xi+1

k )

1 + | f1(xi
1, . . . , xi

k)|
,

(xi
1, . . . , xi

k) is an initial solution at iteration i .

Since (xi
1, . . . , xi

k) is taken as a seed (initial) point in the next iteration, the result of
the (i + 1) iteration, (xi+1

1 , . . . , xi+1
k ), is a better solution in terms of the leader’s objective

function value.

Fig. 2 Possible VCPs on X j = [0, 5], b j = 5, j > 1, in iterations 1 and 2 resp
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Fig. 3 Aggregate VCPs on X1 = [0, 5], b1 = 1, maxiter = 5, in iterations 1–5 resp

Fig. 4 Possible VCPs on X j = [0, 8]2, b j = 8, j > 1, in iterations 1–3 resp

Fig. 5 Aggregate VCPs on X1 = [0, 8]2, b1 = 4, maxiter = 4, in iterations 1–4 resp

Table 1 The proposed algorithm is summarized in the following table

Step Description

1 Consider the MSP in (1) with bounded decision variables,

Input: n j , m j , M j , S j , f j , ∀ j ∈ {1, . . . , k}
Algorithm Parameters: α, γ, t, β1, β2, ε, ε1

2 Set iteration i = 1 and ∀ j ∈ {1, . . . , k}, determine δ j and b j

3 ∀ j ∈ {1, . . . , k} generate VCPs, X ji , of the j th−DM

4 for j = k : 1 : 2
∀(x∗

1 , . . . , x∗
j−1) ∈ X1i × · · · × X( j−1)i , select parents λ j from all x j ∈ X ji

find offsprings, λ∗
j , from a rectangular region around λ j

select the best among the parents and offsprings, λ∗mut
j ,

end for

5 Select the best VCP of the leader’s DM, λ1, from all x1 ∈ X1i

6 Set an initial solution (xi
1, . . . , xi

k ) = (λ1,λ
∗mut
2 , . . . , λ

∗mut
k )

7 If i > 1, update initial solution (xi
1, . . . , xi

k ) =
argmin{min( f1(xi

1, . . . , xi
k ), f1(xi−1

1 , . . . , xi−1
k ))}

8 terminate, if the termination criteria is fulfilled; else set i = i + 1 and go to step-3

9 Output: (xi
1, . . . , xi

k )
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3 Approximation of Stackelberg solutions

While using probabilistic method to solve optimization problems, we don’t expect to get
exact solutions, instead the algorithms try to approach a solution in an acceptable time. To
describe the quality of an approximate Stackelberg solution of a MSP and to select the best
result from a set of approximate Stackelberg solutions, one needs to consider the following
three basic properties of approximate results:

1. The feasibility of the results to the given MSP
2. The approximation of the results to the reaction sets
3. The fitness of the results, on evaluation of the leader’s objective function

Most existing algorithms compare their results by just looking the numerical values of the
objective functions and the feasibility of their results at each level, which is generally not
correct for approximate Stackelberg solutions. All the objective function values at a non-
Stackelberg solution from the constraint region of a given MSP may have a better value than
the same function values at a known Stackelberg solution. In other words, a Stackelberg
solution doesn’t obey Pareto optimality.

Even though there is no common agreement on what an approximate solution to MSPs
mean, according to the definition of a Stackelberg solution, in the next subsection we have
tried to define different terms in a logical manner.

3.1 (ε, δ):Approximation and comparison methods

Definition 1 Agiven point (x∗
1 , . . . , x∗

k ) ∈ Ω is said to be an (ε, δ)-approximate Stackelberg
solution to the MSP in (1), where δ, ε ≥ 0, if:

1. f1(x∗
1 , . . . , x∗

k ) ≤ f1(x ′
1, . . . , x ′

k) + ε(1 + | f1(x∗
1 , . . . , x∗

k )|) , ∀(x ′
1, . . . , x ′

k) ∈ IR
2. f j (x∗

1 , . . . , x∗
k ) ≤ f j (x∗

1 , . . . , x∗
j−1, x j , . . . , xk) + δ(1 + | f j (x∗

1 , . . . , x∗
k )|) ,

∀ j ∈ {2, 3, . . . , k}, (x j , . . . , xk) ∈ M(x∗
1 , . . . , x∗

j−1)

A point (x∗
1 , . . . , x∗

k ) satisfying the second condition is called in a δ-reaction to x∗
1 .

Definition 2 A point (x∗
1 , . . . , x∗

k ) ∈ Ω is said to be first-rank better (or simply better) than
(x ′

1, . . . , x ′
k) if

1. (x ′
1, . . . , x ′

k) /∈ Ω , or of the following two statements holds true,
2. ∀(ε1, δ1) such that (x ′

1, . . . , x ′
k) is an (ε1, δ1)-approximate Stackelberg solution, ∃(ε, δ)

such that ε ≤ ε1, δ < δ1 or ε < ε1, δ ≤ δ1 and (x∗
1 , . . . , x∗

k ) is an (ε, δ)-approximate
Stackelberg solution,

Definition 3 A point (x∗
1 , . . . , x∗

k ) ∈ Ω is said to be second-rank better than (x ′
1, . . . , x ′

k) if

1. (x ′
1, . . . , x ′

k) /∈ Ω , or
2. ∀(ε1, δ1) such that (x ′

1, . . . , x ′
k) is an (ε1, δ1)-approximate Stackelberg solution, ∃(ε, δ)

such that ε+δ < ε1+δ1 and (x∗
1 , . . . , x∗

k ) is an (ε, δ)-approximate Stackelberg solution.

Proposition 1 (a) Any Stackelberg solution is first-rank better than a non-Stackelberg point
and any point can never be second-rank better than a Stackelberg solution.

(b) (Transitivity) If a point (x∗
1 , . . . , x∗

k ) is first-rank (or second-rank) better than
(x ′

1, . . . , x ′
k) and (x ′

1, . . . , x ′
k) is first-rank (or second-rank) better than (x ′′

1 , . . . , x ′′
k ),

then (x∗
1 , . . . , x∗

k ) is first-rank (or second-rank) better than (x ′′
1 , . . . , x ′′

k ).
(c) A first-rank better solution is second-rank better, but not the converse.
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Proof (a) Let (x∗
1 , . . . , x∗

k ) be a Stackelberg solution and (x1∗, . . . , xk∗) be non-Stackelberg
point.
Then (x∗

1 , . . . , x∗
k ) is (0, 0)-approximate Stackelberg solution and ∀ε, δ ≥ 0, if

(x1∗, . . . , xk∗) is an (ε, δ)-approximate Stackelberg solution then ε > 0 or δ > 0
(or both ε > 0 and δ > 0), hence the result.

(b) If (x ′′
1 , . . . , x ′′

k ) /∈ Ω , the statement holds clearly. Now let (x ′′
1 , . . . , x ′′

k ) ∈ Ω , and let
(ε1, δ1), (ε2, δ2) and (ε3, δ3)denote theminimumpossible values such that (x∗

1 , . . . , x∗
k ),

(x ′
1, . . . , x ′

k), and respectively (x ′′
1 , . . . , x ′′

k ) are (ε, δ)-approximate Stackelberg solution.
Then ε1 < ε2 ≤ ε3, δ1 ≤ δ2 < δ3 or ε1 ≤ ε2 < ε3, δ1 < δ2 ≤ δ3 (or ε1 + δ1 <

ε2 + δ2 < ε3 + δ3). Which implies that ε1 < ε3, δ1 < δ3 (or ε1 + δ1 < ε3 + δ3), hence
the result.

(c) Let (x∗
1 , . . . , x∗

k ) be first-rank better than (x ′
1, . . . , x ′

k), where (ε1, δ1) and (ε2, δ2) denote
the minimum possible values such that (x∗

1 , . . . , x∗
k ), and respectively (x ′

1, . . . , x ′
k) are

(εi , δi )-approximate Stackelberg solutions.
Then either ε1 < ε2, δ1 ≤ δ2 or ε1 ≤ ε2, δ1 < δ2. In both cases ε1 + δ1 < ε2 + δ2.
Which implies that (x∗

1 , . . . , x∗
k ) is second-rank better than (x ′

1, . . . , x ′
k).

To show that the converse is not necessarily true, consider the case where, ε1 =
0.01, ε2 = 0.02, δ1 = 0.001, δ2 = 0.0005, and (ε1, δ1), (ε2, δ2) denote the minimum
possible values such that (x∗

1 , . . . , x∗
k ), and respectively (x ′

1, . . . , x ′
k) are (εi , δi )-

approximate Stackelberg solutions.
Then (x∗

1 , . . . , x∗
k ) is second-rank (but not first-rank) better than (x ′

1, . . . , x ′
k). �

3.2 (ε, δ)-convergence of SEAMSP

Convergence of evolutionary algorithms for single-level optimization problems has been
studied by different authors, such as Greenwood and Zhu (1999), and Rudolph (1994, 1996,
1998). However, the conflicting multiparamertic behavior of the lower-level problems in the
MSPs make it hard to apply the results of these papers. In this subsection, according to
Definition5, the convergence of SEAMSP to a Stackelberg solution of (1) has been studied
for problems satisfying the assumptions in Theorem1 below. The result in the theorem shows
the performance of SEAMSP in searching the entire feasible region of a given MSP.

Definition 4 An evolutionary algorithm for a MSP is said to be an (ε, δ)-convergent algo-
rithm if, there exist natural numbers N and τ , such that for any iteration i ≥ N and number of
initial population τ , the algorithm results with an (ε, δ)-approximate Stackelberg solutions.

Definition 5 An evolutionary algorithm for a MSP is said to be approximately convergent
if, ∀ε, δ > 0 the algorithm is (ε, δ)-convergent.

Theorem 1 Consider the k-level Stackelberg problem (1), defined in Sect. 1, where Xi =
[mi , Mi ]ni and S j = X j × · · · × Xk. Let, ∀ j ∈ {1, . . . , k}, f j be a continuous function
and S j be a convex set. Let ∀ j ∈ {2, . . . , k}, f j be a strictly convex function with respect
to x j and M(x∗

1 , . . . , x∗
j−1) �= ∅, where (x∗

1 , . . . , x∗
j−1) ∈ X1 × · · · × X j−1. Let ∀x ∈ IR,

∃μ1 > 0 such that5β(x, μ1) ∩ S1 ⊆ Ω . In addition, ∀ j ∈ {2, . . . , k}, ∃μ j > 0 such that
(x1, . . . , x j−1, x j∗ , . . . , xk∗) ∈ Ω , where (x j∗ , . . . , xk∗) ∈ β((x ′

j , . . . , x ′
k),

6 μ j ) ∩ S j and
(x ′

j , . . . , x ′
k) ∈ M(x1, . . . , x j−1).

5 β(x, μ1) := an open ball of radius μ1 about the point x .
6 β((x ′

j , . . . , x ′
k ), μ j ) := an open ball of radius μ j about the point (x ′

j , . . . , x ′
k ).

123



782 Ann Oper Res (2015) 229:771–790

Then ∀ε, δ > 0, ∃α < ∞ such that each iteration of the SEAMSP results with an (ε, δ)-
approximate Stackelberg solutions (or equivalently, SEAMSP is convergent to a Stackelberg
solution of the given MSP).

Proof Step-1 (existence of solution)
By definition, the induced region, IR = {(x1, x2, . . . , xk) ∈ S1 : x1 ∈ X1, (x2, . . . , xk)

∈ M(x1)}. Then using IR the MSP can be equivalently written as:

min
(x1,...,xk )∈IR

f1(x1, . . . , xk) (7)

But from the assumption, ∀x1 ∈ X1, ∃μ2 > 0, such that (x1, x ′
2, . . . , x ′

k) ∈ Ω , for any
(x ′

2, . . . , x ′
k) ∈ β((x2, . . . , xk), μ2) ∩ Si , and (x2, . . . , xk) ∈ M(x1) �= ∅.

Then (x1, x2, . . . , xk) ∈ Ω , where x1 ∈ X1 and (x2, . . . , xk) ∈ M(x1). Which implies
that (x1, x2, . . . , xk) ∈ S1, where x1 ∈ X1 and (x2, . . . , xk) ∈ M(x1).

So, problem(7) is equivalent to:

min f1(x1, . . . , xk)

s.t x1 ∈ X1

(x2, . . . , xk) ∈ M(x1)
(8)

From the assumption, for all j > 1, f j (x∗
1 , . . . , x∗

j−1, x j , x ′
j+1, . . . , x ′

k) is a strictly convex
function, where (x ′

j , x ′
j+1, . . . , x ′

k) ∈ M(x∗
1 , . . . , x∗

j−1) �= ∅, (x∗
1 , . . . , x∗

j−1, x j , x ′
j+1, . . . ,

x ′
k) ∈ S ∩ S j ∩ · · · ∩ Sk , and (x j , x ′

j+1, . . . , x ′
k) ∈ β((x ′

j , . . . , x ′
k), μ j ) ∩ S.

This implies that, the j th-level problem, j ∈ {2, . . . , k}, has at least one reaction, x ′
j ,

for any other reactions below the j-level. But since for all j > 1, f j is strictly convex w.r.t
x j , regardless of the other reactions, the j th-level problem, j ∈ {2, . . . , k}, reacts uniquely.
Which implies that, ∀x1 ∈ X1, M(x1) contains a unique point.

Therefore, problem(8) is equivalent to:

min f1(x1, M(x1))
s.t x1 ∈ X1,

(9)

which is an optimization problem of a continuous function over a compact set. Hence, the
existence of a solution follows from a well known Weierstrass Theorem.

Step-2 (selection of step-sizes and α)
Let M(x1, . . . , x j−1) = (x ′

j , . . . , x ′
k), for arbitrary j > 1 and (x1, . . . , x j−1) ∈ X1×· · ·×

X j−1. From the assumption that, f j is continuous on (x1, . . . , x j−1, x ′
j , . . . , x ′

k) we have,
∀δ > 0, ∃δ′

j > 0 such that f j (x1, . . . , xk) ∈ β( f j (x1, . . . , x j−1, x ′
j , . . . , x ′

k), δ) whenever,
(x1, . . . , xk) ∈ β((x1, . . . , x j−1, x ′

j , . . . , x ′
k), δ

′
j ).

Let δ∗ = min{δ′
i : i ∈ { j, . . . , k}} then, (x1, . . . , xk) ∈ β((x1, . . . , x j−1, x ′

j , . . . , x ′
k), δ

∗)
implies that,

| f j (x1, . . . , x j−1, x ′
j , . . . , x ′

k) − f j (x1, . . . , xk)| < δ.

But, (x1, . . . , xk) ∈ β((x1, . . . , x j−1, x ′
j , . . . , x ′

k), δ
∗) if and only if,

k∑

i= j

‖xi − x ′
i‖2 < δ∗2.
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Choose xi ′ and x ′
i ′ such that

7‖xi − x ′
i‖ = ‖xi ′ − x ′

i ′ ‖, ∀i, i ′ ∈ { j, . . . , k}. Then
(k − j + 1)‖x j − x ′

j‖2 < δ∗2.

This implies that

n j∑

i=1

|x ji − x ′
j i |2 <

δ∗

(k − j + 1)
1
2

,

where x j = (x j1, . . . , x jn j ) and x ′
j = (x ′

j1, . . . , x ′
jn j

).

Now choose |x ji − x ′
j i | = |x ji ′ − x ′

j i ′ |, ∀i, i ′ ∈ {1, . . . , n j }. Then

|x ji − x ′
j i | <

(
δ∗

n j (k − j + 1)
1
2

) 1
2

(10)

Hence for all j ′ ∈ { j, . . . , k} any feasible movement of the sample points (x j ′ , . . . , xk),

from their optimal reaction (x ′
j ′ , . . . , x ′

k), with a step size of

(
δ∗

n j (k− j+1)
1
2

) 1
2

results in a

δ-reaction.
But from the assumption, ∀ j ∈ {2, . . . , k}, ∃μ j > 0 such that, (x1, . . . , x j−1,

x ′
j , . . . , x ′

k) ∈ Ω whenever (x j , . . . , xk) ∈ β((x ′
j , . . . , x ′

k), μ j ) ∩ S j .
Choose μ∗ = min{μi : i ∈ { j, . . . , k}} then, (x1, . . . , x j−1, x j , . . . , xk) ∈ Ω whenever

(x j , . . . , xk) ∈ β((x ′
j , . . . , x ′

k), μ
∗) ∩ S j .

Define r as follows,

r = min

⎧
⎨

⎩

(
δ∗

n j (k − j + 1)
1
2

) 1
2

,

(
μ∗

n j (k − j + 1)
1
2

) 1
2

, j ∈ {2, . . . , k}
⎫
⎬

⎭
.

Then any choice of step sizes, δ j : 0 < δ j ≤ r , j ∈ {2, . . . , k}, results with in a δ-reaction.
Let (x∗

1 , . . . , x∗
k ) be a Stackelberg solution. But f1 is continuous implies ∀ε >

0, ∃ε∗ > 0 such that, f1(x1, . . . , xk) ∈ β( f1(x∗
1 , . . . , x∗

k ), ε) whenever (x1, . . . , xk) ∈
β((x∗

1 , . . . , x∗
k ), ε∗).

Using similar procedure as in (10) we can choose x ji with |x ji − x∗
j i | <

(
ε∗

n1k
1
2

) 1
2

, where

j ∈ {1, . . . , k}.
Thus, any feasible movement of a VCP (x1, . . . , xk), from the Stackelberg solu-

tion (x∗
1 , . . . , x∗

k ), with a step size of

(
ε∗

n1k
1
2

) 1
2

results in less than ε difference from

f1(x∗
1 , . . . , x∗

k ).
But from the assumption ∃μ1 > 0 such that, (x1, . . . , xk) ∈ Ω whenever (x1, . . . , xk) ∈

β((x∗
1 , . . . , x∗

k ), μ1) ∩ S1.

Set r∗ = min

{(
μ1

n1k
1
2

) 1
2

,

(
ε∗

n1k
1
2

) 1
2
}

and p = min{r, r∗}. Then, any movement of

VCPs (x1, . . . , xk), from the Stackelberg solution (x∗
1 , . . . , x∗

k ), with a step size of r∗ results
in less than ε difference from f1(x∗

1 , . . . , x∗
k ).

7 ‖x‖ := Euclidean Norm of x = (x1, . . . , xk ) ∈ Rn , i.e ‖x‖ =
(∑i=n

i=1 x2i

) 1
2 .
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Fig. 6 Feasible sets for problem 11

Hence, any choice of step-sizes δ j where 0 < δ j ≤ p and j ∈ {1, . . . , k}, results in an
(ε, δ)-approximate Stackelberg solution. So the number of VCPs on a single dimensional
space of x j is b j = d j

δ j
, for j ∈ {1, . . . , k}.

Now one can easily select α, sufficiently large number which results in a j ≥ 2b j ,∀ j ∈
{1, . . . , k}. �

Note that the above proof has shown that the result can be achievedwithin a single iteration
of the algorithm. When the iteration continuous, the points chosen will be better in terms
of ε. Therefore, each iteration of SEAMSP may result in non-Stackelberg but approximate
Stackelberg solution of the problem. Initial solution of an iteration is updated by the best
VCP of the leader DM together with its hierarchical reaction from the VCPs* of the lower
level DMs. This kind of selection guarantees that any non-Stackelberg but first-rank better
approximate Stackelberg solution in an iteration, if it exist, will always be set as an initial
solution of the iteration.

Remark 1 The assumptions in Theorem 1, could be satisfied by different MSPs, containing
non-convex and non-differentiable functions in all levels.

For instance, consider a bilevel Stackelberg problem of the form MSP-(1) where,

f1(x, y) = 5 sin(x2 + 1) − | cos(y − 1)| + |x − y|,
f2(x, y) = | − x3 + 2x2| + y2,

x ∈ X1 = [−5, 5], y ∈ X2 = [−5, 5], (11)

S1 = {(x, y) : x + y ≤ 6, x − y ≤ 6} and S2 = {(x, y) : −x + y ≤ 6},
The feasible regions of the leader and follower problems are shown in Fig. 6:
Then f1 and f2 are continuous functions, S1 and S2 are convex sets. ∀x∗ ∈ X1, M(x∗) =

{0} (i.e IR = {(x∗, 0) : x∗ ∈ X1}) and f2(x∗, y) = | − x∗3 + 2x∗2| + y2 is a strictly convex
function.

We can easily observe from Fig. 6 that, ∀(x∗, y∗) ∈ IR = {(x∗, 0) : x∗ ∈ X1}, ∃μ1 > 0
(anyμ1, where 0 < μ1 < 1) such that (x, y) ∈ Ω , ∀(x, y) ∈ β((x∗, 0), μ1)∩S and ∃μ2 > 0
(any μ2, where 0 < μ2 < 1) such that (x∗, y) ∈ Ω , ∀y ∈ β(0, μ2) ∩ X2, x∗ ∈ X1.

Hence, it satisfies the assumptions in Theorem 1
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Remark 2 The convergence proof of SEAMSP is done only for MSPs satisfying the assump-
tions inTheorem1, however the algorithmworks for a generalMSPs having bounded decision
variables. We can observe this from the numerical examples in the next section, in which
the problems may contain any kind of nonconvex, non-differentiable and even discontinuous
function forms.

4 Numerical results

To show the efficiency and effectiveness of the proposed algorithm for solving MSPs with
various types of objective functions, we conduct some numerical experiments. For each test
problem, we execute the MATLAB code of the proposed algorithm for 10 independent runs
and recorded the following data:

1) The best solution by the algorithm;
2) The objective function values at each solution;
3) The CPU time (in seconds) required.

In-addition to this we recorded (ε, δ)-approximation for those problems which already
have a known exact solution and easily determined reactions. An (ε, δ)-approximation are
also recorded for those problems having known boundary values of the objective functions.

In all the test problems the algorithm parameters are selected as follows:
γ = 10, t = 5, β1 = 5, β2 = 50, ε1 = 0.005, and α = 50, 000 for Examples 2 and 5.

But for Examples1, 3, 4, we used α = 10, 000, and for Example6, α = 70, 000 we used.
Moreover, for the Trilevel Problems in Examples2 and 5, we used the parameter values
γ = 6, t = 3, β1 = 10, β2 = 50, ε1 = 0.01. In Examples7 and 8 we considered 4-level
problems with non convex constraint sets in some of the levels. For these two problems we
used the parameter values γ = 4, t = 2, β1 = 4, β2 = 10, ε1 = 0.05, and α = 170, 000,
while the rest remain the same in the above cases.

The first two examples below are relatively simple and we presented them here only for
comparison purpose to what has been reported in literature. Tables 2 and 3

Example 1 Wang et al. (2005)

min
x

f1(x, y) = x2 + (y − 10)2

s.t (x, y) ∈ S1 = {(x, y) : −x + y ≤ 0} where y solves

min
y

f2(x, y) = (x + 2y − 30)2

s.t (x, y) ∈ S2 = {(x, y) : x + y ≤ 20} (12)

x ∈ X1 = [0, 15], and y ∈ X2 = [0, 20]

Example 2 Tilahun et al. (2012)

min
x

f1(x, y, z) = −x + 4y

s.t (x, y, z) ∈ S1 = {(x, y, z) : x + y ≤ 1}
min

y
f2(x, y, z) = 2y + z

s.t (x, y, z) ∈ S2 = {(x, y, z) : −2x + y ≤ −z} (13)

min
z

f3(x, y, z) = −z2 + y

s.t (x, y, z) ∈ S3 = {(x, y, z) : z ≤ x}
x ∈ X1 = [0, 0.5], y ∈ X2 = [0, 1] and z ∈ X3 = [0, 1]
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Table 2 Best solutions by SEAMSP

Ex.Nr Best Solution Best f1 Best f2 Best f3 Best f4

1 (10.0002,9.9981) 100.0035 1.3216e−005

2 (0.4994, 0.0016,
0.4988)

−0.4929 0.5020 −0.2472

3 (0.2910, −0.4952,
0.3695, −1.1020,
−1.9020, −1.0635)

5.0074 −0.7051

4 (−1.2076, −1.2893,
0.1794, 0.2028,
−1.8235, 0.1345)

0.0268 0.0013

5 (−0.0290, 0.0062,
0.0041)

−5.9989 8.4293e−004 5.4521e−005

6 (−0.1074, −0.0055,
0.0703,−0.1074,
0.0686, 3.6320,
−0.0671, 0.3630)

0.0016 −4.9946

7 (1.6503, 1.5488,
−0.9988,−1.0022,
−0.9899, −0.9976,
1.6486, 1.5998
−1.5487, 1.7001)

−1.1081 0.0100 −4.9961 −0.9943

8 (0.0013, 4.9871,
0.0121,0.0219,
0.0023, 0.0104,
3.1391, 3.2017
3.2196, 3.1985)

−247.8865 0.0634 0.0046 0.0838

Table 3 (ε, δ)-approximate
Stackelberg solution of the best
solutions by SEAMSP

Ex. Nr. Mean CPU (sec.) ε δ

1 2.7509 1.3216e−5 3.466e−5

2 5.0708 4.756e−3 1.732e−3

3 20.664 1.232e−3 8.211e−4

4 83.5820 0.0262 1.299e−3

5 16.9521 1.572e−4 8.423e−4

6 13.2544 1.598e−3 9.009e−4

7 109.1522 0.1068 0.0100

8 125.2658 0.0117 0.0838

Example 3 (Nonconvex bilevel problem)

min
x

f1(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

|x21 − x22 | + |x22 − x23 | + |y21 − y22 | + 5, if x1 < x2 and y1 < y2

sin2(x22 − 2y1) + 5 cos2(2y2 − 3x1) + 5, if x1 < x3 and x2 ≤ x1

|y23 − y22 + 9|, otherwise

s.t (x, y) ∈ S1 = {(x, y) : x1 − 2x22 y1 + y2 ≤ 0, x1 − 4x2 + 4y3 ≤ 0,

−x1 + 4x2 − 2y3 ≤ 0}
min

y
f2(x, y) = (y3 − y1)

2 − cos(x2 − x1) (14)
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s.t (x, y) ∈ S2 = {(x, y) : −x1 + x22 − y23 ≤ 0}
x = (x1, x2, x3) ∈ X1 = [−2, 2]3 and y = (y1, y2, y3) ∈ X2 = [−2, 2]3

Example 4 (Nonconvex bilevel problem)

min
x

f1(x, y) = 2| sin(x1 − y2 − x2 + y4)|
s.t (x, y) ∈ S1 = {(x, y) : x1 − 2x22 y4 + y2 ≤ 0,

x1 − 4x2 + y3 ≤ 0,−x1 + 4x2 − 2y3}
min

y
f2(x, y) = x21 y21 − 2x21 y1y2 + x21 y22 + 5|(y4 − y1)

3| (15)

s.t (x, y) ∈ S2 = {(x, y) : x1 + x22 − y23 ≤ 0}
x = (x1, x2) ∈ X1 = [−2, 2]2 and y = (y1, y2, y3, y4) ∈ X2 = [−2, 2]4

Example 5 (Trilevel problem with nonconvex inner levels)

min
x

f1(x, y, z) = x2 + 4y2 + sin2(y + z) − 6

s.t (x, y, z) ∈ S1 = {(x, y, z) : 3x − 2y − z ≤ 0, 2x − y2 + z3, 2|x | − 3y ≤ 2}
min

y
f2(x, y, z) = 1

5
sin2 y + x2

s.t (x, y, z) ∈ S2 = {(x, y, z) : x − y2 ≤ −z} (16)

min
z

f3(x, y, z) = z2 + y2

s.t (x, y, z) ∈ S3 = {(x, y, z) : x + y ≤ z}
x ∈ X1 = [−2, 2], y ∈ X2 = [−2, 2] and z ∈ X3 = [−2, 2]

Example 6 (Nonconvex bilevel problem)

min
x

f1(x, y) = x21 (y21 + 2y23 ) + 3x22 (y2 + y4)
2 + y21 (x22 − 2x1x2)

2

+2y23 (x24 − 2x1x4)
2 + x23 (x3y4 − 2x2y4)

2

s.t (x, y) ∈ S1 = {(x, y) : 2|x3 − 4| − 3y2 ≤ 2, 2x4 − y22 + y23 ≤ 1,

3x1 − 2y2 − y4 ≤ 0}
min

y
f2(x, y) = 2x21 y23 |y3 − y4| + x23 (x1y2 − y1x2)

2 + 3x21 y24 − 5 (17)

s.t (x, y) ∈ S2 = {(x, y) : x1 − y22 ≤ −y3}
x = (x1, x2, x3, x4) ∈ X1 = [−2, 2]4 and y = (y1, y2, y3, y4) ∈ X2 = [−4, 4]4

Example 7 (4-level problem with nonconvex constraint sets)8

min
w

(w2
1 − w2z4)

2 − z1 + z4
3

s.t − 5z1 + w3
2 sinw1 ≤ 0

min
x

‖y − x‖
s.t f loor(5x1 + z2 + y31 ) ≤ 0

ceil(2x1 + y2 − x2 + z33) ≤ 0

8 In this and the next examples, log stands for the natural logarithm; and the floor and ceiling (ceil) functions
are functions that map a real number to the largest previous or the smallest following integer, respectively.
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tan(y32 − x1 + 3z1) ≤ 0

min
y

3| sin3(y1 − z2 − y2 + z4)| + 5 cos3(z2 − z3)

s.t log(y1 + 2y22 z4 + y2) − 2z1 ≤ 0

2sin(y1−z1) + cos(y1 − 4z2 + x2) − 2z4 ≤ 0

‖z‖ − x1 + 4y2 + 3x2 ≤ 0

min
z

y21 z21 − 2y21 z1z2 + y21 z22 + 5|(z4 − z1)
3| + sin

(
y1 + x2

2

)

s.t − y1 + y32 − z23 ≤ 0

sin(x1 + y1 + z4) ≤ 0

0 ≤ w ≤ 5 − 5 ≤ x, y ≤ 0 and − 2 ≤ z ≤ 2 (18)

Example 8 (Nonconvex 4-level problem with nonconvex constraint sets)

min
w

‖y − z‖ + cos(
w1 − w2

3
) + 2(w1 − w2)

3

s.t cot(x1 + 2z1 − y2) + csc(z1 − x4) ≤ 0

log(w2 − w3
1) − 3 sec(3y1 − z2) ≤ 0

min
x

x21 (y21 + 2z21) + 3x22 (y2 + z2)
2 + y21 (x22 − 2x1x2)

2 +
+ 2z21(x24 − 2x1x4)

2 + x23 (x3z2 − 2x2z2)
2 + 2x34

s.t |x3 − 4| − 3y2 ≤ 0

2x4 − y22 + z21 − 1 ≤ 0

3x1 − 2y2 + z2 ≤ 0

min
y

2x21 z21|z1 − z2| + x23 (x1y2 + y1x2)
3 + 3x21 z22 + 2x33

s.t x1 − y22 + z1 ≤ 0

f loor(z1 − 2y2 + x33 ) ≤ 0

min
z

(x2 − x4)
2 + |y1 − y2| + |z1 − z2|

s.t x2 + y2 − z1 ≤ 0

ceil(3x32 − 2y31 + z2) ≤ 0

0 ≤ w, z ≤ 5, 0 ≤ x, y ≤ 4 (19)

5 Conclusion

In this paper a natural way of passing decision values consecutively into lower level deci-
sion makers from the upper levels has been used to develop a heuristic algorithm that can
give an approximate global solution for multilevel nonlinear problems. The proposed algo-
rithm can possibly give approximate solutions for multilevel Stackelberg problems with
non-differentiable objective functions and also problems with non-convex constraints in their
inner levels. It is implemented on a personal computer using MATLAB software and tested
on 8 problems that are selected partly from existing literature (one bilevel problem and one
trilevel problem) and others constructed for testing purpose.
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In all the test problems, SEAMSP results in an (ε, δ)-approximate Stackelberg solutions,
with sufficiently small values of ε and δ. SEAMSP has been tested with MSPs including
non familiar functions, like discontinuous, non-convex, non-differentiable, etc. functions, in
which no existing algorithm can deal with such kind of problems. The proposed algorithm
performs well in all the test problems including the difficult once and all the results show
that, the proposed algorithm can find near global optimal solutions in a relatively short period
of time. This indicates that is efficient and effective. The definitions of (ε, δ)-approximation
and the new comparison methods might be used in the future as a reference to select a best
approximate Stackelberg solutions of a MSP from a given set of approximate Stackelberg
solutions. The newly constructed problems could be used as a benchmark to a comparison
of similar algorithms for MSPs.

We believe that, the theoretical and numerical parts of our proposed algorithm constitutes
a new and useful addition to the topic. Strengths of the algorithm include that it can be
extended to any complex optimization problems. Our further research will extend topics
on (ε, δ)−approximation and (ε, δ)-convergence of algorithms for the general multilevel
optimization problems.
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