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Abstract Mathematical modelling of infectious diseases has shown that combinations of
isolation, quarantine, vaccine and treatment are often necessary in order to eliminate most
infectious diseases. However, if they are not administered at the right time and in the right
amount, the disease eliminationwill remain a difficult task. Optimal control theory has proven
to be a successful tool in understanding ways to curtail the spread of infectious diseases by
devising the optimal diseases intervention strategies. The method consists of minimizing the
cost of infection or the cost of implementing the control, or both. This paper reviews the
available literature on mathematical models that use optimal control theory to deduce the
optimal strategies aimed at curtailing the spread of an infectious disease.

Keywords Epidemiology · Multi-objective · Multi-criteria · Hamiltonian · Infectious
diseases

1 Introduction

Since the late 1950s, public health officials have been focusing on the control and elimination
of the organisms that cause infectious diseases. The introduction of antibiotics, sanitation and
vaccinations brought a positive perspective of disease eradication Hethcote (2000). However,
factors such as resistance to the medicine by the microorganisms, demographic evolution,
accelerated urbanization and increased travelling, led to new infectious diseases and the
reemergence of existing diseases Hethcote (2000). Newly identified diseases include Lyme
disease (1975), Legionnaires disease (1976), Toxic shock syndrome (1978), Hepatitis C
(1989),Hepatitis E (1990), andHantavirus (1993)Hethcote (2000). The emergence ofHuman
Immunodeficiency Virus (HIV) in 1981 suddenly became an important sexually transmitted
disease throughout the world Hethcote (2000). Antibiotic-resistant strains of tuberculosis,
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pneumonia and gonorrhea have evolved and these diseases are reemerging. Malaria, dengue,
and yellow fever have also reemerged and are spreading into new regions because of climate
change.Diseases such as plague and cholera continue to erupt occasionally.Most recently, the
reemergence of Ebola virus disease (EVD) in 2013 has perplexed the world. Reemergence
remains a serious medical burden all around the world with 15 million deaths per year
estimated to be directly related to reemergence of infectious diseases Hethcote (2000).

Mathematical modelling continues to play a significant role in epidemiology by providing
deeper insight into the underlying mechanisms for the spread of emerging and reemerging
infectious diseases and suggesting effective control strategies Hethcote (2000). The success-
ful eradication of these emerging diseases does not depend only on the availability of medical
infrastructures but also on the ability to understand the transmission dynamics of a particular
disease and the application of optimal control strategies and the implementation of logis-
tic policies Hethcote (2000). Mathematical models have been used in comparing, planning,
implementing, evaluating, and optimizing various detection, prevention, therapy, and control
programs. Epidemiology modelling has contributed to the design and analysis of epidemi-
ological surveys, suggested crucial data that should be collected, identified trends, made
general forecasts, and estimate the uncertainty in forecasts Hethcote (2000). Mathematical
models have been used to answer the following questions

• How many people will be infected?
• How many infected people will require hospitalization?
• What is the expected maximum number of people infected at any given time?
• What is the estimated duration of the epidemic?

These questions are of interest to the public health officials, which are generally explored
by identifying the mechanisms responsible for the epidemic, without adequately taking into
consideration the economic constraints in analyzing the control strategies. Since economic
resources are limited, epidemiological models have started taking into consideration the eco-
nomic constraints imposed by limited resources when analyzing control strategies. Optimal
control theory has been applied to the mathematical models of HIV models Zarei et al.
(2010), Kwon et al. (2012), Karrakchou et al. (2006), Kwon (2007), Roshanfekr et al.
(2014), Okosun et al. (2013), Zhou et al. (2014), Adams et al. (2005), Costanza et al.
(2013), Orellana (2011), Malaria Okosun et al. (2013), Okosun et al. (2011), Okosun and
Makinde (2014), Makinde and Okosun (2011), Kim (2012), Prosper et al. (2014), Tubercu-
losis Moualeu et al. (2015), Silva and Torres (2013), Agusto and Adekunle (2014), Bowong
and Aziz Alaoui (2013), Whang et al. (2011), Vector borne diseases Lashari (2012), Graes-
boll et al. (2014), Sung Lee and Ali Lashari (2014) and other diseases Yan and Zou
(2008), Agusto (2013), Brown and Jane White (2011), Zaman et al. (2008), Okosun and
Makinde (2014), Su and Sun (2015), Buonomo et al. (2014), Lowden et al. (2014), Roshan-
fekr et al. (2014), Apreutesei et al. (2014), Imran et al. (2014).

Epidemiological models often split the total population into different classes called com-
partments with labels such as S, V , E , I , R, and T to represent, respectively, the susceptible,
vaccinated, exposed, infectious, recovered and treated individuals. The choice of compart-
ments to be included in a mathematical model often depends on the following:

• the control mechanism;
• the type and properties of the disease being modelled;
• the purpose of the mathematical model.

An ordinary differential equation (ODE) or a partial differential equation (PDE) with respect
to time is usually formulated for each subclass. For the purpose of this survey, mathematical
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models will be classified based on the control mechanism and theoretical results will be
given.

The paper is organized as follows. A brief description of the necessary and sufficient
conditions for the existence of multi-objective optimal control is provided in Sect. 2. A
detailed description and analysis of the application of the multi-objective optimal control
theory applied to continuous-time mathematical models is presented in Sect. 3. Similarly,
Sect. 4 gives detailed description and analysis of application of the theory to discrete-time
mathematical models. Finally, Sect. 5 summaries the conclusions based on the review.

2 Multi-objective optimal control

Suppose x(t) ∈ X ⊂ R
n , represents the state variables of a system and u(t) ∈ U ⊂ R

m

represents the control variables at time t , with t0 ≤ t ≤ t f . An optimal control problem
consists of finding a piecewise continuous control u(t) and the associated state x(t) that
optimizes a cost functional J [x(t), u(t)]. The majority of mathematical models that uses the
optimal control theory relies on the Pontryagin’s Maximum Principle, which is a first-order
condition for finding the optimal solution. This is reproduced below for convenience.

Theorem 2.1 (Pontryagin’s Maximum Principle Lenhart andWorkman (2007)) If u∗(t) and
x∗(t) are optimal for the problem

max
u

J [x(t), u(t)], where J [x(t), u(t)] = max
u

∫ t f

t0
f (t, x(t), u(t))dt,

subject to

⎧⎨
⎩
dx

dt
= g(t, x(t), u(t))

x(t0) = x0,

(1)

then there exists a piecewise differentiable adjoint variable λ(t) such that

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t))

for all controls u at each time t, where the Hamiltonian H is given by

H(t, x(t), u(t), λ(t)) = f (t, x(t), u(t)) + λ(t)g(t, x(t), u(t)) (2)

and ⎧⎨
⎩

λ
′
(t) = −∂H(t, x∗(t), u∗(t), λ(t))

∂x
,

λ(t f ) = 0.

While the Pontryagin’s Maximum Principle gives the necessary conditions for the exis-
tence of an optimal solution, the following theorem provides the sufficient conditions.

Theorem 2.2 (Arrow Sufficiency Theorem Chiang (1992)) For the optimal control problem
(1), the conditions of the maximum principle are sufficient for the global minimization of
J [x(t), u(t)], if the minimized Hamiltonian function H, defined in (2), is convex in the
variable x for all t in the time interval [t0, t f ], for a given λ.

One of the major side-effects of vaccination/treatment is the creation of drug resis-
tant virus/bacteria which eventually leads to drug failure (due to ineffectiveness of the
vaccine/treatment). Optimal control has been used to curb the creation of drug resistant
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virus/bacteria or drug failure (at the same time reducing the cost of treatment or vaccination)
by imposing a condition that monitors the global effect of the vaccination/treatment pro-
gram. Hence if x(t) represents the group of individuals to be vaccinated/treated and u(t) ∈ U
represents the control on vaccination/treatment, where the control set U is given by

U = {u(t)|v0 ≤ u(t) ≤ v1, Lebesguemeasurable}.
Then, the following objective functions are to be minimized simultaneously:

I1(u) =
∫ t f

t0
x(t)dt, and I2(u) =

∫ t f

t0
um(t)dt, for m > 0,

and the optimal solution can be represented as

min
u∈U{I1(u), I2(u)}. (3)

In general, there does not exist a feasible solution that minimizes both objective functions
simultaneously. Hence, Pareto optimality concept is used to find the optimal control u∗ that
minimizes both objective functions simultaneously.

Definition 1 A solution u∗ ∈ U is called Pareto optimal solution of the problem (3) if and
only if, there exists no other solution u ∈ U such that Ii (u∗) ≤ Ii (u) for all i = 1, 2, and
Ii (u∗) < Ii (u) for some i = 1, 2.

The following (Scalarization and Goal Programming Model) are two of the various meth-
ods usually used for obtaining a Pareto optimal solution for a multi-objective problem.

2.1 Goal programming model

The goal programming model is a well-known aggregating methodology for solving multi-
objective programming problems by taking into account simultaneously several conflicting
objectives. Thus the solution obtained through the goal programming model represents the
best compromise that can be achieved by the decisionmaker. TheGoal Programmingmodel is
a distance functionwhere the unwanted positive and negative deviations, between the achieve-
ment and aspiration levels, are to be minimized. Goal Programming model has been widely
applied in several fields such as accounting,marketing, quality control, human resources, pro-
duction, economics and operationsmanagement [for example, in stochastic and deterministic
optimal control models Paolo et al. (2014), Forster et al. (2014), Anita et al. (2013), La Torre
and Marsiglio (2010) and in stochastic and deterministic scenario-based multi-criteria deci-
sion making models Aouni et al. (2014), Belad et al. (2013), Marco and La Torre (2012)]. In
epidemiology, the scalarization method is widely used and this is discussed next.

2.2 Scalarization method

A multi-objective problem is often solved by combining all multiple objectives into one
single-objective scalar function, known as the weighted-sum or scalarization method. Hence,
for the problem (3), a single-objective functional I (u) can be formed by summing the
weighted objectives as follows

min
u∈U I (u) = min

u∈U

2∑
j=1

A j I j (u). (4)

The following Theorem guarantees that the solution of the weighted sum is Pareto optimal.
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Theorem 2.3 The solution of the weighted sum problem (4) is Pareto optimal if the weighting

coefficients are positive, that is, Ai > 0 for all i = 1, 2 and
2∑

i=0

Ai = 1.

The present survey focuses on the use of multi-criteria optimal control in deterministic
mathematical models. Deterministic mathematical models can either be continuous-time or
discrete-time. We consider first, the continuous-time mathematical models.

3 Continuous-time mathematical model

Continuous mathematical models have been used to study the dynamic of infectious diseases
within a human host and in the population. Optimal control has been used, in the past, to find
an optimal schedule for vaccine, treatment and chemotherapy for an infected individual. It
has also been used to optimally manage the resources associated to quarantine and isolation
programs Yan and Zou (2008).

Consider the followingSIRmodelwithout control strategies, initially designed and studied
by Kermack and McKendrick (1927). This model categorises individuals in a population as
Susceptible (S), Infected (I ) and Recovered (R). It simulates the transmission dynamics of
diseases where individuals acquire permanent immunity. Examples include mumps, typhoid
fever and smallpox:

dS

dt
= � − βSI − μS,

d I

dt
= βSI − γ I − μI,

dR

dt
= γ I − μR,

(5)

The model assumes a constant recruitment rate (by birth) � into the susceptible class. Sus-
ceptible individuals acquire infection and become infected, following effective contact with
infected individuals, at a rate βSI , where β is the effective contact rate. Infected individuals
recover and move to the Recover class R at a rate γ . Natural death occurs in all class at a rate
μ. All discussions will be based on incorporating different controls in the SIR model. This
is done next.

3.1 Optimal control in SIR model with vaccination

Consider the extension of the SIR model 5 through incorporation of a vaccination class (V ):

dS

dt
= � − βSI − αu(t)S − μS,

dV

dt
= αu(t)S − βεV I − μV,

d I

dt
= β(S + εV )I − γ I − μI,

dR

dt
= γ I − μR. (6)

with the initial conditions S(0) > 0, I (0) ≥ 0, R(0) ≥ 0 and V (0) ≥ 0. The new class
represents the group of individuals who get vaccinated when susceptible, at a continuous rate
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αu(t). The model assumes that the vaccination is not 100% efficient and as such, individuals
in this class can be infected via contact with individuals in the infected/infectious class I ,
but at a lower rate βε (0 ≤ ε < 1). The control function u(t), with 0 ≤ u(t) ≤ 1 represents
the fraction of susceptible individuals that requires vaccination. When u(t) is close to 1, then
vaccination failure is very low but with high implementation costs.

For the model (6), the single-objective cost functional to be minimized is given by

J (u1, u2) =
∫ t f

t0

[
a0 I (t) + a1

2
u2(t)

]
dt, (7)

with a0 > 0 and a1 > 0, where we want to minimize the infected/infectious group I while
also keeping the cost of vaccination u(t) low. It is generally assumed that the cost of control
is usually nonlinear with the quadratic form as given in Eq. (7) which is a convex function.
This quadratic form in Eq. (7) represents “giving toomuch of vaccine to an individual” which

often leads to waste. The term a0 I (t) represents the cost of infection, while the term
a1
2
u2(t)

represents the cost of vaccination program at the time t . The goal is to find an optimal control,
u∗, such that

J (u∗) = min
	1

J (u) (8)

where

	1 = {u|0 ≤ u ≤ 1, Lebesguemeasurable}. (9)

Applying the Pontryagins Maximum Principle, we have the following result

Theorem 3.1 There exists an optimal control u∗ and the corresponding solution (S∗, V ∗, I ∗,
R∗) of the system (6), thatminimizes J (u) over	1. Furthermore, there exist adjoint functions,
λ1(t), . . . , λ4(t), such that

dλ1

dt
= λ1(β I

∗ + μ + αu∗
2) − λ2αu

∗
2 − λ3β I

∗,

dλ2

dt
= λ2(βε I ∗ + μ) − λ3βε I ∗,

dλ3

dt
= −a0 + λ1βS

∗ + λ2βεV ∗ − λ3[β(S∗ + εV ∗) − μ − γ ] − λ4γ,

dλ4

dt
= λ4μ, (10)

with the transversality conditions

λi (t f ) = 0, i = 1, . . . , 4. (11)

and the control u∗ satisfies the optimality condition

u∗(t) = min

(
max

(
0,

αS∗(λ1 − λ2)

a2

)
, 1

)
(12)

Proof The existence of an optimal control is guaranteed by Corollary 4.1 of Fleming and
Rishel (1975) due the following

• the convexity of the integrand of J with respect to u;
• a priori boundedness of the state solutions;
• Lipschitz property of the state system with respect to the state variables.
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Thus, applying Pontryagin’s Maximum Principle, we convert (6), (7) and (8) into a problem
of minimizing a Hamiltonian, H , pointwise with respect to u:

H = a0 I (t) + a1
2
u2(t) +

4∑
i=1

λi fi (13)

where fi , i = 1, . . . , 4 are the right-hand sides of the system (6) and we have the adjoint
equations

dλ1

dt
= −∂H

∂S
, λ1(t f ) = 0,

dλ2

dt
= −∂H

∂V
, λ2(t f ) = 0,

dλ3

dt
= −∂H

∂ I
, λ3(t f ) = 0,

dλ4

dt
= −∂H

∂R
, λ4(t f ) = 0. (14)

Evaluating the equations in (14) at the optimal control and the corresponding states will give
the adjoint system (10) and (11). On the interior of the set 	, where 0 < u < 1, we have

∂H

∂u
= 0. (15)

Solving Equation (15) for u∗ gives the characterization (12). �	
It can be shown that the state [S(t), V (t), I (t), R(t)] and the adjoint functions

λ1(t), . . . , λ4(t) are all bounded. Furthermore, based on the Lipschitz structure of the ODEs,
a unique optimal control u∗ is obtained for small t f . The uniqueness of the optimal control
follows from the uniqueness of the optimality system, which consists of (6), (10) and (11)
with the characterizations (12).

3.2 Optimal control in SIR model with treatment

Consider the SIR model with treatment, given by:

dS

dt
= � − βSI − μS,

d I

dt
= βSI − γ I − μI,

dT

dt
= u(t)κγ I − τT − μT,

dR

dt
= (1 − u(t)κ)γ I + τT − μR, (16)

A new treatment class (T ) is added to the SIR model (5) which represents the group of
individuals who are receiving treatment to cure an infection. The model assumes that people
leave the infected class I at a rate γ . A fraction (1−u(t)κ) of those leaving the infected class
will recover from the infectionwithout receiving treatment while the remaining fraction u(t)s
will receive treatment and move to the treatment class (T ). Treated individuals recover faster
at a rate τ as compared to those who do not receive treatment so that τ > (1− u(t)κ)γ . The
control function u(t), with 0 ≤ u(t) ≤ 1 represents the fraction of the infected individuals
who are identified and will be treated (to reduce the number of individuals that may be
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infectious). When u(t) is close to 1, then the treatment failure is low but the implementation
cost is high.

For the model (16), the single-objective cost functional to be minimized is given by

J (u) =
∫ t f

t0

[
a0 I (t) + a1

2
u(t)

]
dt, (17)

with a0 > 0 and a1 > 0,wherewewant tominimize the infectious group I while also keeping
the cost of treatment u(t) low. The term a0 I (t) represents the cost of infection, while the

term
a1
2
u2(t) represents the cost of treatment. The goal is to find an optimal control, u∗, such

that

J (u∗) = min
	2

J (u) (18)

where

	2 = {u|0 ≤ u ≤ 1, Lebesguemeasurable}. (19)

Applying the Pontryagins Maximum Principle, we have the following result

Theorem 3.2 There exists an optimal control u∗ and the corresponding solution (S∗, I ∗, T ∗,
R∗) of the system (16), that minimizes J (u) over 	2. Furthermore, there exists adjoint
functions, λ1(t), . . . , λ4(t), such that

dλ1

dt
= λ1(β I

∗ + μ) − λ2β I
∗,

dλ2

dt
= −a0 + λ1βS

∗ − λ2[βS∗ − μ − γ ] − λ3u
∗κγ − λ4(1 − u∗κ)γ,

dλ3

dt
= λ3(τ + μ) − λ4τ,

dλ4

dt
= λ4μ. (20)

with transversality conditions

λi (t f ) = 0, i = 1, . . . , 4. (21)

The control u∗ satisfies the optimality condition

u∗(t) = min

(
max

(
0,

κγ I ∗(λ4 − λ3)

a1

)
, 1

)
(22)

Proof The proof is similar to that of Theorem 3.1 with the Hamiltonian, H , given by

H = a0 I (t) + a1
2
u2(t) +

4∑
i=1

λi fi , (23)

where fi , i = 1, . . . , 4 are the right-hand sides of the differential Eq. (16). �	

Similarly, due to the uniqueness of the optimality system (16), (20), (21) with the charac-
terizations (22), a unique optimal control u∗ exists for small t f .
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3.3 Optimal control in SIR model with quarantine and isolation

Consider the SIR model with quarantine and isolation, given by:

dS

dt
= � + ρQ − βS(I + εQQ + εJ J ) − μS,

dE

dt
= βS(I + εQQ + εJ J ) − γ E − μE,

dQ

dt
= u1(t)κγ E − ηQ − ρQ − μQ,

d I

dt
= (1 − u1(t)κ)γ E − α I − μI,

d J

dt
= u2(t)να I + ηQ − σ J − μJ,

dR

dt
= (1 − u2(t)ν)α I + σ J − μR, (24)

Here, three additional classes the exposed (E), quarantine (Q) and isolation (J ) classes
have been added. The new model (24) assumes that susceptible individuals acquire new
infection via contact with individuals in the Quarantine, exposed or isolation classes at a
rate βS(I + εQQ + εJ J ) with εQ ≥ 0 representing varying levels of hygiene precautions
that may or may not limit the quarantined individuals from making an effective contact with
the susceptible individuals. The parameter εJ ≥ 0 represents level of hygiene precautions
during isolation. Upon exposure to infection, exposed individuals who can be identified are
quarantined at a rate u1(t)κγ while those who cannot be identified will become infectious at
a rate (1− u1(t)κ)γ , without being quarantined. Some of the individuals in the quarantined
class will develop symptoms at a rate η and will be isolated while those who do not develop
symptoms and clear infectionmay become susceptible again at a rateρ. Infectious individuals
who have been identified are isolated at a rate u2(t)να while others recover from the infection
at a rate (1− u2(t)ν)α. Isolated individuals eventually recover from the infection at a rate σ

and move to the R class.
The control function u1(t), with 0 ≤ u1(t) ≤ 1 represents the fraction of the quarantined

individuals (people who have been in contact with an infected individual) who are identified
and will be quarantined. The control function u2(t), with 0 ≤ u2(t) ≤ 1 similarly represents
the fraction of the isolated individuals (isolation of symptomatic individuals) who are identi-
fied and will be isolated. When u1(t) or u2(t) is close to 1, then the quarantined or isolation
failure is low and their implementation costs are high. For themodel (24), the single-objective
cost functional to be minimized is given by

J (u) =
∫ t f

0

[
a0Q(t) + a1 I (t) + a2 J (t) + a3

2
u1(t) + a4

2
u2(t)

]
dt, (25)

with ai > 0, i = 1, . . . , 5, where we want to minimize the infectious group I while also
keeping the cost of treatment u(t) low. The term a0 I (t) represents the cost of infection, while

the terms
a3
2
u21(t) and

a4
2
u22(t) represent the cost of quarantine and isolation, respectively.

The goal is to find an optimal control pair, u∗
1 and u∗

2, such that

J
(
u∗
1, u

∗
2

) = min
	3

J (u1, u2) (26)
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where

	3 = {(u1, u2)|0 ≤ ui ≤ 1, Lebesguemeasurable i = 1, 2}. (27)

Applying the Pontryagin’s Maximum Principle, we have the following result

Theorem 3.3 There exists an optimal control pair u∗
1 and u

∗
2 and the corresponding solution

(S∗, E∗, Q∗, I ∗, J ∗, R∗) of the system (24), that minimizes J (u1, u2) over	3. Furthermore,
there exist adjoint functions, λ1(t), . . . , λ6(t), such that

dλ1

dt
= λ1[β(I ∗ + εQQ

∗ + εJ J
∗) + μ] − λ2β(I ∗ + εQQ

∗ + εJ J
∗),

dλ2

dt
= λ2(γ + μ) − λ3u

∗
1κγ − λ4(1 − u∗

1κ)γ,

dλ3

dt
= −a0 + λ1[βεQS

∗ − ρ] − λ2βεQS
∗ + λ3(η + ρ + μ) − λ5η,

dλ4

dt
= −a1 + λ1βS

∗ − λ2βS
∗ + λ4(α + μ) − λ5u

∗
2να − λ6(1 − u∗

2ν)α,

dλ5

dt
= −a2 + λ1βεJ S

∗ − λ2βεJ S
∗ + λ5(σ + μ) − λ6σ,

dλ6

dt
= λ6μ, (28)

with transversality conditions

λi (t f ) = 0, i = 1, . . . , 6. (29)

The control pair u∗
1 and u∗

2 satisfies the optimality condition

u∗
1(t) = min

(
max

(
0,

κγ E∗(λ4 − λ3)

a3

)
, 1

)

and

u∗
2(t) = min

(
max

(
0,

να I ∗(λ6 − λ5)

a4

)
, 1

)
.

(30)

Proof The proof follows with the Hamiltonian, H , given by

H = a0Q(t) + a1 I (t) + a2 J (t) + a3
2
u1(t) + a4

2
u2(t) +

6∑
i=1

λi fi , (31)

where fi , i = 1, . . . , 6 are the right-hand sides of the differential Equation (24). �	

Here, again, due to the uniqueness of the optimality system (24), (28), (29) with the
characterizations (30), a unique optimal control pair (u∗

1, u
∗
2) exists for small t f .
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3.4 Optimal control in age-structured model

Consider the SVIR model with age-structure given by:

∂S

∂a
+ ∂S

∂t
= −λ(a, t)S − αu(t)S − μ(a)S,

∂V

∂a
+ ∂V

∂t
= αu(t)S − ελ(a, t)V − μ(a)V,

∂ I

∂a
+ ∂ I

∂t
= λ(a, t)(S + εV ) − γ I − μ(a)I,

∂R

∂a
+ ∂R

∂t
= γ I − μ(a)R, (32)

with

S + V + I + R = U (a, t), λ(a, t) =
∫ am

0
β(a, ǎ)I (ǎ, t)dǎ,

S(0, t) = �, V (0, t) = I (0, t) = R(0, t) = 0, S(a, 0) = S0(a),

V (a, 0) = V0(a), I (a, 0) = I0(a), R(a, 0) = R0(a),

for 0 ≤ t ≤ t f and 0 ≤ a ≤ am . The rates �, α, ε and γ (assumed independent of age) are
the same as in the SVIR model (6) without age structure. In the model (32), it is assumed that
the contact rate between people of age a and ǎ is separable in the form β(a, ǎ) = κ(a)δ(ǎ),
while μ(a) is the age-specific per-capita death rate. The functions κ(a), δ(a) and μ(a) are
assumed continuous and will take the value zero beyond some maximum age (am). For the
model (32), the single-objective cost functional to be minimized is given by

J (u) =
∫ t f

0

∫ am

0

[
AI (a, t) + B

2
u2(a, t)

]
dadt, (33)

with A > 0 and B > 0, where the goal is to minimize the infectious group I while also
keeping the cost of treatment u(t) low. The term AI (a, t) represents the cost of infection

for all individuals in age group a at time t , while the terms
B

2
u2(a, t) represents the cost of

treatment for all individuals in age group a at time t . The goal is to find an optimal control,
u∗, such that

J (u∗) = min
	4

J (u), (34)

where

	4 = {u|0 ≤ u ≤ 1, Lebesguemeasurable}. (35)

The sensitivity equation (for variation l) of the model (32) is given by

∂ψ1(a, t)

∂a
+ ∂ψ1(a, t)

∂t
+ ψ1(a, t)

∫ am

0
β(a, ǎ)I (ǎ, t)dǎ

+ S(a, t)
∫ am

0
β(a, ǎ)ψ3(ǎ, t)dǎ + αu(a, t)ψ1(a, t) + μ(a)ψ1 = −αSl,

∂ψ2(a, t)

∂a
+ ∂ψ2(a, t)

∂t
− αu(a, t)ψ1(a, t) + εψ2(a, t)

∫ am

0
β(a, ǎ)I (ǎ, t)dǎ

+ εV (a, t)
∫ am

0
β(a, ǎ)ψ3(ǎ, t)dǎ + μ(a)ψ2(a, t) = αSl,
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∂ψ3(a, t)

∂a
+ ∂ψ3(a, t)

∂t
− [ψ1(a, t) + εψ2(a, t)]

∫ am

0
β(a, ǎ)I (ǎ, t)dǎ

−[S(a, t) + εV (a, t)]
∫ am

0
β(a, ǎ)ψ3(ǎ, t)dǎ + (γ + μ(a))ψ3(a, t) = 0,

∂ψ4(a, t)

∂a
+ ∂ψ4(a, t)

∂t
− γ (ψ3(a, t)) + μ(a)ψ4(a, t) = 0, (36)

which can be written in the form

L

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−αSl
αSl
0
0

⎞
⎟⎟⎠ (37)

with,

L

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ =

(
∂

∂a
+ ∂

∂t

)
⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ + M

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ + G

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ (38)

where, M is the matrix

M =

⎛
⎜⎜⎝

μ(a) + αu(a, t) + � 0 0 0
−αu(a, t) μ(a) + ε� 0 0

−� −ε� γ + μ(a) 0
0 0 −γ μ(a)

⎞
⎟⎟⎠ (39)

and

� =
∫ am

0
β(a, ǎ)I (ǎ, t)dǎ.

The final term G is given by

G

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S(a, t)
∫ am

0
β(a, ǎ)ψ3(ǎ, t)dǎ

εV (a, t)
∫ am

0
β(a, ǎ)ψ3(ǎ, t)dǎ

−[S(a, t) + εV (a, t)]
∫ am

0
β(a, ǎ)ψ3(ǎ, t)dǎ

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (40)

Using the relation

(λ1, λ2, λ3, λ4) · L

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ = (ψ1, ψ2, ψ3, ψ4) · L∗

⎛
⎜⎜⎝

λ1
λ2
λ3
λ4

⎞
⎟⎟⎠ , (41)

where, L∗ is the adjoint operator. We can find the equations of the adjoints λ1, . . . , λ4. The
adjoint PDE system

L∗

⎛
⎜⎜⎝

λ1
λ2
λ3
λ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0
0
A
0

⎞
⎟⎟⎠ , (42)
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where A is a constant from the cost functional. The adjoint operator is given by

L∗

⎛
⎜⎜⎝

λ1
λ2
λ3
λ4

⎞
⎟⎟⎠ = −

(
∂

∂a
+ ∂

∂t

)
⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ + MT

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ + G∗

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ , (43)

with

G∗

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∫ am

0
β(a, ǎ)S(ǎ, t)dǎ

ε

∫ am

0
β(a, ǎ)V (ǎ, t)dǎ

−
∫ am

0
β(a, ǎ)[S(ǎ, t) + εV (ǎ, t)]dǎ

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (44)

For the adjoint system, we have zero Neumann conditions and zero final-time solutions. The
adjoint system is calculated at the optimal control u∗ and the corresponding states S∗, V ∗, I ∗
and R∗. The transversality conditions are

λi (a, t f ) = 0 for i = 1, . . . , 4 and 0 ≤ a ≤ am . (45)

The characterization of the optimal control is obtained by computing the directional derivative
of the functional J (u) with respect to u in the direction l at u∗. Since J (u∗) is the minimum
value, we have

0 ≤ lim
ε→0+

J (u∗ + εl) − J (u∗)
ε

,

= lim
ε→0+

∫ t f

0

∫ am

0

[
A

(
I ε − I

ε

)
+ B

2ε
[(u∗ + εl)2 − (u∗)2]

]
dadt,

=
∫ t f

0

∫ am

0
(Aψ3 + Bu∗l)dadt,

=
∫ t f

0

∫ am

0

[
(ψ1, ψ2, ψ3, ψ4) ·

⎛
⎜⎜⎝
0
0
A
0

⎞
⎟⎟⎠ + Bu∗l

]
dadt,

=
∫ t f

0

∫ am

0

[
(λ1, λ2, λ3, λ4) ·

⎛
⎜⎜⎝

−αSl
αSl
0
0

⎞
⎟⎟⎠ + Bu∗l

]
dadt,

=
∫ t f

0

∫ am

0
l(−λ1αS

∗(a, t) + λ2αS
∗(a, t) + Bu∗(a, t))dadt .

This implies that the optimal controls are

u∗(a, t) = αS∗(a, t)(λ1 − λ2)

B

Thus, we have the following result.

Theorem 3.4 There exists an optimal control u∗ and the corresponding solution (S∗(a, t),
V ∗(a, t), I ∗(a, t), R∗(a, t)) of the system (32), that minimizes J (u) over 	4. Furthermore,
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there exists adjoint equations (PDEs), given by (42) with transversality conditions (45) and
the control u∗ satisfies the optimality condition

u∗(a, t) = min

(
max

(
0,

αS∗(a, t)(λ1 − λ2)

B

)
, 1

)
(46)

4 Optimal control in discrete-time mathematical model

Consider the discrete-time equivalent of the SIR model with vaccination given by:

Sk+1 = � − (μ − 1)Sk − βSk Ik − αuk Sk,

Vk+1 = αuk Sk − (μ − 1)Vk − βεVk Ik,

Ik+1 = β(Sk + εVk)Ik − (μ − 1)Ik − γ Ik,

Rk+1 = γ Ik − (μ − 1)Rk . (47)

For the model (47), the single-objective cost functional to be minimized is given by

J (u) = At f It f +
t f −1∑
k=0

(
Ak Ik + Bk

2
u2k

)
. (48)

with Ak > 0 and Bk > 0 for k = 1, . . . , t f , where the parameters Ak > 0 and Bk > 0 are
the cost balancing factors. The problemminimizes the number of infected individuals during
the time steps k = 0 to k = t f while minimizing the cost of the control at the same time.
The goal is to find an optimal control u∗, such that

J (u∗) = min
	5

J (u)

where,

	5 = {u|0 ≤ uk ≤ 1, Lebesguemeasurable}.
Applying the Pontryagin’s Maximum Principle, we have the following result

Theorem 4.1 There exists anoptimal control u∗ and the corresponding solution, (S∗
k , V

∗
k , I ∗

k ,

R∗
k ), that minimizes J (u) over	5. Furthermore, there exist adjoint functions, λ1,k, . . . , λ4,k ,

such that

λ1,k = λ1,k+1
[−(μ − 1) − β I ∗

k − αuk
] + λ2,k+1αuk + λ3,k+1β I

∗
k ,

λ2,k = λ2,k+1
[−(μ − 1) − βε I ∗

k

] + λ3,k+1βε I ∗
k ,

λ3,k = Ak − λ1,k+1βS
∗
k − λ2,k+1βεV ∗

k + λ3,k+1
[
β

(
S∗
k + εV ∗

k

)
−(μ − 1) − γ

] + λ4,k+1γ,

λ4,k = −λ4,k+1(μ − 1). (49)

with transversality conditions

λi,t f = 0, i = 1, 2, 4,

λ3,t f = At f (50)

and the controls u∗ satisfies the optimality condition

u∗
k = min

(
max

(
0,

αS∗
k (λ1,k+1−λ2,k+1)

Bk

)
, 1

)
(51)
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Proof The Hamiltonian Hk at the time step k, is given by,

Hk = Ak Ik + Bk

2
u2k +

4∑
i=1

λi,k+1 fi , (52)

where fi , i = 1, . . . , 4 are the right-hand sides of the system (47). For k = 0, . . . , t f − 1,
the adjoint equations and the transversality conditions are obtained by using the Pontryagin’s
Maximum Principle, in discrete time, such that

λ1,k = ∂Hk

∂Sk
, λ1,t f = 0,

λ2,k = ∂Hk

∂Vk
, λ2,t f = 0,

λ3,k = ∂Hk

∂ Ik
, λ3,t f = At f ,

λ4,k = ∂Hk

∂Rk
, λ4,t f = 0, (53)

and the optimality condition (51) is obtained by solving for u∗
k in the interior of 	5 when

∂Hk

∂uk
= 0. (54)

�	

5 Conclusions

In this survey, we have shown how the multi-objective optimal control has been implemented
in epidemiological models. Mathematical models have been useful in comparing, planning,
implementing and evaluating various intervention strategies for the prevention and control
of various infectious diseases. Furthermore, the original goal of optimal control is to enforce
the natural restriction of economic constraints imposed by limited resources when analyzing
control strategies, it has also been helpful in devising control strategies aimed at curbing
creation of drug/vaccine resistant virus/bacteria. This is achieved by limiting the amount of
drugs administered to an infected individual or by limiting the amount of vaccine administered
to a susceptible individual (while reducing the cost of implementation at the same time).
Because of Optimal control theory, the goal of eradicating infectious diseases in a community
with limited resources, is now a step closer to being achieved.
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