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Abstract To hold the grand coalition voluntarily in an economy with detrimental external-
ities, the allocations should be in the core. Identifying the scope or ‘size’ of the core alloca-
tions is of vital importance for understanding such a coalition. Furthermore, the relationship
between the number of agents and the ‘size’ of the core reveals some crucial characteristics
of coalition formation. In this paper, a cooperative game of stock externality provision is
constructed to study its core properties of an economy with detrimental externality. Partic-
ularly, methods and algorithms for testing the shrinking core hypothesis are developed in
the RICE model, an integrated assessment model of climate change. The calculation results
show that the size of the core shrinks as the number of regions increases in RICE. The paper
also evaluates the policy implications of the shrinking core phenomenon with respect to the
environmental coalitions.

Keywords Detrimental externalities - International environmental agreement (IEA) -
Coalition theory - The core properties - Integrated assessment modeling (IAM)

1 Introduction

International cooperation is crucial for dealing with global environmental issues effectively.
Studies of international environmental agreement (IEA) reflect the efforts aimed at bet-
ter understanding cooperation mechanisms behind complicated global environmental chal-
lenges, such as climate change and other trans-boundary pollution. Global environmental
problems are detrimental externalities without authoritative governance. Voluntary partic-
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ipation in the grand IEA is necessary to achieve efficiency or full internalization of the
externality.

Game theoretic approach is a proper tool to study IEA issues. Scholars have examined [IEA
issues from different angles with game-theoretic modeling methods. For example, Barrett
(1994) raised the notion of “self-enforcing” IEA and expanded the exposition later (Barrett
2003). Carraro and Siniscalco (1993) proposed the concept of “internal” and “external”
stability concepts, followed the tradition of d’ Aspremont et al. (1983), for IEAs and discussed
the relationship between the numbers of coalition members and the stability of IEAs. Chander
and Tulkens (1995, 1997) formulated the Y-core concept in the economy of detrimental
externalities and applied it to IEA studies. Finus (2001) also critically assessed the coalition
issues in length. In a theoretic treatment of coalition formation, Ray (2007) discusses the
coalition of public good provisions.

Game theoretic treatments of IEA issues have been applied to empirical modeling works.
Buchner and Carraro (2009) analyze stable coalitions in the FEEM-RICE model. Eyckmans
and Tulkens (2003) identity the Y-core in the CWI model using the transfer scheme developed
by Chander and Tulkens (1995, 1997), Finus et al. (2014) analyze the sequential coalition for-
mation process in climate change. Yang (2008) conducts comprehensive coalitional analysis
in the RICE model. The above studies show promising potentials of applying game theoretic
concepts in empirical models of environmental issues.

The core of an economy is an important solution concept in general equilibrium theory
and cooperative game theory. It is well documented in the literature that the existence of
externality complicate the core allocations. Global environmental issues like climate change
are detrimental stock externality phenomena.! In an economy with externality, the core allo-
cations are needed to hold a grand coalition together because of their incentive properties.
Therefore, examining the core properties of the cooperative games in international environ-
mental issues and the relationship between the core and incentives of IEAs are important.
Thus far, most studies related to the core concepts in the economies with detrimental exter-
nalities (the theoretical background for most environmental problems) are qualitative rather
than quantitative.

For the Arrow-Debreu economy consisting of only private goods, there is a famous
“shrinking core” theorem states that the “size” of the core reduces as the number of agents
increasing in a “replica” economy. In asymptotic case where the number of agents goes to
infinity, the core collapses onto the unique Walrasian equilibrium (Debreu and Scarf 1963).
An intuitive interpretation of the shrinking core theorem is as follows. A grand coalition
is easier to be blocked by some sub-coalitions as the number of agents increases. In other
words, the grand coalition with large number of agents is more difficult to sustain than those
with fewer agents, ceteris paribus.

In an economy with public goods or externalities, there is no definitive conclusion about
the shrinking core hypothesis. Muench (1972) provided a counter-example where the size
of the core is always larger than the Lindahl equilibrium allocations when the numbers of
agents goes to infinity. Champsaur et al. (1975) illustrated a scenario in which the core of
a public good economy increases along with the number of agents. Shapley and Shubik
(1966) provided an example of non-existence of the core. As pointed out by Starrett (1973),
the example in Shapley and Shubik (1966) is due to non-convexity preference and ad hoc
blocking rule in defining the core.

Despite these inconclusive results, it is still interest to know whether the shrinking core
hypothesis holds or not in “well-behaved” models under a set of clearly defined blocking

I “Stock externality”, instead of “stock pollution”, is used in this paper to emphasize spillovers among agents.
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rules.” From policy perspective, we may want to know the core properties of the economy
with externalities in lower dimensions and with a few players. In other words, we would like to
know whether the core shrinks or not in non-asymptotic cases. Such a consideration reflects
the appropriate background of IEAs: finite regions (total numbers of sovereign countries
are no more than hundreds and key players are fewer than a dozen) negotiate the terms of
international cooperation in dealing with global environmental externalities. In addition, the
attitudes of a few key regions determine the outcome of an IEA. In this paper, we try to test a
version of shrinking core hypothesis in low dimension: given a fixed-size aggregate economy
with externality, do more agents (still small number) lead to shrinking of the core?

Scholars have examined the relationship between the number of agents and formation
of coalition in environmental issues. For example, in a specific modeling setting, Carraro
and Siniscalco (1993) concluded that maximum number of agents ensuring the stability of
environmental coalition is 3. In an early paper, Roumasset (1979) calculated the shrinking
cores of a sharecropping economy with production externality in a stylized numerical model.
Despite these promising works, the literatures on the core properties of the grand coalition
in the economy with externalities in empirical environmental studies need fresh additions.
The core concepts in empirical environmental models call for further studies.

In empirical and policy related studies, economists strive to quantify the useful theo-
retic notions in numerical simulations, such as calculating estimated amounts of “double-
dividends” of correctional pollution taxes and deadweight losses of trade barriers in general
equilibrium models. Although the quantitative results of “double dividends” or “dead-weight
losses” are model-specific, collective contributions from various models enable us to have
better understanding of these notions in empirical contexts.

This paper aims at the similar target, i.e., quantifying the relationship between the scope
of the core and the number of agents through carefully-designed numerical methods. As
summarized above, the core concept is highly relevant to IEA studies. Calculating the scope,
domain, and other quantitative properties of the core of cooperative games in environmental
externality models offers a useful perspective to IEA research.

In this paper, a cooperative game of providing stock externalities is constructed. Its numer-
ical solutions are sought in the RICE model (Nordhaus and Yang 1996)—a well-known
integrated assessment model of climate change. Through meticulously designed algorithms,
the scope (“size”) of the core of this cooperative game is identified in simple metrics. Fur-
thermore, the “sizes” of the cores are calculated in 2, 3, 4, 5, and 6-region RICE model
respectively. The results from numerical simulations clearly show that the core of the coop-
erative game of providing stock externalities embedded in the RICE model shrinks as the
number of regions increases, relative to the “size” of the entire efficiency frontier. In addi-
tion, the “size” of core, even in the 2-region RICE model, is a small portion of the efficiency
frontier.

The remaining parts of this paper are as follows. Section 2 contains the construction of a
cooperative game in a generic model of stock externality provision. It also outlines relevant
assumptions, definitions, and solution concepts. Section 3 introduces the RICE model and
its game theoretic solutions. Section 4 details the algorithms for calculating the metrics of
the core. Calculation results of the “sizes” of the cores and other relevant outputs are also
presented here. Section 5 discusses the policy implications of the shrinking core in RICE.
Section 6 is the concluding remark.

2 “Well-behaved” models refer to those models with twice differentiable functions, convex utility functions,
and calibrated with real data. The blocking rules used in this paper will be explained in subsequent sections.
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2 A cooperative game of stock externality provision’

Most global environmental problems can be formulated as a stock externality provision
problem. A generic model of efficient provision of externality can be framed as a social
planner’s problem in which externalities are fully internalized:

N N 00 N
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0 i=1
sit. Fl(xi(),bi(t)) =0, i=1,2,...,N. 2)
N
B(t) =) bi(t) = 0B(t), o >0. 3)
i=1
B(0) = By, xi(0) = x 0, “4)
aU! AU’ 32U! 32U! aF" /3F!
> 0, <0, <0, <0, >0 5)
dx;i IB ax? 9 B? ab; [/ 9x;i

In the above system, social planner maximizes the weighted sum of N agents’ present-
value utilities (regions in international environmental issues). Ui, the instantaneous utility
function of agent i, is a function of private good x; (t) and B(t), the stock of externalities faced
by all agents. Each agent has a transformation function (F;) between private good x;(t) and
the flow of externalities b;(t) as in (2). (2) describes the relationship between private good
and externality generation implicitly. The control variable in this optimal control problem is
{x;(t)}. Through transformation function (2), control variable {x;(t)} determines the optimal
flows of externality {b;(t)}. The relationship between the flows and the stocks of the externality
is determined by motion equation (3). Both private good {x;(t)} and stock level of externality
B(t) are arguments of individual payoff function. In this framework, the budget constraints
of agents and other exogenous parameters are implicit in transformation functions (2). The
signs of derivatives in (5) and initial conditions (4) ensure that this social planner’s problem
is a well-behaved system.

This model of stock externality provision encompasses many dynamic environmental
problems in abstract. Most importantly, it characterizes the totality of efficient solution set
of stock externality provision. Solutions of (1) under different social welfare weights {¢;},
the key parameter in this research, correspond to the entire efficiency frontier of externality
provisions. Namely, simplex S = { {<Pi}| > ¢; = N} has a one-to-one correspondence with
the efficiency frontier of system (1). The core, the solution concept to be examined here, is
a connected subset of the efficiency frontier. Therefore, the optimal solutions of system (1)
under a subset of simplex S map to the core allocations.

Before proceeding with defining the cooperative game and its core, we need to specify
another important solution concept first. It is the “open-loop” Nash equilibrium defined by
the solution of the following non-cooperative game of stock externality provisions:

o0

Max wM :/U" (xi(0), B(t)) e ®'dt, i=1,2,...,N. (©6)
X (1

0
s.t. Fl(xi(0),bi() =0, i=12,...,N. (7

3 The cooperative game adopted here is originated from Yang (2008).
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The inefficient Nash equilibrium is the simultaneous solution of N systems of single agent’s
optimization problem specified by (6), (7), and (8), as well as the same initial conditions and
sign requirements (4) and (5) as in system (1). The Nash equilibrium is a very important
benchmark. In a non-cooperative scheme, each agent receives W}VI payoffs. Because the
Nash equilibrium is inefficient in the economy with externalities, we can find the Pareto
improvement opportunities by internalizing the externalities as in social optimum (1). The
cooperative game to be constructed is set up on such rationales. The game is to reach certain
efficient outcome in (1) through bargaining, negotiations, and cooperation among agents.

2.1 A cooperative game of stock externality provision

The cooperative game is defined by a triplet V(¢;, x;(t), Wic) fori=1,2,...,N. Here ¢; and
x;(t), as defined in system (1), are decision variables for agent i. ch is the pay-off function
for agent i. WiC is determined in (1) and is not weighted by ¢;. Superscript C stands for
cooperation.

The game is played in two stages. In the first stage, agents negotiate their respective weights
{®;} in system (1). Such a bargaining process is to decide an efficient solution of externality
provision collectively. As a complete information game model, agents know the consequence
of bargained {¢;} on his and others’ real variable paths. In other words, they know the outcome
of mapping {¢;} — {xi(t)} for all i in system (1). In subsequent discussions and numerical
calculations, we can see that {¢;} reflects relative mitigation burdens shouldered by each
agent in the efficient solutions. The first-stage of the game can be treated as a multi-agent
bargaining game conducted in an abstract space S = { {<.0i}| > ¢; = N}. Nevertheless, every
agent knows material consequence of such bargaining.

After {¢;} is agreed upon, the game moves to the second stage. In the second stage,
all agents cooperate to achieve efficiency in system (1) and each agent will fulfill its own
obligations by executing the optimal path of control variable {x(t)} according to the optimal
solution of system (1) under negotiated {¢;}. Each agent generates {b;(t)} externalities and

receives
o0

we = / U (5 @), BX (1) e dr ©)
0

as the payoff in the grand coalition by solving (1).*

The cooperative game defined here connects the efficient provision of stock externalities
with the bargaining of individual burden sharing. When ¢; is high, agent i’s burden for
mitigating externality is low in the grand coalition, compared with a lower ¢, ceteris paribus.
In addition, agent i would benefit more from other agents’ mitigation efforts. On simplex
S = {{<Pi}| > ¢; = N}, bargaining {¢;} is a “zero-sum” negotiation process: one’s gain is
somebody else’s loss and vice versa. The first stage of the game bears similarities with the
“cost-sharing equilibrium” notion for the efficient externality provision in Mas-Colell and
Silvestre (1998).

Most solutions of (1) cannot be the outcomes from voluntary cooperation, or the results
of collective bargaining. For an optimal solution of (1) under a particular set {¢;} to be an

4 Different penalty rules can be introduced to support this cooperative game. Because they are not relevant to
the core properties examined here, these possible penalty rules are not elaborated.
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outcome of the cooperative game defined above, it is necessary that the solution under this
set {¢;} is in the core.” The following is the definition of the core concept in this study.

2.2 The core allocation relative to the initial endowments

An optimal solution of system (1) {x(¢)} under a specific set {¢;} is in the core, if it cannot
be blocked by any sub-coalitions. Particularly, it cannot be blocked by the Nash equilibrium
solution (6).

We assume that the generic model of stock externality provision [system (6)] has a unique
Nash equilibrium.® This unique equilibrium depends on the initial endowments and unspec-
ified parameters of system (1). If these initial endowments and parameters change, the Nash
equilibrium also shifts. The core allocations have the similar relationship with the initial
endowments. With the fixed initial endowments, the domain of the core is determined. Fol-
lowing the tradition in Bergstrom (1976), we call the core in the above definition “the core
relative to the initial endowments”.

In the above definition, the notions of “blocking” and “sub-coalitions” need to be clarified.
In the core, all agents are better off than in any sub-coalitions. To form a grand coalition,
all agents have to be better off than their respective reserved payoffs, namely, the payoffs
in the Nash equilibrium. This is the well-known incentive criterion—individual rationality
(IR). To hold the grand coalition together, all agents should agree with the burden sharing
arrangement under negotiated {¢;}. If some agents can form sub-coalitions to increase their
payoffs compared with the grand coalition under {¢;}, the grand coalition cannot be sus-
tained. Therefore, the members in a stable grand coalition should not be able to exploit such
opportunities (no blocking property). Particularly, when such grand coalition has to be based
on voluntary participation (as all IEAs), the core properties are of vital importance.

The “sub-coalitions” here have to be specified inductively. Inductive definition of sub-
coalitions has some complications in the economy with externalities. Strategic behaviors
of the agents outside the sub-coalition affect the actions inside the sub-coalition because
of external effects.” We assume that a sub-coalition achieves internal efficiency under the
same {¢;} as in the grand coalition and plays the non-cooperative Nash game with the agents
outside the sub-coalition as a single agent. A blocking, if taken place, is under such strategic
environment. In a framework that allows transfers, the core defined with such sub-coalition
structure is called Y-core in Chander and Tulkens (1997). In fact, this definition is a more
reasonable way to define the core in the economy with externalities than traditional approach,
such as in Foley (1970).

Finally, the core allocations do not require cross agents transfers ex ante. Transfers alter
the endowments ex post. Therefore, the post-transfer endowments and the Nash equilibrium
are different from the initial one. Different Nash equilibriums correspond to different sets
of core allocations. The cores in different transfer schemes do not coincide. Once transfers
taken place, we are not dealing with “the core relative to the initial endowments”. Allowing
transfer schemes is “chasing moving targets” in finding the core allocations. Here, we are
only interested in the core relative to the initial endowments. Specifically, we want to answer

5 Optimal solutions of (1) under arbitrary {¢;} are often conveniently called a “cooperative solution”, in

contrast to non-cooperative Nash solution. This is a misnomer. Solution of (1) is always an efficient solution.

It is a necessary condition for a cooperative game solution but not sufficient.

6 Holding this assumption requires that the system of differential equations behind the differential game (6)
g P! q Y q g

has a unique solution under given initial conditions.

7 Sucha phenomenon is a major departure from the assumption adopted in traditional cooperative game theory
(see Osbrne and Rubinstein 1994, p. 258).
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the questions related to this core: “What is the ‘size’ of the core at given number of agents?”
“Whether the ‘size’ of the core shrinks or not as number of agents increases?”

To describe the cooperative game of stock externality provision requires more elaborations
on the model and its solution concepts (see Yang 2008). Here we focus on the basic properties
of the core allocations and try to identify the scope of the core in the model similar to (1).
Discussions of other characteristics of this cooperative game are beyond the scope of this
paper. Moreover, we answer the above two key questions in the context of the RICE model—
a stock externality provision model like (1) on climate change with economic and climatic
details.

3 The RICE model with different regional aggregations

The RICE model is a well-known integrated assessment model (IAM) developed by Nord-
haus and Yang (1996). The RICE model is a multi-region optimal growth model with climate
change externalities. Each region’s economic growth [equivalent to {x;(t)} in (1)] generates
greenhouse gas (GHG) emissions [equivalent to {bj(t)} in (1)]. Aggregate GHG emissions
from regions lead to atmospheric temperature increases [equivalent to B(t) in (1)]. In short,
regional GDP co-generates GHG emissions (flows of detrimental externality) that lead to cli-
mate change (stock of detrimental externality) in RICE. The temperature increase causes the
damages to regions. By incurring certain mitigation costs, each region can mitigate a portion
of its own GHG emissions. The tradeoffs between mitigation costs and avoided climate dam-
ages can be assessed as a social optimum (an efficient solution) or as a decentralized Nash
equilibrium (an inefficient solution). In essence, the RICE model is a special case of systems
(1) and (6). We can define and find the non-cooperative Nash equilibrium, the cooperative
game solutions, and the core allocations in this model.® In fact, most empirical works on
coalition studies through IAM surveyed in Sect. 1 are based on the modified RICE models.
For the exercises here, the model is updated with new data. The base period is 2005. The
model is solved numerically in discrete form in GAMS language (Brooke et al. 2004). The
model runs for 50 periods in 5-year steps. The base model contains six regions: the United
States (USA), European Union (EU), other high-income countries (OHI), China (CHN),
Eastern European countries and former Soviet Union (EEC), and the rest of world (ROW).
To investigate the relationship between the core and number of regions in RICE, we
aggregate the number of regions from six to five, four, three, and two regions. The aggre-
gation is as follows (merged regions in brackets): (1) five-regions: USA, [EU+ OHI], CHN,
EEC, and ROW; (2) four-regions: [USA+EU+OHI], CHN, EEC, and ROW; (3) three-
regions: [USA +EU+OHI], [CHN +EEC], and ROW; (4) two-regions: [USA +EU + OHI]
and [CHN + EEC + ROW]. In the process of aggregating, regions’ initial condition values are
added together, such as population, GDP, GHG emissions in the base year, etc. The exogenous
growth trend parameters are averaged across merged regions. In the aggregating processes,
the global population and capital in the base year are fixed. Simply speaking, the models rep-
resent the same global economy that consists of different number of regions. Therefore, the
RICE models with different number of regions are consistent for the purpose of investigating
the relationship between the number of regions and the core properties. Grouping process is
to generate a RICE model with 6, 5, 4, 3, and 2 regions, respectively to test the relationship

8 Nordhaus and Yang (1996), Nordhaus and Boyer (2000), and Yang (2008) contains more detailed features of
the RICE model. For quick reference, the algebraic description of RICE model is presented in the “Appendix”.
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Table 1 Design matrix for

5-region coalitions (1 = in, No. usa OHI CHN EEC ROW
0 = out) 1 1 1 1 1 1
2 1 1 1 1 0
3 1 1 1 0 1
4 1 1 1 0 0
5 1 1 0 1 1
6 1 1 0 1 0
7 1 1 0 0 1
8 1 1 0 0 0
9 1 0 1 1 1
10 1 0 1 1 0
11 1 0 1 0 1
12 1 0 1 0 0
13 1 0 0 1 1
14 1 0 0 1 0
15 1 0 0 0 1
16 1 0 (1} 0 0
17 0 1 1 1 1
18 0 1 1 1 0
19 0 1 1 0 1
20 0 1 1 0 0
21 0 1 0 1 1
22 0 1 0 1 0
23 0 1 0 0 1
24 0 1 0 0 0
25 0 0 1 1 1
26 0 0 1 1 0
27 0 0 1 0 1
28 0 0 1 0 0
29 0 0 0 1 1
30 0 0 0 1 0
31 0 0 0 0 1
32 0 0 0 0 0

between number of regions and “size of the core” in RICE. We do not investigate various
possibilities of grouping or aggregating from 6 regions to 2 regions.

For convenience, we label the RICE model with m regions as RICE-m (m = 2, 3, 4, 5, 6).
Here we try to identify the core allocations for all RICE-m. To do so, we strictly follow
the definition of the core stated in Sect. 2. Namely, an efficient solution of RICE-m under a
certain set {¢;} is a core allocation if it cannot be blocked by any sub-coalitions.

To check whether a solution is in the core of RICE-m, we follow the procedures below with
a set of auxiliary tools for all RICE-m. Here, we use RICE-5 as an example to illustrate the
procedure. First, we enlist all coalitions through a design matrix (Table 1), with 1 representing
in a coalition and O representing outside the coalition. The firstrow (1, 1, 1, 1, 1) represents the
grand coalition; the last row (0, 0, 0, 0, 0) represents the Nash equilibrium. All sub-coalition
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possibilities are represented by the second row (1, 1, 1, 1, 0) to 31st rows (0, 0, 0, 0, 1). As in
Yang (2008), they are called “hybrid” Nash equilibriums in this exercise. Note that the bolded
rows (rows 16, 24, 28, 30, 31) represent the cases where one region is in the coalition and
other 4 regions are out. Conceptually, they are identical to the Nash equilibrium represented
by row 32. They are kept in the calculation for algorithmic purpose.

Then we solve all 2° = 32 “hybrid” Nash equilibriums in RICE-5 one by one under a
given set of social welfare weight {@;}.” In each “hybrid” Nash equilibrium, regions cooperate
within the coalition to achieve internal efficiency and interact strategically (non-cooperative)
with the regions outside the coalition. Whole spectrum of “hybrid” Nash equilibrium solutions
are obtained by executing a GAMS program with multi-layer loops that run the model from
row 1 to row 32 in the design matrix. For each {¢;}, the program runs 32 “hybrid” Nash
equilibriums and ends at the same Nash equilibrium (row 32). If the algorithm is robust, the
five interim cases (rows 16, 24, 28, 30, 31) should always be identical to the Nash equilibrium
(row 32). The algorithm demonstrates this property.'?

The third step is to record and compare the regional welfares (payoffs) in the 5 x 32-
table format like Tables 2 and 3. Table 2 calculates the regional welfare differences (payoff
difference) between the grand coalition (row 1) and all sub-coalitions. If a region is better
off in a sub-coalition than in the grand coalition, the relevant cell records a “+” sign; if it is
worse off, the cell contains a “—" sign; if the region is outside of the sub-coalition, the cell is
empty. Table 2 is an example showing the results of ¢; = 1. Table 3 calculates the regional
welfare differences between the Nash equilibrium (row 32) and all sub-coalitions, including
the grand coalition. If a region is better off in a sub-coalition than in the Nash equilibrium,
the relevant cell records a “+” sign; if it is worse off, the cell contains a “— sign; if the region
is outside of the sub-coalition, the cell is empty. Again, Table 3 is an example showing the
results of ¢; = 1. We claim that the tables like Tables 2 and 3 for RICE-m contain complete
information on the core properties of the RICE solutions.

Table 2 reveals the possibilities of sub-coalition blockings. If all signs are “—” under
certain {¢;} in Table 2, no sub-coalition can block the grand coalition. If a row contains all
“+” signs, this sub-coalition clearly blocks the grand coalition. For example, in row 6 all
members in (USA, OHI, EEC) sub-coalition are better off than the grand coalition. It blocks
5-member grand coalition. If a row has mixed signs, the sub-coalition may or may not block
the grand coalition, pending on whether the winners can sufficiently compensate the losers
in this sub-coalition.

The signs in Table 3 inform us on the IR property of the grand coalition. Under the same
{¢;}, the grand coalition satisfies the IR condition, if all signs are “+” in the first row of
Table 3. The “+” signs in the first row imply that all members in the grand coalition are better
off than their respective payoffs in the Nash equilibrium, i.e. their reserve payoffs.

Therefore, a sufficient condition for a grand coalition under a specific set {¢;} to be in the
core relative to the initial endowments is that all cells in Table 2 are “—” signs and all cells
in the first row of Table 3 are “+” signs. The two tables are criteria for identifying the core
allocations of the RICE model in this research.

Using those criteria, we find out that the popular utilitarian solution under ¢; = 1 is not in
the core. Table 3 shows that the solution is not compatible with 3 out of 5 regions’ IR. They
are USA, OHI, and EEC. These three regions rather play the non-cooperative Nash game

9 RICE-6 has 2° = 64 “hybrid” Nash equilibriums, RICE-4 has 24 =16 “hybrid” Nash equilibriums, etc.

10 The robustness of the algorithm for searching the Nash equilibrium has been tested in other ways. By
choosing different starting points, or changing the order of iterations, the algorithm converges to the same
Nash equilibrium.
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Table 2 Welfare change from

grand coalition (¢; = 1) No. USA OHI CHN EEC ROW
1
2 + + - +
3 + - - -
4 + + -
5 + + + -
6 + + +
7 + + -
8 + +
9 + - - -
10 + - +
11 + - -
12 + -
13 + + -
14 + +
15 + -
16 +
17 - - - -
18 + - +
19 - - -
20 + -
21 + - -
22 + +
23 + -
24 +
25 - - -
26 - +
27 - -
28 —
29 — -
30 +
31 -
32

than join the grand coalition under ¢; = 1. In addition, row 6 in Table 2 is a clear blocking
of the grand coalition by {USA, OHI, EEC}.

Tables 2 and 3 are convenient tools for assessing the core properties. They also provide
guidance for probing core allocations through searching algorithms. For example, USA is not
content with the grand coalition under ¢; = 1 (see Tables 2, 3). By increasing its social welfare
weight relative to the “happy campers” in the grand coalition (such as CHN and ROW),
USA will gain more in the grand coalition, others may concede a portion of their potential
gains in the grand coalition. After adjusting social welfare weights, the whole spectrum of
“hybrid” Nash equilibriums are solved again and resulted payoffs are placed in Tables 2
and 3 for incentive checking. Through such tatonnement searching routine on simplex S =
{{(Pi}‘ > ¢; = m}, we can locate grand coalitions that possess the core properties. Under
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Table 3 Welfare change from

the Nash equilibrium (¢; = 1) No. USA OH CHN EEC ROW
1 - - + - +
2 - + + +
3 - - + +
4 - + +
5 - - — +
6 - + +
7 - - +
8 — +
9 — + — +
10 - + +
11 - + +
12 - +
13 - - +
14 - +
15 — +
16
17 - + - +
18 - + -
19 - + +
20 — +
21 — - +
22 + +
23 — +
24
25 + - +
26 + -
27 - +
28
29 — +
30
31
32

such {¢;}, all regions are better off in the grand coalition than in the Nash equilibrium and
no sub-coalitions can block this grand coalition.'!

4 Shrinking cores of the RICE model

Using the procedure outlined in the previous section, we identify a single core allocation in
each RICE-m. The social welfare weights that map the optimal solution of RICE into the

T To focus on analyzing the core properties, simulation outputs related to the paths of all control and state
variables of RICE are not presented in this paper. Please refer Yang (2008) for the algorithm details.
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Table 4 Inner points of the core

in RICE-m 9 () 93 P4 95 96 >
m=2 1.802  0.198 2
m=3 2.033 0.745 0.222 3
m=4 1.737 0.353 1.752  0.158 4
m=35 1.922 1.376  0.238 1.359  0.105 5
m==6 1.574 1.805 1.094 0.202 1.229 0.096 6

core are reported in Table 4. Under these social welfare weights, the solutions of RICE-m
have the properties that all signs in Table 2 are “—" and all signs in Table 3 are “+”.!> When
obtaining these sets of weights, we look for the core allocations with stronger incentives in
Table 3 such that regions are better off in all sub-coalitions than in the Nash equilibrium
(noting that IR only requires “+” signs in the first row). By doing so, these allocations are
“inner” or “central” points of respective cores.

In a well-behaved model of stock externality provision, the core relative to the initial
endowments is not empty, just as Table 4 shows. In addition, the set of core allocations is
not a singleton. In the simplex of social welfare weights, the area that maps to the core is
assumed to be connected.!3 After one inner point of the core is identified, the remaining task
is to measure the “size” or “volume” of the core that surrounds this point. For the purpose,
we need to probe the boundary or circumference of the core on the simplex. Because the
measurements are on simplex S = {{(Pi}| > ¢; = m}, the terms such as “size”, “volume”,
and “boundary” are simply geometric.

To probe the boundary of the core, we use the following intuitive method (again, using
RICE-5 as the example). We have identified an inner point of the core at (91, 2, 93, P4, P5) =
(1.922,1.376,0.238, 1.359,0.105) in Table 4. Now we keep ¥, to @5 at the current values and
increase ¢1 (of USA) incrementally. Higher ¢ increases the payoff of USA relative to other
regions in the social optimum. After such an increase, the whole spectrums of “hybrid”” Nash
equilibriums are re-solved under this set of new weights and the regional welfare changes are
assessed in Tables 2 and 3. If the core properties are intact, ¢ is increased further for the next
round of testing; if the core properties are violated, ¢ is reduced slightly for the next round
of testing. The probing accuracy is to the third decimal point. In RICE-5, the probing result
is @1 up = 2.751. If ¢; increases to 2.752, at least one other region would be unhappy in
Tables 2 or 3. Namely, “+” signs appear in Table 2 and /or “—” signs appear in the first row of
Table 3. Through such probing, a boundary point of the core is identified. Finally, this value,
along with other fixed values of ¢, to ¢s, are re-scaled to simplex S = {{<Pi}| > ¢ = m},
resulted in the second row of Table 5.

Similarly, lower the value of ¢; while keeping other ¢; fixed will reduce the welfare of
USA relative to other regions in the social optimum. We want to find the toleration limit
of USA where it would be rather stay outside the grand coalition if its weight reduces any
further. The probing result is €1 gown = 1.445. If lowered to ¢; = 1.444, USA prefers some
sub-coalition or the Nash equilibrium to the grand coalition. Again, this value along with
other ¢; is re-scaled to S, resulted in the third row of Table 5.

The coordinates of the above two boundary points are in “1 up” and “1 down” rows in
Table 5. These two points are on the “opposite” sides of core boundary along the first axis.

12 Due to homogenous signs, the tables of incentive checking do not reveal additional useful information.
They are not presented to save space.

13 This assertion is a hypothesis. No proofs have been given in the literature.
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Table 5 Vertexes of the core in

RICE-5 ¢ 2 3 . ¥s
Inner P. 1.922 1.376 0.238 1.359 0.105
1 up 2.360 1.180 0.204 1.166 0.090
1 down 1.597 1.521 0.263 1.502 0.116
2 up 1.821 1.566 0.226 1.288 0.099
2 down 2217 0.819 0.275 1.568 0.121
3up 1.894 1.356 0.308 1.339 0.103
3 down 1.964 1.406 0.135 1.388 0.107
4up 1.784 1.277 0.221 1.621 0.097
4 down 2.238 1.602 0.277 0.760 0.122
Sup 1.893 1.355 0.234 1.339 0.178
5 down 1.926 1.379 0.239 1.362 0.094

géllgl];g Vertexes of the core in o @ 0 o s %
Inner P. 1.574 1.805 1.094 0.202 1.229 0.096
1 up 1.993 1.634 0.990 0.183 1.113 0.087
1 down 1.229 1.946 1.179 0.218 1.325 0.104
2 up 1.479 2.057 1.028 0.190 1.155 0.090
2 down 1.876 1.000 1.304 0.241 1.465 0.114
3up 1.500 1.720 1.325 0.193 1.171 0.092
3 down 1.724 1.977 0.628 0.221 1.346 0.105
4up 1.552 1.780 1.079 0.283 1.212 0.095
4 down 1.593 1.827 1.107 0.132 1.244 0.097
5up 1.514 1.737 1.053 0.194 1.410 0.092
5 down 1.772 2.032 1.231 0.227 0.630 0.108
6 up 1.553 1.781 1.079 0.199 1.213 0.175

6 down 1.577 1.808 1.096 0.202 1.231 0.086

We can acquire 8 more such boundary points along 4 other axis. Numerical results of these
boundary points from the probing are in Table 5. Using the same method, we obtain 12
boundary points in RICE-6; 8 boundary points in RICE-4; and 6 boundary points in RICE-
3. They are reported in Tables 6, 7, and 8, respectively. RICE-2 composes a special case.
Increasing ¢; is equivalent to decreasing ¢, and vice versa. The simplex of a two-region
model is a one-dimension segment in two-dimension plane. It is AB in Fig. 1. The probing
procedure can identify points C and D on AB. The inner point of the core is between C and D.
In RICE-2, C = (1.841, 0.159) and D = (1.738, 0.262), according to the probing procedure.
Locating 2m points on boundaries of the core in (m — 1)-dimensional simplex provides
useful information. Because these 2m boundary points are pair-wise orthogonal along the
coordinates, they indicate the scope of the core. We use these 2m points as vertexes to span
a convex hull H(m) on (m-1)-dimensional simplex S = {{‘\01}| > ¢; = m}.!* The volume of
this convex hull is an approximate measurement of the core size in the simplex. 2m vertexes

14 Sis an (m — 1)-dimension sub-space in m-dimension Euclidean space.
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Table 7 Vertexes of the core in

RICE-4 @1 ®2 93 @4
Inner P. 1.737 0.353 1.752 0.158
1 up 2.056 0.303 1.505 0.136
1 down 1.441 0.399 1.981 0.179
2 up 1.645 0.546 1.659 0.150
2 down 1.811 0.198 1.826 0.165
3up 1.246 0.253 2.387 0.113
3 down 2.165 0.440 1.198 0.197
4up 1.702 0.346 1.717 0.235
4 down 1.752 0.356 1.767 0.124

E&Il(l;l];_g Vertexes of the core in s @ 0
Inner P. 2.033 0.745 0.222
1 up 2.348 0.502 0.150
1 down 1.940 0.816 0.243
2 up 1.924 0.866 0.210
2 down 2.310 0.438 0.252
3up 1.994 0.731 0.275
3 down 2.077 0.761 0.161

Table 9 Volumes of the cores in RICE-m

m=2 m=3 m=4 m=5 m=06

V(H) 0.025797 1.40493E—3 3.45035E-5 1.71412E—7 1.58499E—9

V(S) 0.5 1.66667E—2 4.16667E—2 8.33333E-3 1.38889E—3

CS(m) 5.1594E-2 8.429E-3 8.2808E—4 2.0569E—5 1.1412E—6

are obtained through expansion from an inner point of the core. Therefore, the internal points
of H(m) possess the core properties. If any point in H(m) is not on the core at all, it is on
the surface of this convex hull spanned by two or more vertexes. The volume metric of such
areas is 0 because they all collapse into lower dimensions. Volume of H(m) is a conservative
measure of the core in the simplex because we only use the sufficient conditions of the core
properties. We do not know how precise the metrics of H(m) in measuring the size of the
cores. Nevertheless, the measurements are consistent across m. Therefore, the subsequent
comparisons across m are consistent too.

We used QHull, a share-ware for computational geometry developed by Barber et al.
(1996), to calculate the volumes of H(m). More specifically, we calculate the ratios between
volumes of convex hull H(m) and simplex S(m):

CS(m) = Vol (H(m)) /Vol (S(m)) (10)

Metric CS(m) measures the size of the core relative to the entire efficiency set. Volumes are
defined as the space inside the convex hull spanned by vertexes and the origin. It overcomes
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Fig. 1 Tllustration of “size” of core in 2-dimension

the dimensionality problems and is comparable across all dimensions. Figuratively speaking,
CS(m) is the volume ratio between a “thin crystal cone” (H(m)) and a “thick pyramid” (S(m)).

For example, the volume of S(5) is the volume inside the unit simplex (1, 0, 0, 0, 0), (0,
1,0,0,0),(0,0,1,0,0),(0,0,0, 1, 0), (0,0, 0, 0, 1), and the origin (0, 0, 0, 0, 0); the volume
of H(5) is the volume inside normalized (coordinate values add up to 1, not to 5) convex hull
spanned by the 10 points in Table 5, and the origin (0, 0, 0, 0, 0). When m = 2, CS(2) is the
ratio between areas of triangles AOCD and AOAB in Fig. 1.1

The results of volume calculations are in Table 9. The outcome is clear-cut: the core is
shrinking as the number of regions increases. In addition, the shrinking scale is roughly 10~
as the number of regions increases by 1 inthe rangem = 2, 3, 4, 5, and 6. However, we should
point out that the results do not infer any shrinking patterns beyond m > 6. Particularly, no
conclusion should be drawn on the asymptotic scenario from the calculations here.

5 Policy implications of shrinking core on IEA negotiation

Several important policy implications can be drawn from testing of the shrinking cores in the
RICE model empirically. First, the core is small in RICE. It is small in aggregate models with
small numbers of regions; it would be even smaller in the RICE model with more regions,
if we could induce the shrinking core hypothesis into higher dimensions. One can visualize
such smallness by conducting the following thought experiment: what is the chance for you
to hit the core when throwing a “dart” randomly onto the simplex of efficiency frontier? The
answer would be “it is highly unlikely.” Decades ago, Starrett (1973) pointed out that “core is
a very ‘small’ concept” in the economy with externalities when discussing various blocking
rules and restrictions of coalitions. Therefore, the small core in the presence of externality is
not a new discovery. In this paper, the smallness of the core is exemplified and quantified in
a well-known empirical model of externality provisions.

The smallness of core in RICE implies that consensus to form a grand coalition is intrinsi-
cally difficult for climate change. Post-Kyoto debates on climate change, often futile, reflect
such dilemma. The “size” of the core depends partially on the location of the Nash equilib-
rium. We use Fig. 2 to illustrate the argument. In a two-agent economy of externality, Nj is a

15 Calculations show that normalization and without normalization have the same CS ratio. Normalization is
used for safety checking when using unfamiliar shareware.
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Efficiency Frontier

Ny

v

Fig. 2 Illustration of core and efficiency frontier in 2-dimension

Nash equilibrium allocation inside the efficiency frontier. AC on the efficiency frontier is the
core with respect to Nj. If the Nash equilibrium is at N, BD on the efficiency frontier is the
core. Apparently, BD is greater than AC. If the room for welfare improvement between the
Nash equilibrium and efficiency allocations is large, the “size” of the core is relatively large.
Efficiency improvements are incremental or marginal in the small core. In climate change,
GHG mitigation costs are sizeable and avoided climate damages are highly uncertain. The
gains by adopting optimal GHG mitigation policies are relatively small in terms of a region’s
GDP level. Therefore, the “gap” between the Nash equilibrium and efficiency allocations is
small. The small core in the RICE model is an evidence of the above argument.

In complicated systems with externalities, the number of agents also contributes to the
smallness of the core. It is easier to find gaining opportunities by forming sub-coalitions
among agents, as m increases. The core properties of the grand coalition require that they
cannot be blocked by any sub-coalition. Such properties are precious and rare when the
number of agents is large. Burden-sharing arrangement in the core has to please all agents.
As shown here, an agent’s burden shift, reflected by changing ¢;, affect remaining m-1 agents’
burdens on S = {{(Pi}| > ¢; = m} through many channels in the system.

However, when the number of the agents is low (such as in the range of this exercise),
the smallness of the core might be helpful in the negotiation of IEA. The payoffs in the
Nash equilibrium are the reserve payoffs for all agents. They are common knowledge. In
IEA negotiations, a rational agent would put forward burden-sharing offers near his Nash
equilibrium position and be considerate of other agents’ reserve payoffs. Because the room
for welfare improvements is small, the distance between the initial proposal and unanimous
final agreement is not far apart. In a recent study (Yang and Sirianni 2010), policy suggestions
are similar to this notion.

The second implication is directly from the shrinking core observation. Large number
of regions is a hindrance to IEA negotiation. When there are too many regions, the core
allocations that all regions are happy with would be extremely difficult to find. Although
we have successful precedent like the Montreal Protocol on phasing out CFC, it is rather an
exception than a norm. The costs of stop using CFC are low when the substitute technologies
are readily available. The damage of ozone layer depletion is imminent and severe. In the
language used in this research, either the size of the core relative to the initial endowments is
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large, or the Nash equilibrium is very close to the core allocations (as Barrett 2003 inferring),
in the case of ozone layer depletion. Despite numerous regions, common grounds can still
be found (after the core has been shrunk). Nonetheless, climate change is a different story.

The shrinking core observations here have connection with other scholars’ studies on
coalition stability and number of players in IEAs. Difficulties in forming the grand coalition
lead to empirical studies of stable sub-coalitions, such as Buchner and Carraro (2009). In the
literature, no conclusions on the coalition stability have been drawn for the grand coalition
with n heterogeneous agents. The shrinking core property is one of the reasons preventing
stable coalitions.

The third implication comes from the properties of the core. Throughout our construction
and analysis, transfers are not allowed or required. In fact, they are not mentioned until
now because transfers in NTU game setting are generally not allowed. Given the nature of
environmental externalities, regions do not need to provide or receive transfers to achieve
efficiency and to be better off in the grand coalition. Nevertheless, the chances to find such
common ground, i.e., the core property, are small. To promote the formation of grand IEA,
we may ask some regions to sacrifice in order to “expand” the core. Expanding the core in
the neighborhood of its boundary would hurt some regions’ payoffs in the grand coalition. In
reality, such sacrifices might be the promises of additional GHG mitigation unilaterally; ex
post transfers from rich to poor; joint implementation (JI) arrangements, etc. In the modeling
context, the sufficient condition we imposed on Table 2 can be relaxed. We can allow some
mixed signs in the grand coalition and sub-coalitions (but still no sweeping “+” signs in
any rows). Through compensations (transfers) inside the coalition, the boundary of the core
expands.'®

The smallness of the core and the shrinking core call for policy intervention in IEA
formation (successful or not is a different matter). Consensus ground (the core allocations)
can be substantially larger, if some regions concede portion of their efficiency gains ex ante.
The room for aggregate gains is always there. The prerequisite for gaining is full participation
inthe grand IEA. Otherwise, all regions lose by holding the non-cooperative Nash equilibrium
position.

6 Concluding remarks

The core is a very important solution concept in cooperative game and coalition theory. In
empirical works, identifying the set of the core allocations is useful for both economists and
policy makers, as this study has shown. The methods in this paper transform the issues of
measuring the scope of the core into examining the social welfare weights of social opti-
mum of externality provisions. Elusive core properties in a complex dynamic game turn into
transparent geometric characteristics of a simplex. By examining the core quantitatively and
constructively in a cooperative game embedded in the RICE model, this paper measures the
“sizes” of the core in RICE with different number of regions. The shrinking core hypothesis
for an economy with externalities is proven true in RICE through numerical simulations. The
findings imply that it is difficult to form a voluntary global coalition in dealing with climate
change when there are many regions involved.

Quantifying the measurements of the core in complicated environmental systems has
many potential extensions and broader applications. Interesting issues includes: the relation-
ship between the core and mitigation costs/environmental damages; altruism and the core;

16 1n NTU game, such internal transfers may not necessarily “dollar for a dollar.”
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renegotiations and the core in closed-loop dynamics, etc. Those tasks can be developed from
the methodologies adopted in this paper.

This paper also indicates the policy implications of the shrinking core properties shown
in RICE. The grand environmental coalitions are more and more difficult to bind together
if the number of participants increases. Nevertheless, the grand coalition is not a “mission
impossible.” Especially if rich countries concede with moderate sacrifices to enlarge the core,
all-inclusive environmental coalitions are more likely to form.

Appendix

The Description of the RICE-m Model.

1. The RICE model as a social planner’s problem (an optimal control problem):

Max W = U = L; (1) Lo ( ! )e“”dt,
{1 (0), i (1)) 2. U ;0/% ' \L o

i=1

Dloi=m, m=23456 0<s5<l (11)
i=1
st Qi) = AiOK; (1) Li()' ™7 (12)
Yi(t) = Qi(1) Qi (1) (13)
Ci(t) = Yi(t) — I; (1) (14)
Ki(t) =1;(t) —6xgK;(t), 0 < dx < 1. (15)
Ei(t) = (1 — i (®))oi (1) Qi(1), 0 < p;i(t) < 1. (16)
Qi(t) = M (In(12)to (17),i=1,...,m.) (17)
1+ ay Ty (t)®i
M(t) = BuM () + Bi3Uuy (1) + D Ei(t) (18)
i=1
ML (1) = BaML(t) + BsMy (1) (19)
My (1) = B3i M (1) + BaML (1) + B3sMy (1) (20)
Ti(t) = enT1(t) + en2Ta(t) + e3F (1) @21
To(t) = exn(T2(t) — Ty (1)) (22)
F(t) = mLog(M()) — nz + O(1) (23)

Definitions of variables:

U; Present value of intertemporal utility of region i;

Q;(t)  Production function of region i;

Yi(t) Adjusted production function of region i;

Ci(t) Consumption function of region i;

Ki(t)  Capital stock level of region i;

Li(t) Investment function of region i (control variable);

Ei(t) GHG emission of region i;

wi(t) GHG emission control rate of region i (control variable);
Qi(t) Adjustment function of GDP;
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M(t) GHG concentration (atmospheric);
My (t) GHG concentration (deeper ocean);
My (t) GHG concentration (upper ocean);
T (t) Atmospheric temperature;

To(t)  Deep ocean temperature;

F(t) Radiative forcing function.

Definitions of time-variant parameters:

Li(t) Labor (population) trend of region i;

Ai(t)  Total factor productivity trend of region i;

oi(t) Exogenous trend of GHG emission/output ratio of region i,
O(t) Exogenous radiative forcing;

@i (1) Social welfare weight of region i.

2. The RICE-m model as an open-loop differential game:
T
Max /L,-(t)Log(Ci(t)/Li(t)) e dr, 0<8<1, i=1,....,m. 24)
{1 (), i (1)} )

s.t. (12)to (17) and (19) to (23)
M) = BuM(t) + Bi3sUuy (1) + D E (1) + Ei (1) (18))
J#
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