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Abstract This paper presents an application of extended goal programming in the field of
offshore wind farm site selection. The strategic importance of offshore shore wind farms is
outlined, drawing on the case of the United Kingdom proposed round three sites as an exam-
ple. The use of multi-objective modelling methodologies for the offshore wind farm sector
is reviewed. The technique of extended goal programming is outlined and its flexibility in
combining different decision maker philosophies described. An extended goal programming
model for site selection based on the United Kingdom future sites is then developed and
a parametric analysis undertaken at the meta-objective level. The results are discussed and
conclusions are drawn.

Keywords Multiple objective programming · Extended goal programming ·
Offshore wind · Renewable energy

1 Introduction

Following the energy crisis in 1973, western countries have been making great efforts to
secure their energy supplies. In addition, growing concerns about atmospheric environmental
pollution and climate change has provided the catalyst to harness a larger proportion of energy
from renewable sources (e.g. wind, solar and biomass). It has also provided an opportunity
to generate a number of new ‘green’ jobs. However, these renewable energy sources need to
be able to compete economically with conventional energy sources (e.g. gas, coal and oil) in
the medium to long term or otherwise be reliant on government subsidy.

Taking the United Kingdom (UK) as an example, under the EU 2008 Renewables Direc-
tive, theUKGovernment set a national target for 15%of its total energy consumption to come
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from renewable sources by 2020. It is expected that wind energy will make the largest con-
tribution to reach this target. Although the onshore sector is much more established, the UK
government is driving forward the offshore sector given its excellent offshore wind resource
and the fact that offshore wind farms avoid many of the issues that have led to public oppo-
sition to onshore wind farms (e.g. noise, visual intrusion, land take and subsequent lengthy
planning permission periods). The Crown Estate (the organisation with responsibility for
management of UK offshore territorial waters up to 12 nautical miles from the coast) have
granted development rights in three rounds; round 1 was awarded in 2001 and consisted of
18 sites (1.5GW), round 2 was awarded in 2003 and consisted of 3 strategic areas (7GW)
and round 3 was awarded in 2010 and consisted of nine zones (31GW). During this time,
the offshore wind farms that have been granted permission have been progressively larger in
terms of area and therefore the number of turbines installed as well as being located in deeper
waters further from the coast. By June 2012, there was approximately 5GW of operational
onshore wind capacity compared to 1.9GW for offshore (Renewable 2012).

Since the mid-2000s, UK electricity generation costs have risen considerably. Between
2006 and 2010, gas, coal, nuclear, onshore wind and offshore wind has increased by 90, 219,
111, 33 and 51% respectively (offshore wind up from £99/MWh in 2006 to £149/MWh in
2010; inflation adjusted) (Heptonstall et al. 2012).

The capital expenditure (CAPEX) for offshore wind farms rose sharply from £1.5m/MW
in 2004 to £3.0m/MW in 2009 (Heptonstall et al. 2012). This has been due to a number of
factors such as risingmaterials, commodities and labour costs, currencyfluctuations and rising
turbine costs due to supply chain constraints. Other factors include increased installation and
foundation costs as well as rising operation andmaintenance costs due to the increase in depth
and distance of the turbines offshore. In addition, supply chain constraints with regards to
vessels, ports and planning delays have also had an impact on cost (Heptonstall et al. 2012).
The UKGovernment has set out an objective that offshore wind should reach a levelised cost
of energy (lifetime cost of the project per unit of energy generated) of £100/MWh. The UK
offshore wind cost reduction pathways study carried out in 2012 identified and quantified
cost reduction opportunities in order to see costs reduced from the present £140/MWh (in
2011) to £100/MWh by 2020 (Crown Estate 2012) .

The cost reductions required lead to the need for greater levels of efficiency throughout the
life-cycle of the offshore wind-farm. The offshore wind sector clearly has a strategic need to
maximise its energy production whilst minimising its cost of generation. This must be done
whilst considering the needs of other maritime stakeholders such as the fishing, container
shipping and leisure/tourism communities. Positive environmental impacts of wind farms
should be maximised whilst negative ones minimised. The opportunities for local economic
regeneration afforded by offshore wind should also bemaximised. Any road or rail disruption
caused by transportation during the construction phase should be minimised. The above
concerns clearly point to offshore wind as a sector involving decision making problems with
multiple conflicting objectives and multiple stakeholders.

This paper examines the current state-of-the-art in multiple objective modelling for the
offshore wind sector and proposes directions for future research, giving a demonstrative
case study based on the authors’ work in the 2OM (Pertin 2013) project. The remainder of
the paper is divided into three sections. Section 2 overviews the current state-of-the-art and
suggests areas of the offshore wind farm that would benefit from the development of multi-
objective models. Section 3 details the extended goal programming methodology used in this
paper. Section 4 then formulates, solves and discusses the result of a multi-objective location
selection model based on the UK future Round 3 sites. Finally, Sect. 4 draws conclusions
and gives suggestions for future research.
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2 Multi-objective modelling for the wind sector

As detailed in Sect. 1, the offshore wind sector presents a complex decision environment
where decisions have to be taken on both the strategic and operational level at various stages
of the life-cycle of the wind farm. This has led to the development of various types of
multi-objective decision making models arising. The major types detailed in the literature
are categorised in this Section, and subsequent conclusions as to topics where further models
could be developed are drawn.

2.1 Energy mix modelling

The first multi-objective to arise on a strategic energy planning level is what percentage of
electricity in a network should be generated by wind (offshore, onshore or both dependent on
the particular network being modelled). This can exist on a macro (national, regional) or on a
micro (specific system) level.A range of other energy sources are considered dependent on the
specific situation. Recent papers on this topic are described as follows: Koroneos et al. (2013)
discuss the optimal mix of renewable energy types (wind, solar, and biomass) on the Greek
Island of Lemnos. They consider environmental impact, energy demand satisfaction, energy
cost, and resource availability as objectives. Stein (2013) uses the fuzzy Analytical Hierarchy
Process (FAHP) to rank a range of energy sources including conventional and renewable.
When considered against financial, technical, environmental and socio-economic-political
objectives renewable sources in general, and wind energy in particular, were highly ranked
under a range of possible decision maker weighting scenarios. Mourmouris and Potolias
(2013) present a regional level decision support framework that considers wind, solar, bio-
mass, geothermal, and hydro renewable sources. They apply their framework to the island of
Thassos, Greece. Sampaio et al. (2013) present a goal programming city-level model which
is applied to Guaratinguetá, Brazil. Their model considers hydro-electric, biogas, natural
gas, and wind power sources. Deviations from goals relating to energy generation and envi-
ronmental targets are considered. Gitizadeh et al. (2013) give a multi-objective model that
considers the objectives of maximising economic returns, minimising fuel price rise risk and
minimising emissions.

2.2 Offshore wind farm location modelling

The issue of where to locate and layout wind farms is another decision problem involving
multiple stakeholders and multiple objectives. The issue of either selecting a set of wind
farm sites to develop or ranking a number of potential sites is concerned with the large-
scale strategic level decision making aspects of this issue. Mavrotas et al. (2003) combine
a discrete multi-criteria (ELECTRE III) and continuous (integer programming) technique
to produce a decision support system for selecting wind-farm sites in from amongst can-
didate applications in Greece. Kang et al. (2013) use the fuzzy AHP to rank the perfor-
mance of existing wind farms in Taiwan and hence provide future policy planning sugges-
tions.

Several heuristic methods have been proposed for the problem of optimally locating indi-
vidual turbines within a wind farm. These include ant-colony optimisation (Eroglu and Seck-
iner 2012); genetic algorithms (Kusiak and Song 2010); evolutionary algorithms (Saavedra-
Moreno et al. 2011); extended pattern search (Du Pont and Cagan 2012); and particle swarm
optimisation (Wan et al. 2012). Chen and MacDonald (2012) propose a genetic algorithm
based method that considers landowners preferences and willingness to sell land.
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2.3 Engineering and design modelling considerations

There are several important multi-objective modelling issues arising in the engineering and
design aspects of the design of wind farms and their components. The use of optimisation
methods for several of the engineering aspects of wind farm operation is detailed in a survey
by Banos et al. (2011). A particular area that has received attention is that of reactive power
planning, the problem of how energy produced by wind farms is fed into wider electricity
grids. This includes technical issues such as voltage control as well as pricing and regulation
considerations. Key recent papers in this area include (Niknam et al. 2012) who use a combi-
nation of non-linear programming and a interactive fuzzy satisfying method to deal with the
daily voltage control problem. Zare and Niknam (2013) use a bacterial foraging algorithm
for a similar purpose. Qiao et al. (2006) use goal programming to optimise reactive power
flow in awind generation integrated system. Bevrani andDaneshmand (2012) present a fuzzy
logic based model for optimising the Load-frequency control problem. Alonso et al. (2012)
develop a multi-objective genetic algorithm for reactive power planning that considers volt-
age stability, voltage and power loss and cost. Kargarian and Raoofat (2011) also present a
reactive power model based on non-linear multi-objective programming that considers mar-
ket payments and voltage security. Zhang and Wirth (2010) construct a heuristic designed to
deal with the variation of power from a wind turbine by optimising the use of a battery.

Multi-objective models that deal with the design or various components of the wind
turbines are beyond the scope of this paper; however several authors deal with design and
life-cycle issues at a strategicwind farm level. (Sareni et al. 2009) use amulti-objective genetic
algorithm to consider the effects of a low cost passive structure wind turbine. (Ortegon et al.
2013) discuss the issues involved in dealing with the end-of-life of wind turbines including
dismantling issues, recycling and the reverse supply chain.

2.4 Conclusions

It can be seen from the literature review undertaken in this section that some parts of the wind
farm sector have been well treated from a multi-objective decision making perspective. This
is particularly true of the energy mix and reactive power problems which consider howmuch
offshorewind farms should contribute to an overall energy strategy and how they interact with
the rest of the grid system. However, most of the papers consider on-shore or generic wind
farms and there are few works dedicated specifically to offshore wind farms. This is possibly
due to their relative newness compared to on-shore wind farms. There is also a lack of papers
relating to the multi-objective decisions arising in the logistics and supply chains of wind
farms, especially in the offshore wind sector. A good selection of multi-objective methods
can be seen in the papers reviewed with discrete and continuous multi-criteria methods and
meta-heuristic and exact solution methods all represented. The need remains to continue to
develop multiple objective models to cover all parts of the offshore wind sector that include
the realities of its multi-stakeholder environment.

3 Extended goal programming

This section details the technique of extended goal programming, the technique that is used
to model the example developed in Sect. 4. Extended goal programming is chosen as a mod-
elling tool due to its ability to combine the multiple underlying philosophies of satisficing,
optimising and balancing in amulti-objective environment (Jones and Tamiz 2010). The clas-
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sic extended goal programming formulation (Romero 2004) extended to fourmeta-objectives
(Jones and Jimenez 2013) is chosen as the decision maker also wishes to consider the number
of goals achieved and some of the preferences are given as pairwise comparisons. The non-
lexicographic version is used as the decision maker does not have a natural order in which
they wish to satisfy their goals. The algebraic form of the generalised four meta-objective
model is given as:

Min a = αλ + β
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The model is defined as having q objectives. fi (x) is a function of decision variable set x
giving the achieved value of the i’th objective which has an associated target value of bi .
Deviational variables ni and pi denote the negative and positive deviations from the i’th
target value respectively. The maximal weighted deviation from amongst the set of unwanted
deviations is denoted by λ. The weights ui and vi are associated with the relative level of
importance associated with the per unit minimisation of the negative and positive deviational
variables from the i’th target value respectively. Unwanted deviations are given a positive
weight and deviations which are not desired to be minimised are given a zero weight. si is
a binary variable that takes the value 1 if the achieved value of the i’th goal is less than the
target value and 0 otherwise. ti is a binary variable that takes the value 1 if the achieved value
of the i’th goal is greater than the target value and 0 otherwise. The si and ti variables thus
represent whether the goals have been met for the cases of unwanted negative and positive
deviations respectively. μi and υi are the relative weights representing the penalty applied
for not meeting the i’th goal in the negative and positive direction respectively. M is a large
positive constant. F is a set of hard constraints that must be satisfied in order to make the
solution feasible. The normalisation constant of the i’th objective is given by ki . Ni j and Pi j
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are the deviations from the decision maker expressed pairwise comparison of the i’th and
j’th unwanted deviational variables respectively. Q1 is the ordered set of the indices of the
unwanted negative deviational variables. Q2 is the ordered set of the indices of the unwanted
positive deviational variables and Q3 is the set of pairs of unwanted deviational variables
indices defined by:

Q3 = (i, j ∈ Q1 | i < j) ∪ (i ∈ Q1, j ∈ Q2) ∪ (i, j ∈ Q2 | i < j)

The four meta-objective extended goal programming model contains four parameters
α, β, γ, δ. Theses have the significance (with the underlying L p distance metrics given in
brackets where appropriate):

α: represents the relative importance of the meta-objective “Minimisation of the nor-
malised (L∞) maximum unwanted deviations from the set of goals ”

β: represents the relative importance of the meta-objective “Minimisation of the nor-
malised (L1) weighted sum of unwanted deviations from the set of goals“

γ : represents the relative importance of the meta-objective “Minimisation of the number
of unmet goals (L0) from the set of goals”

δ: represents the relative importance of the meta-objective “Minimisation of the discrep-
ancy between the expressed pairwise preferences of the decision maker and the actual pref-
erences indicated by the solution”

Jones and Jimenez (2013) suggest that some form of formal or informal search heuristic
is used to explore the resulting three-dimensional meta-objective parameter space given by
α, β, γ, δ | α + β + γ + δ = 1 .

4 Example: wind farm location modelling

This Section develops an extended goal programmingmodel for offshorewind farm site selec-
tion. As such, the model developed belongs under the category of multi-objective offshore
wind farm models described in Sect. 2.2. Four meta-objective extended goal programming
is used to allow for the combination of balancing, optimising, satisficing, and goal-achieving
philosophies of the decision-maker to be effectively modelled. The model built is hypothet-
ical but based on real-world characteristics of locating offshore wind farms investigated by
the 2OM research project (Pertin 2013).

4.1 Problem description and formulation

The case study presented relates to the selection of a suitable subset of the proposed UK
round three sites for the development of wind farms. These nine sites, detailed in Table 1,
have been shortlisted by the UK Crown Estate as potential new wind farm sites. A variety
of operators will apply for licences for the nine sites. The purpose of the case study is to
determine which subset(s) of sites are most attractive under different parameter settings of
an extended goal programming model that considers a relevant set of multiple objectives and
balances between underlying philosophies.

4.1.1 Selection of objectives

The primary purpose of the development round three sites is to enhance electricity production
from offshore wind, a key renewable energy source for the UK, in the period 2020–2050.
Therefore the generation of sufficient amounts of electricity from the round 3 sites is the first
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objective to be considered. This is subdivided into four seasonal objectives as the UK has
different energy consumption needs and offshore wind generation capacity across different
seasons. As the energy from offshore wind farms must be generated at as a competitive cost
as possible, theminimisation of total lifecycle cost forms the fifth objective. As offshore wind
farms also have considerable impact on other maritime users the remaining three objectives
reflect this fact. The negative impact on the fishing industry, leisure industry, and environment
are chosen as objectives six to eight.

4.1.2 Collection of data

The energy needs of the United Kingdom are taken from the figures published by the Depart-
ment of Energy and Climate Change (DECC 2014), from which the target energy generation
by season and importance of seasonal generation are set in Sect. 4.1.3. The estimated gen-
eration of electricity at each of the Round 3 sites, split by season, is derived from (Forewind
2012). This data is given by Table 1.

The cost of generation at each Round 3 site is based upon the estimated cost per turbine
from Greenacre et al. (2010), reduced to reflect future expected cost efficiencies as the
industry matures, with scaling factors relating to the distance from shore [an increase of
2.18%per kilometre beyond the closest to shore of the round 3 sites, estimated from electrical
infrastructure costs in Ernst and Young (2009)] and water depth [an increase of 7.62% per
metre beyond the shallowest of the round 3 sites, estimated from the foundation costs from
Ramboll Offshore Wind (2010). The effect of economies of scale for larger wind farms has
not been included as Dismukes and Upton (2013)] found that there was not yet sufficient
evidence to statistically prove its existence. In practice,many of these sites are been developed
in stages and may not utilise the whole area which will result in lower costs (for example
the developers of the Dogger Bank site are currently planning to only utilise 80% of the
zone).

The negative effects on the fishing industry are estimated from landings data per ICES
rectangle given by Marine Maritime Organisation (2013). The negative effects on the leisure
industry are estimated from tourism data from Oxford Economics (2013) which gives the

Table 1 Energy generation by season

MW Winter (31%) Spring (26%) Summer (15%) Autumn (28%)

1.Moray Firth 1500 465 390 225 420

2. Firth of Forth 3465 1074 901 520 970

3. Dogger Bank 9000 2790 2340 1350 2520

4.Hornsea 4000 1240 1040 600 1120

5. East Anglia 7200 2232 1872 1080 2016

6. Southern Array
(Rampion)

665 206 173 100 186

7. West of Isle of
Wight (Navitus Bay)

1200 372 312 180 336

8. Atlantic Array 1500 465 390 225 420

9. Celtic Array 4185 1297 1088 628 1172

Total 32,715 10,141 8506 4908 9160

Sources DECC (2014), Flood (2012)
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Table 2 Cost and negative
stakeholder effects

Sources Greenacre et al. (2010),
Ramboll Offshore Wind (2010),
Ernst and Young (2009), Marine
Management Organisation
(2013), Oxford Economics
(2013), DEFRA (2014)

Location Cost
(£Billions)

Fishing
impact

Leisure
impact

Environmental
impact

1. Moray Firth 5.879 2 5 4

2. Firth of Forth 17.863 7 3 2

3. Dogger Bank 127.783 6 4 5

4. Hornsea 18.310 4 5 7

5. East Anglia 35.822 6 7 9

6. Southern Array
(Rampion)

1.329 5 7 6

7. West of Isle of
Wight (Navitus Bay)

4.971 8 8 9

8. Atlantic Array 4.971 9 9 7

9. Celtic Array 16.218 4 6 5

share of employment in the tourism industry per local authority in 2012. The negative envi-
ronmental effects are estimated by data from the Department for Environment, Food and
Rural Affairs regarding Marine protected areas in the UK (DEFRA 2014). The summary of
the estimated data for cost and negative stakeholder effects is given by Table 2.

4.1.3 Parameter setting

The relevant basic parameters to be set in a goal programme are the weights to be associated
with the penalisation of unwanted deviation variables and the goal target values (Jones and
Tamiz 2010). The goal target values for electricity generation by season from the Round 3
sites are set at 10% of the UK’s demand from DECC (2014), in accordance with the UK
government’s stated aims for generation of electricity from renewable sources. The total cost
goal target is set at a challenging level of the total life cycle costs of 2 median cost wind
farms. The three stakeholder negative effects goal targets are set at the level of 20% of the
total effects from all the round 3 wind farms. These targets are empirically set at sufficient
challenging levels to ensure that all goals cannot be simultaneously achieved and hence Pareto
Inefficient solutions will not occur (Jones and Tamiz 2010).

When assigning weights, energy generation and the four other factors are of equal impor-
tance, so 50% of the weight is assigned to each category. The division amongst the energy
generation goals is not equal, as more importance is given to generating electricity in the
winter than in the summer, with intermediate values given to spring and autumn generation.
Following this logic and taking into account the seasonal energy consumption of the UK
(DECC 2014), as well as with knowledge gained on working on multiple European projects
relating to offshore wind, the authors have formed the seasonal pairwise comparison matrix
given by Table 3.

The Eigenvalue method is used to produce the first four weights to be used in the extended
goal programming achievement function. The consistency level is an acceptable 1.45%. The
full set of weights is given as:

u1 = 0.261, u2 = 0.100, u3 = 0.039, u4 = 0.100, v5 = 0.125,

v6 = 0.125, v7 = 0.125, v8 = 0.125
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Table 3 Pairwise comparison
matrix for seasonal energy
generation goals

Season Winter Spring Summer Autumn

Winter 1 3 5 3

Spring 1/3 1 3 1

Summer 1/5 1/3 1 1/3

Autumn 1/3 1 3 1

4.2 Model formulation

The decision variables are defined by the set of possible locations:

xi =
{
1 i f a wind f arm is to be constructed at location i
0 otherwise

i = 1, . . . , 9

The four seasonal requirements for energy lead to the set of the first four goals:

465x1 + 1074x2 + 2790x3 + 1240x4 + 2232x5 + 206x6
+ 372x7 + 465x8 + 1297x9 + n1 − p1 = 8976

390x1 + 901x2 + 2340x3 + 1040x4 + 1872x5 + 173x6
+ 312x7 + 390x8 + 1088x9 + n2 − p2 = 8406

225x1 + 520x2 + 1350x3 + 600x4 + 1080x5 + 100x6
+ 180x7 + 225x8 + 628x9 + n3 − p3 = 7340

420x1 + 970x2 + 2520x3 + 1120x4 + 2016x5 + 186x6
+ 336x7 + 420x8 + 1172x9 + n4 − p4 = 7976

The total life cycle cost (In £Billions), fishing community impact, leisure community impact,
and environmental impact goals are formulated as the respective set of four goals below:

5.879x1 + 17.863x2 + 127.783x3 + 18.310x4 + 35.822x5 + 1.329x6
+ 4.971x7 + 4.971x8 + 16.218x9 + n5 − p5 = 32.436

2x1 + 7x2 + 6x3 + 4x4 + 6x5 + 5x6 + 8x7 + 9x8 + 4x9 + n6 − p6 = 15

5x1 + 3x2 + 4x3 + 5x4 + 7x5 + 7x6 + 8x7 + 9x8 + 6x9 + n7 − p7 = 16

4x1 + 2x2 + 5x3 + 7x4 + 9x5 + 6x6 + 9x7 + 7x8 + 5x9 + n8 − p8 = 16

where ni is a deviational variable that represents the negative deviation from the i’th goal
and pi is a deviational variable represents the positive deviation from the i’th goal. Table 4
details the context of the goals andwhich deviations are unwanted and hencewill be penalised
in the achievement function. Unwanted deviational variables are also underscored in their
respective goal equation.

4.2.1 Formation of achievement function and complete goal programme

The Jones and Jimenez (2013) methodology has a parametric four meta-objective achieve-
ment function of the form:

MINa = αL1 + βL∞ + γ L∞ + δL pc

where L1 represents a weighted sum of unwanted deviations and is hence associated with
optimisation. L∞ represents the minimisation of the maximal weighted unwanted deviation
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Table 4 Significance of goals
and deviational variables to be
penalised

Goal Significance Deviational variable
to be penalised

1 Energy generation—winter Negative

2 Energy generation—spring Negative

3 Energy generation—summer Negative

4 Energy generation—autumn Negative

5 Cost Positive

6 Fishing community impact Positive

7 Leisure community impact Positive

8 Environmental impacts Positive

and is hence associated with achieving a balance between goals. L0 represents the number
of unmet goals and is hence associated with goal seeking behaviour, and L pc represents the
distance from the decision makers expressed pairwise comparisons and is hence a measure of
consistency with preferences α, β, γ, δ being parameters that control the respective amount
of L1, L∞, L0,L pc weighting in the achievement function. Using this representation yields
the following algebraic formulation of the extended goal programming model:

Min a = αλ + β

(
0.261n1
8976

+ 0.1n2
8406

+ 0.039n3
7340

+ 0.1n4
7976

+ 0.125p5
32.436

+ 0.125p6
15

+ 0.125p7
16

+ 0.125p8
16

)

+ γ

(
0.261s1
8976

+ 0.1s2
8406

+ 0.039s3
7340

+ 0.1s4
7976

+ 0.125t5
32.436

+ 0.125t6
15

+ 0.125t7
16

+ 0.125t8
16

)

+ δ

6

∑

i, j=1,...,4,i< j

(
Ni j + Pi j

)

Subject to,

465x1 + 1074x2 + 2790x3 + 1240x4 + 2232x5 + 206x6 + 372x7 + 465x8
+1297x9 + n1 − p1 = 8976

390x1 + 901x2 + 2340x3 + 1040x4 + 1872x5 + 173x6 + 312x7 + 390x8
+1088x9 + n2 − p2 = 8406

225x1 + 520x2 + 1350x3 + 600x4 + 1080x5 + 100x6 + 180x7 + 225x8
+628x9 + n3 − p3 = 7340

420x1 + 970x2 + 2520x3 + 1120x4 + 2016x5 + 186x6 + 336x7 + 420x8
+1172x9 + n4 − p4 = 7976

5.879x1 + 17.863x2 + 127.783x3 + 18.310x4 + 35.822x5 + 1.329x6 + 4.971x7
+4.971x8 + 16.218x9 + n5 − p5 = 32.436

2x1 + 7x2 + 6x3 + 4x4 + 6x5 + 5x6 + 8x7 + 9x8 + 4x9 + n6 − p6 = 15

5x1 + 3x2 + 4x3 + 5x4 + 7x5 + 7x6 + 8x7 + 9x8 + 6x9 + n7 − p7 = 16

4x1 + 2x2 + 5x3 + 7x4 + 9x5 + 6x6 + 9x7 + 7x8 + 5x9 + n8 − p8 = 16

0.261n1
8976

≤ λ,
0.1n2
8406

≤ λ,
0.039n3
7340

≤ λ,
0.1n4
7976

≤ λ

0.125p5
32.436

≤ λ,
0.125p6

15
≤ λ,

0.125p7
16

≤ λ,
0.125p8

16
≤ λ
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ni − Msi ≤ 0 i = 1, . . . , 4

pi − Mti ≤ 0 i = 5, . . . , 8
ui
u j

ni
bi

− n j

b j
+ Ni j − Pi j = 0 i, j = 1, . . . , 4 i < j

xi = 0 or 1 i = 1, . . . , 9; ni , pi ≥ 0 i = 1, . . . , 8; si = 0 or 1 i = 1, . . . , 4;
ti = 0 or 1 i = 5, . . . , 8; λ ≥ 0, ni pi = 0 i = 1, . . . , 8

where λ is the maximal weighted, unwanted deviation. si is a binary variable that takes the
value 1 if the negative deviational variable of the i’th goal takes a positive value and value
0 otherwise. ti is a binary variable that takes the value 1 if the positive deviational variable
of the i’th goal takes a positive value and value 0 otherwise. The si and ti variables thus act
as indicators as to whether a goal has been met or not. All unwanted deviational variables,
as well as the si and ti variables have been normalised by the target value of the associated
goal (i.e. ki = bi ) in the achievement function in order to reflect their relative importance
as this is deemed appropriate in the context of this application. The variables Ni j and Pi j
represent the respective negative and positive deviation from the decision makers desired
pairwise comparison between the i’th and j’th objectives. Unwanted deviational variables
are underscored in their respective goal equation.

4.3 Experimentation and discussion of results

The Jones (2011) weight sensitivity analysis algorithm is used in meta-weight (α, β, γ, δ)

space in order to investigate the effect varying the mix of underlying philosophies will have
on the location decision and to produce a diverse range of potential solutions. The input
parameters of the algorithm are set as TMax = 2 (vary at most two simultaneously) and
Maxlevel=2 (perform atmost two bisections in each search direction). No further restrictions
are placed on the values of (α, β, γ, δ) other than the normalising α + β + γ + δ = 1
constraint in order to ensure a wide range of solutions. The equal meta-weight solution
α = β = γ = δ = 0.25 is used as the starting point for the algorithm and minimum values
for each meta-weight are set at 0.025 rather than 0 to ensure inefficiency does not occur in
meta-weight space. The resulting 25 extended goal programming models are solved using
LINGO 14 (LINDO 2014), each taking less than a second on a standard desktop PC. Eleven
distinct solutions are found by the algorithm. These are listed in Table 5 in decision and
objective space, along with the first set of meta-weights at which the solution was found.

4.3.1 Discussion of results

The algorithm has shown to be effective in producing a range of results, with varying location
decisions and levels of goal achievement dependent on which set of meta-objectives are
given importance. The problem as posed is seen to be truly multi-objective in nature, the
challenging goal levels set have ensured that at most three goals are completely achieved by
any solution, with the ambitious energy generation goals never being completely met by any
of the generated solutions. Considering themeta-objectives in turn, the equal weights solution
(A) produced a reasonable balance between factors as expected but did not meet any goals.
Increasing the balance meta-objective led to solutions (B) and (C) which lowered cost but at
the expense of worse energy generation. Increasing the efficiency meta-weight led to the less
balanced solution (D) that did not produce so much energy but had significantly less cost and
met the stakeholder goals. Increasing the number of goals meta-weight led to a similar but
slightly less extreme solution (E). Solutions (D) and (E) had a relatively low number of wind
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farms. Increasing either the consistency with AHP meta-weight (which is concerned with
the subset of goals relating to energy), either alone producing solutions (F) and (G) or with
balance producing solutions (I), (J) and (K) leads to the building of more wind farms which
improves the energy situation but at the expense of extra costs and stakeholder dissatisfaction.
Solutions (F) and (G) are particularly extreme in terms of cost increase whereas solution (I)
is extreme in terms of stakeholder dissatisfaction increase. Finally, solution (H) is produced
by increasing balance and efficiency meta-weights and shows a solution that is low cost and
meets stakeholder goals, but at the expense of energy generation.

With regards to the locations chosen in decision variable space, it is first important to
note that every solution chose to build at least three wind farms, with a maximum of 8
of the 9 in solution (I). Another important fact to note is that every wind farm is chosen
in at least one of the eleven solutions. The most commonly chosen wind farms across all
solutions are 9-Celtic Array, 2-Firth of Forth, 1-Moray Firth, 4-Hornsea and 5-East Anglia.
Less commonly chosen are 6-Southern Array and 7-West Isle of Wight. It is hypothesised
that this is because of the large stakeholder impacts relative to the energy production levels at
this sites. Also not commonly chosen, although for a different reason, is 3-Dogger Bank. This
is not commonly chosen because of its huge estimated cost compared to other wind farms
via the methodology used in this paper. It should be noted, however, that future technological
advances and learning curve effects may well lower the future estimated cost of this, and
other, wind farms.

5 Conclusions and future research

A use of four meta-objective extended goal programming has been presented in this paper for
a site-selection problem typical of those arising in the offshore wind farm sector. The model
developed serves to demonstrate themulti-criteria, multi-stakeholder nature of decisionmak-
ing in the offshore wind farm sector. Economic, technical, sociological, and environmental
considerations all play a part in determining the optimal course of action. The ambitious
future offshore wind strategy of the United Kingdom, as encapsulated by the future Round
3 sites has been shown to have strong trade-offs between the energy generation, cost, and
stakeholder impacts considered. Extended goal programming has been shown to be an appro-
priate technique to use due to its flexibility in combining different underlying philosophies
and hence its ability to produce solutions that reflect the full range of underlying criteria. It is
noted that excluding any of the four meta-objectives used in the case study in Sect. 4 would
have led to less diverse range of potential solutions.

The literature review in Sect. 2 demonstrates the need to develop multiple objective
models specifically for the offshore wind sector that are able to reduce unit energy costs
by identifying efficiencies and technical improvements, whilst still considering and opti-
mising social-economical and environmental objectives. In particular, the application of
multiple objective techniques to the general field of the logistics and supply chain of on-
shore or off-shore wind farm modelling is still a field in its infancy in terms of scientific
publications.

The model developed in Sect. 4 is designed as a base level model to identify the trade-offs
that occur. As further information becomes available due to the maturing of the offshore wind
sector the data can be revisited in order to investigate if the solutions and trade-offs produced
are changing. Other goal programming variants such as fuzzy or stochastic constrained goal
programming could also be investigated in order to take into account the uncertainty around
some of the model data, although the number of parameters to be set when combined with the
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four meta-objective extended goal programming framework could make this a challenging
combination in terms of parameter setting and sensitivity analysis.
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