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Abstract In this paper, we study a scheduling model in which the features of deteriorating
jobs, serial batches, multiple job types, and setup times are considered simultaneously. In
this proposed model, the jobs of each type are first partitioned into serial batches, and then
all batches of different job types are processed on a single serial-batching machine. The
actual job processing time is an increasing function of its starting time, and the setup time
of the batches is sequence-dependent, i.e., setup time is required only when a new batch is
processed first on the machine or immediately after a batch belonging to another job type.
We develop optimization algorithms to solve the makespan minimization problem, the maxi-
mum tardiness minimization problem, the maximum lateness minimization problem, and the
maximum earliness minimization problem, respectively. We also propose optimization algo-
rithms to solve the problem of minimizing the number of tardy jobs under a certain agreeable
condition. Finally, we discuss two special cases of the total completion time minimization
problem and develop optimization algorithms to solve them.
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1 Introduction

In classic scheduling problems, the job processing times are assumed to be fixed during the
entire production. However, this assumption might not be appropriate in many real-world
situations. One is known as job deterioration in scheduling, and a deteriorating job can
be described as its processing time grows when it awaits to be processed. The schedul-
ing problem of deteriorating jobs was first introduced by Gupta and Gupta (1988) and
Browne and Yechiali (1990), and extensive reviews on deteriorating jobs models were pro-
vided by Cheng et al. (2004) and Gawiejnowicz (2008). In recent years, more and more
researchers have paid attentions to the scheduling problems with deteriorating jobs (Zhang
et al. 2001).

As another popular topic in scheduling research, batch production exists in many pro-
duction situations. Batch scheduling includes two types of processing, referring to parallel-
batching and serial-batching. There are somepapers addressing the parallel-batching schedul-
ing problems with deteriorating jobs in recent years (Qi et al. 2009; Li et al. 2011; Miao et al.
2011, 2012). Qi et al. (2009) considered the unbounded model for several single machine
problems, and they developed effective algorithms for minimizing the maximum cost, the
number of tardy jobs, and the total weighted completion time, respectively. Li et al. (2011)
investigated the problem of scheduling deteriorating jobs with release times on a single batch
machine, where both unbounded and bounded models were considered. Miao et al. (2011)
studied the bounded parallel-batch scheduling problem on single and multiple machines for
deteriorating jobs. Miao et al. (2012) investigated the scheduling problem of deteriorating
jobs on a single machine, where all jobs have different release times and the objective is
to minimize the maximum lateness. However, research on serial-scheduling problems with
deteriorating jobs is relatively unexplored. In Pei et al. (2015), we investigated the problem of
the serial-batching scheduling with deteriorating jobs in an aluminummanufacturing factory
for the first time, where all the jobs are first partitioned into serial batches and then processed
on a single serial-batching machine. Before each batch is processed, an independent constant
setup time is required. After further research on aluminum manufacturing process, in this
paper we propose another type of scheduling problem with deteriorating jobs. Aluminum
ingots are of multiple types, each of which includes a certain number of aluminum ingots.
Each type of aluminum ingots is first partitioned into multiple batches, and then all batches
of different job types are processed on a single serial-batching machine. The setup time
before processing a batch is sequence-dependent. That is, if a new batch is the first batch to
be processed on the machine or its previous batch is of a different job type, then the setup
time for this new batch is required. Based on these two production characteristics, i.e., dif-
ferent job types and sequence-dependent setup times, the problem studied in this paper is
different from that in our previous work (Pei et al. 2015). Thus, we investigate a new type of
serial-batching scheduling problem with deteriorating jobs in practical production, and this
research can further enhance productivity of the aluminum manufacturing factory.

Many papers on batch scheduling problems have taken into account sequence-dependent
setup time as in this study (Agnetis et al. 2001; Detti et al. 2007; Liao et al. 2011), while
this particular sequence-dependent setup time is different from the past-sequence-dependent
(p-s-d) setup time considered in most scheduling problems with deteriorating jobs, where the
p-s-d setup time is usually determined by the job position (Lai et al. 2011; Huang et al. 2013;
Lee 2014). In addition, the group scheduling problems with deteriorating jobs are similar
to the problem of our study. In the group scheduling problems, the jobs are classified into
certain groups in advance based on similar production requirements.Wu et al. (2008) recently
investigated the framework of minimizing the makespan and total completion time in group
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Table 1 Comparisons of group scheduling problems with deteriorating jobs in recent research

Publications Job processing time Set-up time Objectives

Wang et al. (2009) pi j = ai j + bi j t si = ci + di t Cmax

Wang and Sun (2010) pi j = ai j − bi j t si = ci − di t Cmax ; ∑
wi Ci

Huang et al. (2011) pi jr (t) =
pi j

(
αar−1

i + β
)

(bt + c)

si = f (ui ) Cmax ; ∑
u j

Yang (2011) pri j = pi j + ci tir ; pri j =
pi j r

ai ; pri j =
(
pi j + ci tir

)
rai

sik = si k
b Cmax ; TC

Bai et al. (2012) pAi jr =

pi j fi

(
r−1∑

l=1
pi[l]

)

gi (r)

si = ai + bi t Cmax ; ∑
C j

Lee and Lu (2012) p j = α j t si = θi t
∑

w jU j

Wang et al. (2012) pi j = αi j t Constant Cmax

Wang et al. (2014) pAi j =
( pi j
ui j

)k + αt s Ai = si + βt −
βi ; s Ai =
(
si
ui

)k + βt

δ1Cmax +
δ2

m∑

i=1

n j∑

j=1
Vi j ui j +

δ3
m∑

i=1
Wiui

scheduling problems with deteriorating jobs on a single-machine.Wang et al. (2008) recently
studied the single-machine scheduling problemwith deteriorating jobs and group technology
assumptions and considered the makespan minimization problem and the total weighted
completion timeminimization problem, where the group setup times are described by a linear
function. More recent papers that studied group scheduling problems with deteriorating jobs
include (Wang et al. 2009; Wang and Sun 2010; Huang et al. 2011; Yang 2011; Bai et al.
2012; Lee and Lu 2012; Wang et al. 2012, 2014), which are compared in Table 1. There is
some similarity between the serial-batching problems and group scheduling problems, that
is, the jobs in a batch or group are processed one after another. However, there are also several
significant differences between themwhich should be addressed here, as discussed in Table 2.

In this paper, we further extend our previous research, focusing instead on a general
linear deterioration with different job types and sequence-dependent setup times. To the
best of our knowledge, the problem of scheduling deteriorating jobs of different types on a
serial-batching machine with sequence-dependent setup times has not been considered by
other researchers, but it inevitably happens in many production areas. Based on the derived
structural properties of the studied problem in this paper, some optimization algorithms are
developed to solve the problems of minimizing the makespan, the maximum tardiness, the
maximum lateness, and themaximumearliness, the number of tardy jobs, the total completion
time of jobs, respectively. In the real production, the schedulers usually cannot well analyze
the characteristics of these scheduling problems before making schedule plans, thus result
in sub-optimal schedule plans. Furthermore, since the schedule rules are not specific and the
workers may operate optionally when performing the schedule plans, so the productivity is
low. This paper analyzes the problems with different objectives, and develops algorithms
based on the properties of the problem. The procedures of these algorithms are clear and
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Table 2 Differences between group and serial-batching scheduling problems

Factors Group scheduling problems (Wang et al.
2009; Wang and Sun 2010; Huang et al.
2011; Yang 2011; Bai et al. 2012; Lee and
Lu 2012; Wang et al. 2012, 2014)

Serial-batching scheduling problems

Classifying/batching Job has been classified into certain
groups beforehand

Both decisions on job batching and
batch sequencing need to be made
for each type of jobs

Job completion time The jobs in the same group have different
completion times

The jobs in the same batch have the
same completion time which is
equal to the completion time of the
last job in that batch

Machine capacity The machine capacity doesn’t need to be
considered

The machine capacity should be
taken into account

Setup time Setup time is needed before each group
if it is considered

Setup time is required when a new
batch is the first batch to be
processed on the machine or its
previous batch is of a different type

definite with high operability, which can be directly used in the real production to enhance
productivity.

The reminder of this paper is organized as follows. The notation and problem description
are given in Sect. 2. The solution procedures for the makespan minimization problem, the
maximum tardiness minimization problem, the maximum lateness minimization problem,
and the maximum earliness minimization problem are described in Sects. 3 and 4, respec-
tively. We present our solution procedure for the problem of minimizing the number of tardy
jobs under a certain agreeable condition in Sect. 5. In Sect. 6, two special cases are ana-
lyzed for the total completion time minimization problem. Finally, the conclusion is given in
Sect. 7.

2 Notation and problem description

We first describe the notation used in this paper in Table 3.
There are N jobs to be processed on a single serial-batching machine, each of which

belongs to one of n job types. Each type of jobs is first partitioned into multiple serial
batches. Then the batches of different job types are processed on a single machine. Serial
batches require that all the jobs within the same batch are processed one after another in a
serial fashion (Xuan and Tang 2007), and the completion times of all jobs are equal to that
of their batch, which is defined as the completion time of the last job in the batch. When a
new batch is processed first on the machine or immediately after a batch of another job type,
a setup time s is required. The number of jobs in a batch cannot be more than the machine
capacity b, that is, nk ≤ b. All jobs are available at time t0, where t0 > 0. As in Pei et al.
(2015), the actual processing time of Ji is indicated as a linear function of its starting time t ,
that is,

pi = ai t, i = 1, 2, · · ·, N

where ai and t are the deterioration rate and the starting time of Ji , respectively.
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Table 3 The list of the notation

n The number of job types

Fl The job set for job type l, l = 1, 2, · · · , n

ql The number of jobs in Fl , l = 1, 2, · · · , n

a (Fl ) The deteriorating rate of the jobs from job type l, l = 1, 2, · · · , n

N The total number of jobs, i.e., N = q1 + q2 + · · · + qn

Ji Job i , i = 1, 2, · · · , N

pi The actual processing time of job i , i = 1, 2, · · · , N

m The number of batches

bk Batch k, k = 1, 2, · · · ,m

nk The number of jobs in batch k, k = 1, 2, · · · ,m

S (bk ) The starting time of batch k, k = 1, 2, · · · ,m

C (bk ) The completion time of batch k, k = 1, 2, · · · ,m

ai The deteriorating rate of the processing time for job i ,ai = a (Fl ) for Ji ∈ Fl , i = 1, 2, · · · , N ,
l = 1, 2, · · · , n

b (k) The deteriorating rate of batch k, b (k) = ai for Ji ∈ bk ,i = 1, 2, · · · , N , k = 1, 2, · · · ,m

s The setup time

d The common due date of all jobs

b The capacity of the serial-batching machine, i.e., the maximum number of jobs in a batch

xk j If batches k and j belong to different job types, then xk j = 1; otherwise, xk j = 0

π A schedule of N jobs

Ci (π) The completion time of job i in a given schedule π , i = 1, 2, · · · , N

Cmax The makespan of all jobs

Tmax The maximum tardiness of all jobs

Lmax The maximum lateness of all jobs

Emax The maximum earliness of all jobs
∑N

i=1Ui The number of tardy jobs
∑N

i=1 Ci The total completion time of all jobs

For a schedule π , let Ci (π) be the completion time of Ji . Using the traditional nota-
tion, we adopt Cmax = maxi=1,2,··· ,N {Ci }, Tmax = maxi=1,2,··· ,N {0,Ci − d}, Lmax =
maxi=1,2,··· ,N {Ci − d}, Emax = maxi=1,2,··· ,N {0, d − Ci }, ∑N

i=1Ui , and
∑N

i=1 Ci to rep-
resent themakespan,maximum tardiness, maximum lateness, maximum earliness, total num-
ber of tardy jobs, and total completion time, respectively, where Ui = 1 if Ci > d and 0
otherwise. In the remaining sections of the paper, all the problems considered will be denoted
using the three-field notation schema α |β| γ introduced by Graham et al. (1979).

3 Problem 1 |s − batch, pi = ai t, ssd |Cmax

In this section, the makespan minimization problem 1 |s − batch, pi = ai t, ssd |Cmax is
studied. Some properties of the makespan minimization problem for any given schedule π

are given in the following.
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Lemma 1 For any given schedule π = (b1, b2, · · · , bm), with the first batch b1 starting at
time t0 > 0, the makespan of schedule π is

Cmax (π) = (t0 + s)
m∏

k=1

(1 + b (k))nk +
m∑

k=2

x(k−1)ks
m∏

f =k

(1 + b ( f ))n f (1)

Proof We can use mathematical induction to prove this lemma based on the number of
batches. Firstly for m = 1 we have

C (b1) = (t0 + s) (1 + b (1))n1 ,

so Eq. (1) holds for m = 1. Suppose for all 2 ≤ j ≤ m − 1, Eq. (1) is satisfied. We have

C
(
b j

) = (t0 + s)
j∏

k=1

(1 + b (k))nk +
j∑

k=2

x(k−1)ks
j∏

f =k

(1 + b ( f ))n f .

Then, for the ( j + 1)th batch b j+1,

C
(
b j+1

) = [
C

(
b j

) + x j( j+1)s
]
(1 + b ( j + 1))n( j+1)

=
⎡

⎣(t0 + s)
j∏

k=1

(1 + b (k))nk +
j∑

k=2

x(k−1)ks
j∏

f =k

(1 + b ( f ))n f

+ x j( j+1)s

⎤

⎦ (1 + b ( j + 1))n( j+1)

= (t0+s)
j+1∏

k=1

(1 + b (k))nk + (1 + b ( j + 1))n( j+1) ·
j∑

k=2

x(k−1)ks
j∏

f =k

(1+b ( f ))n f

+ x j( j+1)s · (1 + b ( j + 1))n( j+1)

= (t0 + s)
j+1∏

k=1

(1 + b (k))nk +
j+1∑

k=2

x(k−1)ks
j+1∏

f =k

(1 + b ( f ))n f .

Hence, Eq. (1) holds for m = j + 1. Note that Cmax (π) = C (bm), the lemma is proved by
the induction. ��
Lemma 2 For the problem 1 |s − batch, pi = ai t, ssd |Cmax , if there exits xk(k+1) =
0 (k = 1, 2, · · · ,m − 1) in a given schedule, then the solution of this schedule remains
unchanged when bk and bk+1 are swapped.

Lemma 3 For the problem 1 |s − batch, pi = ai t, ssd |Cmax , if any two jobs are swapped
in a batch for a given schedule, then the solution of this schedule remains unchanged.

Based on Lemmas 2 and 3, we have the following corollary.

Corollary 1 For the problem 1 |s − batch, pi = ai t, ssd |Cmax , if there exits xk(k+1) =
0 (k = 1, 2, · · · ,m − 1) in a given schedule, then the solution of this schedule is independent
of the pattern of jobs batching and batches sequencing of the jobs in these two batches.

Lemma 4 For the problem 1 |s − batch, pi = ai t, ssd |Cmax , the generated batches from
the same job type are processed consecutively in an optimal schedule.
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Proof Let π∗ and π be an optimal schedule and a job schedule, respectively. The difference
between the two schedules is the transfer of a batch bq , that is, π∗ = (

W1, bp,W2, bq ,W3
)
,

π = (
W1, bp, bq ,W2,W3

)
. After bp , bq is the first batch of the same job type as bp ,W1,W2,

and W3 represent three partial sequences, W1 or W3 may be empty, and W2 is not empty. It
is easy to see that xp(p+1) = 1 and x(q−1)q = 1.

For π∗, the completion time of bq is

C
(
bq

(
π∗)) = [

C
(
bq−1

(
π∗)) + s

]
(1 + b (q))nq

=
⎡

⎣C
(
bp+1

(
π∗))

q−1∏

k=p+2

(1 + b (k))nk

+
q−1∑

k=p+2

x(k−1)ks
q−1∏

f =k

(1 + b ( f ))n f + s

⎤

⎦ (1 + b (q))nq

=
⎡

⎣
(
C

(
bp

(
π∗)) + s

)
(1 + b (p + 1))n p+1

q−1∏

k=p+2

(1 + b (k))nk

+
q−1∑

k=p+2

x(k−1)ks
q−1∏

f =k

(1 + b ( f ))n f + s

⎤

⎦ (1 + b (q))nq

= (
C

(
bp

(
π∗)) + s

)
q∏

k=p+1

(1 + b (k))nk

+ (1 + b (q))nq
q−1∑

k=p+2

x(k−1)ks
q−1∏

f =k

(1 + b ( f ))n f

+ s (1 + b (q))nq .

For π , the completion time of bp+1 and bq−1 are respectively

C
(
bp+1 (π)

) = [
C

(
bq (π)

) + s
]
(1 + b (p + 1))n p+1

= C
(
bp

(
π∗)) (1 + b (q))nq (1 + b (p + 1))n p+1

+ s (1 + b (p + 1))n p+1 ,C
(
bq−1 (π)

)

= C
(
bp+1 (π)

)
q−1∏

k=p+2

(1 + b (k))nk +
q−1∑

k=p+2

x(k−1)ks
q−1∏

f =k

(1 + b ( f ))n f

= C
(
bp

(
π∗))

q∏

k=p+1

(1 + b (k))nk + s
q−1∏

k=p+1

(1 + b (k))nk

+
q−1∑

k=p+2

x(k−1)ks
q−1∏

f =k

(1 + b ( f ))n f .
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Then, we have

C
(
bq

(
π∗)) − C

(
bq−1 (π)

) = s
[
(1 + b (q))nq − 1

]
⎡

⎣
q−1∏

k=p+1

(1 + b (k))nk

+
q−1∑

k=p+2

x(k−1)k

q−1∏

f =k

(1 + b ( f ))n f

⎤

⎦ + s (1+b (q))nq >0.

It can be deduced that C
(
bq (π∗)

)
> C

(
bq−1 (π)

)
, which conflicts with the optimality of

C∗
max . Thus, we can transfer the batches until the batches of the same job type are processed

consecutively. This completes the proof. ��
Lemma 5 For the problem 1 |s − batch, pi = ai t, ssd |Cmax , if the generated batches of
the same job type are processed consecutively in a given schedule π , then the makespan of
schedule π is

Cmax (π) = t0

n∏

l=1

(1 + a (Fl))
ql + s

n∑

l=1

n∏

f =l

(
1 + a

(
Ff

))q f (2)

Proof The proof is similar to that of Lemma 1, and it is omitted. ��
Lemma 6 For the problem 1 |s − batch, pi = ai t, ssd |Cmax , considering two consecutive
job sets of types r and r + 1, if ρ (Fr ) ≥ ρ (Fr+1), where ρ (Fr ) = (1 + a (Fr ))qr , r =
1, 2, · · · , n − 1, then it is optimal to process Fr before Fr+1. ��
Proof Let π∗ and π be an optimal schedule and a job schedule. The difference
between these two schedules is the pairwise interchange of these two job sets Fr and
Fr+1 (r = 1, 2, · · · , n − 1), that is, π∗ = (W1, Fr , Fr+1,W2), π = (W1, Fr+1, Fr ,W2),
where Fr and Fr+1 are the job sets of types r and r + 1, both of which may include one or
multiple batches, W1 and W2 represent two partial sequences, and W1 or W2 may be empty.
We assume that ρ (Fr ) < ρ (Fr+1), i.e., (1 + a (Fr ))qr < (1 + a (Fr+1))

qr+1 . ��
For π∗, the completion time of Fr+1 is

C
(
Fr+1

(
π∗)) = t0

r+1∏

l=1

(1 + a (Fl))
ql + s

r+1∑

l=1

r+1∏

f =l

(
1 + a

(
Ff

))q f ,

For π , the completion time of Fr+1 and Fr are respectively

C (Fr+1 (π))

=
⎡

⎣t0

r−1∏

l=1

(1+a (Fl))
ql +s

r−1∑

l=1

r−1∏

f =l

(
1 + a

(
Ff

))q f + s

⎤

⎦ (1 + a (Fr+1))
qr+1 ,C (Fr (π))

= [
C (Fr+1 (π)) + s

]
(1 + a (Fr ))

qr

=
⎧
⎨

⎩

⎡

⎣t0

r−1∏

l=1

(1 + a (Fl))
ql + s

r−1∑

l=1

r−1∏

f =l

(
1 + a

(
Ff

))q f + s

⎤

⎦ (1 + a (Fr+1))
qr+1 + s

⎫
⎬

⎭

(1 + a (Fr ))
qr

= t0

r+1∏

l=1

(1 + a (Fl))
ql + s

r∑

l=1

r+1∏

f =l

(
1 + a

(
Ff

))q f + s (1 + a (Fr ))
qr .

123



Ann Oper Res (2017) 249:175–195 183

Then,

C
(
Fr+1

(
π∗)) − C (Fr (π))

= s
r+1∑

l=1

r+1∏

f =l

(
1 + a

(
Ff

))q f −
⎡

⎣s
r∑

l=1

r+1∏

f =l

(
1 + a

(
Ff

))q f + s (1 + a (Fr ))
qr

⎤

⎦

= s
[
(1 + a (Fr+1))

qr+1 − (1 + a (Fr ))
qr

]
> 0,

which conflicts with the optimal schedule. Hence, (1 + a (Fr ))qr ≥ (1 + a (Fr+1))
qr+1 . This

proves the lemma.
Thus, Lemmas 4 and 6 imply that all jobs from the same job type are processed consecu-

tively and the job sets of all types should be sequenced in non-increasing order of ρ (Fr ) in
an optimal schedule. There is only once setup for each type of job sets.

Based on the above lemmas, the following Algorithm 1 is designed to solve the problem
1 |s − batch, pi = ai t, ssd |Cmax .

Algorithm 1

Step 1. Calculate ρ (Fl ) = (1 + a (Fl ))
ql , l = 1, 2, · · · , n.

Step 2. Sequence the jobs of the same type together, and then sequence the job sets of all types in
non-increasing order of ρ (Fl ), i.e., ρ (F1) ≥ ρ (F2) ≥ · · · ≥ ρ (Fn). Set l = 0.

Step 3. Set l = l + 1.
Step 4. If there are more than b jobs in Fl , then place the first b jobs in a batch and iterate. Otherwise,

place the remaining jobs in a batch.
Step 5. If l = n, then stop and schedule the batches in their generation order at timet0. Otherwise, go

to step 3.

Compared with Algorithm R-FBLDR proposed in Pei et al. (2015), the jobs of the same
type should be first sequenced together and then the job sets of all types is sequenced based
on the value of ρ (Fl) in Algorithm 1.

Theorem 1 For the problem 1 |s − batch, pi = ai t, ssd |Cmax , an optimal schedule can be
obtained by Algorithm 1 in O (N log N ) time. If the job sets of all types are sequenced in
non-increasing order of (1 + a (Fl))ql (l = 1, 2, · · · , n), then the optimal makespan is

C∗
max = t0

n∏

l=1

(1 + a (Fl))
ql + s

n∑

l=1

n∏

f =l

(
1 + a

(
Ff

))q f (3)

Proof Based on Lemmas 1–6, an optimal solution can be generated by Algorithm 1. We
can also obtain the result of the optimal solution as Eq. (3) based on Lemma 5. The time
complexity of step 1 is O (n) and the time complexity of obtaining the optimal job set
sequence of all types in step 2 is O (n log n), and the total time complexity of steps 3, 4,
and 5 is O (n). Then, we have n ≤ N . Thus, the time complexity of Algorithm 1 is at most
O (N log N ).

Corollary 2 Algorithm 1 can obtain an optimal schedule for the problem
1 |s − batch, pi = ai t, ssd | Tmax .
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Proof It can be deduced that

Tmax = max
i=1,2,··· ,N {0,Ci − d} = max

{

0, max
i=1,2,··· ,N {Ci } − d

}

= max {0,Cmax − d}.

Since d is a constant, the maximum tardiness of all jobs is minimized when Cmax is min-
imized. Based on Theorem 1, Algorithm 1 can obtain the minimum Cmax for the problem
1 |s − batch, pi = ai t, ssd |Cmax . This completes the proof. ��
Corollary 3 Algorithm 1 can obtain an optimal schedule for the problem

1 |s − batch, pi = ai t, ssd | Lmax .

Proof We have Lmax = maxi=1,2,··· ,N {Ci − d}. Hence, the proof is similar to that of Corol-
lary 2, and it is omitted. ��

Corollaries 2 and 3 imply that Algorithm1 can obtain an optimal schedule for the problems
1 |s − batch, pi = ai t, ssd |Cmax , 1 |s − batch, pi = ai t, ssd | Tmax , and

1 |s − batch, pi = ai t, ssd | Lmax simultaneously.

4 Problem 1
∣
∣s − batch, pi = ai t, spsd

∣
∣ Emax

In this section, we focus on the problem of minimizing the maximum earliness of all jobs.
As commonly assumed in the previous work involving earliness (Yin et al. 2012), all jobs are
restricted to be completed prior to the common due date d , otherwise each job can be trivially
scheduled sufficiently late to avoid earliness cost. Thus, it should be d ≥ t0 + ∑n

l=1 pi . Let
π be a feasible schedule. The earliness of job Ji is given by Ei = {0, d − Ci }, and the
maximum earliness is defined as Emax = max

i=1,2,··· ,N Ei . We first develop some properties as

follows.

Lemma 7 There is an optimal schedule with the first batch b1 starting at time t0 such that
(t0 + s)

∏m
k=1 (1 + b (k))nk + ∑m

k=2 x(k−1)ks
∏m

f =k (1 + b ( f ))n f = d, and there is no idle
time between consecutive batches or consecutive jobs in the same batch.

Proof All jobs need to be scheduled as late as possible and also satisfy the constraint
that their completion times are prior to the common due date. Hence, the completion
time of the last batch should be just equal to the common due date. Then, we have
(t0 + s)

∏m
k=1 (1 + b (k))nk + ∑m

k=2 x(k−1)ks
∏m

f =k (1 + b ( f ))n f = d based on Lemma 1.
In addition, if there is any idle time between consecutive batches or consecutive jobs in the
same batch, then the maximum earliness will be increased as the starting time t0 gets shorter.
Thus, there is no idle time between them. ��
Lemma 8 There is an optimal schedule in which the number of jobs in the first batch b1 is
n1 = min {b, qr }, where the jobs in b1 are of the job type r, and r = 1, 2, · · · , n.

Proof Since the completion time of a job is equal to the completion time of the batch it
belongs to, the maximum earliness will be decreased as the processing time of the first batch
b1 becomes longer. It can be derived that the first batch should have the possible maximum
job number. Thus, we have n1 = min {b, qr }. ��

Based on Lemmas 4 and 6, we have the following property.
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Lemma 9 There is an optimal schedule in which all batches of the same job type are
processed consecutively since the second batch, and the sets of all job types are processed
in non-increasing order of ρ (Fr ), where ρ (Fr ) = (1 + a (Fr ))qr , r = 1, 2, · · · , n.

Proof We omit the proof as it is similar to that of Lemmas 4 and 6. ��
Lemma 10 For the problem 1 |s − batch, pi = ai t, ssd | Emax , if there exists nr > b for
a certain job type r (r = 1, 2, · · · , n), where b1 ⊂ Fr , then the leftover jobs of job type r
except all the jobs in b1 are processed consecutively after b1.

Proof Let π∗ and π be an optimal schedule and a job schedule. The difference between the
two schedules is the insertion of the job set F2

1 after F1
1 , that is, π∗ = (

F1
1 ,W1, F2

1 ,W2
)
,

π = (
F1
1 , F2

1 ,W1,W2
)
, where F1

1 and F2
1 are two partial job sets of job type 1, both of

them may include one or multiple batches and b1 ⊆ F1
1 , W1 and W2 represent two partial

sequences, and W2 may be empty. In this case, we have n1 = b based on Lemma 8. Let the
starting time of b1 in π∗ and π be t∗0 and t0, respectively. Then,

Emax
(
π∗) = d − (

t∗0 + s
)
(1 + a1)

b

and

Emax (π) = d − (t0 + s) (1 + a1)
b .

Thus,

Emax
(
π∗) − Emax (π) = (

t0 − t∗0
)
(1 + a1)

b .

Based on Lemmas 5 and 9, it can be derived that

t0 − t∗0 >
s (1 + a1)

∏n
l=1 (1 + a (Fl))ql

> 0.

Then,

Emax
(
π∗) > Emax (π) ,

Which conflicts with the optimal schedule, and this completes the proof. ��
Based on the above lemmas, we propose the following Algorithm 2 to solve the problem

1 |s − batch, pi = ai t, ssd | Emax .

Theorem 2 For the problem 1 |s − batch, pi = ai t, ssd | Emax , an optimal schedule can be
obtained by Algorithm 2 in O

(
N 2 log N

)
time.

Proof Based on Lemmas 7–10, Algorithm 2 can generate an optimal solution. The time
complexity of step 1 is O (1), the total time complexity of steps 2, 3, 4, and 5 is O

(
n2 log n

)
,

and the total time complexity of steps 6, 7, 8, and 9 is O (n). We also have n ≤ N . Thus, the
time complexity of Algorithm 2 is at most O

(
N 2 log N

)
. ��

5 Problem 1 |s − batch, pi = ai t, ssd |∑N
i=1 Ui

In the following section, we first give some properties for the general problem of minimizing
the number of tardy jobs 1 |s − batch, pi = ai t, ssd | ∑N

i=1Ui and a property for this problem
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Algorithm 2

Step 1. Set θ = d and l = 0, and let σ be the sequence of the job sets of all types.
Step 2. Set l = l + 1.
Step 3. Set the job set of the lth type as the first place in the sequence. Sequence the leftover jobs of

the same type together, and then sequence the job sets of these leftover (n − 1) types in non-
increasing order ofρ (Fl ), i.e.,ρ (F2) ≥ ρ (F3) ≥ · · · ≥ ρ

(
Fn−1

)
, whereρ (Fl ) = (1 + a (Fl ))

ql ,
l = 1, 2, · · · , n − 1. Calculate t0 based on Lemmas 5 and 10, and then calculate Emax (l) =
d − (t0 + s) (1 + a1)

min{q1,b}.
Step 4. If θ < Emax (l), then set σ be the sequence of the job sets of all types in step 3.
Step 5. If l = n, then go to step 6. Otherwise, go to step 2.
Step 6. Let set σ be the final sequence of the job sets of all types and set l = 0.
Step 7. Set l = l + 1.
Step 8. If there are more than b jobs in Fl , then place the first b jobs in a batch and iterate. Otherwise, place

the remaining jobs in a batch.
Step 9. If l = n, then stop and schedule the batches in their generation order at timet0. Otherwise, go to

step 7.

under an agreeable condition, and then develop an optimization algorithm to solve it. The
job sets of which the completion times are no more than and more than the common due date
d are denoted as O (i.e., ordinary jobs) and L (i.e., late jobs), respectively. Let the job set
and the job number of type l be FO

l and qO
l in O , and FL

l and qL
l in L , respectively, where

FO
l ∪ FL

l = Fl and qO
l + qL

l = ql (l = 1, 2, · · · , n). Let the total number of job types be
nO in O .

Lemma 11 For the problem 1 |s − batch, pi = ai t, ssd | ∑N
i=1Ui , the solution of a given

schedule remains unchanged when: (1) two batches bk and bk+1 satisfying that xk(k+1) =
0 (k = 1, 2, · · · ,m − 1) are swapped;(2) any two jobs are swapped in a batch.

Lemma 12 For the problem 1 |s − batch, pi = ai t, ssd | ∑N
i=1Ui , an optimal schedule sat-

isfies the following properties:

(1) The generated batches of the same job type are processed consecutively in O;
(2) If σ

(
FO
r

) ≥ σ
(
FO
r+1

)
for two consecutive job sets of job types r and r + 1 in O, where

σ
(
FO
r

) = (
1 + a

(
FO
r

))qO
r , r = 1, 2, · · · , n−1, then it is optimal to process FO

r before
FO
r+1;

Proof The proof of (1) and (2) is similar to that of Lemmas 4 and 6, and it is omitted here. ��
We focus on the agreeable condition that a (Fr ) < a (Fu) implies ρ (Fr ) > ρ (Fu) for

two job types r and u, where ρ (Fl) = (1 + a (Fl))ql and r, u = 1, 2, · · · , n. This agreeable
condition is denoted as ac for simplicity. Then we have the following property.

Lemma 13 For the problem 1 |s − batch, pi = ai t, ssd , ac| ∑N
i=1Ui , the deterioration rate

of an arbitrary job in O is no more than that of any jobs in L in an optimal schedule.

Proof Assume there exist two job sets FO
r , FO

u ⊆ O in an optimal schedule, satisfying
that a (Fr ) < a (Fu), ρ (Fr ) > ρ (Fu), and qO

r , qL
r , qO

u > 0. Since a (Fr ) < a (Fu) and
ρ (Fr ) > ρ (Fu), it can be derived that nr > nu . Let the completion time of all jobs in O be
C (O). Based on Lemmas 11 and 12, we have two cases in an optimal schedule as follows.

Case 1. O = (
W1, Fo

r ,W2, Fo
u ,W3

)
, where W1,W2, and W3 represent three partial

sequences.
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(1) when qL
r ≥ qO

u , we can replace all jobs of Fo
u with the jobs of FL

r , and O is updated to

O ′ =
(
W1, FO

r ,W2, FL ′
r ,W3

)
. It is easy to see that C (O) > C

(
O ′), which conflicts

with the optimal schedule.
(2) when qL

r < qO
u , we can add all jobs of FL

r following Fo
r and transfer the jobs of FO

u with

the job number of qL
r into L . O is updated to O ′ =

(
W1, FO ′

r ,W2, FO ′
u ,W3

)
, where

qO ′
r = qr and qO ′

u = qO
u − qL

r . Thus,

C (O) − C
(
O ′) =

⎡

⎣t0

nO∏

l=1

(1 + a (Fl))
qO
l + s

r∑

l=1

nO∏

f =l

(
1 + a

(
Ff

))qO
f

⎤

⎦

·
[

1 − (1 + a (Fr ))q
L
r

(1 + a (Fu))q
L
r

]

+ s
u∑

l=r+1

nO∏

f =l

(
1 + a

(
Ff

))qO
f ·

[

1 − 1

(1 + a (Fu))q
L
r

]

.

We have

1 − (1 + a (Fr ))q
L
r

(1 + a (Fu))q
L
r

> 0 and 1 − 1

(1 + a (Fu))q
L
r

> 0.

It can be derived that C (O) > C
(
O ′), which conflicts with the optimal schedule.

Case 2. O = (
W1, Fo

u ,W2, Fo
r ,W3

)
.

(1) when qL
r ≥ qO

u , this situation is similar to (1) in case 1.
(2) when qL

r < qO
u , we can add all jobs of FL

r following Fo
r and transfer the jobs of FO

u

with the job number of qL
r into L , and then swap the updated FO ′

r and FO ′
u . O is updated

to O ′ =
(
W1, FO ′

r ,W2, FO ′
u ,W3

)
, where qO ′

r = qr and qO ′
u = qO

u − qL
r . Thus,

C (O) − C
(
O ′) =

⎡

⎣t0

nO∏

l=1

(1 + a (Fl))
qO
l + s

u∑

l=1

nO∏

f =l

(
1 + a

(
Ff

))qO
f

⎤

⎦

·
[

1 − (1 + a (Fr ))q
L
r

(1 + a (Fu))q
L
r

]

+ s
r∑

l=u+1

nO∏

f =l

(
1 + a

(
Ff

))qO
f ·

[

1 − (1 + a (Fu))q
O
u −qL

r

(1 + a (Fr ))q
O
r

]

.

Since ρ (Fr ) > ρ (Fu), that is, (1 + a (Fr ))qr > (1 + a (Fu))qu , we have

(1 + a (Fu))
qO
u ≤ (1 + a (Fu))

qu < (1 + a (Fr ))
qr .

Hence,

(1 + a (Fu))
qO
u −qL

r < (1 + a (Fr ))
qr−qL

r = (1 + a (Fr ))
qO
r .

It can be derived that

1 − (1 + a (Fu))q
O
u −qL

r

(1 + a (Fr ))q
O
r

> 0.
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We have

1 − (1 + a (Fr ))q
L
r

(1 + a (Fu))q
L
r

> 0.

Therefore, we obtain that C (O) > C
(
O ′), which also conflicts with the optimal sched-

ule.

Combining cases 1 and 2, there should be no jobs of Fr in L when some jobs from Fu are
included in O . The proof is completed.

Based on the above lemmas, the following Algorithm 3 is designed to solve the problem
1 |s − batch, pi = ai t, ssd , ac| ∑N

i=1Ui .

Algorithm 3

Step 1. Sequence the jobs of the same type together, and then sequence the job sets of all types in
non-decreasing order of a (Fl ) such that a (F1) ≤ a (F2) ≤ · · · ≤ a (Fn). Set k = 1 and
O = {J1}.

Step 2. Set k = k + 1.
Step 3. Set O = O ∪ {Jk }. Sequence the jobs of the same type together, and sequence the job sets of

all types in non-increasing order of a
(
FO
l

)
, where σ

(
FO
l

)
=

(
1 + a

(
FO
r

))qOl such that

a
(
FO
1

)
≥ a

(
FO
2

)
≥ · · · ≥ a

(
FO
nO

)
. Calculate the job completion time C (O) as Eq. (2). If

C (O) > d, then set O = O\ {Jk }, and go to step 5. Otherwise, go to step 4.
Step 4. If k = N , then go to step 5. Otherwise, go to step 2.
Step 5. Sequence the jobs of the same type together, and sequence the job sets of all types in non-

increasing order of a
(
FO
l

)
. Set l = 0.

Step 6. Set l = l + 1.
Step 7. If there are more than b jobs in FO

l , then place the first b jobs in a batch and iterate. Otherwise,
place the remaining jobs in a batch.

Step 8. If l = nO , then stop and schedule the batches in their generation order at timet0. Otherwise,
go to step 6.

Theorem 3 For the problem 1 |s − batch, pi = ai t, ssd , ac| ∑N
i=1Ui , an optimal schedule

can be obtained by Algorithm 3 in O
(
N 2 log N

)
time.

Proof Based on Lemmas 11–13, Algorithm 3 can generate an optimal solution. The time
complexity of step 1 is O (n log n). Since the execution time of step 2 is at most N and the
time complexity of step 3 is at most O (n log n), the total time complexity of steps 2, 3, and 4
is at most O (nN log n). Similarly, the time complexity of step 5 is O (n log n) and the total
time complexity of steps 6, 7, and 8 is at most O (nN ). Then, we have n ≤ N . Thus, the
time complexity of Algorithm 1 is at most O

(
N 2 log N

)
.

6 Problem 1 |s − batch, pi = ai t, ssd |∑N
i=1 Ci

In this section, we focus on two special cases of minimizing the total completion times of
all jobs, and these two special cases are a (Fl) = a and s = 0, respectively. The property is
given for the general problem as follows.
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Lemma 14 For the problem 1 |s − batch, pi = ai t, ssd | ∑N
i=1 Ci , there is only one job in

any batch.

Proof If there exists a batch with nk ≥ 2, then
∑N

i=1 Ci is reduced after we separate any job
from this batch as a single batch. This completes the proof. ��
Corollary 4 For the problem 1 |s − batch, pi = ai t, ssd | ∑N

i=1 Ci , there are N batches in
an optimal schedule.

6.1 Special case: a (Fl) = a

In this subsection, we focus on the special case that the jobs of different types have the same
deteriorating rate, i.e., a (Fl) = a, l = 1, 2, · · · , n. We first propose some useful lemmas for
this case, and then an optimization algorithm is developed to solve it based on these lemmas.

Lemma 15 There exist two consecutive batches bk and bk+1 of different job types in a
schedule, with the starting time of bk at time T > 0, then

∑

Ji∈bk
Ci +

∑

Ji∈bk+1

Ci = 1

a

[
(T + s) (1 + a)nk+nk+1+1

− (T + s) (1 + a) + s (1 + a)nk+1+1 − s (1 + a)
]
.

Proof Based on Lemma 14, we have

∑

Ji∈bk
Ci = 1

a

[
(T + s) (1 + a)nk+1 − (T + s) (1 + a)

]

and
∑

Ji∈bk+1

Ci = 1

a

[
(T + s) (1 + a)nk+nk+1+1

− (T + s) (1 + a)nk+1 + s (1 + a)nk+1+1 − s (1 + a)
]
.

Then,

∑

Ji∈bk
Ci +

∑

Ji∈bk+1

Ci = 1

a

[
(T + s) (1 + a)nk+nk+1+1

− (T + s) (1 + a) + s (1 + a)nk+1+1 − s (1 + a)
]
.

The proof is completed. ��
Lemma 16 For the problem 1 |s − batch, pi = ai t, ssd , a (Fl) = a| ∑N

i=1 Ci , the gener-
ated batches of the same job type are produced consecutively in an optimal schedule.

Proof The same notations and the sequences π∗ and π are used as in the proof of Lemma 4.
Let T denote the starting time of bp . Based on Lemma 15, we have

∑q
k=1 nk∑

i=∑p−1
k=1 nk+1

Ci (π) −
∑q

k=1 nk∑

i=∑p−1
k=1 nk+1

Ci
(
π∗)
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=
∑q−1

k=1 nk∑

i=∑p
k=1 nk+1

Ci (π) +
∑q

k=1 nk∑

i=∑q−1
k=1 nk+1

Ci (π) −
∑q−1

k=1 nk∑

i=∑p
k=1 nk+1

Ci
(
π∗) −

∑q
k=1 nk∑

i=∑q−1
k=1 nk+1

Ci
(
π∗)

<
(T + s) (1 + a)n p+nq

a
·
[

(1 + a)
∑q−1

k=p+1 nk+1 − (1 + a)

]

+ (T + s) (1 + a)n p

a
· [

(1 + a)nq+1 − (1 + a)
]

− (T + s) (1 + a)n p

a
·
[

(1 + a)
∑q−1

k=p+1 nk+1 − (1 + a)

]

− (T + s) (1 + a)
∑q−1

k=p nk

a
· [

(1 + a)nq+1 − (1 + a)
]

= [
(1 + a)nq − 1

] (T + s) (1 + a)n p

a
·
[

(1 + a)
∑q−1

k=p+1 nk+1 − (1 + a)

]

+
[

1 − (1 + a)
∑q−1

k=p+1 nk
]

· (T + s) (1 + a)n p

a
· [

(1 + a)nq+1 − (1 + a)
]

= (T + s) (1 + a)n p

a
· [

(1 + a)nq+1 − (1 + a)
]

·
[

(1 + a)
∑q−1

k=p+1 nk − 1 + 1 − (1 + a)
∑q−1

k=p+1 nk
]

= 0.

Hence,
∑q

k=1 nk∑

i=∑p−1
k=1 nk+1

Ci (π) <

∑q
k=1 nk∑

i=∑p−1
k=1 nk+1

Ci
(
π∗) .

Based on Lemma 4, it can be deduced that

N∑

i=∑q
k=1 nk+1

Ci (π) <

N∑

i=∑q
k=1 nk+1

Ci
(
π∗) .

and
∑p−1

k=1 nk∑

i=1

Ci (π) =
∑p−1

k=1 nk∑

i=1

Ci
(
π∗) .

Thus,

N∑

i=1

Ci (π) −
N∑

i=1

Ci
(
π∗)

=
∑p−1

k=1 nk∑

i=1

Ci (π) +
∑q

k=1 nk∑

i=∑p−1
k=1 nk+1

Ci (π) +
N∑

i=∑q
k=1 nk+1

Ci (π)

−
⎡

⎢
⎣

∑p−1
k=1 nk∑

i=1

Ci
(
π∗) +

∑q
k=1 nk∑

i=∑p−1
k=1 nk+1

Ci
(
π∗) +

N∑

i=∑q
k=1 nk+1

Ci
(
π∗)

⎤

⎥
⎦ < 0,
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which conflicts with the optimal schedule. This completes the proof. ��
Based on Lemma 16, we have the following property.

Lemma 17 For the problem 1 |s − batch, pi = ai t, ssd , a (Fl) = a| ∑N
i=1 Ci , if qr ≥ qr+1

for two consecutive job sets of job types r and r + 1, r = 1, 2, · · · , n − 1, then it is optimal
to process Fr before Fr+1. ��
Proof We use the same notations and the sequences π∗ and π as in the proof of Lemma 6.
We assume that there exists qr < qr+1 in π∗. Let the starting time of Fr in π∗ be T .

For π∗, we have
r+1∑

l=1
ql

∑

i=∑r−1
l=1 ql+1

Ci
(
π∗) = (T + s) (1 + a) · (1 + a)qr − 1

a

+ [
(T + s) (1 + a)qr + s

]
(1 + a) · (1 + a)qr+1 − 1

a

And for π ,

r+1∑

l=1
ql

∑

i=∑r−1
l=1 ql+1

Ci (π) = (T + s) (1 + a) · (1 + a)qr+1 − 1

a

+ [
(T + s) (1 + a)qr+1 + s

]
(1 + a) · (1 + a)qr − 1

a
.

Then,
∑r+1

l=1 ql∑

i=∑r−1
l=1 ql+1

Ci
(
π∗) −

∑r+1
l=1 ql∑

i=∑r−1
l=1 ql+1

Ci (π)

= (T + s) (1 + a) · (1 + a)qr − 1

a
+ [

(T + s) (1 + a)qr + s
]
(1 + a) · (1 + a)qr+1 − 1

a

− (T + s) (1+a) · (1+a)qr+1 − 1

a
− [

(T + s) (1 + a)qr+1 + s
]
(1 + a) · (1 + a)qr −1

a

= s (1 + a)

a

[
(1 + a)qr+1 − (1 + a)qr

]
> 0.

Based on Lemma 6, it can be derived that

n∑

l=1
ql

∑

i=∑r+1
l=1 ql+1

Ci
(
π∗) >

∑n
l=1 ql∑

i=∑r+1
l=1 ql+1

Ci (π) .

And we have
∑r−1

l=1 ql∑

i=1

Ci
(
π∗) =

∑r−1
l=1 ql∑

i=1

Ci (π) .
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Thus,

N∑

i=1

Ci
(
π∗) >

N∑

i=1

Ci (π) ,

which conflicts with the optimal schedule. This completes the proof. ��
Based on the above lemmas, we develop the followingAlgorithm 4 to solve the first special

case.

Algorithm 4

Step 1. Sequence the jobs of the same type together, and then sequence the job sets of all types in
non-increasing order of ql , i.e., q1 ≥ q2 ≥ · · · ≥ qn . Set l = 0.

Step 2. Set l = l + 1.
Step 3. If there is any job in Fl , then place the first job as a batch and iterate. Otherwise, go to step 4.
Step 4. If l = n, then stop and schedule the batches in their generation order at time t0. Otherwise, go

to step 3.

Thus, Algorithms 1 and 4 have some similarities, where the jobs of the same type are
sequenced together and the same way of job batching is conducted in both algorithms.

Theorem 4 For the problem 1 |s − batch, pi = ai t, ssd , a (Fl) = a| ∑N
i=1 Ci , an optimal

schedule can be obtained by Algorithm 4 in O (N log N ) time. If the job sets of all types
are sequenced in non-increasing order of ql (l = 1, 2, · · · , n), then the optimal sum of job
completion times is

N∑

i=1

Ci = (t0 + s)
(1 + a)N+1 − (1 + a)

a
+ s

⎡

⎣
n∑

j=3

j−1∑

l=2

(1 + a)
(1+a)q j −1

a

j−1∏

x=l

(1 + a)qx

+
n∑

j=2

s (1 + a)
(1 + a)q j − 1

a

⎤

⎦ (4)

Proof Based on Lemmas 15–17, an optimal solution can be generated by Algorithm 4. It is
seen that the time complexity of step 1 is O (n log n) to obtain the optimal job set sequence
of all types, and the total time complexity of steps 2, 3, and 4 is O (n). Then, we have n ≤ N .
Thus, the time complexity of Algorithm 4 is at most O (N log N ).

Mathematical induction can be used to prove the optimal result of sum of job completion
times based on the number of job types. Firstly for n = 1 we have

q1∑

i=1

Ci = (t0 + s)
(1 + a)q1+1 − (1 + a)

a
,

so Eq. (4) holds for n = 1. Suppose that for all 2 ≤ p ≤ n − 1, Eq. (4) is satisfied. We have
∑p

f =1 q f∑

i=1

Ci = (t0 + s)
(1 + a)

∑p
f =1 q f +1 − (1 + a)

a

+ s

⎡

⎣
p∑

j=3

j−1∑

l=2

(1+a)
(1+a)q j − 1

a

j−1∏

x=l

(1+a)qx +
p∑

j=2

(1+a)
(1+a)q j −1

a

⎤

⎦
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Then, for the (p + 1)th job set Fp+1,

∑p+1
f =1 q f∑

i=1

Ci =
∑p

f =1 q f∑

i=1

Ci +
∑p+1

f =1 q f∑

i=∑p
f =1 q f +1

Ci

=
∑p

f =1 q f∑

i=1

Ci +
⎡

⎣(t0 + s) (1 + a)
∑p

f =1 q f +
p∑

j=2

s (1 + a)

p∑

f = j
q f + s

⎤

⎦ (1 + a)

(1 + a)qp+1 − 1

a

= (t0 + s)
(1 + a)

∑p+1
f =1 q f +1 − (1 + a)

a

+s

⎡

⎣
p+1∑

j=3

j−1∑

l=2

(1 + a)
(1 + a)q j − 1

a

j−1∏

x=l

(1 + a)qx +
p+1∑

j=2

(1 + a)
(1 + a)q j − 1

a

⎤

⎦ .

Note that
∑N

i=1 Ci = ∑
∑n

f =1 q f

i=1 Ci , the result is proved by the induction. ��
6.2 Special case: s = 0

Lemma 18 For the problem 1 |s − batch, pi = ai t, s = 0| ∑N
i=1 Ci , there is an optimal

schedule, where the batches of the same job type are processed together, and all jobs are
sequenced in non-decreasing order of ai . ��
Proof For any given schedule, the makespan remains unchanged after the batches of the
same job type are processed together. Hence, the batches of the same job type can be
processed together in an optimal schedule. Let π∗ and π be an optimal schedule and a
job schedule. The difference between the two schedules is the pairwise interchange of two
job batches {Jx } and {Jx+1} (x = 1, 2, · · · ,m − 1), that is, π∗ = (W1, {Jx } , {Jx+1} ,W2),
π = (W1, {Jx+1} , {Jx } ,W2), where Jx and Jx+1 are of different job types l and f ,
a (Fl) > a

(
Ff

)
, W1and W2 represent two partial sequences, and W1 or W2 may be empty.

Hence, we have ax > ax+1. Then,

N∑

i=1

Ci
(
π∗) −

N∑

i=1

Ci (π) =
x+1∑

i=1

Ci
(
π∗) −

x+1∑

i=1

Ci (π) = t0 (ax − ax+1)

x−1∏

i=1

(1 + ai ) > 0,

Which conflicts with the optimal schedule, and this completes the proof. ��
Based on the above lemma, we develop the following Algorithm 5 to solve the second

special case.

Theorem 5 For the problem 1 |s − batch, pi = ai t, s = 0| ∑N
i=1 Ci , an optimal schedule

can be obtained by Algorithm 5 in O (N log N ) time. If the job sets of all types are sequenced
in non-decreasing order of a (Fl) (l = 1, 2, · · · , n), then the optimal total completion times
of all jobs are t0

∑N
i=1

∏i
j=1

(
1 + a j

)
.

Proof Based on Lemma 18, Algorithm 5 can obtain an optimal solution. It is obvious that the
time complexity of Algorithm 5 is the same as that of Algorithm 4, so the time complexity
of Algorithm 5 is also O (N log N ). The result of total completion times of all jobs can be

123



194 Ann Oper Res (2017) 249:175–195

Algorithm 5

Step 1. Sequence the jobs of the same type together, and then sequence the job sets
of all types in non-decreasing order of a (Fl ), i.e., a (F1) ≤ a (F2) ≤ · · · ≤
a (Fn). Set l = 0.

Step 2. Set l = l + 1.
Step 3. If there is any job in Fl , then place the first job as a batch and iterate.

Otherwise, go to step 4
Step 4. If l = n, then stop and schedule the batches in their generation order at

timet0. Otherwise, go to step 3.

proved by induction. The proof is similar to that of Lemma 1, and it is omitted here. The
proof is completed. ��

7 Conclusions

In this paper, we study a new serial-batching schedulingmodel with deteriorating jobs, where
multiple job types and sequence-dependent setup times are considered simultaneously. For
the problems of minimizing the makespan, the maximum tardiness, the maximum lateness,
and the maximum earliness, we develop optimization algorithms to solve them respectively.
Moreover, an optimization algorithm is proposed to minimize the number of tardy jobs under
a certain agreeable condition. Finally, for the problem of minimizing the total completion
time of jobs, we also analyze its two special cases and propose optimization algorithms
to solve them respectively. The algorithm can be applied in actual practices to increase the
productivity. In future research, wemay focus on developing effective meta-heuristic to solve
some related scheduling problems, considering other objective functions, and proposingmore
general and practical models.
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