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Abstract In this paper, we study an inventory system with multiple retailers under periodic
review and stochastic demand. The demand is modelled as a discrete random variable. Linear
holding and backorder costs as well as fixed order costs are assumed. Orders to replenish
inventories can be placed at a manufacturer with a limited capacity according to a cyclic order
schedule. A fixed portion of the total available capacity in a period is allocated to each retailer,
who follows a modified base-stock policy to determine the order quantities. Thus, the order
policy consists of four policy parameters for each retailer: the length of the review period,
the first order point within a planning horizon, the individual capacity limit, and the modified
base-stock level. We present an algorithm to compute the exact optimal policy parameters
and two heuristics. In a numerical study, we compare the results of these approaches and
derive insights into the performance of the heuristics. In addition, we introduce three different
schedule types and identify the situations, in which they perform best.

Keywords Stochastic inventory model · Capacity restriction · Markov chain

1 Introduction

In the modern global society, many products are manufactured in one part of the world
and sold in several others. This can be seen in the electronic industry, e.g. many companies
manufacture their goods in Asia but sell them globally. It can therefore be assumed that there
are central retail inventories for big market areas like America, Europe or Australia which
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are characterised by different consumer behaviours and demand forecasts. The inventories
have to be replenished and orders placed with the manufacturer. Since production capacity is
limited, it is possible that not all orders can be satisfied or that machines are not fully utilised.
To avoid these situations, contracts can be used for fixing the order times andmaximum order
quantities for each retailer.

In this paper, we study a single item, multi retailer system with one manufacturing facility
with limited production capacity. At the manufacturing facility, a make-to-order policy is
implemented and retailers place their orders to replenish their inventories and satisfy sto-
chastic demand. We assume that holding and backorder costs are charged for each unit at
each retailer as well as fixed order costs for each shipment. To operate the system, we assume
the use of a cyclic schedule for the order points of the retailers at the production facility and
a maximal order quantity, which is customized for each retailer. This assignment leads to a
capacitated order system for each individual retailer, by using modified base-stock policies
to determine the order quantities. Thus, the order policy for each retailer is determined by
four parameters: length of the review interval, the first order point within a planning period,
the allocated capacity, and the modified base-stock level.

In the sequel, we model the problem as a mixed integer problem and present an approach
to compute cost optimal policy parameters. The main idea is similar to branch and bound
procedures because we reduce the number of possible parameter combinations based on
a lower bound for the average costs. However, this algorithm is only suitable for small
systems, therefore we also present two heuristics based on a greedy approach for the capacity
allocation, an approximation of the cost function, and a less restrictive elimination rule.

Based on the analysis and a numerical study performed in the last part of the paper, we are
able to characterise optimal or near optimal order schedules to support decision makers. The
presented approaches perform very well and the heuristics are able to reduce the computation
time consumption bymore than 75%. Furthermore, we are able to describe certain properties
of the assigned policy parameters and, in particular, identify different schedule types.

The remainder of the paper is organised as follows: In the next section, we present a
literature review for adjacent network problems, before describing the problem in detail and
formulating a mixed integer model in Sect. 3. In Sect. 4, an exact approach for computing all
the policy parameters is presented and two heuristics are introduced in Sect. 5. We conclude
with the results of a numerical study in Sect. 6 and a summary in Sect. 7.

2 Literature review

Our work is closely related to two different streams of literature based on inventory systems
with stochastic demand under periodic review. We start our discussion with the research on
systems with a single resource constraint and distinguish between the number of different
products and the types of costs considered (see Table 1).

For the simplest capacitated system consisting of a single stock point for a single product,
Federgruen and Zipkin (1986) have shown the optimality of the modified base-stock policy
under linear holding and backorder costs. This policy is a natural extension of the base-
stock policy for an uncapacitated system (Scarf 1963) and differs only in the case of limited
available capacity. If the inventory position is below the base-stock level, an order is placed
to raise the inventory position up to the base-stock level or as close to it as possible.

Shaoxiang and Lambrecht (1996) have shown that in the case of an additional fixed order
cost, the optimal policy for the capacitated single product single stock point inventory system
is not the natural extension of the (s, S) policy known to be optimal under infinite capacity
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Table 1 Optimal policy structures

Without capacity limit With capacity limit

Single product Single product Multiple products

No fixed cost Base-stock Level Modified base-stock level Modified base-stock level type
Scarf (1963) Federgruen and Zipkin (1986) Evans (1967), DeCroix

and Arreola-Risa (1998)

Fixed cost Order-up-to and
reorder level

X–Y band

Scarf (1963) Shaoxiang and Lambrecht
(1996), Gallego and
Scheller-Wolf (2000), Chan
and Song (2003)

(Scarf 1963). The optimal policy shows a systematic pattern, which is called the X−Y band
structure, where no order is placed if the inventory position is above the critical value Y and
an order with a maximum possible quantity is placed if the inventory position is below X . If
the inventory level is between the critical values X and Y , the optimal decision depends on the
problem parameters. Further insights on the optimal decisions for this region are presented
in Gallego and Scheller-Wolf (2000) or in Chan and Song (2003).

If an inventory systemwith multiple different products or several retailers selling the same
products is considered, the optimal policy structure is very complex under a common shared
resource constraint. Besides the order quantities, an allocation policy for the scarce capacity
also has to be determined. For the finite planning horizon as well as for linear holding and
backorder cost, Evans (1967) proved the optimality of amodified base-stock level type policy,
while DeCroix and Arreola-Risa (1998) studied the same problem with an infinite planning
horizon. In addition, they derived the optimal allocation policy in the case of homogeneous
products.

To the best of our knowledge, the combination of both aspects, fixed ordering cost and
multiple products sharing the same resource, has not been studied up to now. The optimal
policy structure is unknown and can be expected to be very complex. Therefore, in this
paper we consider a heuristic ordering policy where each retailer orders according to a
modified base-stock policy with an individual capacity limit. In contrast to systems with a
minimum order quantity (see also Zhao and Katehakis 2006; Zhou et al. 2009; Kiesmüller
et al. 2011), the retailers donot have to order the complete amount guaranteed to be available to
them.

In order to take into account the fixed ordering cost, we allow different review periods for
each retailer. A detailed description of the ordering policy is given in the next section of the
paper.

The second stream of research related to our work is about two-echelon inventory systems,
where the replenishment quantities are limited by the inventory available at the central ware-
house. Therefore, besides the order quantities, an allocation rule also has to be determined.
The basic model in this area was presented by Eppen and Schrage (1981), in which the central
warehouse is not allowed to keep stock, the holding and backorder costs charged are indepen-
dent of the stock point, and the retailers are identical and face normally distributed demand.
Under the balance assumption, it is shown that it is optimal to allocate quantities such that
the non-stockout probabilities are equalised. Several model extensions are discussed, such
as systems with a warehouse that is allowed to keep stock as in Diks and de Kok (1998).
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Federgruen and Zipkin (1984a, b) presented policies, including different holding and backo-
rder costs at different stock points as well as additional demand distributions. A recent survey
including many of these extensions can be found in Simichi-Levi and Zhao (2012). However,
the focus is on policies for systems with stochastic service times at all stages and thereby
stochastic lead times.

What most of these contributions have in common is that the fixed ordering costs are
negligible and retailer orders can be placed every review period. If fixed ordering cost are
charged, then continuous review (R, Q) policies are usually assumed for the retailers. For an
overview of the most relevant literature, see Axsäter (2003). In the recent literature, several
extensions can be found, such as in Kiesmüller and de Kok (2005), who compute the relevant
performance characteristics under a consolidation policy. However, the allocation decision
does not have to be made under continuous review because the first-come, first-served rule is
usually applied to ration the inventory at the central stock point. As alternatives to this rule,
Axsäter (2007), Axsäter and Marklund (2008) and Howard and Marklund (2011) show the
benefits of choosing different allocation rules at the central stock point. The first two works
concentrate on the base system, whereas the latter extends this system with regular dispatch
times for deliveries of the central stock point to the retailers. One major difference between
the divergent inventory systems and the model studied in this paper concerns the limited
replenishment quantity. While we assume a constant given capacity restriction, the available
inventory at the central warehouse in a one-warehouse N-retailer system is influenced by
the order policy of the warehouse and thereby is not exogenous. Furthermore, we explicitly
forbid the commonly allowed transshipments between retailers, which is called allocation
assumption or balanced inventory assumption as more often referred to today (see Eppen and
Schrage (1981) for the first introduction of this topic and Dogru et al. (2009) for a critical
review).

3 Problem description

We consider an inventory system for a single product where one manufacturer has to replen-
ish the inventories of M different retailers. The total available production capacity at the
manufacturer in each period is limited due to exogenous circumstances like the number of
machines or restricted transport or storage space. Without loss of generality, we assume that
the production capacity of the manufacturer is normalised to one capacity unit per one pro-
duction unit and that the sum of all the retailers’ expected period demand is smaller than the
available production capacity in each period CP . Every incoming order at the production
facility causes fixed administration and transportation costs of K and is delivered after a lead
time of L periods after the order has been placed.

Each retailer m (m = 1, 2, . . . , M) is facing stochastic customer demand, which is mod-
elled as a sequence of discrete independently and identically distributed random variables
with knowndistribution function. The demandof r consecutive periods at retailerm is denoted
as Dm,r , with the corresponding cumulative distribution function Fm,r and probability mass
function fm,r for positive integer values of r . Without loss of generality, we assume a dis-
crete distribution because each continuous distribution can easily be discretized to apply our
approach. We number the retailers such that the first one (m = 1) has an expected demand
per period not smaller than the expected demand of any other retailer. Unsatisfied demand is
backlogged until the retailer is supplied with new units. We note the number of backlogged
units of retailerm at the end of a period t with I−

m,t . Backlogging costs of bm per unit missing
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are charged for retailer m at the end of period t and for each unit on stock, recorded as I+
m,t ,

the holding costs of h per unit have to be paid. We assume that each retailerm operates under
a modified base-stock policy with an individual order interval Rm and an individual capacity
limit CPm . A modified base-stock policy is chosen since it is known from Federgruen and
Zipkin (1986) that such a policy is optimal with respect to average holding and backorder
cost for a simple supply chain with only one retailer. Furthermore, the modified base-stock
level type policy is also optimal for multiple retailers (see DeCroix and Arreola-Risa 1998).
However, the optimal allocation policy, if the capacity is insufficient to reach all base-stock
levels, is very complex and therefore we have to rely on a heuristic. Similar to Glassermann
(1996), in this case we assume a constant allocation policy where a fraction of the total
capacity is permanently dedicated to a retailer. This means that the manufacturer allocates an
order time and a fixed amount of capacity to each retailer, such that a specific order quantity
is always guaranteed.

Thus, the quantity to be ordered by retailer m at the beginning of period t is the minimum
of the individual capacity limit CPm and the difference between the modified base-stock
level Sm and the actual inventory position Y Pm (defined as stock on hand minus backorders
plus outstanding orders) before ordering, which is expressed as:

Qm,t = min{Sm − Y Pm,CPm} (1)

Since each order induces a fixed cost, the retailers may not order in each period. Furthermore,
due to the global capacity limit, it is also important that not all retailers order at the same
time. Thus, besides the order frequency Rm , the first point in time within a given planning
horizon where retailer m is allowed to place an order ( f Om) also has to be determined
carefully. Since such a combination ( f Om, Rm) defines the point of all orders for retailer m,
we denote one or more of these tuples as cyclic schedules. A cyclic schedule is complete if
the variables ( f Om, Rm) for all M retailers of a system are given, otherwise we speak of a
partial cyclic schedule. A cyclic schedule can be denoted by a matrix X = (

xm,t
)
, with xm,t

having the value one if retailerm is allowed to order in period t and the value zero otherwise.
The dimension of the matrix depends on the number of retailers and the number of periods
considered. Since the length of the order intervals are whole numbers, there exists a smallest
cycle length T , such that in each period t the same combination of retailers is allowed to
order as in period t + T . Therefore, we focus on cyclic schedules of this length T , where we
start the schedule over every T periods. Thus, the ordering policy for a retailer m is defined
by the four policy parameters described: the order interval Rm , the point of first order f Om ,
the individual capacity limit CPm and the modified base-stock level Sm .

We are interested in obtaining the optimal numerical values for the ordering policies
(Rm, f Om,CPm, Sm) of all retailers (m = 1, 2, . . . , M), minimising the resulting total
average order, holding and backorder costs for the whole system. The average holding and
backorder costs per period for retailer m are denoted as Cm(CPm, Rm, Sm) and can be
computed as:

Cm(CPm, Rm, Sm) = 1

Rm

Rm∑

r=1

(
h · E[(I Pm − Dm,L+r )

+]

+ b · E[(Dm,L+r − I Pm)+]
)

(2)

where I Pm denotes the inventory position of retailer m after placing an order. For the com-
putation of the expectations, the distribution of the inventory position is needed. Instead of
I Pm , we modelled the undershoot Um as the Markov chain. Um is defined as the difference
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between I Pm and Sm after ordering. Computing its steady state probabilitiesπu , the following
expression can be derived for the average holding and backorder costs:

Cm(CPm, Rm, Sm) = 1

Rm

Rm∑

r=1

∞∑

u=0

πu

{
h ·

Sm−u∑

i=0

(Sm − u − i) fm,L+r (i)

+ b ·
∞∑

i=Sm−u

(i − (Sm − u)) fm,L+r (i)
}

(3)

A detailed derivation can be found in Appendix I. It is easy to see that the cost function Cm

has the following properties:

P1 For fixed CPm, Rm , the cost function Cm is convex in Sm
P2 For fixed Rm and increasing CPm , the cost function Cm is non-increasing

Besides the holding and backorder costs, ordering costs are also considered. Adding both
types of costs leads to the objective function (4.1) of the following mixed integer program:

min
1

T

T∑

t=1

M∑

m=1

xm,t · K +
M∑

m=1

Cm(CPm, Rm, Sm) (4.1)

S.t. xm, f Om+k·Rm = 1 ∀m ∈ {1 . . . M},∀k ∈ N0 (4.2)
M∑

m=1

xm,t · CPm ≤ CP ∀t ∈ {1 . . . T } (4.3)

1

T

T∑

t=1

xm,t · CPm > E[Dm,1] ∀m ∈ {1 . . . M} (4.4)

T = Lcm(R1, R2, . . . , RM ) (4.5)

f Om ≤ Rm ∀m ∈ {1 . . . M} (4.6)

Rm , CPm , f Om , T ∈ N ∀m ∈ {1 . . . M} (4.7)

Sm ∈ Z ∀m ∈ {1 . . . M} (4.8)

xm,t ∈ {0, 1} ∀m ∈ {1 . . . M},∀t ∈ {1 . . . T } (4.9)

Note that the costs depend on f Om via the capacity allocation CPm only. The constraint
(4.2) assures the coherency between the decision variables Rm, f Om and the variables
xm,t . With constraint (4.3), we model that the global capacity limit CP is not exceeded
in any period; and with constraint (4.4) that enough capacity is allocated to each retailer
to satisfy his demand in the long run. Constraint (4.5) specifies the length of the periodic
schedule, with Lcm standing for the least common multiplier. Constraints (4.6)–(4.9) define
the domain of definition for the decision variables. We are interested in the optimal ordering
policies (Rm, f Om,CPm, Sm) for all retailersm (m = 1, 2, . . . , M). In particular, wewould
like to learn more about the optimal scheduling of order moments.

4 Optimal order schedules

Our approach to computing the optimal policy parameters is divided into several parts as
shown in Fig. 1. In the first part, presented in Sect. 4.1, we determine feasible combinations
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Fig. 1 Optimisation procedure

(Rm, f Om) for all retailers (m = 1, . . . , M). The second part is further divided into two
steps. As in branch and bound algorithms, we eliminate schedules that do not have good
cost performance in comparison with a lower bound for the average cost, as derived in Sect.
4.2. The capacity allocation as described in Sect. 4.3 is only conducted for the remaining
schedules.

4.1 Feasibility of schedules

At first, the domain of the reorder intervals for each retailer (m = 1, 2, . . . , M) is bounded
because the individual capacity limit CPm per period may not exceed the global capacity
limit CP . Furthermore, on average it must be possible to order the demand of Rm periods.
This leads to the following constraint for Rm :

Rm ∈
{
1, . . . ,

⌊
CP

E[Dm,1]
⌋}

(5)
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The floor function �(. . .)� returns the largest integer number that is smaller than or equal to
the term (. . .).

The point of the first order f Om of retailer m needs to be earlier than Rm , which results
in the domain:

f Om ∈ {1, . . . , Rm} (6)

We use a complete enumeration of all the combinations of reorder intervals and points
of first order, which satisfy (5) and (6) to construct the partial schedules (R1, f O1, R2,

f O2, . . . , Rlm, f Olm), (lm = 1, 2, . . . , M). Since the following inequality (7),which results
from restriction (4.3), has to hold for each partial schedule, the number of feasible schedules
can be further reduced.

lm∑

m=1

(xm,t · Rm · E[Dm,1] + 1) ≤ CP ∀ t ∈ {1 . . . T } (7)

We eliminate all schedules where inequality (7) does not hold in at least one period for
the corresponding partial schedule. The resulting schedules guarantee sufficient capacity,
however cost arguments have not been considered up to now.

4.2 Lower bound for the average costs

In the next step, further solution candidates are eliminated based on cost aspects. For a given
schedule (R1, f O1, R2, . . . , RM , f OM ), we compute a lower bound for the average costs
Lb(R1, f O1, R2, . . . , RM , f OM ) and compare it with the minimum cost corresponding to
the best policy (R�

m, f O�
m,CP�

m, S�
m) obtained up to this step. Thus, we avoid solving the

capacity allocation problem for non-optimal schedules and proceed only for those cyclic
schedules satisfying the following condition:

Lb(R1, f O1, R2, . . . , RM , f OM ) <

M∑

m=1

K

R�
m

+
M∑

m=1

Cm(CP�
m, R�

m, S�
m) (8)

It is obvious that the unconstrained base-stock levels equivalent to setting CPm to infinity
result in a lower bound for the average holding and backorder cost. However, since this
bound may be not very tight, we compute the average cost under another upper bound for
the capacity limit Ĉ Pm . We determine the maximum available capacity for retailer m as
follows: If retailer m has no joint order moment with another retailer during T periods, then
the whole capacity CP can be allocated to him. Otherwise, the available capacity has to be
reduced by the minimum amount needed by the other retailers, given as the expected demand
during the replenishment cycle plus one more unit to guarantee system stability. Due to the
static allocation rule, all joint ordering moments have to be considered. Thus, the maximum
available capacity to be allocated to retailer m is determined as follows:

Ĉ Pm := min{t |t=1,...,T,xm,t=1}

⎧
⎨

⎩
CP −

∑

m̃ �=m

xm̃,t ·
(
E[Dm̃,1]Rm̃ + 1

)
⎫
⎬

⎭
(9)

Since a smaller available capacity leads to larger holding and backorder costs (P2), we
obtain the following lower bound for the average cost:

Lb(R1, f O1, R2, . . . , RM , f OM ) =
M∑

m=1

K

Rm
+

M∑

m=1

Cm(Ĉ Pm, Rm, Sm(Ĉ Pm)) (10)

123



Ann Oper Res (2015) 229:501–520 509

4.3 Exact capacity allocation

As mentioned above, for all schedules (R1, f O1, R2, . . . , RM , f OM ) satisfying (8), the
optimal capacity allocation and the correspondingmodifiedorder-up-to levels are determined,
and the average costs are computed by solving the following mixed integer problem:

min
CPm ,Sm

M∑

m=1

Cm(CPm, Rm, Sm) (11.1)

s.t.
M∑

m=1

xm,t · CPm ≤ CP ∀t ∈ {1 . . . T } (11.2)

CPm ≥ E[Dm,1] · Rm + 1 ∀m ∈ {1 . . . M} (11.3)

CPm ≤ Ĉ Pm ∀m ∈ {1 . . . M} (11.4)

Sm ∈ Z ∀m ∈ {1 . . . M} (11.5)

This problem formulation is easier to solve than the original MIP (4) because the number
of decision variables is reduced. However, a solution has to be determined for all feasible
schedules satisfying (8). For the numerical results in Sect. 6, we used complete enumeration
approach for CPm and computed the corresponding modified base-stock levels according to
(3) to solve the problem.

5 Near optimal order schedules

For large problem instances, the exact approach as presented in Sect. 4 results in very long
computation times. Therefore, we present different possibilities in this section to speed up
the computation, which results in near optimal solutions.

5.1 Coordinated schedules

In the first part of the algorithm (Sect. 4.1), we introduced the domain of definition for the
review periods and the first point of order to eliminate infeasible schedules. The remaining
number of schedules is still quite large, therefore we suggest an additional restriction. We
propose using coordinated schedules and allowing only review periods which are a multiple
integer of the review interval of the first retailer with the largest average demand as follows:

Rm ∈
{
R1 · k|k ∈ N, R1 · k ≤ CP

E[Dm,1]
}

m = 2, 3 . . . , M (12)

Given that in a cyclic schedule the first periods can be placed at the end of the schedule
without a cost change, we also reduce the possible points of first order to:

f Om ∈ {1, . . . ,min{Rm, R1 · (m − 1)}} m = 1, 2, . . . , M (13)

5.2 Comparison of lower bounds

In Sect. 4.2, we derived a lower bound for the average cost of a schedule for selecting the
promising solution candidates. We assume a close relation between the lower bound and the
actual cost and suggest eliminating schedules based on the following rule:

Lb(R1, f O1, R2, . . . , RM , f OM ) < Lb(R�
1, f O�

1 , R
�
2, . . . , R

�
M , f O�

M ) (14)
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The capacity allocation is only conducted for schedules whose lower bound is smaller
than the lower bound of the optimal schedule determined up to this step. This rule restricts
the solution domain; however we cannot guarantee that the optimal solution still remains
in the set of possible schedules. Furthermore, the resulting schedule depends on the order,
the schedules are evaluated in. Here we have chosen the following approach: Since large
reorder intervals result in smaller order costs, we started with the schedules with the longest
order interval for each retailer. In the process, we reduced the length of the intervals one
at a time, starting with the last retailer, followed by the second to last and so on, until all
combinations are evaluated. The same procedure was used on the first order points within a
group of schedules involving the same combination of order intervals.

5.3 Capacity allocation with a greedy approach

Greedy approaches have already been proven towork verywell inmany situations. Therefore,
we propose allocating the capacity with an iterative algorithm based on a reduction of the
average holding and backorder cost, which is defined as follows:

Δm(CPm) :=
(Cm(CPm, Rm, Sm(CPm))

−Cm(CPm + 1, Rm, Sm(CPm + 1))

)
m = 1, 2, . . . , M (15)

We start the algorithm with the allocation of the minimum amount of capacity necessary
to guarantee a stable system (CPm = RmE[Dm] + 1). Then, further capacity is allocated to
the retailer m̃ with the largest cost improvement according to (15). Note that an additional
capacity unit is allocated to retailer m̃ at each order point, such that the remaining available
capacity is reduced by T/Rm̃ units. During the algorithm, we keep track of the current
capacity still available for allocation, and only allow an allocation to a retailer if restriction
(2.3) is not violated.

Furthermore, in order to avoid unnecessary computational effort, we monitor whether the
algorithm can find a capacity allocation, which results in a schedule that is even better than
the one obtained up to now. Under the assumption that the marginal cost reduction (15) is
decreasing, we estimate themaximumpossible cost reduction by the product of themaximum
possible cost reduction in one greedy step Δm̃(CPm̃) multiplied by the maximum number of
such steps remaining. To estimate the maximum remaining number of steps until the greedy
algorithm stops, we divide the free capacity by the minimum units of capacity allocated in
each step. We obtain the following expression for the maximum possible cost reduction:

Δm̃ ·
∑T

t=1(CP − ∑M
m=1 xm,t · CPm)

T/maxm∈M Rm
(16)

5.4 Approximation for the average cost

During the optimisation, many schedules are evaluated with (3). Thus, the density for the
inventory position has to be determined using a Markov chain model and the convolutions
of distributions have to be computed quite often. Therefore, we propose an approximation
of the cost function based on a simplification of the undershoot (Ũm = (Dm,Rm − CPm)+)

and a replacement of the exact convolution with a fitted distribution. For r = 1, 2, . . . , Rm ,
we fit the same type of distribution used for the demand distribution on the moments

E[Dm,L+r + Ũm] = E[Dm,L+r ] + E[Ũm]
Var [Dm,L+r + Ũm] = Var [Dm,L+r ] + Var [Ũm] (17)
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and propose the following approximation for the average holding and backorder cost:

C̃m(CPm, Rm, Sm) = 1

Rm

Rm∑

r=1

(
h

Sm∑

x=0

(Sm − x) f f i t,r (x)

+ b
∞∑

x=Sm

(x − Sm) f f i t,r (x)
)

(18)

We refer to Kleintje-Ell and Kiesmüller (2013) for more details about this approximation.

6 Comparison of the approaches

In this section, we present the results of our numerical study. For a systemwith three retailers,
we computed the optimal policy parameters for several instanceswith the algorithmpresented
in Sect. 4.We also consider two heuristics and compute order schedules for systems with four
or five retailers. For the first method, denoted as (Heur SN I ), only coordinated schedules
are considered (see Sect. 5.1), the cost function is approximated as described in Sect. 5.4, and
the capacity allocation is determined using the greedy approach (see Sect. 5.3). This method
is further extended by the strict elimination rule as presented in Sect. 5.2, which yields the
second heuristic called (Heur SN Ie). Thus, three different approaches are studied, which
are denoted as APP = {Exact, Heur SN I, Heur SN Ie}

We are interested in the performance of the heuristic approaches. Furthermore, we want
to get insights in the structure of the optimal order schedules.

6.1 Performance indicators and numerical design

To measure the performance of the approaches, the total average cost Cap (ap ∈ APP) of
the obtained policies and the relative cost deviation is computed as follows:

Δap1,ap2 =
(Cap1

Cap2
− 1

)
· 100% ap1, ap2 ∈ APP, (19)

In addition, relative computation time deviation is measured according to

δap1,ap2 =
(
tCap1

tCap2

)
· 100% ap1, ap2 ∈ APP. (20)

where tCap denotes the computation time for approach ap. All the computations were per-
formed on an Inter(R) Core(TM) I7 with a 3.40GHz CPU and 16GB RAM with MATLAB
Version (R2012b). As an aggregate performance measure, we compute the average of the
relative deviations over a set of instances.We refer to thesemeasures asΔap1,ap2 and δap1,ap2.

For the numerical study, the following input was chosen: Period demand Dm,1 is assumed
to be distributed according to a discretized gamma distribution, similar to the one in Kies-
müller et al. (2011). This means that the probability distribution function of the demand is
defined as P(D = i) := Fγ (i + 0.5) − Fγ (i − 0.5), where Fγ denotes the cumulative dis-
tribution function of the continuous gamma distribution. For the computations, the demand
distribution has to be truncated such that P(D ≥ Dmax ) is negligible. The average demand
for the first retailer is set to 25 (E[D1,1] = 25) and the average demand of all other retailers
is not larger. However, all other retailers (m > 1) are assumed to be identical. The only
difference between them and the first retailer is the expected demand. The chosen values
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Table 2 Numerical values of the
input parameters

E[Dm>1] cvm mCP K bm

25 0.3 1.3 0 0.9

15 0.5 1.5 5 1.9

10 0.7 1.7 25

5 50

3 100

correspond to shares of the first retailer of between 33% and more than 80% of the total

demand. The coefficient of variation of the demand (cvm =
√

Var [Dm,1]
E[Dm,1] ) is varied between

0.3 and 0.7.
The capacity limit CP can be expressed as CP = mCP

∑M
m=1 E[Dm,1] and we vary

the factor mCP in steps of 20% between 130 and 170%. Lower capacity restrictions lead
to very high inventory levels and larger capacity restrictions are similar to an uncapacitated
system.

For the fixed order costs K , five different levels between 0 and 100 are considered.We have
included the case of no ordering costs in order to gain insights into the trade-off between
holding cost and capacity pooling. The holding cost h is fixed to a value of 0.1 and the
backorder costs bm correspond to critical ratios bm

h+bm
of 90 and 95%. The lead time is equal

for all retailers and set to L = 2.
A summary of all the possible input values is given in Table 2. We use a full factorial

design and investigate 450 instances for three different systems with M = 3, 4, 5.

6.2 Performance of the heuristics

In Table 3, we summarise the results for the system with three retailers.
It can be seen that, on average, the first heuristic (Heur SN I ) performs extremely well.

The average cost deviation is only 0.25% and in 79.33% of the instances Heur SN I also
yields the optimal policy parameters. Near optimal schedules are mainly obtained in sit-
uations where the average demand at the retailers differs significantly. While the second
heuristic (Heur SN Ie) is able to find optimal schedules in 76.23% of the instances and
also performs well for identical retailers, on average the results for different retailers are
slightly worse with an aggregate deviation of 2.06%. It can be generally observed that
the second heuristic has problems finding optimal and near optimal schedules if there are
significant differences between retailers with respect to the average demand size. Further-
more, the relative cost deviation decreases as the fixed cost increases (excluding the case
K = 0), thereby increasing available capacity and decreasing demand variability. In all
instances computed with the exact approach, the reorder intervals of the retailers m = 2, 3
are an integer multiple of R∗

1 . This means that only allowing coordinated schedules, as
described in 5.1, does not influence the cost performance of the heuristics. Due to the
excellent performance of Heur SN I , we can also conclude that the approximation of the
cost function as well as the greedy approach work well. Eliminating schedules based on
rule (14) induces the non-consideration of optimal and near optimal schedules in situ-
ations with low fixed cost, high demand variability, little available capacity or different
demand volumes at the retailers. Although Heur SN I has a better cost performance than
Heur SN Ie, its one disadvantage is the computation time. The average computation time
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Table 3 Mean relative cost deviation

ΔHeur SN I,Exact ΔHeur SN Ie,Exact

Identical
retailers (%)

Different
retailers (%)

Identical
retailers (%)

Different
retailers (%)

Total 0.01 0.25 0.01 2.57

K

0 0.04 0.26 0.04 0.26

5 0.00 0.32 0.00 7.48

25 0.00 0.20 0.00 2.04

50 0.00 0.19 0.00 2.02

100 0.00 0.27 0.00 1.04

bm

0.9 0.00 0.23 0.00 2.72

1.9 0.01 0.27 0.01 2.41

mCP

1.3 0.03 0.57 0.03 4.31

1.5 0.00 0.17 0.00 3.00

1.7 0.00 0.01 0.00 0.39

E[Dm>1]
15 0.01 0.01

10 0.00 0.00

5 0.33 1.08

3 0.65 9.17

cvm

0.3 0.01 0.47 0.01 0.85

0.5 0.01 0.04 0.01 1.23

0.7 0.00 0.24 0.00 5.62

for Heur SN I is 24.26% of the exact approach while Heur SN Ie is a bit faster with a
22.35% computation time of the exact approach. Therefore, Heur SN Ie may be prefer-
able, especially for the parameter ranges where it leads to very good results. In order to
gain more insights into the cost performance of both approaches for larger systems (M = 4
and M = 5), we also computed the order policies for them and compared the resulting
costs. For this set, the average computation time of Heur SN Ie is 93.29% of the aver-
age computation time for Heur SN I , which is further reduced to 78.61% for 4 retailers
and 62.62% for 5 retailers. The outcome with regard to the average costs is presented in
Table 4.

For identical retailers, both approaches lead to the same order schedules inmany instances,
regardless of the number of retailers. For non-identical retailers, it is difficult to draw con-
clusions about the impact that retailers have on the performance of the heuristics. We are
only able to observe that for all systems, the difference in average demand of the retail-
ers has the largest impact on cost performance. Furthermore, if the retailers are simi-
lar with respect to their demand, then both heuristics have nearly the same cost perfor-
mance.
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Table 4 Comparison of the heuristics

ΔHeurSNIe,HeurSNI 3 Retailers 4 Retailers 5 Retailersa

Identical
retailers
(%)

Different
retailers
(%)

Identical
retailers
(%)

Different
retailers
(%)

Identical
retailers
(%)

Different
retailers
(%)

Total 0.00 2.31 0.14 4.21 0.12 1.54

K

0 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 7.14 0.70 14.32 0.57 2.36

25 0.00 1.83 0.00 4.24 0.00 3.07

50 0.00 1.80 0.00 1.75 0.00 1.55

100 0.00 0.76 0.00 0.74 0.00 0.73

bm

0.9 0.00 2.49 0.12 3.12 0.08 1.04

1.9 0.00 2.13 0.16 5.30 0.15 2.04

mCP

1.3 0.00 3.73 0.00 11.68 0.30 3.99

1.5 0.00 2.82 0.00 0.88 0.04 0.32

1.7 0.00 0.38 0.42 0.07 0.01 0.32

E[Dm>1]
15 0.00 0.53 0.64

10 0.00 0.02 0.07

5 0.75 1.03 0.00

3 8.48 15.26 5.46

cvm

0.3 0.00 0.38 0.42 0.80 0.30 0.31

0.5 0.00 1.19 0.00 3.02 0.04 0.86

0.7 0.00 5.35 0.00 8.81 0.01 3.45

a Due to an extremely high computation time with Heur SN I , the following combination of parameters is
excluded from the result: M = 5, EDm>1 = 25, cv = 0.5, mCP = 1.7, K = 25, bm = 0.9

6.3 Properties of optimal and near optimal order schedules

In order to gain insights into the structure of optimal order schedules, we created the following
classifications:

Single Order Point Schedules (SOPS) The cycle length of a single order point schedule is
equal to the number of retailers T = M . Furthermore, in every period exactly one retailer
orders and each retailer orders exactly once per cycle, which means that all retailers have
the same review interval.

No Simultaneous Orders Schedules (NSOS) The cycle length of such a schedule is larger
than the number of retailers T > M . In addition, in every period a maximum of one
retailer orders. It is therefore possible that no retailer orders in a given period, or that a
retailer orders more than once per cycle length T .
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Table 5 Classification of schedules

# of Retailers Procedure SOPS NSOS CS

Identical
retailers
(%)

Different
retailers
(%)

Identical
retailers
(%)

Different
retailers
(%)

Identical
retailers
(%)

Different
retailers
(%)

3 Exact 46.67 0.28 31.11 52.78 22.22 46.94

Heur SN I 46.67 0.28 31.11 53.06 22.22 46.67

Heur SN Ie 46.67 0.28 31.11 53.06 22.22 46.67

4 Heur SN I 28.89 0.00 31.11 50.28 40.00 49.72

Heur SN Ie 28.89 0.00 31.11 50.28 40.00 49.72

5a Heur SN I 31.11 0.56 28.89 54.44 40.00 45.00

Heur SN Ie 32.22 0.56 27.78 54.44 40.00 45.00

a Due to an extremely high computation time with Heur SN I , the following combination of parameters is
excluded from the result: M = 5, EDm>1 = 25, cv = 0.5, mCP = 1.7, K = 25, bm = 0.9

Complex Schedules (CS) Complex schedules are obtained if more than one retailer place
orders in at least one period . In that case, the global capacity needs to be allocated
between two or more retailers in such periods.

We determined the schedule portions in each class for our data set and present the results
in Table 5.

First, we can conclude that the heuristics have no significant impact on the partitioning of
schedules according to our classification.

Second, the size of the system and number of retailers also do not have a significant impact
on the partitioning of schedules. This seems to be reasonable since the relation between
demand and capacity is not changed and another schedule length T also determines the
classification of the schedule.

Third, the (near) optimal schedule type is mainly dependent on the average demand of
the retailers. In the case of identical retailers, no allocation of capacity is needed in most of
the instances and order schedules where only one retailer is allowed to order in each period
(SOPS and NSOS) are preferred. Complex schedules are needed if the fixed costs require
small review periods or if the capacity limit restricts the order intervals to (Ri < M).

The influence of the capacity restriction on the schedule type is presented in Table 6 for
the results obtained with Heur SN I .

A capacity extension in the case of non-identical retailers leads to more simple schedules,
especially for small systems with only a few number of retailers. In contrast, more capacity in
the case of identical retailers does not always reduce the number of complex schedules. This
can be observed for the parameter set M = 3, EDm>1 = 25, cv = 0.3, K = 5, bm = 1.9,
by increasing the global capacity limit from CP = 113 ⇔ mCP = 1.5 to CP = 128 ⇔
mCP = 1.7. The optimal schedules are presented in Fig. 2.

Such behaviour can only be found in settings with small fixed order costs in relation to
the holding and backorder costs.

6.4 Influence of the number of retailers on costs

A comparison of the results for three retailers (Heur SN I3), 4 (Heur SN I4) and 5 retailers
(Heur SN I5) is presented in Table 7.
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Table 6 Impact of the capacity restriction on the schedule type

# of Retailers mCP SOPS NSOS CS

Identical
retailers
(%)

Different
retailers
(%)

Identical
retailers
(%)

Different
retailers
(%)

Identical
retailers
(%)

Different
retailers
(%)

3 1.3 80.00 0.00 0.00 39.17 20.00 60.83

1.5 40.00 0.00 40.00 51.67 20.00 48.33

1.7 20.00 0.83 53.33 68.33 26.67 30.83

4 1.3 53.33 0.00 6.67 32.50 40.00 67.50

1.5 23.33 0.00 36.67 55.83 40.00 44.17

1.7 10.00 0.00 50.00 62.50 40.00 37.50

5a 1.3 50.00 0.00 10.00 45.00 40.00 55.00

1.5 26.67 0.00 33.33 60.00 40.00 40.00

1.7 16.67 1.67 43.33 58.33 40.00 40.00

a Due to an extremely high computation time with Heur SN I , the following combination of parameters is
excluded from the result: M = 5, EDm>1 = 25, cv = 0.5, mCP = 1.7, K = 25, bm = 0.9

Fig. 2 Example of changing from SOPS to CS with increasing CP

It is not surprising that the mean costs per instance increase as the number of retailers
increases, because each retailers needs to order and has holding and backorder costs. The aver-
age increase in costs with ΔHeur SN I4,Heur SN I3 = 14.09% and ΔHeur SN Ie5,Heur SN Ie3 =
27.71% is much smaller than expected. The number of retailers and corresponding number
of orders per period expected increases by one-third or two-thirds for the NSOS and CS,
which is much more than the mean increase in costs. Especially in the instances where the
expected demand of retailers m > 1 is very small E[Dm>1] = 5/3, it can even be observed
that there is a decrease in costs in 23/24 of the instances.

Along with the stronger cost increase with increasing capacity, this observations supports
the assumption that the interdependence between the order interval of the first retailer and the
absolute value of the global capacity limit is muchmore important than the relative utilisation
of the global capacity. The increase in the number of retailers and concomitant increase in
global CP may result in better schedules, however, the relative utilisation would remain on
a similar level.
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Table 7 Mean relative cost difference Δapproach

ΔSN I4.SN I3 Δ
a
SN I5.SN I3

Identical
retailers (%)

Different
retailers (%)

Identical
retailers (%)

Different
retailers (%)

Total 24.37 11.53 51.88 21.74

K

0 33.74 18.96 66.90 37.20

5 31.11 19.47 68.62 37.38

25 26.84 11.34 57.12 19.83

50 18.90 6.16 41.69 10.67

100 11.27 1.69 25.38 3.61

bm

0.9 24.11 11.24 51.19 21.43

1.9 24.64 11.81 52.56 22.04

mCP

1.3 23.00 13.20 49.24 18.33

1.5 24.39 8.97 52.04 19.39

1.7 25.72 12.41 54.46 27.49

E[Dm>1]
15 24.79 37.51

10 15.77 32.65

5 2.95 11.05

3 2.59 5.73

cvn

0.3 24.08 11.40 51.75 23.39

0.5 24.36 11.73 51.77 21.63

0.7 24.68 11.45 52.13 20.19

a Due to an extremely high computation time with Heur SN I , the following combination of parameters is
excluded from the result: M = 5, EDm>1 = 25, cv = 0.5, mCP = 1.7, K = 25, bm = 0.9

7 Summary

In this paper, we studied an inventory systemwhere a capacitated manufacturer has to replen-
ish the inventories of different retailers facing stochastic demand. To do this, we took the
holding, backorder and fixed costs at the retailers into account, and presented an exact algo-
rithm as well as two heuristics to obtain (near) optimal order schedules.

As the parameter computation for the proposed policy is very time consuming, even for
small examples, we accelerated the exact process and compared the obtained heuristics in a
numerical study with the results of the exact computation. The study shows that, compared
to the exact procedure, one of our approaches saves more than 75% in computation time with
acceptable results.

In our numerical study, we could show that the length of the order intervals in the schedule
should be coordinated; in particular, we demonstrated that all order intervals are multiples
of the smallest interval. Furthermore, we identified three different types of order schedules,
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and based on our problem instances we were able to conclude that, if possible, order points
should be chosen such that only one retailer is allowed to order in each period.

Appendix I: Derivation of the cost functions

The exact cost function

In order to be able to compute the average stock on hand or backorders, we need information
about the distribution of the inventory position, which can be obtained using a Markov chain
approach. The state space of theMarkov chain is given by the undershootUt , which is defined
as the difference between the modified base-stock level Sm and the inventory position I Pm
at the beginning of a period t after an order has been placed. The dynamic of the system is
described by the following recursive equation for the undershoot:

Ut =
{
0 Ut−Rm + Dm,Rm ≤ CPm
Ut−Rm + Dm,Rm − CPm Ut−Rm + Dm,Rm > CPm

(21)

The equilibrium distribution π defined as

lim
t→∞ P(Ut = u) =: πu ∀ u ∈ N0 (22)

can be computed by solving the system of equations

πu = ∑
ǔ=0,1,2,... πǔ · pǔ,u ∀ u ∈ N0∑

u=0,1,... πu = 1
(23)

where P denotes the transition matrix given as

P = (pi, j ) with pi, j = P(Ut = j |Ut−Rm = i) (24)

With Eq. (2), this results in the following expression for the average holding and backorder
cost:

Cm(CPm, Rm, Sm) = 1

Rm

∑

u=0,1,...

πu

Rm∑

r=1

(
h ·

Sm−u∑

i=0

(Sm − u − i) fm,L+r (i)

+ b ·
∞∑

i=Sm−u

(i − (Sm − u)) fm,L+r (i)
)

(25)

For the given values of CPm, Rm , the cost function depends on the modified base-stock level
Sm only. The optimal modified base-stock level S∗

m then has to satisfy the following Newsboy
like condition:

S∗
m = argmin

Sm

{
bm

h + bm
≤

∑

u

πu

Rm

Rm∑

r=1

Fm,L+r (Sm − u)

}

(26)

The approximated cost function

During the optimisation, many combinations of policy parameters have to be evaluated. Since
for each (Rm,CPm) combination a system of equations has to be solved to determine Sm , this
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may result in long computation times. Therefore, in some parts of the heuristic approaches,
we use an approximated cost function where the Eq. (21) for the undershoot is replaced by

Ut = (Dm,Rm − CPm)+ (27)

and the convolution of the resulting probability mass function with the probability mass
function for the period demand is replaced by a two-moment fit of these. Both assumptions
correspond to those found in Kleintje-Ell and Kiesmüller (2013). With the fitted probability
mass function f f i t , the cost function results in:

C̃m(CPm, Rm, Sm) = 1

Rm

Rm∑

r=1

{ Sm∑

x=0

(Sm − x) f f i t (x)

+
∞∑

x=Sm

(x − Sm) f f i t (x)

⎫
⎬

⎭
(28)

Appendix II Upper bound for Rm

In the following section, we show why (E[Di ] + 1) · Rm is the lowest capacity for the other
retailers that needs to be taken into account of all schedules X with any length T containing
the order interval Rm for retailer m. The following distinction of cases for the possible order
intervals of the retailers i �= m demonstrates this:

Ri < Rm We determine the highest possible number of orders of retailer i for an interval
Rm : count := maxt̄<T

∑t̄+Rm
t=t̄ xi,t . In this case, it holds that: Rm · (E[Di ] + 1) ≤

count · Ri · (E[Di ] + 1) as count ≥ Rm
Ri
.

Ri = Rm We assume the correct minimum capacity with (E[Di ] + 1) · Rm .
Rm < Ri If there exists an order interval of length Rm , in which both retailer m and retailer

i place an order, the capacity limit of a retailer is the same at each of his orders. In this
case, it holds that Rm · (E[Di ] + 1) < Ri · (E[Di ] + 1) and we even underestimate the
amount required by retailer i .

Ri , R j ≥ 2 · Rm , Ri = R j There may be certain combinations of order intervals in these
cases, such that the three retailers m, i, j never order all together in an interval of length
Rm , but rather in intervals in which i orders, the distance to the order points of m are the
same as for j in the corresponding intervals. If we assume w.l.o.g. E[Di ] ≤ E[Dj ], it
holds that (E[Di ]+1)·Rm +(E[Dj ]+1)·Rm ≤ (E[Dj ]+1)·2 ·Rm ≤ (E[Dj ]+1)·R j

and in these cases as well, the assumed capacity does not overestimate the amount needed
by other retailers in an interval of length Rm .
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