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Abstract Outranking relations such as produced by the Electre I or II or the Tacticmeth-
ods are based on a concordance and non-discordance principle that leads to declaring that an
alternative is “superior” to another, if the coalition of attributes supporting this proposition
is “sufficiently important” (concordance condition) and if there is no attribute that “strongly
rejects” it (non-discordance condition). Such away of comparing alternatives is rather natural
and does not require a detailed analysis of tradeoffs between the various attributes. However,
it is well known that it may produce binary relations that do not possess any remarkable prop-
erty of transitivity or completeness. The axiomatic foundations of outranking relations have
recently received attention. Within a conjoint measurement framework, characterizations of
reflexive concordance–discordance relations have been obtained. These relations encompass
those generated by the Electre I and II methods, which are non-strict (reflexive) relations. A
different characterization has been provided for strict (asymmetric) preference relations such
as produced by Tactic. In this paper we briefly review the various kinds of axiomatizations
of outranking relations proposed so far in the literature. Then we analyze the relationships
between reflexive and asymmetric outranking relations in a conjoint measurement frame-
work, consolidating our previous work. Co-duality plays an essential rôle in our analysis. It
allows us to understand the correspondence between the previous characterizations. Making
a step further, we provide a common axiomatic characterization for both types of relations.
Applying the co-duality operator to concordance–discordance relations also yields a new
and interesting type of preference relation that we call concordance relation with bonus. The
axiomatic characterization of such relations results directly from co-duality arguments.
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1 Introduction

In multiple criteria decision processes it often occurs that the information needed to build a
value function model with the aim of ranking the alternatives is difficult to elicit. In these
cases, the analyst has the choice to turn to methods having an “ordinal flavor” in which the
alternatives are compared in a pairwise manner. Such methods mainly take advantage of the
order on the criteria scales and lead to one or several binary relations, known as outranking
relations.

Most outranking methods, including the well known Electre methods (Roy 1968; Roy
and Bertier 1973), base the comparison of alternatives on the so-called concordance & non-
discordance principle. It leads to accepting the proposition that an alternative is “superior”
to another if the following two conditions are fulfilled:

• concordance condition: the coalition of attributes supporting this assertion is “sufficiently
important”,

• non-discordance condition: there is no attribute that “strongly rejects” this assertion.

Stating that an alternative is “superior” to another may have two different meanings. In
Electre methods, “superior” means “not worse”, i.e., “at least as good as”. Such methods
aim at building a reflexive preference relation that is interpreted as an “at least as good as”
relation. In general, such relations may lack nice transitivity or completeness properties (on
these issues, see Bouyssou 1992, 1996).

In other outranking methods, like the Tacticmethod (Vansnick 1986), “superior” means
“strictly better than”. Such methods build an asymmetric relation that is interpreted as strict
preference. As in the reflexive case, the obtained relations are not necessarily transitive and
they may have cycles.

The outranking relation produced by certain outranking methods (such as Electre III,
Roy 1978, or Promethee, Brans and Vincke 1985) are valued relations. In this work we
restrict ourselves to crisp outranking relations.

Although they have proved their usefulness in numerous applications (see, e.g., Roy and
Bouyssou 1993, chapters 8 to 10 and a commented bibliography of case studies, or, more
recently, Figueira et al. 2005, Section 5 and Figueira et al. 2013, Section 4.4.6), outranking
methods are not as popular as the methods based on a score or a value function. There are two
main reasons for that. The first is that outranking methods cannot guarantee that the pairwise
comparison of alternatives will result in a ranking. Indeed, outranking relations based on the
concordance & non-discordance principle above may be both non-transitive and incomplete.
This is an unamendable limitation which is related to Arrow’s impossibility theorem (see
Bouyssou 1992). Therefore, outranking methods generally involve a phase of exploitation
of the outranking relation, which produces a ranking. The second reason is related to the
absence of axiomatic foundations for these methods, at the time they were introduced. The
goal of this paper is to review the efforts made in order to axiomatize concordance & non-
discordance relations and to present our own recent contributions in a unified framework,
which also leads to new results.
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1.1 An overview of axiomatic work on outranking relations

The first contribution to the characterization of outranking relations is in the spirit of Fish-
burn’s (1976) study of noncompensatory preferences. In this model of preferences, the com-
parison of two alternatives only depends on the way they compare w.r.t. the various criteria
and is independent of the other alternatives. Bouyssou and Vansnick (1986) and Bouyssou
(1986) elaborate on this idea to obtain a characterization of a subclass of outranking rela-
tions. Fargier and Perny (2001) (see also Dubois et al. 2001, 2002, 2003) followed a similar
path proposing a characterization of concordance relations, which appears to be limited to
a subclass of concordance relations for which all attributes are essential (for a discussion
including a simple example of a concordance relation w.r.t. which all attributes are inessen-
tial, see Bouyssou and Pirlot 2005b, Section 5.2).

Another approach, which the present work aims at synthesizing, describes concordance
& non-discordance relations in a conjoint measurement framework. The latter was most
fruitful for analyzing the dominant paradigm of the additive function model (Krantz et al.
1971). This line of research starts with two papers (Bouyssou et al. 1997; Bouyssou and Pirlot
1999) which characterize outranking relations as relations on a product set of attributes scales
that distinguish a small number of preference differences on each attribute. More precisely,
on a given dimension, an alternative can be at least as good, worse or unacceptably worse as
compared to another. This is essentially in linewith the idea of an ordinal aggregationmethod,
for which the distinction between large and small differences is meaningless. The axioms,
except for the condition on the number of distinguished classes of preference differences,
are expressed as cancelation conditions, in the style of conjoint measurement theory.

Bouyssou and Pirlot (2002b) establish a characterization of strict (i.e., irreflexive) con-
cordance relations in which axioms are formulated as cancelation conditions (i.e., without
specifying explicitly the number of preference differences classes). In a communication at the
FUR X Conference, Greco et al (2001) present cancelation conditions characterizing (non-
strict) concordance relations. As pointed out in Bouyssou and Pirlot (2005b), section 5.1,
these conditions are restrictive since they characterize a subclass of all outranking relations
corresponding to those produced by the Electre I aggregation rule. Furthermore, their
axioms do not enter in the general axiomatic framework outlined in Bouyssou et al. (1997)
and Bouyssou and Pirlot (1999), which impedes a clear understanding of how outranking
relations distinguish from those obtained by other aggregation rules.

Axiomatization can indeed be a manner of analyzing crisp binary relations defined on a
product set and organizing them. Three papers (Bouyssou and Pirlot 2002a, b, 2004b) set
general frameworks for the analysis of relations on a product set interpreted as preference
relations (in a broad sense, since we do not impose them to be transitive or complete).
We define two general families of models based on traces induced by the preference on
each attribute scale. The first family we analyze relies on traces on differences of preference
(Bouyssou and Pirlot 2002a) and the second, on traces on levels (Bouyssou and Pirlot 2004a).
The third paper in the series (Bouyssou and Pirlot 2004b) considers models combining both
types of traces. These families encompass a wide variety of preference models that have been
discussed in literature.

In Bouyssou and Pirlot (2005b, 2007, 2009a), we successively describe reflexive concor-
dance relations and concordance & non-discordance relations within the framework studied
inBouyssou andPirlot (2002a, 2004b) by providing additional axioms that are independent of
those defining the framework. In the continuation of Bouyssou and Pirlot (2002c) and within
the same framework, we also deal with strict (irreflexive) concordance & non-discordance
relations in Bouyssou and Pirlot (2005c, 2006).

123



162 Ann Oper Res (2015) 229:159–212

Note that a different approach can be followed, which consists in characterizing the pro-
cedures used to produce outranking relations instead of the relations themselves. For studies
following this path, the interested reader is referred to Pirlot (1997) and Marchant (2003,
2007) (see also Bouyssou et al. 2006, chapter 5).

1.2 Goal of the present paper

The purpose of this paper is to consolidate our previous work by presenting both strict and
non strict concordance & non-discordance relations in a unified framework.

Common sense and usage suggest a simple relationship between strict and non-strict
preference relations: alternative x is at least as good as alternative y if y is not better than
x and vice versa. In terms of binary relations, this amounts saying that the “at least as good
as” and “better than” relations are the co-dual of each other, i.e., one is the complement
of the inverse of the other. This intuition should be questioned. Indeed, starting from an
asymmetric preference relation and taking its co-dual leads to a complete preference, while,
usually, non-strict outranking relations are incomplete preference relations. Conversely, the
co-dual of an incomplete relation, such as a non-strict outranking relation, is not asymmetric,
hence it hardly can be interpreted as a strict preference. Should we consider the asymmetric
part of the co-dual? As we shall see, such a relation is not a strict outranking relation as they
can be defined in the spirit of the Tactic method.

Although co-duality does not yield a straightforward correspondence between strict and
non-strict outranking relations, it is an important tool to study it and also obtain new axiomatic
characterizations of strict and non-strict outranking relations. The rest of the paper is orga-
nized as follows. After notation is presented in the next section, we discuss this question
in an informal way in Sect. 3, using definitions of strict and non-strict outranking relations
that respectively encompass the relations yielded by the Tactic and Electre methods. In
Sect. 4, we recall what is needed from our previous axiomatic work and analyze in a for-
mal way the relationship between strict and non-strict outranking relations mainly using
co-duality. This analysis leads us to the definition and characterization of a new model for
preference relations (strict and non-strict concordance relations with “bonus”). Finally, we
draw some conclusions and present perspectives for future research.

1.3 Preliminary remarks

Before entering into the core of the subject, we make the following points in order to avoid
ambiguities.

1. The aim of our axiomatic approach is to understand what distinguishes the different
models of preferences and what their relationships are. We do not intend to justify the
use of certain models by means of normative arguments. The present type of axiomatic
analysis could be described as informative or structural.

2. While we study objects, namely concordance & non-discordance relations, that are
involved in the Electre or Tactic methods, we do not aim at characterizing the final
output of such methods. The latter methods’ characteristic is that they proceed in two
steps. The first step yields a crisp binary relation which results from the comparison of
all alternatives in pairs, independently of irrelevant ones. The second step exploits this,
often intransitive and incomplete, relation in order to produce the expected sort of output,
i.e., a complete ranking or a choice set. The result of the first step is called an outranking
relation and we interpret it all along as a preference relation.
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The question of the transitivity of preferences is a controversial one, both as a rational-
ity requirement and as experimental evidence (Tversky 1969; May 1954; Iverson and
Falmagne 1985; Fishburn 1970; Van Acker 1990). In particular, it is possible to design
experiments in which the decision maker is asked to make binary choices, without any
mechanism forcing the transitivity or the completeness of the resulting relation. It would
be interesting to test whether the resulting relations can be interpreted as a concordance
& non-discordance relation. Regarding the incompleteness issue, recent experiments
(Deparis et al. 2012) show that preferences may be incomplete when the decision maker
is granted the possibility not to choose. Our standpoint, in this work, is that concordance
& non-discordance relations could actually be observed in such situations.

3. Our axioms are expressed as cancelation conditions, in the style of conjoint measurement
theory. They are the usual way of formulating properties such as the classical preference
independence condition (see, e.g.,, Krantz et al. 1971, Ch. 6). The intuition behind such
axioms is best understood in terms of traces (seeBouyssou and Pirlot 2005a, for a detailed
analysis of traces), which are marginal relations induced by the preference on the criteria
scales. Therefore, we generally interpret our axioms by proving equivalent properties of
some traces (see, e.g., Lemma 22).

2 Notation and definitions

In this section we set the notation and recall some elementary definitions that will be used
throughout the paper.

A preference relation on a set X is, in general, denoted byR. A binary relationR on X is
said to be reflexive if a R a, for all a ∈ X . It is complete if a R b or b R a, for all a, b ∈ X .
RelationR is asymmetric if a R b ⇒ Not[b R a], for all a, b ∈ X . It is transitive if (a R b
and b R c) ⇒ a R c, for all a, b, c ∈ X . It is Ferrers if (a R b and c R d) ⇒ (a R d
or c R b), for all a, b, c, d ∈ X . It is semi-transitive if (a R b and b R c) ⇒ (a R d or
d R c), for all a, b, c, d ∈ X . A weak order is a complete transitive relation. A semiorder
is a reflexive Ferrers and semi-transitive relation. A pair of semiorders (R1,R2) on X form
a homogeneous chain of semiorders (Doignon et al. 1988) if R1 ⊆ R2 and there is a weak
order T on X such that, for i = 1, 2, we have

x T y ⇒ for all z ∈ X, [y Ri z ⇒ x Ri z] and [z Ri x ⇒ z Ri y]. (1)

When a pair of alternatives (a, b) belongs to a relationR, wewrite indifferently (a, b) ∈ R
ora R b. Starting froma relationR, we can derive several other relations by using appropriate
operators. For all a, b ∈ X , we define:

• the dual (or inverse or reciprocal) Rd : a Rd b if b R a,
• the complement Rc: a Rc b if Not[a R b],
• the co-dual Rcd : a Rcd b if Not[b R a],
• the asymmetric part Rα: a Rα b if a R b and Not[b R a],
• the symmetric part Rσ : a Rσ b if a R b and b R a,
• the symmetric complement Rρ : a Rρ b if Not[a R b] and Not[b R a].

We recall a few straightforward properties of the co-dual operator, for they will be used
in the sequel. The co-dual of a complete relation is its asymmetric part. The co-dual of an
asymmetric relation is complete. The co-dual operator is an involution between the set of
complete relations and the set of asymmetric ones. It also establishes an involution between
reflexive and irreflexive relations (see Monjardet (1978) for proofs and many more results).
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The set of alternatives will be denoted by X . As is usual in conjoint measurement this set
will be identified with the Cartesian product

∏n
i=1 Xi of n sets Xi . The latter are interpreted

as the range of values of n attributes (n ≥ 2) that completely describe the alternatives in the
decision problem at hand. These sets Xi are not assumed to be sets of numbers, not even
to be ordered sets. The set {1, 2, . . . , n} will be denoted by N . We use X−i to denote the
Cartesian product

∏
j∈N , j �=i X j . Assuming that x is an element of X , x−i is the element of

X−i obtained by removing the i th coordinate of vector x , which describes x on attribute i .
Assuming that a belongs to X and xi ∈ Xi , (xi , a−i ) is the element of X which has the same
description as a on all attributes but one: the description of (xi , a−i ) on the i th attribute is xi .

3 Variants of outranking relations

We start with briefly recalling the definition of a reflexive outranking relation as used in the
Electre I method and show that such relations fit in with a slightly more general and abstract
definition. Such relations are interpreted as non-strict preferences. We do the same with the
asymmetric outranking relation of the Tacticmethod. Such relations are interpreted as strict
preferences. On the basis of these general definitions, we investigate the relationship between
reflexive and asymmetric outranking relations, mainly using co-duality.

In order to avoid unnecessary minor complications, we restrict our attention to relations
R on X = ∏n

i=1 Xi for which each attribute is influential. This requirement is a sort of
non-triviality condition for attributes. We say that attribute i ∈ N is influential (for R )
if there are xi , yi , zi , wi ∈ Xi and x−i , y−i ∈ X−i such that (xi , x−i ) R (yi , y−i ) and
Not[(zi , x−i ) R (wi , y−i )] and degenerate otherwise. A degenerate attribute has no influence
whatsoever on the comparison of the elements of X and may be suppressed from N .

3.1 Electre I

We describe how a reflexive outranking relation, interpreted as a non-strict preference, is
built according to the Electre I method.1 Using a real-valued function ui defined on Xi ,
and a pair of non-negative thresholds pti and vti , with pti ≤ vti , we define the semiorders
Si and Ui as follows:2 for all xi , yi ∈ Xi ,

xi Si yi ⇔ ui (xi ) ≥ ui (yi ) − pti (2)

xi Ui yi ⇔ ui (xi ) ≥ ui (yi ) − vti . (3)

The pair of relations (Si , Ui ) on Xi form a homogeneous nested chain of semiorders as
defined in Sect. 2 (with the underlying weak order Ti such that xi Ti yi ⇔ ui (xi ) ≥ ui (yi )).
Relation Si interprets as the “at least as good” relation on attribute i . The relation Pi , the
asymmetric part of Si , is interpreted as a “better than” relation. pti is the preference threshold
on attribute i . We read “xi Ui yi” as “level xi is not unacceptably bad with respect to level
yi”. The relation Ui is a non-veto relation on attribute i . In contrast, the co-dual of Ui is the
veto relation Vi . It is defined as follows: for all xi , yi ∈ Xi ,

yi Vi xi ⇔ Not[xi Ui yi ]
⇔ ui (xi ) < ui (yi ) − vti . (4)

1 This version of the Electre I method is not the historical one (Roy 1968), but a more “modern” version as
presented in (Roy and Bouyssou 1993, p. 251).
2 Assuming the existence of constant threshold representations for these semiorders is not restrictive for finite
Xi (Aleskerov et al. 2007, p. 222).
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Hence yi Vi xi means that yi is far better than xi .
In Electre I, the outranking relationR is determined using positive weights wi attached

to each attribute and a threshold s with (1/2 ≤ s ≤ 1), such that, for all x, y ∈ X ,

x R y ⇔
∑

i∈S(x,y) wi
∑

j∈N w j
≥ s and V (y, x) = ∅, (5)

where S(x, y) = {i ∈ N : xi Si yi }, the set of attributes on which x is at least as good as y,
and V (y, x) = {i ∈ N : yi Vi xi }, the set of attributes on which x is unacceptably bad as
compared to y.

Outranking relations such as R are reflexive, need not be complete and do not in general
enjoy nice transitivity properties (Bouyssou 1996). As a consequence, deriving a recommen-
dation to the decision maker on the basis of such relations is not straightforward. In order
to do that, the analyst may use one of the so-called exploitation procedures (see Roy and
Bouyssou 1993, Ch. 6, or Bouyssou et al. 2006, Ch. 7).

Remark 1 Note that we do not consider valued outranking relations such as those obtained by
the Electre III (see Roy 1978; Roy and Bouyssou 1993, pp. 284–289) and the Promethee
(Brans and Vincke 1985) methods. This is due to the fact that the tools currently developed in
the framework of conjoint measurement theory only deal with crisp relations. In contrast, our
analysis does encompass the crisp outranking relations produced by the Electre II method.
We do not develop this point further for the sake of conciseness. 	

3.2 Outranking relations

A general definition of a reflexive outranking relation was given in Bouyssou and Pirlot
(2009a) , where such a relation is referred to as a reflexive concordance–discordance relation
(R-CDR). The same paper established a characterization of such relations by a system of
independent axioms. Since it turns out that reflexivity plays no rôle in the analysis, we
restate this definition below, dropping the assumption that the relation is reflexive. In the
sequel, the expression outranking relationwill be used as exact synonymous of concordance–
discordance relation (CDR).

Definition 2 (Concordance–discordance relation (CDR)) A binary relation R on X =∏n
i=1 Xi is a concordance–discordance relation (CDR) if there are:

1. a complete binary relation Si on each Xi (i = 1, 2, . . . , n) (with asymmetric part Pi and
symmetric part Ii ),

2. an asymmetric binary relation Vi on each Xi (i = 1, 2, . . . , n) such that Vi ⊆ Pi ,
3. a binary relation � between subsets of N having N for union that is monotonic w.r.t.

inclusion, i.e., for all A, B, C, D ⊆ N with A ∪ B = N and C ∪ D = N ,

[A � B, C ⊇ A, B ⊇ D] ⇒ C � D, (6)

such that, for all x, y ∈ X ,

x R y ⇔ [S(x, y) � S(y, x) and V (y, x) = ∅] , (7)

where S(x, y) = {i ∈ N : xi Si yi } and V (y, x) = {i ∈ N : yi Vi xi }.
We say that 〈�, Si , Vi 〉 is a type I representation of R as a CDR.
A concordance relation (CR) is a CDR in which the Vi relations are all empty.3

3 When a concordance discordance (resp. concordance relation) relation is irreflexive, reflexive or asymmetric
we will use the acronyms I-CDR, R-CDR and A-CDR (resp. I-CR, R-CR and A-CR) when we want to
emphasize this fact.
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As explained in Bouyssou and Pirlot (2009a), the type I representation 〈�, Si , Vi 〉 of a
CDR may not be unique. This is true even if all attributes are supposed to be influential.
When we speak below of a representation of type I 〈�, Si , Vi 〉 of a CDR, we mean one
possible representation of type I of the CDR. As detailed in Bouyssou and Pirlot (2005b,
2007) the situation is different with CR.When all attributes are influential, they have a unique
representation of type I. Similar remarkswill hold for the representations of type II introduced
below.

In the above definition, for each attribute i , Si is interpreted as a non-strict preference
relation on Xi . The asymmetric part Pi of Si is the strict preference on Xi and Vi is the veto
relation. Relation � is used in pairwise comparisons of alternatives, it compares coalitions
of attributes in terms of their importance: if A and B denote subsets of attributes, A � B
reads “the coalition of attributes A is at least as important as the coalition B”. In the sequel,
we shall use the notation � (resp. �) to denote the asymmetric (resp. symmetric) part of
�. Consequently, A � B (resp. A � B) reads “the coalition of attributes A is strictly more
important (resp. equally important as) coalition B).

It is easy to see that the outranking relation of Electre I satisfies the above definition. In
particular,4 the relation � is defined by:

A � B if

∑
i∈A wi

∑
j∈N w j

≥ s.

Rule (5) implies that the relation built in the Electre I procedure is reflexive.

Remark 3 (Outranking relationswith attribute transitivity)Due to (2) and (3), relations Si and
Vi inElectre I have additional properties, namely Si is a semiorder, Vi is the asymmetric part
of the semiorderUi and Si andUi forma homogeneous chain of two semiorders. Concordance
discordance relations with these additional properties have been defined and characterized
in Bouyssou and Pirlot (2009a) under the name reflexive concordance–discordance relations
with attribute transitivity (R-CDR-AT). When required, the suffix “-AT” will be added to
acronyms characterizing outranking relations, meaning that the corresponding relations also
have the attribute transitivity property. 	

Remark 4 (Concordance and non-discordance relations) Condition (7) explicitly defines
an outranking relation as a relation that satisfies two rules: a concordance rule (S(x, y) �
S(y, x)) and a non-discordance rule (V (y, x) �= ∅). Alternatively, an outranking relationR
can be viewed as the intersection of two relations: a concordance relation C(R) and a non-
discordance relation. The concordance relation C(R) is defined by x C(R) y if S(x, y) �
S(y, x). The non-discordance relation ND(R) is defined by x ND(R) y if V (y, x) = ∅.
Hence, we have x R y iff [x C(R) y and x ND(R) y].

Note that the concordance relation C(R) associated with a concordance–discordance rela-
tion in the sense of Definition 2 is itself a particular case of this definition, in which the
veto relation Vi is assumed to be empty. Such relations were studied and characterized in
(Bouyssou and Pirlot 2005b, 2007).5 	

3.3 Tactic

Another type of outranking relation has been introduced by Vansnick (1986). His Tactic
method yields an asymmetric outranking relation interpreted as a strict preference.We briefly

4 See Bouyssou and Pirlot (2009a), p. 470, for more detail.
5 This characterization was given for reflexive concordance relations (R-CR), but this restriction is inessential
and our characterization is valid for general CR.
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recall its definition. Let Pi be the asymmetric part of the semiorder Si defined by (2) and let
Vi be the asymmetric part of relation Ui defined by (3). Since Ui is complete, Vi is also the
co-dual of Ui . An outranking relation R of the Tactic type is defined as follows:

x R y ⇔
∑

i∈P(x,y)

wi > ρ
∑

j∈P(y,x)

w j + ε and V (y, x) = ∅, (8)

where wi is a weight assigned to attribute i , ρ is a multiplicative threshold with ρ ≥ 1, ε is a
nonnegative additive threshold, P(y, x) = {i ∈ N : xi Pi yi } and V (y, x) = {i ∈ N : yi Vi

xi }.
Such an outranking relation is clearly asymmetric by construction, hence irreflexive.
As with Electre I, Tactic inspires a general definition of outranking relations that we

discuss in the next section.

3.4 An alternative definition of outranking relations

The alternative definition of a concordance–discordance relation that we give below is a
variant of the one originally proposed in Bouyssou and Pirlot (2006), Bouyssou and Pirlot
(2012), which was restricted to asymmetric preference relations. We drop this restriction
and, in Lemma 6, we show that the unrestricted version of the definition is equivalent to
Definition 2.

Definition 5 A binary relation R on X = ∏n
i=1 Xi is a concordance–discordance relation

if there are:

• an asymmetric binary relation P◦
i on each Xi (i = 1, 2, . . . , n),

• an asymmetric binary relation V ◦
i on each Xi (i = 1, 2, . . . , n), with V ◦

i ⊆ P◦
i ,• a binary relation �◦ between disjoint subsets of N that is monotonic w.r.t. inclusion, i.e.,

for all A, B, C, D ⊆ N with A ∩ B = ∅ and C ∩ D = ∅,

[A �◦ B, C ⊇ A, B ⊇ D] ⇒ C �◦ D, (9)

such that, for all x, y ∈ X ,

x R y ⇔ [P◦(x, y) �◦ P◦(y, x) and V ◦(y, x) = ∅], (10)

where P◦(x, y) = {i ∈ N : xi P◦
i yi } and V ◦(y, x) = {i ∈ N : yi V ◦

i xi }.
We say that 〈�◦, P◦

i , V ◦
i 〉 is a type II representation of R.

It is readily checked that the outranking relation produced by Tactic satisfies this defin-
ition. In Tactic the relation �◦ is asymmetric.

Lemma 6 (Equivalence of the definitions of CDR) Definitions 2 and 5 are equivalent.

Proof Assume that R satisfies Definition 2 and that 〈�, Si , Vi 〉 is a type I representation of
R. We construct a representation 〈�◦, P◦

i , V ◦
i 〉 of type II satisfying (10) letting:

P◦
i = Pi (the asymmetric part of Si ),∀i ∈ N

V ◦
i = Vi , ∀i ∈ N (11)

and �◦ is defined as follows: for all A, B ⊆ N , with A ∩ B = ∅,

A �◦ B if (N \ B) � (N \ A). (12)
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It is straightforward to check that �◦ satisfies monotonicity condition (9) and thatR satisfies
condition (10).

Conversely, letR be a relation that satisfies (10) and 〈�◦, P◦
i , V ◦

i 〉 a type II representation
of R. We build a type I representation 〈�, Si , Vi 〉 of R by letting:

Si = (P◦
i )cd (the co-dual of P◦

i ),∀i ∈ N (13)

Vi = V ◦
i , ∀i ∈ N (14)

and � is defined as follows: for all A, B ⊆ N , with A ∪ B = N ,

A � B if (N \ B) �◦ (N \ A). (15)

Again, it is easy to prove that � satisfies (6) and that R satisfies condition (7). Observe that
because P◦

i , it co-dual Si is complete. 	

The proof of the lemma has established a correspondence between representations of type

I and type II of a CDR, which we state in the following definition.

Definition 7 (Conjugate representations) Let R be a CDR and 〈�, Si , Vi 〉 (resp.
〈�◦, P◦

i , V ◦
i 〉) a representation of type I (resp. of type II) of R. We say that these repre-

sentations are conjugate if Si and P◦
i are linked by co-duality, i.e., xi Si yi if and only if

yi P◦
i xi , Vi = V ◦

i , and provided � and �◦ are linked by (12) or, equivalently, by (15).

We state below three consequences of the equivalence of the two definitions of CDR.

1. It is immediate that an asymmetric outranking relation as yielded by the Tacticmethod
described above satisfies the alternative definition of a CDR (Definition 5). By Lemma 6,
it also satisfies Definition 2. Asymmetric concordance–discordance relations will be
referred to by the acronym A-CDR.

2. If 〈�, Si , Vi 〉 and 〈�◦, P◦
i , V ◦

i 〉) are dual representations of a CDR, R, we see that con-
dition (5) in Electre I could equivalently be formulated in terms of the strict preference
Pi as

∑
i∈P(y,x) wi

∑
j∈N w j

≤ 1 − s.

3. Let R be a CDR and let 〈�, Si , Vi 〉, 〈�◦, P◦
i , V ◦

i 〉 be conjugate representations of R.
The concordance part C(R) of the outranking relation R has been defined, using (7)
and assuming Vi = ∅, by x C(R) y if S(x, y) � S(y, x). In the same spirit, we may
use (10), assuming V ◦

i = ∅, yielding x C(R) y if P(x, y) �◦ P(y, x). Assuming that
〈�, Si , Vi 〉 and 〈�◦, P◦

i , V ◦
i 〉 are conjugate representations ofR, it is easy to see that the

latter definition is equivalent with the initial one.

Summarizing,wemay say that all crisp outranking relations, either those reflexive relations
produced, e.g., by the Electre I method, or the asymmetric ones produced, e.g., by Tactic
are CDR. Their distinctive structural features are mainly properties such as reflexivity vs
irreflexivity, asymmetry or completeness. These properties of the outranking relations are
reflected in their representations, more precisely, in corresponding properties of � or �◦.
The following proposition formally states some useful related results.

Proposition 8 Let R be a CDR and 〈�, Si , Vi 〉 (resp. 〈�◦, P◦
i , V ◦

i 〉) its representation of
type I (resp. of type II). We have:
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1. R is either reflexive or irreflexive,
R is reflexive ⇐⇒ N � N ⇐⇒ ∅ �◦

∅,
otherwise, R is irreflexive,

2. R is asymmetric ⇐⇒ � is asymmetric ⇐⇒ �◦ is asymmetric,
3. R is complete

⇐⇒ (A � B or B � A),∀A, B ⊆ N , A ∪ B = N

⇐⇒ (C �◦ D or C �◦ D),∀C, D ⊆ N , C ∩ D = ∅.

The straightforward proof is left to the reader. For Parts 2 and 3, the proof of the ⇒ part uses
the hypothesis that all attributes are influential (so that, for all A, B ⊆ N such that A∪B = N ,
there are x, y ∈ X such that S(x, y) = A and S(y, x) = B and for all C, D ⊆ N such that
C ∩ D = ∅, there are z, w ∈ X such that P◦(z, w) = C and P◦(w, z) = D).

These properties can immediately be applied to outranking relations built using Electre
I or Tactic. IfR arises from Electre I, it satisfies (5) so that N � N . As a consequence of
Proposition 8.1, R is reflexive. A relation R arising from Tactic satisfies (8). This implies
Not [∅ �◦

∅] and [C �◦ D ⇒ Not[D �◦ C]], for all C, D ⊆ N with C ∩ D = ∅. Hence,
using Propositions 8.1 and 8.2, we see that R is irreflexive and asymmetric.

Remark 9 (The rôle of co-duality) This section has shown that both reflexive and asymmetric
outranking relations can be described in a common framework specified by eitherDefinition 2
or, equivalently, Definition 5. In spite of this resemblance, their interpretations are rather con-
trasted since reflexive preferences are usually interpreted as “at least as good” relations while
asymmetric preferences are interpreted as “better than” relations. With these interpretations,
some sort of semantic relationship is intuitively expected between “at least as good” and
“better than” relations. If we start with a reflexive preference relation R, interpreted as an
“at least as good” relation, the corresponding “better than” relation is the asymmetric part
Rα ofR. Conversely, starting with an asymmetric preference relationR (like in the Tactic
method), how can we define the corresponding “at least as good” relation? At first glance,
it is tempting to say that x is at least as good as y if y is not better than x , which amounts
to define the “at least as good” relation as the co-dual ofR . Such a definition automatically
yields a complete reflexive relation (in view of the properties of the co-dual operator that were
recalled in Sect. 2). This is problematic since reflexive preference relations cannot always
be assumed to be complete (see Deparis et al. 2012, for an experimental investigation of
incomparability in preferences). In particular, in the context of outranking methods, pairs of
alternatives may be incomparable, due for instance to veto effects (see Roy 1985). Actually,
an asymmetric outranking relation can be, in general, the asymmetric part of several reflexive
outranking relations. Determining a unique reflexive relation having a given asymmetric part
requires additional information, namely the specification of the list of incomparable pairs of
alternatives (referred to as the incomparability relation in Roy 1985).

Although co-duality does not determine a correspondence between reflexive and asymmet-
ric outranking relations, it plays a major rôle for understanding their relationship. Therefore,
we devote the rest of Sect. 3 to investigate the effect of the co-dual and asymmetric part
operators on outranking relations. We first consider concordance relations (with empty veto
relations) then we examine the case of concordance–discordance relations. 	

3.5 The co-dual and the asymmetric part of a concordance relation

We first define the co-dual of the relation comparing the coalitions of attributes in Definition 2
and state properties of such relations that will be useful in the sequel.
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Definition 10 Let � be a relation between subsets of N having N for union. We call the
co-dual of �, the relation �cd between subsets of N having N for union that is defined as
follows: for all A, B ⊆ N , with A ∪ B = N , we have A �cd B ⇐⇒ Not[B � A].
Lemma 11 Let � and �̃ be two relations between subsets of N having N for union and
satisfying monotonicity condition (6).

1. The intersection � ∩ �̃ of these relations is a relation between subsets of N having N
for union and satisfying (6).

2. The co-dual �cd and the asymmetric part �α of � both satisfy condition (6).

Proof. The proof is left to the reader.

Remark 12 Similar properties can be established for relations �◦ that intervene in type II
representations of concordance relations (CR). We emphasize that �◦ is a relation between
disjoint subsets of N and satisfies monotonicity condition (9). 	


The co-dual of a CR is a CR and there is a correspondence between the type I representa-
tions of these relations.

Proposition 13 Let R be a CR that has a representation of type I, 〈�, Si 〉. The co-dual Rcd

of R is also a CR with a representation of type I that is 〈�cd , Si 〉.
Proof We have x R y ⇐⇒ [S(x, y) � S(y, x)]. The co-dual Rcd of R is such that
x Rcd y ⇐⇒ Not[y R x]. Hence, we have x Rcd y ⇐⇒ Not[S(y, x) � S(x, y)]. The
latter condition can be rewritten as x Rcd y ⇐⇒ [

S(x, y) �cd S(y, x)
]
, where �cd is the

co-dual of �. Using Lemma 11.2, we know that 〈�cd , Si 〉 is a type I representation ofRcd .	

Remark 14 A quite similar correspondence holds for type II representations. If 〈�◦, P◦

i 〉 is
a type II representation ofR, 〈�◦ cd , P◦

i 〉 is a type II representation ofRcd . Moreover, if the
type I and II representations of R are dual of one another (Definition 7), the corresponding
representations of Rcd are also dual of one another. In particular, if � and �◦ are linked
through relations (12) and (15) then their respective co-dual�cd and�◦ cd are linked through
the same relations. 	

Remark 15 The general properties of the co-dual operator, which were recalled in Sect. 2,
apply to the particular case of concordance relations. In particular, the co-dual of a reflexive
CR is an irreflexive CR and conversely. Also, the co-dual of an asymmetric CR is a complete
CR and conversely. 	


We now turn to considering the asymmetric part of a R-CR. Taking the asymmetric part
of a R-CR yields a CR (that is of course asymmetric hence irreflexive).

Proposition 16 The asymmetric part of a R-CR, that has a type I representation 〈�, Si 〉, is
the A-CR that has a type I representation 〈�α, Si 〉 with �α , the asymmetric part of �.

Proof Let R be a R-CR. We have x R y ⇐⇒ [S(x, y) � S(y, x)]. The asymmetric
part Rα of R is such that x Rα y ⇐⇒ x R y and Not[y R x]. Hence, we have
x Rα y ⇐⇒ [S(x, y) � S(y, x) and Not[S(y, x) � S(x, y)]]. The latter condition can be
rewritten as x Rα y ⇐⇒ [S(x, y) �α S(y, x)], where �α is the asymmetric part of �.
Using Lemma 11.2, we know that 〈�α, Si 〉 is a type I representation of Rα . 	
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Remark 17 (Type II representations) A remark similar to Remark 14 can be formulated for
type II representations of R and Rα . In particular, let 〈�◦, P◦

i 〉 be a type II representation
of R. The asymmetric part Rα of R has a type II representation 〈�◦α, P◦

i 〉, with �◦α , the
asymmetric part of �◦. 	


Summarizing, if a R-CR is complete, its asymmetric part is an A-CR which is also its
co-dual. On the other hand, for a given A-CR, there are several R-CR having it as their
asymmetric part. One of them is a complete relation and its co-dual. Note also that all what
we said for CR remains valid for CR-AT, i.e., CR with attribute transitivity (as defined in
Remark 3).

3.6 Vetoes and bonuses

Wenowaddress the general case of outranking relationswith veto. Considering concordance–
discordance relations changes the picture. The correspondence between R-CR and A-CR
described in the previous section no longer holds. In particular, the asymmetric part of a
R-CDR is not, in general, an A-CDR. We investigate such issues below.

Let R be a R-CDR. For all x, y ∈ X , we have that x R y if x C(R) y and x ND(R) y,
where C(R) is the R-CR associated with R and x ND(R) y if Not[yi Vi xi ], for all i ∈ N
(see Remark 4).

The asymmetric part Rα of R obtains as follows:

x Rα y ⇔ x R y and Not[y R x]
⇔

{
[x C(R) y and x ND(R) y] and
[Not[y C(R) x] or Not[y ND(R) x]]

It is easy to see that the above definition can equivalently be written as:

x Rα y ⇔
{
[x C(R) y and Not[y C(R) x] and x ND(R) y] or
[x C(R) y and y C(R) x and x ND(R) y and Not[y ND(R) x]] .

Hence we have x Rα y if and only if one of the following two exclusive conditions is
fulfilled:

1. (x, y) belongs to the asymmetric part of C(R) and x ND(R) y or
2. (x, y) belongs to the symmetric part of C(R), x ND(R) y and, for some i ∈ N , xi Vi yi

Case 1 corresponds to the definition of anA-CDR since, by Proposition 16, the asymmetric
part of C(R), which is a R-CR, is an A-CR, a non-discordance condition is imposed on it.

Case 2 looks a bit more unexpected. There is no such condition in the definition of an
A-CDR or in the Tactic motivating example of an A-CDR. With Case 2, we have x Rα y
when (x, y) belongs to the symmetric part of C(R) and there is no veto of y against x
(∀ j, Not[y j Vj x j ]) but on some attribute i , we have xi Vi yi , which means that xi is a
much better performance than yi on attribute i . The presence of a veto in favor of x against
y can thus have a positive effect in breaking a tie in the concordance relation. We call such
an effect a bonus.

In contrast with Proposition 16, the asymmetric part of an R-CDR is not, in general, an
A-CDR, due to the possible occurrence of bonus effects.

Let us now examine the effect of the co-dual operator on concordance–discordance rela-
tions. Assume, for instance, thatR is an A-CDR. By definition of an A-CDR, we have: x R y
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if x C(R) y and x ND(R) y, where C(R) is the A-CR associated withR. The co-dualRcd

of R is such that:

x Rcd y ⇐⇒ Not[y C(R) x] or Not[y ND(R) x]. (16)

The first condition in the righthand side of (16) states that (x, y) belongs to the co-dual of
C(R). We know that the co-dual of this A-CR is a complete R-CR (Proposition 13). The
second condition in the righthand side of (16), means again that there may be a bonus effect,
i.e., that xi Vi yi (for any i ∈ N ) entails x Rcd y. Condition (16) defining the co-dual of
an A-CDR is very similar to the one defining a R-CDR except that veto plays a positive rôle
here. In contrast with Proposition 13, the co-dual of a CDR is not, in general, a CDR, due to
the possible occurrence of bonus effects. It is a concordance relation with bonus (CRB) as
defined below. In this definition, the non-veto condition in Definition 2 is just transformed
into a bonus condition.

Definition 18 (Concordance relation with bonus (CRB)) A binary relation R on X =∏n
i=1 Xi is a concordance relation with bonus (CRB) if there are:

1. a complete binary relation Si on each Xi (i = 1, 2, . . . , n) (with asymmetric part Pi and
symmetric part Ii ),

2. an asymmetric binary relation Vi on each Xi (i = 1, 2, . . . , n) such that Vi ⊆ Pi ,
3. a binary relation � between subsets of N having N for union that is monotonic w.r.t.

inclusion, i.e., for all A, B, C, D ⊆ N with A ∪ B = N and C ∪ D = N ,

[A � B, C ⊇ A, B ⊇ D] ⇒ C � D, (17)

such that, for all x, y ∈ X ,

x R y ⇔ [S(x, y) � S(y, x) or V (x, y) �= ∅] , (18)

where S(x, y) = {i ∈ N : xi Si yi } and V (x, y) = {i ∈ N : xi Vi yi }.
We say that 〈�, Si , Vi 〉 is a representation of R as a CRB.

Note that a concordance relation (CR) is a CRB in which all the Vi relations are empty.
As for concordance–discordance relations, we may distinguish reflexive CRB’s (R-CRB) on
the one hand and asymmetric CRB’s (A-CRB) on the other hand. The alternative definition
of a CDR established in Lemma 6 can also be transposed for CRB’s without any difficulty
and we omit the details.

It is easy to see that CRB’s and CDR’s are related through co-duality as stated in the
following proposition.

Proposition 19 Relation R on X is a concordance–discordance relation if and only if its
co-dual Rcd is a concordance relation with bonus and conversely.

Proof LetR be a CDR having 〈�, Si , Vi 〉 as a representation of type I. Using Proposition 13,
we know that Rcd is a concordance relation that has 〈�cd , Si 〉 as a representation of type I
as a CR. Since Rcd is defined, for all x, y ∈ X , by

x Rcd y ⇔ Not[S(y, x) � S(x, y) and V (y, x) = ∅]
⇔ Not[S(y, x) � S(x, y)] or [V (y, x) �= ∅]
⇔ [S(x, y) �cd S(y, x)] or [V (y, x) �= ∅],

we see that it is a CRB having a representation of type I, which is 〈�cd , Si , Vi 〉.
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The converse is also true. StartingwithR, a CRB that has a type I representation 〈�cd , Si 〉,
we apply the co-dual operator as follows:

x Rcd y ⇔ Not[S(y, x) � S(x, y) or V (y, x) �= ∅]
⇔ Not[S(y, x) � S(x, y)] and [V (y, x) = ∅]
⇔ [S(x, y) �cd S(y, x)] and [V (y, x) = ∅].

Relation Rcd is a CDR that admits the type I representation 〈�cd , Si , Vi 〉. 	


Because the asymmetric partRα of a R-CDR,Rmay involve at the same time bonus and
veto effects, simple examples show that it is neither an asymmetric CDR nor an asymmetric
CRB. Such relations require an analysis that is more complex than the one for CDR or CRB.
It is detailed in Bouyssou and Pirlot (2014).

3.7 Summary

Summarizing the above analysis of the relationship between non-strict and strict outranking
relations, we draw the reader’s attention to the following points.

1. As long as we are concerned with concordance relations, without considering vetoes, we
see that there is no deep difference in nature between non-strict and strict concordance
relations: R-CR and A-CR satisfy the same definition (Definition 2). They just differ by
the additional property that they are respectively reflexive or asymmetric. Moreover, the
asymmetric part of a R-CR is an A-CR. The co-dual of an A-CR is a complete R-CR.
Knowing an A-CR, there is no way of distinguishing indifference from incomparability
in view of reconstructing an hypothetic original R-CR of which the A-CR that we know
would be the asymmetric part. From a practical point of view, this can be seen as an
advantage of R-CR models over A-CR’s. The preferential information encoded in a R-
CR permits to distinguish incomparable pairs of alternatives from indifferent ones, while
A-CR’s do not allow for that.

2. Allowing for vetoes changes the picture. The asymmetric part of a R-CDR is not an A-
CDRbut amore complex object, in general consisting of two disjoint relations: on the one
hand, the intersection of the asymmetric part of the associated concordance relation and
the non discordance relation (as expected). On the other hand, a part of the indifference
relation of the associated concordance relation determined as follows: if one of the two
arcs linking a pair of alternatives in the indifference part of the concordance relation
is broken due to a veto, while the other is not, then the remaining arc belongs to the
asymmetric part of the R-CDR. In this case, the veto relation acts as a bonus.

In the rest of this paper, we take advantage of the just explored co-duality relationships
between strict and non-strict outranking relations, in order to unify and deepen the axiomatic
analysis that we presented in several previous papers (Bouyssou and Pirlot 2002b, 2005b,
2006, 2007, 2009a).

4 Axiomatic analysis

We start by recalling some of earlier results on the characterization of CR and CDR. Then we
study the effect of the co-dual operator on our axioms. We derive new axiomatic characteri-
zations of classical outranking relations as well as we obtain characterizations of preference
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relations involving bonuses instead of vetoes. Our main goal is to offer a unified and com-
prehensive framework allowing clear understanding of the relationships between strict and
non strict outranking relations.

4.1 Background

We briefly recall the axioms used in the characterization of reflexive CDR obtained in
Bouyssou and Pirlot (2009a), under the assumption that all attributes are influential.

Definition 20 (Axioms RC1, RC2) Let R be a binary relation on a set X = ∏n
i=1 Xi . This

relation is said to satisfy:

RC1i if
(xi , a−i ) R (yi , b−i )

and
(zi , c−i ) R (wi , d−i )

⎫
⎬

⎭
⇒

⎧
⎨

⎩

(zi , a−i ) R (wi , b−i )

or
(xi , c−i ) R (yi , d−i ),

RC2i if
(xi , a−i ) R (yi , b−i )

and
(yi , c−i ) R (xi , d−i )

⎫
⎬

⎭
⇒

⎧
⎨

⎩

(zi , a−i ) R (wi , b−i )

or
(wi , c−i ) R (zi , d−i ),

for all xi , yi , zi , wi ∈ Xi and all a−i , b−i , c−i , d−i ∈ X−i . We say that R satisfies RC1
(resp. RC2) if it satisfies RC1i (resp. RC2i ) for all i ∈ N .

An interpretation of these axioms was provided in Bouyssou and Pirlot (2002a). It relies
on a reformulation of the axioms in terms of traces left by the preferenceR on each attribute
scale. The relevant traces in the present case are relations comparing preference differences
on each attribute. They are precisely defined as follows (see also Bouyssou and Pirlot 2005a,
for more detail on traces).

Definition 21 (Relations �∗
i , �∗∗

i ) Let R be a binary relation on a set X = ∏n
i=1 Xi . We

define the binary relations �∗
i and �∗∗

i on X2
i letting, for all xi , yi , zi , wi ∈ Xi ,

(xi , yi ) �∗
i (zi , wi ) ⇔

∀a−i , b−i ∈ X−i , [(zi , a−i ) R (wi , b−i ) ⇒ (xi , a−i ) R (yi , b−i )],
(xi , yi ) �∗∗

i (zi , wi ) ⇔ [
(xi , yi ) �∗

i (zi , wi ) and (wi , zi ) �∗
i (yi , xi )

]
.

In order to understand the close relationship between �∗
i and RC1i , assume that RC1i is not

true. Hence, for some xi , yi , zi , wi ∈ Xi and some a−i , b−i , c−i , d−i ∈ X−i , both premises
of RC1i are satisfied and none of its conclusions. We thus have (xi , a−i ) R (yi , b−i ) and
Not[(zi , a−i ) R (wi , b−i )], which is tantamount to Not[(zi , wi ) �∗

i (xi , yi )]. Similarly, we
have (zi , c−i ) R (wi , d−i ) and Not[(xi , c−i ) R (yi , d−i )], which means Not[(xi , yi ) �∗

i
(zi , wi )]. Hence it is clear that RC1i holds if and only if all pairs of elements in Xi are
comparable w.r.t. �∗

i .
This conclusion constitutes the first part of the lemma below. The second part is obtained

similarly, considering RC2i (see Bouyssou and Pirlot 2002a, for the proof).

Lemma 22 (Bouyssou and Pirlot 2002a, Lemma 1)

1. RC1i ⇔ [�∗
i is complete],

2. RC2i ⇔
[for all xi , yi , zi , wi ∈ Xi , Not[(xi , yi ) �∗

i (zi , wi )] ⇒ (yi , xi ) �∗
i (wi , zi )],

3. [RC1i and RC2i ] ⇔ [�∗∗
i is complete].
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Since �∗
i and �∗∗

i are transitive by definition, the above lemma states that �∗
i (resp. �∗∗

i ) is
a weak order if and only if RC1i holds (resp. RC1i and RC2i hold).

The precise interpretation of axiom RC1i and RC2i are thus as follows. Axiom RC1i

amounts to say that all preference differences (xi , yi ) on Xi can be weakly ordered. Axiom
RC2i establishes a link between opposite differences of preferences such as (xi , yi ) and
(yi , xi ). Note that RC2 entails that R is an independent preference relation.

Remark 23 In the sequel, all introduced axioms may be interpreted in terms of properties
of some traces. These properties will be stated in lemmas, the proof of which basically
constitutes the interpretation of the axioms. For the sake of conciseness, we shall not provide
more explicit interpretations. 	


A crucial feature of CR and CDR is that they induce relations�∗
i and�∗∗

i having a limited
number of equivalence classes. This is the motivation for the following two conditions.

Definition 24 (Axioms M1, M2) Let R be a binary relation on a set X = ∏n
i=1 Xi . This

relation is said to satisfy:

M1i if
(xi , a−i ) R (yi , b−i )

and
(zi , c−i ) R (wi , d−i )

⎫
⎬

⎭
⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(yi , a−i ) R (xi , b−i )

or
(wi , a−i ) R (zi , b−i )

or
(xi , c−i ) R (yi , d−i ),

(19)

M2i if
(xi , a−i ) R (yi , b−i )

and
(yi , c−i ) R (xi , d−i )

⎫
⎬

⎭
⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(yi , a−i ) R (xi , b−i )

or
(zi , a−i ) R (wi , b−i )

or
(zi , c−i ) R (wi , d−i ),

(20)

for all xi , yi , zi , wi ∈ Xi and all a−i , b−i , c−i , d−i ∈ X−i . We say that M1 (resp. M2) holds
if M1i (resp. M2i ) holds for all i ∈ N .

The interpretation of M1i and M2i , respectively conditional on RC2i and RC1i , results from
the following lemma.

Lemma 25 1. If R satisfies RC2i , then R satisfies M1i ⇐⇒
[for all xi , yi , zi , wi ∈ Xi , Not[(yi , xi ) �∗

i (xi , yi )] ⇒ (xi , yi ) �∗
i (zi , wi )],

2. If R satisfies RC1i , then R satisfies M2i ⇐⇒
[for all xi , yi , zi , wi ∈ Xi , Not[(yi , xi ) �∗

i (xi , yi )] ⇒ (zi , wi ) �∗
i (yi , xi )],

Proof The proof of item 1 (resp. item 2) results from the combination of Bouyssou and Pirlot
(2007), Lemma 11.1 and 11.3 (resp. 11.2 and 11.4) and Bouyssou and Pirlot (2005b), Lemma
16.1 (resp. 16.2). 	


Let us call a positive preference difference (resp. negative preference difference) one that is
at least (resp. at most) as large as the opposite preference difference. Under RC2i , M1i says
that a positive preference difference is at least as large as any other preference difference.
In other terms, there is only one class of positive preference differences. Under RC1i , M2i

states the symmetric property for negative preference differences. For more detail on the
interpretation of M1 and M2, see Bouyssou and Pirlot 2005b, 2007).

123



176 Ann Oper Res (2015) 229:159–212

Remark 26 (Axioms UC and LC) A simpler–and slightly stronger–version of axioms M1i ,
M2i was used in our initial characterization of concordance relations in Bouyssou and Pirlot
(2005b). These axioms, respectively labeled UCi and LCi , obtain by dropping the second in
the three possible conclusions in the definitions of M1i and M2i . The substitution ofUCi and
LCi by M1i and M2i in the characterization of reflexive CR was motivated by the need for
independent sets of axioms. By Lemma 16.3 in Bouyssou and Pirlot (2005b), we established
indeed that RC2i , UCi and LCi imply RC1i . The second in the three possible conclusions
in the definitions of M1i and M2i has precisely the effect of guaranteeing the independence
of the set of axioms RC1i , RC2i , M1i and M2i , as is shown in the next theorem. 	


Theorems 27 and 29 below are variants of Theorems 13 in Bouyssou and Pirlot (2007)
and Theorem 19 in Bouyssou and Pirlot (2009a), respectively. The theorems stated below
are slightly more general than their previous versions in two respects. First they are stated for
general binary relations, instead of reflexive relations. The reflexivity property was actually
playing no rôle in the proofs of the previous characterizations, which remain unchanged and
are thus omitted. The second detail is that the independence of the axioms is now stated in
the class of complete relations (instead of the class of reflexive ones). Most of the examples
previously used to show the independence of the axioms were complete relations. For the
sake of completeness, we recall these examples below and provide an additional one that is
needed for proving Theorem 29.

Theorem 27 The binary relation R on X = ∏n
i=1 Xi is a concordance relation (CR) iff

it satisfies RC1, RC2, M1 and M2. These axioms are independent in the class of complete
binary relations.

Proof As we said before, the proof of Theorem 13 in Bouyssou and Pirlot (2007) remains
valid for general binary relations and we omit it. The independence of the axioms in the class
of complete relations results from the following examples (see “Appendix 2”):

Violated axiom RC1i RC2i M1i M2i

Example 79 77 78 83

	

We now introduce a weakened version of M2i , axiom M3i , which allows for vetoes, i.e.,

“large negative” preference differences forbidding that a pair of alternatives may belong to
the global preference relation.

Definition 28 Let R be a binary relation on a set X = ∏n
i=1 Xi . This relation is said to

satisfy:

M3i if

(xi , a−i ) R (yi , b−i )

and
(yi , c−i ) R (xi , d−i )

and
(zi , e−i ) R (wi , f−i )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(yi , a−i ) R (xi , b−i )

or
(zi , a−i ) R (wi , b−i )

or
(zi , c−i ) R (wi , d−i ),
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for all xi , yi , zi , wi ∈ Xi and all a−i , b−i , c−i , d−i , e−i , f−i ∈ X−i . We say thatR satisfies
M3 if it satisfies M3i for all i ∈ N .

We observe that M3i only differs from M2i by the adjunction of the third premise, implying
that M3i is a weakening of M2i . The interpretation of M3i , under the hypothesis that RC1i

holds, results from that of M2i as stated in Lemma 25.2. Assuming RC1i amounts to say
that �∗

i is complete. Hence if the first two premises of M3i hold and neither the first nor the
third conclusion do, then we have (xi , yi ) �∗

i (yi , xi ) �∗
i (zi , wi ). In these circumstances,

the second conclusion cannot be true, since this would imply that (zi , wi ) �∗
i (yi , xi ), a

contradiction with (yi , xi ) �∗
i (zi , wi ). Hence, none of the three conclusions holds and M3i

can only be satisfied if it never happens that (zi , e−i ) R (wi , f−i ). This means that the pair
(zi , wi ) represents an unacceptable preference difference, leading to a veto. We have the
following result.

Theorem 29 The binary relationR on X = ∏n
i=1 Xi is a concordance–discordance relation

(CDR) iff it satisfies RC1, RC2, M1 and M3. These axioms are independent in the class of
complete binary relations.

Proof As said before, the proof of Theorem 19 in Bouyssou and Pirlot (2009a) remains
valid for general binary relations and we omit it. In order to prove the independence of the
axioms in the class of complete relations, we may invoke again those examples used in the
proof of Theorem 27. It only remains to exhibit an example of a complete relation satisfying
RC1, RC2, M1 and M3i on all attributes but one. Example 83 in “Appendix 2” fulfills this
requirement. 	

4.2 Characterizations of CR via co-duality

From Proposition 13 we know that the co-dual of a concordance relation R is also a CR.
Starting from the axioms above, it is not difficult to reformulate them in terms of the co-
dual relation Rcd . Let R be any relation on X . Consider for instance axiom RC1i . Using
contraposition, we obtain:
R satisfies RC1i , i.e.,

Not[(xi , c−i ) R (yi , d−i )]
and

Not[(zi , a−i ) R (wi , b−i )]

⎫
⎬

⎭
⇒

⎧
⎨

⎩

Not[(xi , a−i ) R (yi , b−i )]
or

Not[(zi , c−i ) R (wi , d−i )]
if and only if Rcd satisfies:

(yi , d−i ) Rcd (xi , c−i )

and
(wi , b−i ) Rcd (zi , a−i )

⎫
⎬

⎭
⇒

⎧
⎨

⎩

(yi , b−i ) Rcd (xi , a−i )

or
(wi , d−i ) Rcd (zi , c−i ),

for all xi , yi , zi , wi ∈ Xi and all a−i , b−i , c−i , d−i ∈ X−i . Clearly, the above condition is
axiom RC1i imposed on relationRcd . Hence,R satisfies RC11 iff its co-dual does. It can be
similarly shown that it is also the case for RC2i . We refer to this property saying that axioms
RC1 and RC2 are self co-dual.

The picture is not exactly the same for M1 and M2. Let us recall axioms Maj1 and Maj2
that have been introduced for characterizing strict concordance relations in Bouyssou and
Pirlot (2005c), Bouyssou and Pirlot (2006).
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Definition 30 (Axioms Maj1, Maj2) LetR be a binary relation on a set X = ∏n
i=1 Xi . This

relation is said to satisfy:

Maj1i if

(xi , a−i ) R (yi , b−i )

and
(zi , a−i ) R (wi , b−i )

and
(zi , c−i ) R (wi , d−i )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⇒
⎧
⎨

⎩

(yi , a−i ) R (xi , b−i )

or
(xi , c−i ) R (yi , d−i ),

(21)

Maj2i if

(xi , a−i ) R (yi , b−i )

and
(wi , a−i ) R (zi , b−i )

and
(yi , c−i ) R (xi , d−i )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⇒
⎧
⎨

⎩

(yi , a−i ) R (xi , b−i )

or
(zi , c−i ) R (wi , d−i ),

(22)

for all xi , yi , zi , wi ∈ Xi and all a−i , b−i , c−i , d−i ∈ X−i . We say that Maj1 (resp. Maj2)
holds if Maj1i (resp. Maj2i ) holds for all i ∈ N .

Contraposition of M1i yields: R satisfies M1i if and only if Rcd satisfies the following
condition: for all xi , yi , zi , wi ∈ Xi and all a−i , b−i , c−i , d−i ∈ X−i ,

(xi , b−i ) Rcd (yi , a−i )

and
(zi , b−i ) Rcd (wi , a−i )

and
(yi , d−i ) Rcd (xi , c−i )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⇒
⎧
⎨

⎩

(yi , b−i ) Rcd (xi , a−i )

or
(wi , d−i ) Rcd (zi , c−i ).

(23)

It is readily seen that this condition is axiom Maj2i imposed on relationRcd . Indeed expres-
sions (22) and (23) only differ by the positions of a−i and b−i , c−i and d−i , zi and wi , which
have been interchanged, and by the substitution of R with Rcd . Paraphrasing this result,
we state that imposing M1i on R is tantamount to imposing Maj2i on its co-dual Rcd and
conversely.

In a similar way, starting from condition M2i imposed on R, we obtain the following
equivalent condition imposed onRcd : for all xi , yi , zi , wi ∈ Xi and all a−i , b−i , c−i , d−i ∈
X−i ,

(xi , b−i ) Rcd (yi , a−i )

and
(wi , b−i ) Rcd (zi , a−i )

and
(wi , d−i ) Rcd (zi , c−i )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⇒
⎧
⎨

⎩

(yi , b−i ) Rcd (xi , a−i )

or
(xi , d−i ) Rcd (yi , c−i ).

(24)

We observe that the latter condition is axiom Maj1i imposed on relation Rcd (with the
positions of a−i and b−i , c−i and d−i , zi and wi having been interchanged). Imposing M2i

on R is equivalent to imposing Maj1i on its co-dual Rcd and conversely.
We collect our findings in the next lemma. Its proof results from the above observations.

Lemma 31 Let R be any relation on X and Rcd its co-dual. The following statements hold,
for all i ∈ N:

1. R satisfies RC1i iff Rcd satisfies RC1i ,
2. R satisfies RC2i iff Rcd satisfies RC2i ,
3. R satisfies M1i iff Rcd satisfies Maj2i ,
4. R satisfies M2i iff Rcd satisfies Maj1i .
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Co-duality induces a simple correspondence between the relations comparing preference
differences on each attribute, namely the relations �∗

i (resp. �∗∗
i ) associated with a relation

R and its co-dual Rcd . To avoid ambiguity, we write �∗
i (R), �∗∗

i (R) (resp. �∗
i (Rcd),

�∗∗
i (Rcd)) to denote the two relations comparing preference differences on attribute i

associated with R (resp. Rcd ). Using Definition 21 and that of Rcd , it is straightforward to
establish the following result.

Lemma 32 Let R be any relation on X and Rcd its co-dual. For all i ∈ N, for all
xi , yi , zi , wi ∈ Xi , we have:

1. (xi , yi ) �∗
i (Rcd) (zi , wi ) iff (wi , zi ) �∗

i (R) (yi , xi ),
2. (xi , yi ) �∗∗

i (Rcd) (zi , wi ) iff (xi , yi ) �∗∗
i (R) (zi , wi ).

Remark 33 In Remark 26, we pointed out that M1i (resp. M2i ) is a weakening of axiom
UCi (resp.LCi ) that was used in an earlier–non independent–characterization of concordance
relations. It is easy to see that also axioms Maj1i and Maj2i are respectively weakened forms
of UCi and LCi , obtained by imposing an additional clause (the second one) as a premise.
We thus have that UCi entails Maj1i and LCi entails Maj2i , a property that will be used
below.

In the context of the present paper, UC and LC are at an advantage w.r.t. M1 and M2
or Maj1 and Maj2 since they form a pair of cross co-dual conditions. It is indeed easy to
check that imposing UCi on relation R is equivalent to imposing LCi on its co-dual Rcd

and conversely. 	

Starting from the characterization of a reflexive concordance relation (Theorem 27) and

using the results of Lemma 31, we easily obtain a “dual” characterization of irreflexive
CR’s. Actually, the characterization of reflexive CR’s is also valid for irreflexive CR’s and
conversely. The following lemma will help us establishing characterizations that are valid for
both reflexive and irreflexive concordance relations. Remember that a CR is either reflexive
or irreflexive (Proposition 8.1).

Lemma 34 The following implications hold for all i ∈ N:

1. M1i and RC2i entail Maj1i ,
2. Maj1i and RC1i entail M1i ,
3. M2i and RC1i entail Maj2i ,
4. Maj2i and RC2i entail M2i .

Under RC1i and RC2i , we have:

1. M1i ⇔ Maj1i ,
2. M2i ⇔ Maj2i .

Proof 1. Assume that RC2i and M1i hold for a relation R . If we have Not[(wi , a−i ) R
(zi , b−i )] in (19), M1i entails the two remaining possible consequences in (21). On the
contrary, if (wi , a−i ) R (zi , b−i ) holds true, since we have that (zi , c−i ) R (wi , d−i ),
we may apply RC2i yielding (yi , a−i ) R (xi , b−i ) or (xi , c−i ) R (yi , d−i ), which are
the desired consequences in order to establish that Maj1i holds.

2. Assume that RC1i and Maj1i hold. If (zi , a−i ) R (wi , b−i ) is true then Maj1i implies
that the first or the third conclusion of M1i is true. Otherwise, we have (xi , a−i ) R
(yi , b−i ) and (zi , c−i ) R (wi , d−i ). Applying RC1i we get either (zi , a−i ) R (wi , b−i )

or (xi , c−i ) R (yi , d−i ). We have assumed that the former does not hold, hence the latter
is true, which establishes M1i .
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3. Assuming that RC1i and M2i hold, we show that Maj2i is satisfied. If the second con-
sequence in (20) does not hold, i.e., if we have Not[(zi , a−i ) R (wi , b−i )], then M2i

entails one or the other consequence in Maj2i . On the contrary, if (zi , a−i ) R (wi , b−i )

holds, considering the third premise of Maj2i , i.e., (yi , c−i ) R (xi , d−i ) and using RC1i ,
we get either consequence of Maj2i .

4. Finally, assuming thatRC2i andMaj2i hold, we derive M2i . This is immediate whenever
(wi , a−i ) R (zi , b−i ) is true since thenMaj2i implies that the first or the third conclusion
of M2i is true. In the opposite case, from (xi , a−i ) R (yi , b−i ) and (yi , c−i ) R (xi , d−i ),
we obtain, using RC2i , that (wi , a−i ) R (zi , b−i ) or (zi , c−i ) R (wi , d−i ). Since the
former has been assumed to be false, the latter, which is the third conclusion of M2i , is
true, concluding the proof.

The equivalence of M1i and Maj1i under RC1i and RC2i results from the first two items.
The equivalence of M2i and Maj2i , under RC1i and RC2i is a consequence of items 3
and 4. 	


We also have the following result.

Lemma 35 If relation R satisfies RC2i , M1i and Maj2i , then it satisfies RC1i .

Proof By Lemma 11.3 in Bouyssou and Pirlot (2007), we have that RC2i and M1i imply
UCi . By co-duality arguments, this implies that RC2i and Maj2i imply LCi . By Lemma 8.3
in Bouyssou and Pirlot (2007), RC2i , UCi and LCi imply RC1i .

Theorem 36 (Characterizations of CR) Let R be a relation on X. The following statements
are equivalent:

1. R is a concordance relation (CR),
2. R satisfies RC1, RC2, M1 and M2,
3. R satisfies RC1, RC2, Maj1 and Maj2.

The axioms used in each of the above characterizations are independent in the class of
complete relations and in the class of asymmetric relations.

Proof 1. Let us first note that any relationR that satisfies RC2 is either reflexive or irreflex-
ive. The relation is irreflexive if for all x ∈ X , we have Not[x R x]. Assume there is
some x such that x R x and consider any z ∈ X . From (xi , x−i ) R (xi , x−i ) and RC2i ,
we deduce that (zi , x−i ) R (zi , x−i ). For j �= i , using RC2 j , we can similarly show that
(zi , z j , x−i j ) R (zi , z j , x−i j ). Continuing in a similar way, we finally obtain z R z.

2. By Proposition 8.1, we know that any concordance relation R is either reflexive or
irreflexive. If R is reflexive, Theorem 27 establishes the first characterization. Since
any irreflexive CR is the co-dual of a reflexive CR, Lemma 31 implies that the second
characterization holds for irreflexive CR’s.

3. Lemma 34 establishes that under conditions RC1 and RC2, M1 is equivalent to Maj1
and M2 is equivalent to Maj2. As a consequence, both characterizations are valid for
reflexive CR’s. Using Lemma 31, this implies that both characterizations are also valid
for irreflexive CR’s.

4. We know (Theorem 27) that axioms RC1, RC2, M1 and M2 (first characterization) are
independent in the class of complete relations. The following examples (the same as
for Theorem 27) show their independence. Each axiom is violated on a single attribute,
referred to by i , and satisfied on all other attributes.
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Violated axiom RC1i RC2i M1i M2i

Example 79 77 78 83

The following examples (see in “Appendix 2”) prove that RC1, RC2, Maj1 and Maj2 are
also independent in the class of complete relations:

Violated axiom RC1i RC2i Maj1i Maj2i

Example 80 77 78 83

Using co-duality, this implies that both sets of axioms are independent in the class of
asymmetric relations. 	

Remark 37 For showing the independence of RC1 in both characterizations, we need two
different examples (we used Examples 79 and 80). It is indeed a consequence of Lemma 35
that there is no relation satisfying RC2i , M1i , Maj1i , M2i , Maj2i and Not[RC1i ]. 	

Remark 38 (Earlier characterization of asymmetric CR) For asymmetric relations, the prop-
erties in the third item in Theorem 36 have been previously shown to constitute a characteri-
zation of a concordance relation by a set of independent axioms (Bouyssou and Pirlot 2006,
Theorem 2). 	

Remark 39 (Other characterizations) In view of Lemma 34, it is clear that

• R satisfies RC1, RC2, Maj1 and M2,
• R satisfies RC1, RC2, M1 and Maj2,

are two alternative characterizations of a CR. The examples used in the proof of Theorem 36
for showing that RC1, RC2, M1 and M2 are independent in the class of complete relations
also show that RC1, RC2, Maj1 and M2 are independent in the same class. By co-duality,
this implies that RC1, RC2, Maj1 and M2 are independent in the class of asymmetric rela-
tions. This means that these axioms constitute a third independent characterization of CR. In
contrast, RC1, RC2, M1 and Maj2 do not form an independent family of axioms, be it in the
class of complete or in the class of asymmetric relations, as implied by Lemma 35. We have
no simple explanation for this asymmetry. We conjecture that it is linked to the fact that the
respective rôles of RC1 and of RC2 are not symmetric in our analysis. 	

Remark 40 (Axioms UC and LC and co-duality) Since UC and LC are cross co-dual con-
ditions (see Remark 33), the family of axioms RC1, RC2, UC and LC clearly offer a char-
acterization of concordance relations within both reflexive or irreflexive relations (as well
as within both complete or asymmetric relations). Unfortunately, these axioms are not inde-
pendent since Bouyssou and Pirlot (2005b), Lemma 16 establishes that RC2i , UCi and LCi

imply RC1i . Dropping RC1, however, yields an independent characterization of a CR since
we know (Bouyssou and Pirlot 2005b, Theorem 18) that a binary relation is a CR iff it
satisfies RC2, UC and LC . Moreover, the latter axioms are independent in the class of com-
plete relations as attested by Examples 77, 78 and 83, in “Appendix 2”. The dependence
of RC1, RC2, UC and LC lead us to introduce axioms M1 and M2, which are discussed
in Bouyssou and Pirlot (2007). Theorem 36 tells us that Maj1 and Maj2, introduced for
characterizing asymmetric relations, can substitute M1 and M2, also in the case of complete
relations, without hampering the independence of the axioms. 	
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4.3 A new independent self co-dual characterization of CR

Axioms M1i and Maj1i (resp. M2i and Maj2i ) admit a common weaker formulation, MM1i

(resp. MM2i ), that simplifies the characterizations of CR and will be useful in the sequel.

Definition 41 (Axioms MM1, MM2) LetR be a binary relation on a set X = ∏n
i=1 Xi . This

relation is said to satisfy:

MM1i if

(xi , a−i ) R (yi , b−i )

and
(zi , a−i ) R (wi , b−i )

and
(zi , c−i ) R (wi , d−i )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(yi , a−i ) R (xi , b−i )

or
(wi , a−i ) R (zi , b−i )

or
(xi , c−i ) R (yi , d−i ),

MM2i if

(xi , a−i ) R (yi , b−i )

and
(wi , a−i ) R (zi , b−i )

and
(yi , c−i ) R (xi , d−i )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(yi , a−i ) R (xi , b−i )

or
(zi , a−i ) R (wi , b−i )

or
(zi , c−i ) R (wi , d−i ),

for all xi , yi , zi , wi ∈ Xi and all a−i , b−i , c−i , d−i ∈ X−i . We say that MM1 (resp. MM2)
holds if MM1i (resp. MM2i ) holds for all i ∈ N .

Note that MM1i , without its second premise, is identical to M1i . MM1i , without its second
conclusion, is Maj1i . MM1i , without both its second premise and its second conclusion, is
UCi . MM1i is clearly a weaker condition than both M1i and Maj1i . Similar observations
can be made, linking MM2i , M2i and Maj2i . MM2i is a weakened variant of the two others.
However, under RC1i and RC2i , MM1i can be shown to be equivalent to M1i , Maj1i and
UCi , as stated in the following lemma. A similar statement holds for MM2i .

Lemma 42 The following implications hold for all i ∈ N:

1. MM1i and RC1i entail M1i ,
2. MM1i and RC2i entail Maj1i ,
3. MM2i and RC2i entail M2i ,
4. MM2i and RC1i entail Maj2i .

Under RC1i and RC2i , we have:

1. MM1i ⇔ M1i ⇔ Maj1i ⇔ UCi ,
2. MM2i ⇔ M2i ⇔ Maj2i ⇔ LCi .

Proof The proofs are very similar to those used to establish Lemma 34. We prove the first
implication, leaving the three others to the reader. Assume that MM1i and RC1i hold. We
show that M1i must be true.ApplyingRC1i to the premises of M1i yields (xi , c−i ) R (yi , di )

or (zi , a−i ) R (wi , b−i ). If the former is true, then M1i is verified. Else, all three premises of
MM1i are satisfied, which entails the disjunction of three conclusions that is common to M1i

and MM1i . The proofs of the two equivalences directly results from the four implications,
Lemma 34 and Lemma 11.3 and 11.4 in Bouyssou and Pirlot (2007). The latter says that
RC2i and M1i entail UCi and that RC1i and M2i entail LCi . By definition, UCi entails M1i

and LCi entails M2i . 	

AxiomsMM1i andMM2i are cross co-dual, as areUCi andLCi (Remark 33).More precisely,
we have:
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Lemma 43 Let R be a binary relation on X and Rcd its co-dual. The following hold for all
i ∈ N:

1. R satisfies MM1i iff Rcd satisfies MM2i ,
2. R satisfies MM2i iff Rcd satisfies MM1i .

Proof The proof results immediately from contraposition and using the definition of the
co-dual. 	


Using Lemmas 42 and 43, it is easy to derive the following new characterization result.

Theorem 44 The relation R on X is a CR iff it satisfies RC1, RC2, MM1 and MM2. These
axioms are independent both in the class of complete relations and in the class of asymmetric
relations.

Proof Using Lemma 42.1 and 42.3, we obtain that a relationR satisfying RC1, RC2, MM1
and MM2 also satisfies M1 and M2. Theorem 36 entails thatR is a CR. The converse is also
true by Theorem 36 and the fact that M1 implies MM1 and M2 implies MM2. The examples
used to show the independence of the axioms in Theorem 36 can be used here. This is due to
the fact, on the one hand, that M1 and Maj1 imply MM1, hence ifR is an example of relation
satisfying one of the former, it satisfies the latter. On the other hand, if R is an example that
does not satisfy M1i or Maj1i (resp. M2i or Maj2i ), while satisfying RC1 and RC2, it cannot
satisfy MM1i (resp. MM2i ), due to Lemma 42. 	

4.4 Concordance relations with attribute transitivity

An additional property of CR, called attribute transitivity, was defined and studied in Bouys-
sou and Pirlot (2005b, 2007). Attribute transitivity amounts to assuming that the relations Si

in Definition 2 are semiorders as is the case in most ordinal aggregation methods. We have
shown in the two above-mentioned papers that reflexive concordance relations with attribute
transitivity (R-CR-AT) can be characterized by adding axiomsAC1, AC2 andAC3, which are
similar to RC1 and RC2 and were introduced and discussed in Bouyssou and Pirlot (2002a,
2004a). We recall these axioms and examine how they behave w.r.t. co-duality. Reflexive CR
with attribute transitivity have been characterized in Bouyssou and Pirlot (2005b, 2007). We
use co-duality to derive characterizations of irreflexive CR with attribute transitivity.

Axioms AC1, AC2 and AC3 are recalled in the following definition.

Definition 45 (Axioms AC1, AC2, AC3) Let R be a binary relation on a set X = ∏n
i=1 Xi .

This relation is said to satisfy:

AC1i if
(xi , a−i ) R (yi , b−i )

and
(zi , c−i ) R (wi , d−i )

⎫
⎬

⎭
⇒

⎧
⎨

⎩

(zi , a−i ) R (yi , b−i )

or
(xi , c−i ) R (wi , d−i ),

AC2i if
(xi , a−i ) R (yi , b−i )

and
(zi , c−i ) R (wi , d−i )

⎫
⎬

⎭
⇒

⎧
⎨

⎩

(xi , a−i ) R (wi , b−i )

or
(zi , c−i ) R (yi , d−i ),

AC3i if
(xi , a−i ) R (yi , b−i )

and
(yi , c−i ) R (wi , d−i )

⎫
⎬

⎭
⇒

⎧
⎨

⎩

(xi , a−i ) R (zi , b−i )

or
(zi , c−i ) R (wi , d−i ),

for all xi , yi , zi , wi ∈ Xi , all a−i , b−i , c−i , d−i ∈ X−i .
We say that R satisfies AC1 (resp. AC2, AC3) if it satisfies AC1i (resp. AC2i , AC3i ) for

all i ∈ N .
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An interpretation of these axioms was provided in Bouyssou and Pirlot (2004a). Essentially,
these axioms are related to the existence of linear arrangements of the elements (levels) of
Xi . AC1i suggests that the elements of Xi can be linearly ordered relatively to “upward
dominance”: if xi “upward dominates” zi , then (zi , c−i ) R (wi , d−i ) entails (xi , c−i ) R
(wi , d−i ).AC2i has a similar interpretation regarding “downward dominance”.AC3i ensures
that the upward and downward dominance orders are not incompatible. The following gives
a precise definition of the upward and downward dominance relations.

Definition 46 (Relations �+
i ,�

−
i and �±

i ) LetR be a binary relation on a set X = ∏n
i=1 Xi .

We define the binary relations �+
i , �

−
i and �±

i on Xi letting, for all xi , yi ∈ Xi ,

xi �+
i yi ⇔ ∀a−i ∈ X−i , b ∈ X, [(yi , a−i ) R b ⇒ (xi , a−i ) R b], (25)

xi �−
i yi ⇔ ∀a ∈ X, b−i ∈ X−i , [a R (xi , b−i ) ⇒ a R (yi , b−i )], (26)

xi �±
i yi ⇔ xi �+

i yi and xi �−
i yi . (27)

By definition, �+
i , �

−
i and �±

i are transitive relations. Axioms AC1i , AC2i and AC3i ensure
that they are complete, as restated in the next lemma.

Lemma 47 (Bouyssou and Pirlot (2004a), Lemma 3.1–4) Let R be a binary relation on a
set X = ∏n

i=1 Xi . R satisfies:

1. AC1i ⇔ �+
i is complete,

2. AC2i ⇔ �−
i is complete,

3. AC3i ⇔ [Not[xi �+
i yi ] ⇒ yi �−

i xi ] ⇔ [Not[xi �−
i yi ] ⇒ yi �+

i xi ],
4. [AC1i , AC2i and AC3i ] ⇔ �±

i is complete.

As implied by Remark 3, a concordance relation with attribute transitivity is a CR having
a representation 〈�, Si 〉, with relations Si that are semiorders. The following theorem char-
acterizes CR with attribute transitivity. As for Theorems 27 and 29, it is a slight variation
on Theorem 26 in Bouyssou and Pirlot (2007), which is formulated here for general binary
relations. The independence of the axioms is not only valid for reflexive but also complete
relations.

Theorem 48 The binary relationRon X = ∏n
i=1 Xi is a concordance relation with attribute

transitivity (CR-AT), i.e., has a representation 〈�, Si 〉 in which all Si are semiorders, iff it
satisfies RC1, RC2, AC1, AC3, M1, M2. In the class of complete relations, these axioms are
independent.

Proof The proof of the characterization result in Theorem 26 in Bouyssou and Pirlot (2007)
remains valid for general binary relations and it is omitted. The latter was formulated for
reflexive relations but this hypothesis plays no rôle in the proof so that the result is valid for
general relations. We recall the examples establishing the independence of the axioms in the
proof of Lemma 19 in Bouyssou and Pirlot (2007):

Violated axiom RC1i RC2i AC1i AC3i M1i M2i

Example 79 77 81 82 78 83

All these relations are complete. Therefore the axioms are independent in the set of
complete relations. 	
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Remark 49 Note that axiom AC2 does not appear in this characterization because it is not
independent of the other axioms. Indeed, Lemma 27.1 in Bouyssou and Pirlot (2006) and
Lemma 11, items 3 and 4 in Bouyssou and Pirlot (2007) imply that under RC1, RC2, M1 and
M2, axiomsAC1 andAC2 are equivalent.AC2 can thus substituteAC1 in the characterization
of reflexive CR with attribute transitivity. 	


We now examine how axioms AC1, AC2, AC3 can be transposed in terms of the co-dual
relation Rcd . Using contraposition, as we have done above with RC1i , we can easily prove
the following results.

Lemma 50 Let R be any relation on X and Rcd its co-dual. The following equivalences
hold, for all i ∈ N:

1. R satisfies AC1i iff Rcd satisfies AC2i ,
2. R satisfies AC2i iff Rcd satisfies AC1i ,
3. R satisfies AC3i iff Rcd satisfies AC3i .

In the theorem below we extend the characterizations obtained in Theorem 36 to CR with
attribute transitivity (CR-AT). The next lemma will be used in the proof of the theorem.

Lemma 51 Let R be a relation on X and Rd its dual relation. We have the following:

1. R satisfies RC1i (resp. RC2i , AC3i , M1i , Maj1i , M2i , Maj2i , UCi , LCi ) for some i ∈ N
if and only if Rd satisfies the same property,

2. R satisfies AC1i (resp. AC2i ) for some i ∈ N if and only if Rd satisfies AC2i (resp.
AC1i ) for the same i.

Proof The proof consists in checking that each of the equivalences holds, starting from the
properties definition. It is easy once it is noted that, for all i ∈ N and all xi , yi , zi , wi ∈ Xi ,

xi �+
i (Rd) yi ⇐⇒ yi �−

i (R) xi ,

xi �−
i (Rd) yi ⇐⇒ yi �+

i (R) xi ,

(xi , yi ) �∗
i (R

d) (zi , wi ) ⇐⇒ (yi , xi ) �∗
i (R) (wi , zi ),

where �+
i (K ) (resp. �−

i (K ), �∗
i (K )) denotes the relation �+

i (resp. �−
i , �∗

i ) using K as the
base relation.

A result similar to Lemma 32 can be established for the upward and downward dominance
relations �+

i , �−
i , �±

i . As in this lemma, our notation makes explicit whether the upward
and downward dominance relations refer to R or its co-dual Rcd .

Lemma 52 Let R be a binary relation on X and Rcd its co-dual. For all i ∈ N, for all
xi , yi ∈ Xi , we have:

1. xi �+
i (Rcd) yi iff xi �−

i (R) yi ,
2. xi �−

i (Rcd) yi iff xi �+
i (R) yi ,

3. xi �±
i (Rcd) yi iff xi �±

i (R) yi .

Proof The proof follows immediately from Definition 46 and from that of Rcd . 	

Theorem 53 (Characterization of CR-AT) The relation R on X is a concordance relation
with attribute transitivity (CR-AT) iff R satisfies RC1, RC2, AC1, AC3, MM1 and MM2.
These axioms are independent in the class of complete relations and in the class of asymmetric
relations. In this characterization, AC1 can be substituted by AC2 without any other change.
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Proof IfR is a CR-AT, we know by Theorem 48 that it satisfies RC1, RC2, AC1, AC3, M1
and M2. M1 (resp. M2) implies MM1 (resp. MM2). Conversely, if R satisfies RC1, RC2,
AC1, AC3, MM1 and MM2, it satisfies M1 and M2 (Lemma 42) hence it is a CR-AT.

By Remark 49, we may substitute AC1 by AC2 in the characterization since, under RC1,
RC2, M1 and M2, axioms AC1 and AC2 are equivalent.

To prove the independence of the axioms in the set of complete relations, the examples used
in the proof of Theorem 48 are also suitable here since these examples satisfy M1i whenever
they satisfy MM1i and similarly for M2i and MM2i . According with Lemma 51, the duals
of these examples show that substituting AC1 by AC2 in the characterization preserves the
independence of the axioms. The co-duals of the same examples and of their duals are
asymmetric relations showing the independence of the axioms characterizing CR-AT in the
class of asymmetric relations. 	


Corollary 54 The relation R on X is a concordance relation with attribute transitivity (CR-
AT) iffR satisfies RC1, RC2, AC1, AC3, Maj1 and Maj2. These axioms are independent in the
class of complete relations and in the class of asymmetric relations. In this characterization,
AC1 can be substituted by AC2 without any other change.

Proof Under RC1 and RC2, MM1 is equivalent to Maj1 and MM2 to Maj2 (Lemma 42).
This new characterization hence results from Theorem 53. The independence of the axioms
in the set of complete relations results from the following examples (in “Appendix 2”):

Violated axiom RC1i RC2i AC1i AC3i Maj1i Maj2i

Example (80)d 77 81 82 78 83

Note that (80)d denotes the dual6 of the relation described in Example 80. In view of
Lemma 51, this relation does not satisfy RC11. It satisfies AC11 but not AC21. The possi-
bility of substituting AC1 by AC2 and keep the independence of the axioms is shown as in
Theorem 53 by taking the dual of the examples. The independence of the axioms in the set
of asymmetric relations is established by taking the co-dual of the examples. 	

4.5 Characterizations of a CDR

In the last section we have shown that two different “dual” characterizations of concordance
relations (Theorem 48 and Corollary 54) can be obtained using co-duality. The picture is
not the same for concordance–discordance relations, which are significantly more complex
objects than CR. As discussed in Sect. 3.6, reflexes of automatic “co-dualization” must be
abandoned since the co-dual of a CDR is not a CDR but a CRB (Proposition 19). Nonetheless,
two characterizations of reflexive and irreflexive CDR can be obtained from previous results.

With Theorem 29, we have recalled a characterization of a reflexive concordance-
discordance relation (R-CDR). It involves axiom M1 and a weakening of axiom M2, called
M3 (see Definition 28). Examining the proof of this result in Bouyssou and Pirlot (2009a)
shows that the reflexivity of the relation plays no rôle, so that this characterization is valid
both for reflexive and irreflexive CDR’s.

6 We really mean the dual, not the co-dual.
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A similar characterization of asymmetric CDR was given in Bouyssou and Pirlot (2006),
using axiom Maj1 and a weakening of Maj2, that was called Maj3. This axiom was con-
structed as M3 from M2, by adding a premise to Maj2.

In the same spirit as we introduced, in the previous section, axiom MM1 (resp. MM2)
generalizing both M1 and Maj1 (resp. M2 and Maj2), we now define the new axiom MM3
as follows.

Definition 55 (MM3 and Maj3) A relation R on X satisfies

MM3i if

(xi , a−i ) R (yi , b−i )

and
(wi , a−i ) R (zi , b−i )

and
(yi , c−i ) R (xi , d−i )

and
(zi , e−i ) R (wi , f−i )

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(yi , a−i ) R (xi , b−i )

or
(zi , a−i ) R (wi , b−i )

or
(zi , c−i ) R (wi , d−i ),

(28)

for all xi , yi , zi , wi ∈ Xi and all a−i , b−i , c−i , d−i , e−i , f−i ∈ X−i . Maj3i is the same
condition as MM3i except that the second conclusion has been removed. We say that R
satisfies MM3 (resp. Maj3) if it satisfies MM3i (resp. Maj3i ) for all i ∈ N .

Dropping the second premise in MM3i yields M3i . Removing the second conclusion yields
Maj3i . Obviously, M3i (resp. Maj3i ) entails MM3i . Under RC1i and RC2i , axioms M3i ,
Maj3i and MM3i are equivalent as shown in the following lemma.

Lemma 56 The following implications hold:

1. MM3i and RC2i entail M3i ,
2. MM3i and RC1i entail Maj3i ,
3. M3i and RC1i entail Maj3i ,
4. Maj3i and RC2i entail M3i .

Under RC1i and RC2i , we have:

MM3i ⇔ M3i ⇔ Maj3i .

Proof The proof, similar to that of Lemma 42, is left to the reader. 	

Remark 57 Note that axioms M3i and Maj3i are not linked by co-duality. The co-dual
counterpart of MM3i has not been met before. This is related with the fact that the co-dual
of a CDR is not a CDR, in general, but a CRB, i.e., a concordance relation with bonus
(Proposition 19). Such relations will be studied and characterized in Sect. 4.7. 	

We are in position to produce a new characterization result, valid for any CDR, which is the
following.

Theorem 58 (Characterization of CDR) The relation R on X is a concordance–discordance
relation (CDR) iff R satisfies RC1, RC2, MM1 and MM3. These axioms are independent in
the set of complete relations and in the set of asymmetric relations.

Proof By Theorem 29, we know that a relation R that is a CDR satisfies RC1, RC2, M1
and M2. Since M1 implies MM1 and M3 implies MM3, R also satisfies MM1 and MM3.
Conversely, if a relation R satisfies RC1 and RC2, then MM1 (resp. MM3) is equivalent to
M1 (resp. M3) (by Lemmas 42 and 56). Hence, using Theorem 29, we have thatR is a CDR.

In the class of complete relations, the following examples (in “Appendix 2”) prove the
independence of the axioms.
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Violated axiom RC1i RC2i MM1i MM3i

Example 80 77 78 83

For proving the independence of the axioms in the class of asymmetric relations, we
can still use co-duality arguments for obtaining part of the required examples but not all of
them. Since Examples 80 and 77 satisfy MM1 and MM2, their co-dual also satisfy these
two properties (Lemma 43), hence they satisfy MM3. In addition, Example (80)cd satisfies
RC2i but not RC1i and conversely for Example (77)cd . Example 83 satisfies RC1, RC2,
MM1, MM2 j , for j �= 1 but not MM21. Its co-dual satisfies RC1, RC2, MM1 j for j �= 1,
MM2, hence MM3, but not MM11. It thus proves the independence of MM11 for asymmetric
relations. For proving the independence of MM3, we need a new example. Example 84 is
an asymmetric relation verifying RC1, RC2, MM1, but not MM31. To sum up, the following
examples (in “Appendix 2”) prove the independence of the axioms in the class of asymmetric
relations:

Violated axiom RC1i RC2i MM1i MM3i

Example (80)cd (77)cd (83)cd 84

	

Corollary 59 The relation R on X is a concordance–discordance relation (CDR)

1. iff R satisfies RC1, RC2, Maj1 and Maj3,
2. iff R satisfies RC1, RC2, M1 and M3.

Both sets of axioms are independent in the class of complete relations and in the class of
asymmetric relations.

Proof Under RC1 and RC2, axiom MM1 (resp. MM3) is equivalent to Maj1 (resp. Maj3) by
Lemmas 42 and 56. Using the same lemmas also entails that, under RC1 and RC2, axiom M1
(resp. M3) is equivalent to MM1 (resp. MM3). The new characterizations are thus a direct
consequence of Theorem 58. The independence of the axioms for complete relations as well
as for asymmetric relations is established by the same examples as in Theorem 58, except in
one case. For complete relations, in order to prove the independence of RC1 from the other
axioms in the second characterization, we need to invoke Example 79, which is a complete
relations satisfying RC2, M1, M3 and RC1 j for j �= 1, but not RC11. 	

4.6 CDR with attribute transitivity

A CDR with attribute transitivity (CDR-AT) is not just a CDR which admits a representation
in which Si are semiorders. A certain relationship between Si and Vi must also be verified.
CDR-AT have been studied in Bouyssou and Pirlot (2009a), Section 5.2. We first recall
the definition of a CDR-AT and the characterization result obtained in Bouyssou and Pirlot
(2009a).

Definition 60 (CDR with attribute transitivity) A CDR with attribute transitivity (CDR-AT)
is a CDR for which, for all i ∈ N :

• Si is a semiorder with asymmetric part Pi ,
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• Vi is the asymmetric part of a semiorder Ui with Ui ⊇ Si and, hence, Vi ⊆ Pi ,
• (Si , Ui ) form a homogeneous chain of semiorders.

The following is Theorem 29 in Bouyssou and Pirlot (2009a). The independence of the
axioms is stated for reflexive relations.

Theorem 61 The relation R on X is a CDR-AT iff R satisfies RC1, RC2, AC1, AC2, AC3,
M1 and M3. These axioms are independent in the class of reflexive relations.

The question of the independence–or not–of the axioms in the class of complete relations
and in the class of asymmetric relations is more delicate for CDR-AT than for CR-AT (Theo-
rem 53) or for CDR (Theorem 58). In view of examining the independence issue for CDR-AT
in a simpler way, we relax axioms M1 and M3 into MM1 and MM3 respectively. In view of
Lemmas 42 and 56, it is clear that axioms RC1, RC2, AC1, AC2, AC3, MM1 and MM3 yield
another characterization of CDR-AT. In the class of complete relations, this set of axioms,
although weaker than those used in Theorem 61, are not independent as attested by Propo-
sition 74 in “Appendix 1”. Similarly, Proposition 76 in “Appendix 1” shows that, if R is a
relation (that may not be complete or asymmetric) on X satisfying RC2, AC1, AC2, AC3,
Maj1 and Maj3, then it also satisfies RC1. These are other cases of asymmetry in our results
for which we do not presently have a clear explanation.

Our next result is a new characterization theorem for CDR-AT, in the general case and in
the case of complete and of asymmetric relations.

Theorem 62 1. The relation R on X is a CDR-AT iff R satisfies RC1, RC2, AC1, AC2,
AC3, MM1 and MM3. These axioms are independent in the class of reflexive relations.

2. If R is a complete relation on X, it is a CDR-AT iff R satisfies RC2, AC1, AC2, AC3,
MM1 and MM3. These axioms are independent in the class of complete relations.

3. If R is an asymmetric relation on X, it is a CDR-AT iff R satisfies RC1, RC2, AC1,
AC2, AC3, MM1 and MM3. These axioms are independent in the class of asymmetric
relations.

Proof The usual argument, based on Lemmas 42 and 56 allows us to substitute M1 by MM1
and M3 by MM3 in the characterization of (general) CDR-AT provided in Theorem 61. The
independence of the axioms is established by the same examples as in Theorem 61.

For complete CDR-AT, axiom RC1 can be dropped from their characterization, in view
of Proposition 74. In the class of complete relations, axioms RC2, AC1, AC2, AC3, MM1
and MM3 are independent as attested by the following examples:

Violated axiom RC2i AC1i AC2i AC3i MM1i MM3i

Example 77 85 86 82 78 83

In the class of asymmetric CDR-AT, the axioms RC1, RC2, AC1, AC2, AC3, MM1 and
MM3 are independent as shown by the examples below.

Violated axiom RC1 RC2i AC1i AC2i AC3i MM1i MM3i

Example 90 (77)cd 88 89 (82)cd 87 84

(77)cd designates the co-dual of the relation in Example 77 and similarly for (82)cd . 	
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Remark 63 Substituting MM1 by M1 or by Maj1 and/or MM3 by M3 or by Maj3 in one
of the characterizations in Theorem 62 leads to other characterizations of CDR-AT. The
resulting sets of axioms remain independent in the class of complete relations but this is not
always the case in the class of asymmetric relations, as we shall see.

1. The case of complete relations. The examples used in the proof of Theorem 62 for
showing the independence of RC2i , AC1i , AC2i and AC3i , namely Examples 77, 85, 86
and 82, all satisfy axioms M1, Maj1, M3, Maj3. Examples 78 (resp. 83) showing the
independence of MM1 (resp. MM3) satisfies neither M1 nor Maj1 (resp. neither M3 nor
Maj3).

2. The case of asymmetric relations. In view of Proposition 76 in “Appendix 1”, RC1i is
implied by RC2i , AC1i , AC2i , AC3i , Maj1i and Maj3i . It is also the case when Maj3
is substituted by M3 (since Lemma 56.4 tells us that Maj3i and RC2i entail M3i ). The
following sets of axioms however are independent in the class of asymmetric relations:

(a) RC1, RC2, AC1, AC2, AC3, M1 and M3,
(b) RC1, RC2, AC1, AC2, AC3, Maj1 and M3.

The independence of these axioms results from the same examples as those used in
Theorem 62 for asymmetric relations. Indeed, Examples 90, (77)cd , 88, 89 and (82)cd

all satisfy MM1, M1, Maj1, MM3, M3 and Maj3. Example 87 violates not only MM1
but also M1 and Maj1. Example 84 violates not only MM3 but also M3 and Maj3. 	


4.7 Concordance relations with bonus

We know that the co-dual of a CDR is a CRB, i.e., a concordance relation with bonus
(Definition 18) by Proposition 19. Starting from the characterization of a CDR given in
Theorem 58, we can easily derive a characterization of a CRB using contraposition and
co-duality.

Lemmas 31 and 43 entail that the co-dual of a CDR is a relation that satisfies
RC1, RC2, MM2 and an axiom that is obtained from MM3 by using contraposition and
co-duality. We call the latter DMM3 and define it below.

Definition 64 (Axiom DMM3) A relation R on X satisfies

DMM3i if

(xi , a−i ) R (yi , b−i )

and
(zi , a−i ) R (wi , b−i )

and
(zi , c−i ) R (wi , d−i )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(yi , a−i ) R (xi , b−i )

or
(wi , a−i ) R (zi , b−i )

or
(xi , c−i ) R (yi , d−i )

or
(zi , e−i ) R (wi , f−i ),

(29)

for all xi , yi , zi , wi ∈ Xi and all a−i , b−i , c−i , d−i , e−i , f−i ∈ X−i . We say thatR satisfies
DMM3 if it satisfies DMM3i for all i ∈ N .

Note that dropping the second conclusion of DMM3i yields an axiom that is the “co-dual”
of M3i and which we call DM3i . In a similar way, dropping the second premise of DMM3i

yields an axiom that is the “co-dual” of Maj3i and which we shall call DMaj3i . We note
these results in the following lemma.

Lemma 65 The relation R on X satisfies MM3i (resp. M3i , Maj3i ) iff its co-dual Rcd

satisfies DMM3i (resp. DM3i , DMaj3i ).
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Comparing DMM3i with MM1i , we observe that the former only differ from the latter by
an additional conclusion. We thus have the following.

Lemma 66 If the relation R on X satisfies MM1i then it satisfies DMM3i .

As compared with MM1i , DMM3i offers a fourth possible conclusion, which interprets,
under RC1i and RC2i , as the possible existence of a “preference difference” (zi , wi ) on
attribute i that is “so large” that we always have (zi , e−i ) R (wi , f−i ) whatever the levels
e−i and f−i on the other attributes can be. Such a large difference of preference was called
a bonus in Sect. 3.6. This interpretation is established in the next lemma.

Lemma 67 Let R be a binary relation on X. If R satisfies RC1i , RC2i and DMM3i , then,
for all xi , yi , zi , wi , ri , si ∈ Xi , if (zi , wi ) �∗

i (xi , yi ) �∗
i (yi , xi ), we then have:

1. (zi , wi ) �∗
i (ri , si ),

2. (zi , e−i ) R (wi , f−i ), for all e−i , f−i ∈ X−i .

Proof If (zi , wi ) �∗
i (xi , yi ) �∗

i (yi , xi ), there are a−i , b−i , c−i , d−i ∈ X−i , such that (i)
(xi , a−i ) R (yi , b−i ), (ii) Not[(yi , a−i ) R (xi , b−i )], (iii) (zi , c−i ) R (wi , d−i ) and (iv)
Not[(xi , c−i ) R (yi , d−i )]. Applying RC1i to (i) and (iii), and taking (iv) into account yields
(v) (zi , a−i ) R (wi , b−i ). Since (i), (iii) and (v) match the premises of DMM3i , we get one
of the four possible conclusions. The first and the third one are in contradiction with (ii) and
(iv). Due to RC2i and Lemma 22.2, we obtain that (yi , xi ) �∗

i (wi , zi ). From this and (ii) we
deduce that the third conclusion is not true. The only remaining possibility is thus the fourth
conclusion of DMM3i , which establishes the second part of the lemma and implies the first
part. 	


Starting from Theorem 58 and considering a relation R that is the co-dual of a CDR, we
obtain directly the following characterization of a CRB.

Theorem 68 (Characterization of CRB) The relation R on X is a CRB iff it satisfies
RC1, RC2, MM2 and DMM3. These axioms are independent both in the class of complete
and in the class of asymmetric relations.

Proof This result is a direct consequence of two facts:

• by definition, the co-dual of a CRB is a CDR and conversely,
• R satisfies RC1, RC2, MM2 and DMM3 iff its co-dual Rcd satisfies RC1, RC2, MM1

and MM3 (Lemmas 31, 43 and 65).

Examples showing the independence of the axioms are obtained by taking the co-dual of those
used in the proof of Theorem 58 to show the independence of the axioms characterizing a
CDR. 	

Corollary 69 The relation R on X is a CRB

1. iff it satisfies RC1, RC2, M2 and DM3,
2. iff it satisfies RC1, RC2, Maj2 and DMaj3.

These two families of axioms are independent both in the class of complete and in the class
of asymmetric relations.

Proof These characterizations, as well as the independence of the axioms, result from Theo-
rem 29 and Corollary 59 respectively, by the same argument as we used to prove Theorem 68
starting from Theorem 58. 	
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4.8 CRB with attribute transitivity

The co-dual of a CDR-AT is a CRB with attribute transitivity (CRB-AT), i.e., a CRB which
satisfies AC1, AC2 and AC3 since the first two axioms are cross co-dual and the latter is
self co-dual (Lemma 50). In view of Proposition 19, and its proof, the co-dual of a CDR,
R, having a type I representation 〈�, Si , Vi 〉, is a CRB having a type I representation which
is 〈�cd , Si , Vi 〉, with the same relations Si , Vi as for R . If it happens that R is a CDR-AT,
Si , Vi form an homogeneous chain of semiorders as defined in Sect. 2. These properties are
thus inherited by the co-dual of R, which prompts the following definition of a CRB-AT.

Definition 70 (CRB with attribute transitivity) A CRB with attribute transitivity (CRB-AT)
is a CRB for which, for all i ∈ N :

• Si is a semiorder with asymmetric part Pi ,
• Vi is the asymmetric part of a semiorder Ui with Ui ⊇ Si and, hence, Vi ⊆ Pi ,
• (Si , Ui ) form an homogeneous chain of semiorders.

We obtain a characterization of a CRB-AT from that of a CDR-AT, by co-duality arguments.
This yields the following theorem, which is similar to Theorem 62.

Theorem 71 1. The relationR on X is a CRB-AT iffR satisfies RC1, RC2, AC1, AC2, AC3,
MM2 and DMM3. These axioms are independent in the class of irreflexive relations.

2. If R is an asymmetric relation on X, it is a CDR-AT iff R satisfies RC2, AC1, AC2, AC3,
MM2 and DMM3. These axioms are independent in the class of asymmetric relations.

3. If R is a complete relation on X, it is a CDR-AT iff R satisfies RC1, RC2, AC1, AC2,
AC3, MM2 and DMM3. These axioms are independent in the class of complete relations.

Proof The proof of this theorem obtains from that of Theorem 62 by co-duality arguments.
In particular, the co-dual of the examples used to prove the independence of the axioms in
the three cases considered in Theorem 62 can be used here in the co-dual case. We emphasize
that co-duality transforms complete relations into asymmetric ones and conversely. 	

Remark 72 The independence result in the class of irreflexive relations (Part 1 ofTheorem71)
is not semantically attractive in a preference modelling context, since strict preference rela-
tions are not only irreflexive but also asymmetric. The relevant result for strict preference
relations is contained in Part 2 of Theorem 71. For non-strict preference relations, which are
just supposed to be reflexive, Part 3 is the relevant result, since independence in the class of
complete relations entails independence in the larger class of reflexive relations. 	

Remark 73 Remark 63 can be transposed by co-duality to yield alternative characteriza-
tions of CRB-AT. In particular, for asymmetric CRB-AT, independent characterizations are
obtained by substituting MM2 by M2 or by Maj2 and/or DMM3 by DM3 or by DMaj3 in
the characterization of asymmetric CDR-AT given in the previous theorem. For complete
CRB-AT, the following sets of axioms constitute independent characterizations:

• RC1, RC2, AC1, AC2, AC3, Maj2 and DM3,
• RC1, RC2, AC1, AC2, AC3, M2 and DM3. 	


5 Conclusion

From the present research and a series of previous papers investigating outranking relations,
we draw the following lessons.
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1. It is possible to analyze concordance relations and concordance–discordance relations,
both reflexive (such as inElectre) and asymmetric (such as inTactic), in the framework
and with the classical tools of conjoint measurement.

2. This research has illustrated the interest of an axiomatic analysis by showing

(a) that new models (namely, concordance relations with bonus) can be defined and
characterized just by using such a simple transformation as co-duality,

(b) that new characterizations of known models can be obtained using such a transfor-
mation,

(c) that axiomatic analysis allows us to present a corpus of models (reflexive and asym-
metric outranking relations) in a unified framework and to better understand their
inter-relations.

Co-duality has played an important rôle in our analysis.While the co-dual of a concordance
relation is a concordance relation, it is no longer the case as soon as vetoes come into play.

A noticeable product of our investigation using co-duality is the observation that the asym-
metric part of a reflexive concordance–discordance relation is not a concordance–discordance
relation since it involves both veto and bonus effects. Knowing the properties of such relations
(i.e., the asymmetric part of a reflexive concordance discordance relation) is of importance
since they are used in some multi-criteria sorting methods, namely the optimistic version
of the Electre Tri method (Roy and Bouyssou 1993, p. 391. This version is also known
as “pseudo-disjunctive”). The pessimistic version of this method (also known as “pseudo-
conjunctive”) is well-understood (it is characterized in Słowiński et al. 2002; Bouyssou and
Marchant 2007a, b) andmethods for learning its parameters on the basis of assignment exam-
ples were developed since 1998 (see, e.g., Mousseau and Słowiński 1998; Mousseau et al.
2006; Leroy et al. 2011). It is not the case with the optimistic version. No axiomatic char-
acterization is known. A method for learning its parameters was recently proposed (Zheng
et al 2011; Zheng et al. 2014). The recent interest for this method in applications Metchebon
Takougang et al. 2014 motivates further investigation. For lack of place, an axiomatic char-
acterization of the asymmetric part of a concordance–discordance relation was not included
in the present paper. This is dealt with in Bouyssou and Pirlot (2014).

In closing, two brief remarks on possible additional developments arising from the present
analysis.

With the idea of bonus, some light was shed on what could be called an optimistic counter-
part of the notion of veto. The notion of bonus couldmake sense in practical situations. Indeed,
taking for granted that the usual outranking concept is relevant for modeling preferences in
certain cases, the notion of bonus naturally comes into play in the asymmetric part of the
traditional non-strict outranking relations as it became apparent in our analysis. Alternative
outranking models could thus consider the possibility of bonuses instead of vetoes.

Another interesting issue is related to recent work by Bisdorff (2010, 2013). This author
adopts a logicist and argumentative viewpoint in his interpretation of outranking. This is in
line with the usual presentation of the outranking concept according to which alternative x
outranks alternative y if there are enough reasons for asserting that x is at least as good as
y while there is no reason that strongly opposes this assertion Roy 1991. R. Bisdorff starts
with the same observation that we made in Remark 9: for preferences that are not complete
relations, their co-dual is not their asymmetric part, hence the interpretation of the co-dual
as the “better than” relation corresponding to the preference viewed as an “at least as good”
relation is impaired. In order to restore this relationship viewed as essential in the framework
of an argumentative interpretation of outranking relations, R. Bisdorff uses a bipolar repre-
sentation of concordance and discordance relations (on a [−1, 1] scale, with 0 playing the

123



194 Ann Oper Res (2015) 229:159–212

special rôle of coding contradictory information). He proposes an adapted definition of an
outranking relation, which restores the identity of the co-dual and the asymmetric part of the
relation.

The latter remarks show that new and interestingmodels of preference can be developed in
the spirit of the classical outranking relations by combining ingredients such as concordance,
vetoes and bonuses, in a way that preserves intuitively appealing properties. The usefulness
of such models for representing actual preferences in practical applications has yet to be
investigated.

Acknowledgments We thank an anonymous referee and the editor for insightful comments on a previous
version of this paper. These helped us to remove some ambiguities and hopefully led to a more appropriately
focussed paper. The usual caveat applies.

Appendix 1: Propositions 74 and 76

Proposition 74 If R is a complete binary relation on X satisfying RC2, AC1, AC2, AC3,
MM1 and MM3, then R satisfies RC1.

For proving this proposition, we need the following lemma.

Lemma 75 Let R be a binary relation on X satisfying RC2i , AC1i , AC2i , AC3i and Maj1i ,
on some attribute i . Consider four levels x, y, z, w ∈ Xi such that the pairs (x, y) and (z, w)

are not comparable w.r.t. the relation �∗
i , which we denote by (x, y) �� (z, w)). The relative

positions of these pairs and the opposite pairs are as follows:

1. [(y, x) ∼∗
i (w, z)] �∗

i [(x, y) �� (z, w)],
2. furthermore, one of the following configurations holds true:

(a) [(y, z) ∼∗
i (y, x) ∼∗

i (w, z)] �∗
i [(x, y) �� (z, w)] �∗

i (z, y)

(b) [(w, x) ∼∗
i (y, x) ∼∗

i (w, z)] �∗
i [(x, y) �� (z, w)] �∗

i (x, w).

In the above, the notation [(x, y) �� (z, w)] means that the incomparable pairs [(x, y)

and (z, w) have the same relationships with the other pairs listed.

Proof (of Lemma 75) 1. Let x, y, z, w ∈ Xi be such that the pairs (x, y) and (z, w) are
incomparable w.r.t. relation �∗

i , i.e., we have:

Not[(x, y) �∗
i (z, w)] and Not[(z, w) �∗

i (x, y)]. (30)

In view of Definition 21, this means that there are a, b, c, d ∈ X−i such that:

(x, c) R (y, d), Not[(z, c) R (w, d)],
(z, a) R (w, b), Not[(x, a) R (y, b)], (31)

in other words, R does not satisfy RC1i .
Using RC2i and Lemma 22.2 imply that we have (y, x) �∗

i (w, z) and (w, z) �∗
i (y, x),

yielding:
(y, x) ∼∗

i (w, z) (32)

The same axiom and lemma entail that (x, y) and (y, x) are comparable w.r.t. �∗
i , i.e., we

must have (x, y) �∗
i (y, x) or (y, x) �∗

i (x, y). The former is incompatible with Maj1i as
we shall see. Note that R satisfies Maj1i by Lemma 34.1.
2. We show that assuming (x, y) �∗

i (y, x) leads to a contradiction. From (x, y) �∗
i (y, x),

we first derive the following consequences:
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1. (z, w) �∗
i (w, z). Assuming Not[(z, w) �∗

i (w, z)] implies, by Lemma 22.2, that
(w, z) �∗

i (z, w). Hence we would have: (x, y) �∗
i (y, x) ∼∗

i (w, z) �∗
i (z, w). Using

the transitivity of �∗
i leads to (x, y) �∗

i (z, w), a contradiction. The same contradiction
can be derived if we suppose (z, w) ∼∗

i (w, z).
2. (x, y) �∗

i (y, x). Else, from (x, y) ∼∗
i (y, x) we would derive (z, w) �∗

i (w, z) ∼∗
i

(y, x) ∼∗
i (x, y), from which we deduce (z, w) �∗

i (x, y), a contradiction.
3. (x, y) �∗

i (w, z). Assuming Not[(x, y) �∗
i (w, z)] implies, by Lemma 22.2, that

(y, x) �∗
i (z, w). Hence we would have: (w, z) ∼∗

i (y, x) �∗
i (z, w). Using the transi-

tivity of �∗
i leads to (w, z) �∗

i (z, w), a contradiction. The same contradiction can be
derived if we suppose (x, y) ∼∗

i (w, z).
4. (z, w) �∗

i (y, x) is established in a similar way as the previous item.

We thus have the following situation: (x, y) and (z, w) are incomparable differences w.r.t.
�∗

i , both are strictly preferred to (y, x) and (w, z), which are indifferent pairs.
We now use AC1i , AC2i and AC3i . The main consequence of these axioms is that the

relations �+
i , �−

i and �±
i are complete (Lemma 47). Moreover, we have, for all s, t, u, v ∈

Xi :

s �+
i t ⇒ (s, u) �∗

i (t, u) (33)

s �−
i t ⇒ (v, t) �∗

i (v, s) (34)

(direct consequence of AC1i , AC2i and the definitions of �+
i , �−

i and �∗
i ).

Consider the pairs (x, y) and (z, w). We claim that there are u, v ∈ Xi such that (u, v) �∗
i

(x, y) and (u, v) �∗
i (z, w). Furthermore, (u, v) is either (x, w) or (z, y). Observe first that

we cannot have:

1. x �±
i z and w �±

i y. Else, using (33) and (34), we would have (x, y) �∗
i (z, y) �∗

i
(z, w), a contradiction with the fact that (x, y) and (z, w) are incomparable,

2. z �±
i x and y �±

i w. Else, using (33) and (34), we would have (z, w) �∗
i (x, w) �∗

i
(x, y), a contradiction with the fact that (x, y) and (z, w) are incomparable.

Since �±
i is complete, we thus have either [x �±

i z and y �±
i w] or [z �±

i x and w �±
i y].

Consider the former case. Using (33) and (34) yields (x, w) �∗
i (z, w) and (x, w) �∗

i (x, y).
We can have neither (x, w) ∼∗

i (z, w) nor (x, w) ∼∗
i (x, y), because this would imply that

(x, y) and (z, w) are comparable. Our claim is thus proved with (u, v) = (x, w). If the
situation was such that z �±

i x and w �±
i y, then we would have that (z, y) �∗

i (z, w) and
(z, y) �∗

i (x, y). The rôle of (u, v) would be played by (z, y). Our claim is proved.
Assume first that (u, v) = (x, w). From (x, c) R (y, d) in (31) and (x, w) �∗

i (x, y),
we derive (x, c) R (w, d). Similarly, (z, a) R (w, b) and (x, w) �∗

i (z, w) entail (x, a) R
(w, b). This allows us to derive a contradiction with Maj1i . Indeed, we have (x, c) R (w, d),
(x, a) R (w, b) and (z, a) R (w, b). Using Maj1i yields either (w, a) R (z, b) or (z, c) R
(w, d). None of this conclusions holds true. The latter is false by hypothesis (see (31)) and the
former cannot be true since (x, y) �∗

i (w, z) and Not[(x, a) R (y, b)]. The case in which we
assume (u, v) = (z, y) yields a similar contradiction. As a conclusion, we have established
that (y, x) �∗

i (x, y).
3. We draw the consequences of the fact that (y, x) �∗

i (x, y), by adapting the ideas that we
used in Part 2 of the present proof, under the opposite hypothesis.

The fact that (y, x) �∗
i (x, y) entails the following:

1. (w, z) �∗
i (z, w). Assuming Not[(w, z) �∗

i (z, w)] implies, by Lemma 22.2, that
(z, w) �∗

i (w, z). Hence we would have: (z, w) �∗
i (w, z) ∼∗

i (y, x) �∗
i (x, y). Using
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the transitivity of �∗
i leads to (z, w) �∗

i (x, y), a contradiction. The same contradiction
arises if we suppose (z, w) ∼∗

i (w, z).
2. (y, x) �∗

i (x, y). Else, from (y, x) ∼∗
i (x, y) we would derive (x, y) ∼∗

i (y, x) ∼∗
i

(w, z) �∗
i (z, w), from which we deduce (x, y) �∗

i (z, w), a contradiction.
3. (y, x) �∗

i (z, w). Assuming Not[(y, x) �∗
i (z, w)] implies, by Lemma 22.2, that

(x, y) �∗
i (w, z). Hence we would have: (x, y) �∗

i (w, z) ∼∗
i (y, x). Using the tran-

sitivity of �∗
i leads to (x, y) �∗

i (y, x), a contradiction. The same contradiction can be
derived if we suppose (y, x) ∼∗

i (z, w).
4. (w, z) �∗

i (x, y) is established in a similar way as the previous item.

We thus have the following situation: (y, x) and (w, z) are incomparable differences w.r.t.
�∗

i . Both are strictly preferred to (x, y) and (z, w), which are indifferent pairs.
Using AC1i , AC2i and AC3i , we derive exactly the same consequences as in Part 2, i.e.,

we have either [x �±
i z and y �±

i w] or [z �±
i x and w �±

i y].
If [x �±

i z and y �±
i w], we conclude that (x, y) �∗

i (z, y) and (z, w) �∗
i (z, y).

We can have neither (x, y) ∼∗
i (z, y) nor (z, w) ∼∗

i (z, y), because this would imply that
(x, y) and (z, w) are comparable. Since we have Not[(z, y) �∗

i (x, y)], we deduce that
(y, z) �∗

i (y, x), using Lemma 22.2. Having (y, z) �∗
i (y, x) is impossible since this would

contradict Maj1i . Indeed, assume that there are e, f ∈ X−i such that (y, e) R (z, f ) and
Not[(y, e) R (x, f )]. Since (y, x) �∗

i (z, w) and (z, a) R (w, b), we get (y, a) R (x, b).
From (y, z) �∗

i (y, x) and (y, a) R (x, b), we derive (y, a) R (z, b). By (31), we also
have Not[(x, a) R (y, b)] . The following configuration is not compatible with Maj1i :
(y, a) R (x, b), (y, a) R (z, b), (y, e) R (z, f ),Not[(x, a) R (y, b)],Not[(y, e) R (x, f )].
We have thus established that (y, z) ∼∗

i (y, x). Starting from Not[(z, y) �∗
i (z, w)], one

proves similarly that (y, z) ∼∗
i (w, z) and we finally have that (y, z) ∼∗

i (w, z) ∼∗
i (y, x).

In the case in which [z �±
i x and w �±

i y], one proves in an analogous way that
(x, y) �∗

i (x, w), (z, w) �∗
i (x, w) and (w, x) ∼∗

i (y, x) ∼∗
i (w, z).

This concludes the proof of Lemma 75. 	

Proof (of Proposition 74) Since R satisfies MM1 and RC2, it satisfies also Maj1
(Lemma 42.2). Let us assume that R does not verify RC1i on some attribute i . We shall
derive a contradiction from this assumption. If RC1i is not verified by R, there exist four
levels x, y, z, w ∈ Xi such that (x, y) and (z, w) are incomparable w.r.t. relation �∗

i , or, in
other words, there are a, b, c, d ∈ X−i such that:

(x, c) R (y, d) Not[(z, c) R (w, d)]
(z, a) R (w, b) Not[(x, a) R (y, b)] (35)

HenceR is in the conditions of application of Lemma 75. We shall assume that the configu-
ration described in conclusion 2.(a) of the lemma holds true, i.e., we have:

[(y, z) ∼∗
i (y, x) ∼∗

i (w, z)] �∗
i [(x, y) �� (z, w)] �∗

i (z, y). (36)

Note that case 2.(b) can be dealt with similarly. We leave it to the reader.
Since R satisfies MM3 and RC2, it satisfies M3 (Lemma 56.1). In the configuration

described by (36), M3i implies that the pair (z, y) is a veto. Indeed, assume that there
are e, f ∈ X−i such that (z, e) R (y, f ). We have (x, y) �∗

i (z, y), which means there
are g, h ∈ X−i such that (x, g) R (y, h) and Not[(z, g) R (y, h)]. It holds true that
(y, a) R (x, b) since, by (35), (z, a) R (w, b) and, by (36), (y, x) �∗

i (z, w). Finally,
we have Not[(x, a) R (y, b)] by (35) and Not[(z, a) R (y, b)] since (x, y) �∗

i (z, y).
Gathering the relevant preferences, i.e., (y, a) R (x, b), (x, g) R (y, h), (z, e) R (y, f ),
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Not[(x, a) R (y, b)], Not[(z, a) R (y, b)] and Not[(z, g) R (y, h)], yields a contradiction
with M3i . We thus have shown that for all e, f ∈ X−i , we have

Not[(z, e) R (y, f )] (37)

The fact that R is complete enters into play in the following way. Since R is complete,
(37) entails that for all e, f ∈ X−i , we have (y, e) R (z, f ). Since (36) tells us that (y, z) ∼∗

i
(w, z) ∼∗

i (y, x), we also have, for all e, f ∈ X−i , (w, e) R (z, f ) and (y, e) R (x, f ). In
other words, (y, z), (w, z) and (y, x) are bonuses as defined in Sect. 3.6.

The relation R induces not only a relation �∗
i comparing pairs of levels on Xi , but also

a similar relation �∗−i on the pairs of elements of X−i . For e, f, g, h ∈ X−i , we have
(e, f ) �∗−i (g, h) iff, for all u, v ∈ Xi , [(u, g) R (v, h)] ⇒ [(u, e) R (v, f )]. The
assumption (35) also means that the pairs (a, b), (c, d) ∈ X−i × X−i are not comparable
w.r.t. �∗−i . This relation is transitive by definition and complete iff RC1i holds.

If AC1, AC2 and AC3 hold, we claim that there are g, h ∈ X−i with (a, b) �∗−i (g, h)

and (c, d) �∗−i (g, h). AC1, AC2 and AC3 imply that �±
j is a complete weak order for all

j ∈ N . We define g (resp.h) by specifying its level g j (resp. h j ) for each j �= i as follows:
for all j �= i ,

g j = min {a j , c j } =
{

a j if c j �±
j a j

c j if a j �±
j c j

(38)

h j = max {b j , d j } =
{

b j if b j �±
j d j

d j if d j �±
j b j

(39)

Starting from the trivial (a, b) �∗−i (a, b) and applying repeatedly (33) and (34), using g and
h, we obtain (a, b) �∗−i (g, h). One proves similarly that (c, d) �∗−i (g, h).

We finish the proof by showing that the above induces a contradiction with M3i . We
have that Not[(x, a) R (y, b)] entails Not[(x, g) R (y, h)] and Not[(z, c) R (w, d)] entails
Not[(z, g) R (w, h)] (since a difference on X−i is substituted by a smaller one w.r.t. �∗−i ).
Since (y, x) is a bonus,we have in particular (y, g) R (x, h). By (35),we have (x, c) R (y, d)

and (z, a) R (w, b). Gathering the relevant preferences, i.e., (y, g) R (x, h), (x, c) R (y, d),
(z, a) R (w, b),Not[(x, g) R (y, h)],Not[(z, g) R (w, h)] andNot[(z, c) R (w, d)], yields
a contradiction with M3i . 	


The proposition below is another result, besides Proposition 74, showing that RC1 has
relationships with the other axioms even though the considered relations here are neither
complete nor asymmetric.

Proposition 76 If R is a relation on X satisfying RC2i , AC1i , AC2i , AC3i , Maj1i and
Maj3i , for some i ∈ N, then R satisfies RC1i .

Proof Let us assume that R does not verify RC1i on some attribute i , i.e., there exist
x, y, z, w ∈ Xi and a, b, c, d ∈ X−i such that:

(x, c) R (y, d) Not[(z, c) R (w, d)]
(z, a) R (w, b) Not[(x, a) R (y, b)]. (40)

In other words, the pairs (x, y) and (z, w) are incomparable w.r.t. relation �∗
i . Therefore,

R is in the conditions of application of Lemma 75 and we have [(y, x) ∼∗
i (w, z)] �∗

i[(x, y), (z, w)].
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The latter is not compatible with Maj3i as we shall see. Since (y, x) �∗
i (z, w) and

using (z, a) R (w, b) in (40), we obtain that (y, a) R (x, b). From (w, z) ∼∗
i (y, x) and

(y, a) R (x, b), we derive (w, a) R (z, b). We also directly use the four clauses in (40).
The following facts contradict Maj3i : (y, a) R (x, b), (w, a) R (z, b), (x, c) R (y, d),
(z, a) R (w, b), Not[(x, a) R (y, b)] and Not[(z, c) R (w, d)]. 	


Appendix 2: Examples

The examples below have been checked in order to determine whether they satisfy the fol-
lowing axioms:

RC1, RC2, AC1, AC2, AC3, UC, LC, M1, M2, Maj1, Maj2,

MM1, MM2, M3, Maj3, MM3, DMM3.

Those among these axioms that are not satisfied are mentioned below next to the example
label. All axioms from the previous list that are not explicitly mentioned are proved to be
satisfied. By default, the examples are complete relations. Relations that are asymmetric are
explicitly labeled as such, as well as relations that are neither complete nor asymmetric.

Example 77 (Not[RC2i ]) This is example 25 in Bouyssou and Pirlot (2007). Let N = {1, 2}
and X = {x, y} × {a, b}. Let R on X be identical to X2 except that, Not[(y, a) R (x, a)]
and Not[(y, b) R (x, a)]. This relation is complete.

It is easy to check that we have:

• [(x, y), (x, x), (y, y)] �∗
1 (y, x) and

• [(a, b), (b, b)] �∗
2 [(a, a), (b, a)].

Using Lemma 22, it is easy to see that RC1 and RC21 hold but that RC22 is violated. Using
Lemma 8.1 and 8.2 in Bouyssou and Pirlot (2007) it is clear that UC and LC hold so that the
same is true for M1 and M2. As a consequence of Remark 33, we have thatR satisfies Maj1
and Maj2. Since M3 (resp. Maj3) is entailed by M2 (resp. Maj2),R also satisfies M3 (resp.
Maj3). Since R satisfies M1 (resp. M2) it satisfies its relaxed version MM1 (resp. MM2).
As R satisfies M2 it fulfills M3 and MM3. As R satisfies M1 it fulfills DMM3.

Finally, using Lemma 15 in Bouyssou and Pirlot (2007), it is routine to check that we
have:

• x �±
1 y,

• a �±
2 b.

Hence AC1, AC2 and AC3 hold.

Example 78 (Not[UCi , M1i , Maj1i , MM1i ]) This is Example 33 in Bouyssou and Pirlot
(2005b). Also used in the proof of Part 5 of Bouyssou and Pirlot (2007) Lemma 11 and as
Example 23 in Bouyssou and Pirlot (2007).

Let X = {a, b} × {x, y, z} and R on X be identical to the linear order:

(a, x) R (a, y) R (a, z) R (b, x) R (b, y) R (b, z),

except that (a, z) and (b, x) are indifferent: (a, z) R (b, x) and (b, x) R (a, z) both hold
true.

This is a complete relation.
We have, abusing notation,
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• (a, b) �∗
1 [(a, a), (b, b)] �∗

1 (b, a) and
• (x, z) �∗

2 [(x, x), (y, y), (z, z), (x, y), (y, z)] �∗
2 [(y, x), (z, x), (z, y)],

• a �±
1 b and x �±

2 y �±
2 z.

Using Lemma 22, it is easy to check that R satisfies RC1, RC2, AC1, AC2, AC3.
It is clear that UC1, LC1 and LC2 hold. UC2 is violated since we have (x, y) �∗

2 (y, x)

and Not[(x, y) �∗
2 (x, z)].

Parts 1 and 2 of Lemma 11 in Bouyssou and Pirlot (2007), show that conditions M11 and
M2 hold. By Part 3 of Lemma 11 in Bouyssou and Pirlot (2007), M12 cannot hold. Using
Lemma 34 shows that Maj11 and Maj2 hold while Maj12 does not. Using Lemma 42 shows
that MM11 and MM2 hold while MM12 does not. SinceR satisfies M2 (resp. Maj2, MM2),
this implies that M3 (resp. Maj3, MM3) also holds. Since M11 holds, DMM31 holds too. We
show that DMM32 also holds. Assume the contrary. Taking RC12 into account, this implies
that there are x2, y2, z2, w2 ∈ X1 such that (z2, w2) �∗

2 (x2, y2) �∗
2 (y2, x2). Hence (z2, w2)

can only be (x, z). The fourth conclusion of DMM32 is always true since (u, x) R (v, z) for
all u, v ∈ X1 = {a, b}.
Example 79 (Not[RC1i , AC2i , LCi , Maj2i , Maj31]) This is Example 12 in Bouyssou and
Pirlot (2007). Also used in Example 24 in the same paper.

Let N = {1, 2, 3} and X = {x, y, z, w} × {a, b} × {p, q}. LetR on X be identical to X2

except that, for all α1, β1 ∈ X1, all α2, β2 ∈ X2 and all α3, β3 ∈ X3 the following pairs are
missing:

Not[(x, a, α3) R (y, b, β3)], Not[(z, α2, p) R (w, β2, q)],
Not[(x, α2, p) R (w, β2, q)], Not[(α1, a, p) R (β1, b, q)],

There is a total of 25 such pairs that are marked by a cross in Table 1.

Table 1 Relation R in Example 79: the missing pairs are marked by a cross

xap xaq xbp xbq yap yaq ybp ybq zap zaq zbp zbq wap waq wbp wbq

xap – – – × – – × × – – – × – × – ×
xaq – – – – – – × × – – – – – – – –

xbp – – – – – – – – – – – – – × – ×
xbq – – – – – – – – – – – – – – – –

yap – – – × – – – × – – – × – – – ×
yaq – – – – – – – – – – – – – – – –

ybp – – – – – – – – – – – – – – – –

ybq – – – – – – – – – – – – – – – –

zap – – – × – – – × – – – × – × – ×
zaq – – – – – – – – – – – – – – – –

zbp – – – – – – – – – – – – – × – ×
zbq – – – – – – – – – – – – – – – –

wap – – – × – – – × – – – × – – – ×
waq – – – – – – – – – – – – – – – –

wbp – – – – – – – – – – – – – – – –

wbq – – – – – – – – – – – – – – – –
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It is not difficult to check that R is complete.
For i ∈ {2, 3}, it is easy to check that we have:

[(b, a), (a, a), (b, b)] �∗
2 (a, b),

[(q, p), (p, p), (q, q)] �∗
3 (p, q),

b �±
2 a, q �±

3 p,

which shows,

• using Parts 1 and 2 of Lemma 22, that RC12, RC13, RC22 and RC23 hold,
• using Lemma 47, that AC12, AC13, AC22, AC23, AC32 and AC33 hold.

Using Parts 1 and 2 of Lemma 8 in Bouyssou and Pirlot (2007), it is easy to check that
LC2, LC3, UC2 and UC3 hold. Hence, using Parts 3 and 4 of Lemma 11 in Bouyssou and
Pirlot (2007), we know that M12, M13, M22 and M23 hold. Using Lemma 34, we have also
Maj12, Maj13, Maj22 and Maj23.

On attribute 1, it is easy to check that we have:

(c1, d1) �∗
1 (x, y) and

(c1, d1) �∗
1 [(x, w), (z, w)],

for all (c1, d1) ∈ � = {(x, x), (x, z), (y, x), (y, y), (y, z), (y, w), (z, x), (z, y), (z, z),
(w, x), (w, y), (w, z), (w,w)}. The pairs (x, w) and (z, w) are linked by∼∗

1. The pairs (x, y)

and (x, w) are not comparable in terms of�∗
1 since (x, a, p) R (y, a, q) andNot[(x, a, p) R

(w, a, q)], while (x, a, p) R (w, b, p) and Not[(x, a, p) R (y, b, p)]. Similarly, the pairs
(x, y) and (z, w) are not comparable in terms of �∗

1. This shows, using Part 1 of Lemma 22,
that RC11 is violated.

Using Part 2 of Lemma 22, it is easy to see that RC21 holds. Using Part 1 of Lemma 8
in Bouyssou and Pirlot (2007), shows that UC1 holds. Hence, using Part 3 of Lemma 11 in
Bouyssou and Pirlot (2007), we know that M11 holds.

In view of Part 6 of Lemma 16 in Bouyssou and Pirlot (2005b), LC1 does not hold (since
this lemma tells us that RC21, UC1 and LC1 entail RC11. We now check that M21 holds.
The two premises of M21 are that (a1, a−1) R (b1, b−1) and (b1, c−1) R (a1, d−1). The
three possible conclusions of M21 are that (b1, a−1) R (a1, b−1) or (c1, a−1) R (d1, b−1)

or (c1, c−1) R (d1, d−1).
Suppose first that (b1, a1) ∈ �. In this case, we have (b1, a1) �∗

1 (a1, b1), so that
(a1, a−1) R (b1, b−1) implies (b1, a−1) R (a1, b−1). Hence, the first conclusion of M21
holds.

Suppose now that (b1, a1) = (x, y).
If (c1, d1) is distinct from (x, w) and (z, w), we have (c1, d1) �∗

1 (x, y), so that
(b1, c−1) R (a1, d−1) implies (c1, c−1) R (d1, d−1) and the third conclusion of M21 holds.

If (c1, d1) = (x, w), it is easy to check that there are no a−1, b−1 ∈ X−i such that
(y, a−1) R (x, b−1), Not[(x, a−1) R (y, b−1)] and Not[(x, a−1) R (w, b−1)], so that no
violation of M21 is possible in this case. Since (x, w) ∼∗

1 (z, w), the same is true if (c1, d1)
= (z, w).

This shows that M21 cannot be violated if (b1, a1) = (x, y). A similar reasoning shows
that M21 cannot be violated if (b1, a1) = (x, w) or if (b1, a1) = (z, w). Hence, M21 holds
and so does M31.

Using Remark 33, we know that R satisfies Maj11 since UCi entails Maj1i .
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Table 2 Relation R in Example 80

xap xaq xbp xbq yap yaq ybp ybq zap zaq zbp zbq

xap – R R R – R R R – R R R
xaq – – – R – – – R – – – R
xbp – – – R – – – R – – – R
xbq – – – – – – – – – – –

yap – – R R – R R R – R R R
yaq – – – R – – – R – – – R
ybp – – – – – – – R – – – R
ybq – – – – – – – – – – –

zap – R – R – R R R – R R R
zaq – – – – – – – R – – – R
zbp – – – R – – – R – – – R
zbq – – – – – – – – – – –

Since R satisfies RC21, M11 but not RC11, it cannot satisfy Maj21, as a consequence of
Lemma 35. Since R satisfies M1 and M2, it also satisfies MM1, DMM3, MM2, M3 and
MM3.

Maj32 (resp. Maj33) holds because Maj22 (resp. Maj23) holds but Maj31 is violated
as shown by the following configuration (which also confirms that Maj21 is violated):
(y, a, p) R (x, b, p), (w, a, p) R (z, a, p), (w, a, p) R (z, a, q), (z, a, p) R (w, a, p),
Not[(x, a, p) R (y, b, p)], Not[(z, a, p) R (w, a, q)].

On attribute 1, it is easy to check that we have:

{y, w} �+
1 z �+

1 x .

Hence AC11 holds. Since (x, w) and (x, y) are not comparable w.r.t. �∗
1, y and w are not

comparable w.r.t. �−
1 , hence AC21 is violated. It is easy to check, using Lemma 15 in

Bouyssou and Pirlot (2007), that AC31 is satisfied.

Remark The co-dual of Example 79 is an asymmetric relation that satisfies all axioms but
RC1, AC1, UC and M1.

Example 80 (Not[RC1i , AC1i , UCi , M1i , DMaj3i ]) The co-dual of the relationRdescribed
inTable 2 is a complete relation satisfying all properties except forRC1,AC2, M1 andDMaj3.
Note that this relation verifies DM3 and DMM3.

Let X = {x, y, z} × {a, b} × {p, q} andR consist of the set of pairs listed in Table 2. We
have to show thatR satisfies all properties but RC1, AC1, LC, Maj2, Maj3. It is easy to check
that R is asymmetric. As for the comparison of preference differences on each attribute, we
have for all (α, β) ∈ � = {(x, x), (y, y), (z, z), (x, y), (x, z), (y, z), (z, y)},
• [(α, β)] �∗

1 (y, x) and [(α, β)] �∗
1 (z, x), while (y, x) and (z, x) are incomparable in

terms of �∗
1,• (a, b) �∗

2 [(a, a), (b, b)] �∗
2 (b, a),

• (p, q) �∗
3 [(p, p), (q, q)] �∗

3 (q, p).

The upward and downward dominance relations on attributes 2 and 3 are as follows:

• a �±
2 b,
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• p �±
3 q .

On attribute 1, we have:

• x �+
1 y, x �+

i z,
• y and z are not comparable w.r.t. �+

i since, on the one hand, zap R xaq and Not[yap R
xaq], and on the other hand, yap R xbp and Not[zap R xbp],

• x �−
1 y �−

i z.

For j ∈ {2, 3}, RC1 j , RC2 j , AC1 j , AC2 j , AC3 j , UC j and LC j are clearly satisfied,
implying M1 j and M2 j (see Remark 26) as well as Maj1 j and Maj2 j (see Remark 33),
MM1 j and MM2 j . On attribute 1 it is easy to check that RC21, AC21 and AC31 are verified
while RC11 and AC11 are violated. Using Lemma 8(1) in Bouyssou and Pirlot (2007), we
observe that UC1 is satisfied, implying M11, Maj11 and MM11. LC1 does not hold but M21
does as we shall see.

Using the notation in condition (20), for establishing M21 we only have to consider
the cases in which (y1, x) = (y, x) or (y1, x) = (z, x) (otherwise (y1, x) �∗

1 (x, y1) and
consequently the first conclusion of (20) is satisfied). Assume that (y1, x) = (y, x) and
that the first conclusion is not satisfied. This means that either a−1 = ap and b−1 = aq or
a−1 = bp and b−1 = bq . We now distinguish two cases regarding (zi , wi ):

1. if (zi , wi ) �= (z, x), the third conclusion is always satisfied because of the second premise
and the fact that (zi , wi ) �∗

1 (y, x),
2. if (zi , wi ) = (z, x) and a−1 = ap and b−1 = aq or a−1 = bp and b−1 = bq , the second

conclusion is satisfied because we have zap R xaq and zbp R xbq .

The case in which (y1, x) = (z, x) is dealt with similarly. Consequently, R satisfies M21,
MM21, M31 and MM31.

For establishing that Maj21 does not hold, we consider the case in which (y1, x) = (y, x)

and use the notation of (22) in Definition 30. In the previous analysis we only need to
reconsider the case in which the second conclusion of M2i was used, i.e., when (zi , wi ) =
(z, x) and a−1 = ap and b−1 = aq or a−1 = bp and b−1 = bq . We have xap R yaq ,
Not[yap R xaq], xap R zaq , yap R xbp and Not[zap R xbp], which means that Maj21
does not hold. Since (z, x) is no veto (as we have, e.g., zap R xaq), the latter also shows
that R does not satisfy Maj31.

Example 81 (Not[AC1i , AC2i ]) This is Example 36 in Bouyssou and Pirlot (2005b). Also
used in Example 21 in Bouyssou and Pirlot (2007).

Let X = {a, b, c, d} × {x, y}. We build R as the CR in which:

• a I1 b, a P1 c, a I1 d , b I1 c, b P1 d , c I1 d ,
• x P2 y,
• {1, 2} � ∅, {1, 2} � {2}, {1, 2} � {1}, {2} � {1}.

Therefore, R links any two elements of X except that we have: (a, x) R (c, y) but
Not[(c, y) R (a, x)] and (b, x) R (d, y) but Not[(d, y) R (b, x)]. Hence R is a com-
plete relation. Since it is a CR, it satisfies RC1, RC2, UC, LC, M1, M2, Maj1, Maj2, MM1,
MM2, M3, Maj3, MM3 and DMM3.

It is easy to see that AC3 and AC12 as well as AC22 hold. AC11 is violated since
(d, y) R (a, x) and (c, y) R (b, x) but neither (c, y) R (a, x) nor (d, y) R (b, x). AC21 is
also violated (Part 1 of Lemma 27 in Bouyssou and Pirlot 2005b).

Example 82 (Not[AC3i ]) This is Example 35 in Bouyssou and Pirlot (2005b). Also used as
Example 20 in Bouyssou and Pirlot (2007).

Let X = {a, b, c, d} × {x, y}. We build the CR in which:
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• a P1 b, a I1 c, a P1 d , b I1 c, b P1 d , c I1 d ,
• x P2 y,
• {1, 2} � ∅, {1, 2} � {2}, {1, 2} � {1}, {2} � {1}.

Therefore, R links any two elements of X except that we have: (a, x) R (b, y) but
Not[(b, y) R (a, x)], (b, x) R (d, y) but Not[(d, y) R (b, x)] and (a, x) R (d, y) but
Not[(d, y) R (a, x)]. HenceR is a complete relation. Since it is a C R, it satisfies RC1, RC2,
UC, LC, M1, M2, Maj1, Maj2, MM1, MM2, M3, Maj3, MM3 and DMM3.

It is easy to see that AC1 holds and, hence, AC2 (by Part 1 of Lemma 27 in Bouyssou
and Pirlot 2005b). One verifies that AC32 holds. AC31 is violated since (c, y) R (a, x),
(d, y) R (c, x) but neither (b, y) R (a, x) nor (d, y) R (b, x).

Remark. The co-dual of this relation is an asymmetric relation that satisfies all axioms of
a CR-AT except AC31. In particular, it satisfies M3 and Maj3 since it satisfies M2 and Maj2.

Example 83 (Not[LCi , M2i , Maj2i , MM2i , M3i , Maj3i , MM3i ]) This is Example 38 in
Bouyssou and Pirlot (2009b). It is used in Remark 16 in Bouyssou and Pirlot (2009a) (but
erroneously referred to as Example 39 in Bouyssou and Pirlot 2009b).

Let X = X1 × X2 × X3 with X1 = {x, y, z}, X2 = {a, b} and X3 = {p, q}. Let us
consider the relation R such that:

x R y ⇐⇒
3∑

i=1

pi (xi , yi ) ≥ 0,

the functions pi being such that:

p1(x, y) = p1(x, z) = p1(y, z) = p1(x, x) = p1(y, y) = p1(z, z) = 4,

p1(y, x) = p1(z, y) = −1, p1(z, x) = −4,

p2(a, b) = 2, p2(a, a) = p2(b, b) = 0, p2(b, a) = −2,

p3(a, b) = 2, p3(p, p) = p3(q, q) = 0, p3(q, p) = −2.

This is a complete relation. Indeed if
∑3

i=1 pi (xi , yi ) < 0, then p1(x, y1) < 4. This
implies that p1(y1, x) = 4, hence

∑3
i=1 pi (yi , xi ) ≥ 0.

It is easily checked that we have (with (α, α) standing for (x, x), (y, y) and (z, z)):

[(x, y) ∼∗
1 (x, z) ∼∗

1 (y, z) ∼∗
1 (α, α)] �∗

1 [(y, x) ∼∗
1 (z, y)] �∗

1 (z, x),

x �±
1 y �±

1 z,

(a, b) �∗
2 [(a, a) ∼∗

2 (b, b)] �∗
2 (b, a),

a �±
2 b,

(p, q) �∗
3 [(p, p) ∼∗

2 (q, q)] �∗
2 (q, p),

p �±
3 q.

This shows that RC1, RC2, AC1, AC2 and AC3 are satisfied. Using Parts 1 of Lemma 8
and Lemma 11 in Bouyssou and Pirlot (2007) shows that UC and M1 hold. Similarly,
using Parts 2 of Lemma 8 and Lemma 11 in Bouyssou and Pirlot (2007) shows that R
satisfies UC2, UC3, M22 and M23, which implies that M32 and M33 hold. Condition M31
is violated since (x, b, q) R (y, a, p), (y, a, q) R (x, b, q) and (z, a, p) R (x, b, q) while
Not[(y, b, q) R (x, a, p)], Not[(z, b, q) R (x, a, p)] and Not[(z, a, q) R (x, b, q)].

Hence M21 is violated too. Lemma 11, Part 2, in Bouyssou and Pirlot (2007) implies that
LC1 is also violated. Using Lemmas 34, 42 and 56, we obtain that R satisfies Maj1, MM1,
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Table 3 Relation R in Example 84

xap xaq xbp xbq yap yaq ybp ybq zap zaq zbp zbq

xap – – R R R R R R R R R R
xaq – – – R – R – R – R – R
xbp – – – – – – R R – – R R
xbq – – – – – – – R – – – R
yap – – R R – – R R R R R R
yaq – – – R – – – R – R – R
ybp – – – – – – – – – – R R
ybq – – – – – – – – – – – R
zap – – – R – – R R – – R R
zaq – – – – – – – R – – – R
zbp – – – – – – – – – – – –

zbq – – – – – – – – – – – –

Maj22, Maj23, MM22, MM23, Maj32, Maj33, MM32, MM33 but neither Maj21 nor Maj31.
In view of Lemmas 56, MM31 is also violated as well as MM21. Since R satisfies M1, it
fulfills DMM3.

Example 84 (Asymmetric, Not[LCi , M2i , M3i , Maj2i , Maj3i , MM2i , MM3i ]) This is
Example 5 in Bouyssou and Pirlot (2006).

Let X = {x, y, z} × {a, b} × {p, q} and R on X be as described in Table 3:
It is easy to check that R is asymmetric. It is not difficult to see that we have, abusing

notation,

• [(x, y), (x, z), (y, z)] �∗
1 [(x, x), (y, y), (z, z), (y, x), (z, y)] �∗

1 (z, x),
• (a, b) �∗

2 [(a, a), (b, b)] �∗
2 (b, a), and

• (p, q) �∗
3 [(p, p), (q, q)] �∗

3 (q, p).

This shows that RC1, RC2 and Maj1 hold. It is easy to see that Maj22 and Maj23 hold so
that Maj32 and Maj33 are satisfied. Condition Maj31 is violated since (x, a, p) R (y, a, p),
(x, a, p) R (z, a, p), (y, a, p) R (x, b, p) and (z, a, p) R (x, b, q) but neither (y, a, p) R
(x, a, p) nor (z, a, p) R (x, b, p).

Since RC1 and RC2 hold, Lemma 34 implies that R satisfies M1, M22, M23 but not
M21. M32 and M33 hold while M31 is violated (Lemma 56). By Lemma 11 in Bouyssou
and Pirlot (2007), R satisfies UC, LC2, LC3 but not LC1. By Lemmas 42 and 56, we know
that MM21 and MM31 are violated. MM2 j and MM3 j are satisfied for j = 2, 3. R satisfies
MM1 so that it also satisfies DMM3.

From relations �∗
i described above, we infer the following:

x �±
1 y �±

1 z,

a �±
2 b,

p �±
3 q,

which implies that R satisfies AC1, AC2 and AC3.

Example 85 ( Not[AC1i , M2i , Maj2i , MM2i , LCi ]) This is Example 36 in Bouyssou and
Pirlot (2009b).
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Let X = X1 × X2 with X1 = {x, y, z, w} and X2 = {a, b}. We build a CDR on X with:

• z P1 x , z P1 y, z P1 w, x P1 w, x I1 y, y I1 w,
• the relation V1 is empty except that z V1 y,
• b P2 a,
• the relation V2 is empty,
• {1, 2} � ∅, {1, 2} � {2}, {1, 2} � {1} and {1} � {2}.
By construction,R is a CDR. Hence, it satisfies RC1, RC2, M1, Maj1, MM1, M3, Maj3

and MM3 (Theorem 58 and Lemmas 42 and 56). It satisfies M22, Maj22, MM22, but not
M21 (due to the veto on X1), not Maj21 (by Lemma 34) and not MM21 (by Lemma 42).
SinceR satisfies M1 it also fulfills DMM3. Using Lemma 11 in Bouyssou and Pirlot (2007),
we get that UC and LC2 are satisfied but LC1 is violated.

The relation R contains all pairs in X × X except the following ones:

• Not[(x, b) R (z, a)], Not[(y, b) R (z, a)], Not[(w, b) R (z, a)], Not[(w, b) R (x, a)],
due to the fact that Not[∅ � {1, 2}], and

• Not[(y, a) R (z, a)], Not[(y, b) R (z, b)], Not[(y, b) R (z, a)], Not[(y, a) R (z, b)],
due to the fact that z V1 y.

One pair is common to these two series of four pairs, so thatR is equal to X × X minus the
seven distinct pairs in the lists above. It is a complete relation.

On X2, it is easy to check that we have b �±
2 a, so that AC12, AC22 and AC32 hold.

On X1, it is easy to check that �−
1 is complete. We indeed have that:

z �−
1 x �−

1 [y ∼−
1 w].

The relation �+
1 is not complete. We have z �+

1 x , x �+
1 y and x �+

1 w but neither
y �+

1 w nor w �+
1 y since (y, b) R (x, a) but Not[(w, b) R (x, a)] and (w, a) R (z, a) but

Not[(y, a) R (z, a)]. This shows that AC11 is violated. Condition AC31 holds since �+
1 and

�−
1 are not incompatible.

Example 86 ( Not[AC2i , M2i , Maj2i , MM2i , LCi ])
This is Example 35 in Bouyssou and Pirlot (2009b). It is a slight variation on Example 85

obtained by reversing all relations Si and Vi .
Let X = X1 × X2 with X1 = {x, y, z, w} and X2 = {a, b}. We build a CDR on X with:

• w P1 z, x P1 z, y P1 z, w P1 x , y I1 w, y I1 x (and all I1 loops),
• V1 is empty except that y V1 z,
• a P2 b (and all I2 loops) and the relation V2 is empty,
• {1, 2} � ∅, {1, 2} � {2}, {1, 2} � {1} and {1} � {2}.
Observe that S1 is a semiorder (the weak order it induces ranks the elements of X1 in the

following order: w, y, x, z). The relation V1 is a strict semiorder that is included in P1. But
(S1, U1) is not an homogeneous chain of semiorders on X1 since the weak order induced by
U1 ranks y before w, while the weak order induced by S1 does the opposite.

By construction,R is a CDR. Hence, it satisfies RC1, RC2, M1, Maj1, MM1, M3, Maj3
and MM3 (Theorem58 and Lemmas 42 and 56). It satisfies M22, Maj22, MM22, but not M21
(due to the veto on X1), not Maj21 (by Lemma 34) and not MM21 (by Lemma 42). SinceR
satisfies M1 it also fulfills DMM3. Using Lemma 11 in Bouyssou and Pirlot (2007), we get
that UC and LC2 are satisfied but LC1 is violated.

The relation R contains all pairs in X × X except the following ones:

• Not[(z, b) R (w, a)], Not[(z, b) R (x, a)], Not[(z, b) R (y, a)], Not[(x, b) R (w, a)],
due to the fact that Not[∅ � {1, 2}], and
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• Not[(z, a) R (y, a)], Not[(z, a) R (y, b)], Not[(z, b) R (y, a)], Not[(z, b) R (y, b)],
due to the fact that y V1 z.

One pair is common to these two series of four pairs, so thatR is equal to X × X minus the
seven distinct pairs in the lists above. It is clear that R is complete.

On X2, it is easy to check that we have a �±
2 b, so that AC12, AC22 and AC32 hold.

On X1, it is easy to check that �+
1 is complete. We indeed have that:

[y ∼+
1 w] �+

1 x �+
1 z.

The relation �−
1 is not complete. We have w �−

1 x , y �−
1 x and x �−

1 z but neither
y �−

1 w nor w �−
1 y since (z, a) R (w, a) but Not[(z, a) R (y, a)] and (x, b) R (y, a)

but Not[(x, b) R (w, a)]. This shows that AC21 is violated. Condition AC31 holds since �+
1

and �−
1 are not incompatible.

Example 87 (Asymmetric, Not[UCi , M1i , Maj1i , MM1i ]) This is Example 3 in Bouyssou
and Pirlot (2006).

Let X = {a, b} × {x, y, z} and R on X be identical to the strict linear order (abusing
notation in an obvious way):

(a, x) R (b, x) R (a, y) R (b, y) R (a, z) R (b, z),

except that we have also (a, y) R (b, x).
It is easy to see that R is asymmetric. We have, abusing notation:

• (a, b) �∗
1 [(a, a), (b, b)] �∗

1 (b, a), and
• [(x, z), (y, z)] �∗

2 (x, y) �∗
2 [(x, x), (y, y), (z, z)] �∗

2 [(y, x), (z, x), (z, y)].
Using Lemma 22, it is easy to check that R satisfies RC1 and RC2.

It is clear that UC1, LC1 and LC2 hold. This implies that M2, Maj2, MM2, M3, Maj3,
MM3 hold as well as M11, Maj11 and MM11.

Maj12 is violated since (a, x) R (a, y), (a, x) R (a, z), (b, x) R (a, z) but neither
(a, y) R (a, x) nor (b, x) R (a, y). As a consequence, UC1 is also violated. Since RC1 and
RC2 hold, Lemmas 34 and 42 imply that M12 and MM12 are violated.

Since M11 holds, DMM31 holds too. We show that DMM32 also holds. Assume the con-
trary. Taking RC12 into account, this implies that there are a, b, z2, w2 ∈ X2 such that
(z2, w2) �∗

2 (a, b) �∗
2 (b, a). Hence (z2, w2) can only be (x, z) or (y, z). The fourth

conclusion of DMM32 is always true since (u, x) R (v, z) and (u, y) R (v, z) for all
u, v ∈ X1 = {a, b}.

Using Lemma 47, we have:

• a �±
1 b and

• x �±
2 y �±

3 z.

Hence AC1, AC2 and AC3 hold.

Example 88 (Asymmetric, Not[AC1i , M2i , Maj2i , MM2i , LCi ]) This example is an asym-
metric variant of Example 85.

Let X = X1 × X2 with X1 = {x, y, z, w} and X2 = {a, b}. We build a CDR on X with:

• z P◦
1 x , z P◦

1 y, z P◦
1 w, x P◦

1 w, y P◦
1 w,

• the relation V ◦
1 is empty except that z V ◦

1 y,
• b P◦

2 a,
• the relation V ◦

2 is empty,
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• {1} �◦
∅, {2} �◦ {1}, {1, 2} �◦

∅.

By construction, R is an asymmetric CDR. Hence, it satisfies RC1, RC2, M1, Maj1,
MM1, M3, Maj3, MM3 (Theorem 58 and Lemmas 42 and 56). It satisfies M22 but not M21
(due to the veto on X1), not Maj21 (by Lemma 42) and not MM21 (by Lemma 42). Using
Lemma 11 in Bouyssou and Pirlot (2007), we get that UC and LC2 are satisfied but LC1 is
violated.7

Since R satisfies M1 it verifies DMM3.
The relation R contains the following pairs in X × X :

• (x, a) R (w, a), (x, b) R (x, a), (x, b) R (y, a), (x, b) R (z, a), (x, b) R (w, a),
• (y, a) R (w, a), (y, b) R (x, a), (y, b) R (y, a), (y, b) R (w, a) (but, due to z V ◦

1 y,
Not[(y, b) R (z, a)]),

• (z, a) R (x, a), (z, a) R (y, a), (z, a) R (w, a), (z, b) R (x, a), (z, a) R (x, b),
(z, b) R (y, a), (z, b) R (y, b), (z, b) R (z, a), (z, b) R (w, a), (z, b) R (w, b),

• (w, b) R (x, a), (w, b) R (y, a), (w, b) R (z, a), (w, b) R (w, a).

On X2, it is easy to check that we have b �±
2 a, so that AC12, AC22 and AC32 hold.

On X1, it is easy to check that �−
1 is complete. We indeed have that:

z �−
1 x �−

1 y �−
1 w.

The relation �+
1 is not complete. We have z �+

1 x , x �+
1 y and x �+

1 w but neither y �+
1 w

nor w �+
1 y since (y, a) R (w, a) but Not[(w, a) R (w, a)] and (w, b) R (z, a) but

Not[(y, b) R (z, a)]. This shows that AC11 is violated. Condition AC31 holds since �+
1 and

�−
1 are not incompatible.
Each of P◦

1 and V ◦
1 is the asymmetric part of some semiorder but these semiorders do not

form an homogeneous chain of semiorders (the weak order induced by P◦
1 imposes that w is

placed in the last position while that induced by V ◦
1 imposes the last position to y).

Example 89 (Asymmetric, Not[AC2i , M2i , Maj2i , LCi ]) This example is an asymmetric
variant of Example 86

Let X = X1 × X2 with X1 = {x, y, z, w} and X2 = {a, b}. We build a CDR on X with:

• w P◦
1 y, w P◦

1 z, x P◦
1 z, y P◦

1 z,
• the relation V ◦

1 is empty except that y V ◦
1 z,

• a P◦
2 b,

• the relation V ◦
2 is empty,

• {1} �◦
∅, {2} �◦ {1}.

By construction, R is an asymmetric CDR. Hence, it satisfies RC1, RC2, M1, Maj1,
MM1, M3, Maj3, MM3 (Theorem 58 and Lemmas 42 and 56). It satisfies M22 but not M21
(due to the veto on X1), not Maj21 (by Lemma 42) and not MM21 (by Lemma 42). Using
Lemma 11 in Bouyssou and Pirlot (2007), we get that UC and LC2 are satisfied but LC1 is
violated.8

Since R satisfies M1 it verifies DMM3.
The relation R contains the following pairs in X × X :

• (x, a) R (x, b), (x, a) R (y, b), (x, a) R (z, a), (x, a) R (z, b), (x, a) R (w, b),
(x, b) R (z, b),

7 This lemma was stated for reflexive relations but its proof does not depend on the reflexivity hypothesis. It
is also valid for irreflexive, and a fortiori asymmetric, relations.
8 This lemma was stated for reflexive relations but its proof does not depend on the reflexivity hypothesis. It
is also valid for irreflexive, and a fortiori asymmetric, relations.
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Table 4 Relation R in Example 90

xap xaq xbp xbq yap yaq ybp ybq zap zaq zbp zbq wap waq wbp wbq

xap – R R R – R – R – R R R – R R R
xaq – – – R – – – – – – – R – – – R
xbp – – – R – – – R – – – R – – – R
xbq – – – – – – – – – – – – – – – –

yap – R R R – R R R – R R R – R R R
yaq – – – R – – – R – – – R – – – R
ybp – – – R – – – R – – – R – – – R
ybq – – – – – – – – – – – – – – – –

zap – R R R – – – – – R R R – – R R
zaq – – – R – – – – – – – R – – – R
zbp – – – R – – – – – – – R – – – –

zbq – – – – – – – – – – – – – – – –

wap – R R R – R R R – R R R – R R R
waq – – – R – – – R – – – R – – – R
wbp – – – R – – – R – – – R – – – R
wbq – – – – – – – – – – – – – – – –

• (y, a) R (x, b), (y, a) R (y, b), (y, a) R (z, a), (y, a) R (z, b), (y, a) R (w, b),
(y, b) R (z, b),

• (z, a) R (x, b), (z, a) R (z, b), (z, a) R (w, b) (but Not[(z, a) R (y, b)], due to
y V ◦

1 z),
• (w, a) R (x, b), (w, a) R (y, a), (w, a) R (y, b), (w, a) R (z, a), (w, a) R (z, b),

(w, a) R (w, b), (w, b) R (y, b), (w, b) R (z, b).

On X2, it is easy to check that we have a �±
2 b, so that AC12, AC22 and AC32 hold.

On X1, it is easy to check that �+
1 is complete. We indeed have that:

w �±
1 [x ∼+

1 y] �+
1 z.

The relation �−
1 is not complete. We have w �−

1 x , w �−
1 y, x �−

1 z and y �−
1 z but neither

x �−
1 y nor y �−

1 x since (z, a) R (x, b) but Not[(z, a) R (y, b)] and (w, a) R (y, a) but
Not[(w, a) R (x, a)]. This shows that AC21 is violated. Condition AC31 holds since�+

1 and
�−
1 are not incompatible.
Each of P◦

1 and V ◦
1 is the asymmetric part of some semiorder but these semiorders do not

form an homogeneous chain of semiorders (the weak order induced by P◦
1 imposes that w is

placed in the first position while that induced by V ◦
1 imposes the first position to y).

Example 90 (Asymmetric Not[RC1i , M2i , Maj2i , MM2i , Maj3i ])
This example was not published before.
Let X = {x, y, z, w} × {a, b} × {p, q} and R consist of the set of pairs listed in Table 4.
It is easy to see that R is an asymmetric relation.
As for the comparison of preference differences on each attribute, we have, for

all (α, β) ∈ � = {(x, x), (y, y), (z, z), (w,w), (x, z), (x, w), (y, x), (y, z), (y,w),
(z,x),(w, x), (w, y), (w, z)},
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• (α, β) �∗
1 (x, y) �∗

1 (z, y) and (α, β) �∗
1 (z, w) �∗

1 (z, y), while (x, y) and (z, w) are
incomparable in terms of �∗

1,• (a, b) �∗
2 [(a, a), (b, b)] �∗

3 (b, a),
• (p, q) �∗

3 [(p, p), (q, q)] �∗
3 (q, p).

The upward and downward dominance relations are as follows:

• y �±
1 w �±

1 x �±
1 z,

• a �±
2 b,

• p �±
3 q .

RC11 does not hold since the pairs (x, y) and (z, w) are not comparable w.r.t. �∗
1, but

RC12 and RC13 hold true. For j ∈ {1, 2, 3}, RC2 j , AC1 j , AC2 j , AC3 j are clearly satisfied.
For j = 2 and j = 3, using Lemma 25, we see thatR fulfills M1 j and M2 j hence it satisfies
UC j and LC j (by Lemma 11 in Bouyssou and Pirlot 2007), Maj1 j and Maj2 j ( by Lemma
34),UC j and LC j (by Lemma 11 in Bouyssou and Pirlot 2007), M3 j ,Maj3 j ,MM1 j ,MM2 j

and MM3 j (since each of the latter is implied by one of the previously established properties
of R ).

R satisfies M11. Assume to the contrary that there are s, t, u, v ∈ X1 and S, T, U, V ∈
X−1 such that: (1) (s, S) R (t, T ), (2) (u, U ) R (v, V ), (3) Not[(t, S) R (s, T )],
(4) Not[(s, U ) R (t, V )], (5) Not[(v, S) R (u, T )]. Using (1), (3) and Lemma 22.2, we
deduce that (s, t) can only be one of the pairs (y, x), (y, z) or (w, z). In all three cases, (2)
and (4) cannot both hold true since (s, t) �∗

1 (u, v), for all u, v ∈ X1, a contradiction.
R satisfies Maj11. Assume to the contrary that there are s, t, u, v ∈ X1 and S, T, U, V ∈

X−1 such that: (1) (s, S) R (t, T ), (2) (u, S) R (v, T ), (3) (u, U ) R (v, V ), (4)Not[(t, S) R
(s, T )], (5) Not[(s, U ) R (t, V )]. Using (1), (4) and Lemma 22.2, we deduce that (s, t) can
only be one of the pairs (y, x), (y, z) or (w, z). In all three cases, (3) and (5) cannot both
hold true since (s, t) �∗

1 (u, v), a contradiction.
R satisfies M31.Assume to the contrary that there are s, t, u, v ∈ X1 and S, T, U, V, Q, R

∈ X−1 such that: (1) (s, S) R (t, T ), (2) (t, U ) R (s, V ), (3) (u, Q) R (v, R),
(4) Not[(t, S) R (s, T )], (5) Not[(u, S) R (v, T )], (6) Not[(u, U ) R (v, V )]. Using (1),
(4) and Lemma 22.2, we deduce that (s, t) can only be one of the pairs (y, x), (y, z) or
(w, z). If (s, t) = (y, z), (2) never holds true. In case (s, t) = (y, x), (1) and (4) imply
[S = ap and T = bp] or [S = aq and T = bq]. Contradicting (5), we have (u, S) R (v, T )

for all u, v ∈ X1 except for (u, v) = (z, y), for which (3) does not hold. The case in which
(s, t) = (w, z) is dealt with similarly. As a conclusion, M31 holds for R .

R violates M21. M21 does not hold if we can find s, t, u, v ∈ X1 and S, T, U, V ∈ X−1

such that: (1) (s, S) R (t, T ), (2) (t, U ) R (s, V ), (3) Not[(t, S) R (s, T )], (4) Not[(u, S) R
(v, T )], (5) Not[(u, U ) R (v, V )]. These 5 conditions can be simultaneously fulfilled by
setting: s = y, t = x, u = z, v = y and S = ap, T = bp, U = ap, V = aq . Since MM2i

and RC2i entail M2i (Lemma 42.3), R violates MM21.
R violatesMaj31.Maj31 does not hold if we can find s, t, u, v ∈ X1 and S, T, U, V, Q, R

∈ X−1 such that: (1) (s, S) R (t, T ), (2) (v, S) R (u, T ), (3) (t, U ) R (s, V ), (4) (u, Q) R
(v, R), (5) Not[(t, S) R (s, T )], (6) Not[(u, U ) R (v, V )]. These 6 conditions can be
simultaneously fulfilled by setting: s = y, t = x, u = z, v = w and S = ap, T = bp, U =
ap, V = aq, Q = ap, R = bq . Since Maj2i entails Maj3i , R also violates Maj21.

Since R satisfies M11 (resp. M31) it satisfies MM11 (resp. MM31).
Since R satisfies MM11 it satisfies DMM31 (by Lemma 66).
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