
Ann Oper Res (2017) 249:119–139
DOI 10.1007/s10479-015-1800-1

On the minimization of traffic congestion in road
networks with tolls

F. Stefanello · L. S. Buriol · M. J. Hirsch · P. M. Pardalos ·
T. Querido · M. G. C. Resende · M. Ritt

Published online: 15 February 2015
© Springer Science+Business Media New York 2015

Abstract Population growth and the massive production of automotive vehicles have lead
to the increase of traffic congestion problems. Traffic congestion today is not limited to
large metropolitan areas, but is observed even in medium-sized cities and highways. Traffic
engineering can contribute to lessen these problems. One possibility, explored in this paper,
is to assign tolls to streets and roads, with the objective of inducing drivers to take alternative
routes, and thus better distribute traffic across the road network. This assignment problem
is often referred to as the tollbooth problem and it is NP-hard. In this paper, we propose
mathematical formulations for two versions of the tollbooth problem that use piecewise-

F. Stefanello · L. S. Buriol · M. Ritt
Instituto de Informática, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS 91501-970, Brazil
e-mail: fstefanello@inf.ufrgs.br

L. S. Buriol
e-mail: buriol@inf.ufrgs.br

M. Ritt
e-mail: mrpritt@inf.ufrgs.br

M. J. Hirsch
ISEA TEK, 620 N. Wymore Road, Suite 260, Maitland, FL 32751, USA
e-mail: mhirsch@iseatek.com

P. M. Pardalos
Department of Industrial and Systems Engineering, University of Florida, 303 Weil Hall,
Gainesville, FL 32611, USA
e-mail: pardalos@ufl.edu

T. Querido
Linear Options Consulting, 7450 SW 86th Way, Gainesville, FL 32608, USA
e-mail: tania@linearoptions.com

M. G. C. Resende (B)
Mathematical Optimization and Planning Amazon.com, Inc., 333 Boren Avenue North,
Seattle, WA 98109, USA
e-mail: resendem@amazon.com

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-015-1800-1&domain=pdf

120 Ann Oper Res (2017) 249:119–139

linear functions to approximate congestion cost. We also apply a biased random-key genetic
algorithm on a set of real-world instances, analyzing solutions when computing shortest paths
according to two different weight functions. Experimental results show that the proposed
piecewise-linear functions approximate the original convex function quite well and that the
biased random-key genetic algorithm produces high-quality solutions.

Keywords Combinatorial optimization · Transportation networks · Genetic algorithms ·
Tollbooth problem

1 Introduction

Transportation systems play an important role in modern life. Due to population growth and
the massive production of vehicles, traffic congestion problems in metropolitan areas have
become a common daily occurrence. To a commuter or traveler, congestion means loss of
time, potentially missed business opportunities, and increased stress and frustration. To an
employer, congestion means lost worker productivity, reduced trade opportunities, delivery
delays, and increased costs (Wen 2008). For example, a significant aspect is the value of
wasted fuel and loss of productivity. In 2010, traffic congestion cost about US$115 billion in
the 439 urban areas of the United States alone (Schrank et al. 2011).

Minimizing driving time directly impacts quality of life. One way to reduce travel time is
by lowering congestion through the redistribution of traffic throughout the network. Improve-
ments in transportation systems require a careful analysis of several factors. Different alterna-
tives are evaluated using models that attempt to capture the nature of transportation systems
and thus allow the estimation of the effect of future changes in system performance. Perfor-
mance measures include efficiency in time and cost, security, and social and environmental
impact, among others.

Several strategies have been proposed to reduce traffic congestion. Among them, the
deployment of tolls on certain roads can induce drivers to choose alternative routes, thus
reducing congestion as the result of better traffic flow distribution. Naturally, tolls can increase
the cost of a trip, but this can be compensated with less travel time, reduced fuel cost, and
lower amounts of stress. In the 1950s, Beckmann et al. (1956) proposed the use of tolls with
this objective. This idea has made its way into modern transportation networks. In 1975,
Singapore implemented a program called Electronic Road Pricing or ERP. Several cities in
Europe and the United States, such as in London and San Diego, have begun to charge toll
on their transportation networks (Bai et al. 2010). In fact, tolls are being deployed for traffic
engineering in many small as well as large cities around the world.

Determining the location of tollbooths1 and their corresponding tariffs is a combinatorial
optimization problem. This problem has aroused interest in the scientific community not only
because of its intrinsic difficulty, but also because of the social importance and impact of its
solution.

The optimization of transportation network performance has been widely discussed in the
literature. The minimum tollbooth problem (MINTB), first introduced by Hearn and Ramana
(1998), aims at minimizing the number of toll locations to achieve system optimality. Yang
and Zhang (2003) formulate second-best link-based pricing as a bi-level program and solve
it with a genetic algorithm. In Bai et al. (2010) it is shown that the problem is NP-hard and

1 We use the term tollbooth to refer to both traditional tollbooths as well as to sensors that read radio-frequency
identification (RFID) tags from vehicles.

123

Ann Oper Res (2017) 249:119–139 121

a local search heuristic is proposed. Another similar problem is to minimize total revenue
(MINREV). MINREV is similar to MINSYS, but in this class of problems tolls can be negative
as well as positive, while MINSYS does not accept negative tolls (Hearn and Ramana 1998;
Dial 1999a, b; Hearn and Yildirim 2002; Bai et al. 2004). For a complete review of the design
and evaluation of road network pricing schemes we refer the reader to the survey by Tsekeris
and Voß (2009).

Two important transportation network concepts were introduced by Wardrop (1952): user
equilibrium (UE) and system optimal (SO). The former is related to the equilibrium obtained
when each user chooses a route that minimizes his/her costs in a congested network. In an
UE state, any user can reduce his/her own travel cost by changing routes. Differently, SO
is related to a state of equilibrium with minimum average journey time. This occurs when
the users cooperate to choose their routes. However, the user usually chooses his/her own
route in a non-cooperative manner. In a simplistic modeling behavior, users can choose their
routes by different criteria. One possible simplification assumes that users choose their routes
considering only fixed costs such as time to travel, or a value that depends on the congestion,
or even only the toll values. These situations do not correspond to user equilibrium, but model
different behaviors of the users.

In this paper, we approach the tollbooth problem by routing on shortest paths as first
studied in Buriol et al. (2010). The objective is to determine the location of a fixed number K
of tollbooths and set their corresponding tariffs so that users travel on shortest paths between
origin and destination, reducing network congestion. We calculate shortest paths according
to two weight functions. In the first, the weights correspond to the tariffs of the tolled arcs.
The second function considers as the weight of each arc its toll tariff added to its free flow
time, where free flow time of an arc is defined to be the congestion-free time to traverse the
arc. We also present a mathematical model for the minimum average link travel time and
the tollbooth problem. We further propose two piecewise-linear functions that approximate
an adapted convex travel cost function of the Bureau of Public Roads (1964) for measuring
link congestion. Finally, we extend the work in Buriol et al. (2010) presenting a larger set
of experiments, considering a new arc value to calculate shortest paths, a review of the
algorithm components, such as the local search, and a more detailed review of the behavior
of the algorithm, including a new set of instances and an analysis of characteristics of the
final solutions.

This paper is organized as follows. In Sect. 2 we present mathematical models for the
minimum average link travel time, the tollbooth problem, and two approximate piecewise-
linear functions for travel cost. The biased random-key genetic algorithm with local search
proposed in Buriol et al. (2010) is presented in Sect. 3. Computational results are reported in
Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Problem formulation

A road network can be represented as a directed graph G = (V, A) where V represents the
set of nodes (street or road intersections or points of interest), and A the set of arcs (street or
road segments). Each arc a ∈ A has an associated capacity ca , and a time ta , called the free
flow time, necessary to transverse the unloaded arc a. To calculate the congestion on each
link, a potential function �a is computed as a function of the load or flow �a on arc a, along
with αa and βa , two real-valued arc-tuning parameters. In addition, let

K = {(o(1), d(1)), (o(2), d(2)), . . . , (o(|K |), d(|K |)} ⊆ V × V

123

122 Ann Oper Res (2017) 249:119–139

denote the set of commodities or origin-destination (OD) pairs, whereo(k) andd(k) represent,
respectively, the origination and destination nodes for k = 1, . . . , |K |. Each commodity k
has an associated demand of traffic flow dk = do(k),d(k), i.e., for each OD pair (o(k), d(k)),
there is an associated flow dk that emanates from node o(k) and terminates in node d(k). In
this paper we address the problem in which all the demand is routed on the network, such that
traffic congestion is minimized. To encourage traffic to take on particular routes, we resort
to levying tolls on selected street or road segments.

Before we describe our mathematical models, some notation is introduced. We denote by
IN(v) the set of incoming arcs to node v ∈ V , by OUT(v) the set of outgoing arcs from node
v ∈ V , by a = (at , ah) ∈ A a directed arc of the network, where at ∈ V and ah ∈ V are,
respectively, the tail and head nodes of arc a, by S = ∑|K |

k=1 dk the total sum of demands, and
by Q ⊆ V the set of destination nodes. Moreover, we denote by �a the traffic congestion
of arc a ∈ A, and by K the number of tollbooths to deploy (tolls are levied on users of the
network at tollbooths). The values of ϕu

a and ϕl
a are approximations of traffic congestion cost

on arc a ∈ A given by piecewise-linear functions. We note that throughout the paper we refer
to flow and load interchangeably, as we do for commodity and demand.

In the next subsection we present a mathematical model of a relaxation of the tollbooth
problem that does not take into account shortest paths. In Sect. 2.2 a complete model for the
tollbooth problem is presented and in Sect. 2.3 we propose two piecewise-linear functions
that approximate the convex cost function.

2.1 Model for minimization of average user travel time (MM1)

The evaluation of the traffic congestion cost can be defined in different ways according to
specific goals. In this paper we use the potential function

� =
∑

a∈A

�a, where �a = �a

S ta

[

1 + βa

(
�a

ca

)αa
]

, for all a ∈ A,

which is the convex travel cost function of the Bureau of Public Roads (1964) for measuring
link congestion scaled by the term �a/S. This way, the potential function evaluates the average
user travel time over all trips. Function �a is convex and nonlinear and is a strictly increasing
function of la .

A mathematical programming model of average user travel time is

min � =
∑

a∈A

�ata
[
1 + βa(�a/ca)

αa
]
/S (1)

subject to:

�a =
∑

q∈Q
xqa , ∀a ∈ A, (2)

∑

a∈OUT(v)

xqa −
∑

a∈IN(v)

xqa = dv,q , ∀v ∈ V \{q}, ∀q ∈ Q, (3)

xqa ≥ 0, ∀a ∈ A, ∀q ∈ Q, (4)

�a ≥ 0, ∀a ∈ A. (5)

Its goal is to determine flows on each arc such that the average user travel time is minimized.
In this model, decision variables xqa ∈ R

+ represent the total flow to destination q ∈ Q on
arc a ∈ A, and variables �a ∈ R

+ represent the total flow on arc a ∈ A. Objective function
(1) minimizes average user travel time. Constraints (2) define total flow on each arc a ∈ A

123

Ann Oper Res (2017) 249:119–139 123

taking into consideration the contribution of all commodities. Constraints (3) guarantee flow
conservation, and (4)–(5) define the domains of the variables.

This model computes flow distribution without taking into account that users take a least
cost route, providing a lower bound for the tollbooth problem to be described in the next
subsection.

2.2 Model for the tollbooth problem (MM2)

A mathematical programming model for the tollbooth problem is

min � =
∑

a∈A

�ata
[
1 + βa(�a/ca)

αa
]
/S (6)

subject to:

�a =
∑

q∈Q
xqa , ∀a ∈ A, (7)

∑

a∈OUT(v)

xqa −
∑

a∈IN(v)

xqa = dv,q , ∀v ∈ V \{q}, ∀q ∈ Q, (8)

Ca + wa + δ
q
ah − δ

q
at ≥ 0, ∀a ∈ A, ∀q ∈ Q, (9)

δ
q
q = 0, ∀q ∈ Q, (10)

Ca + wa + δ
q
ah − δ

q
at ≥ (1 − yqa)/M1, ∀a ∈ A, ∀q ∈ Q, (11)

Ca + wa + δ
q
ah − δ

q
at ≤ (1 − yqa)M2, ∀a ∈ A, ∀q ∈ Q, (12)

M3y
q
a ≥ xqa , ∀a ∈ A, ∀q ∈ Q, (13)

M3y
q
a + M3y

q
b ≤ 2M3 − xqa + xqb , ∀a, b ∈ A2

OUT(v),∀v ∈ V, ∀q ∈ Q, (14)

Pl pa ≤ wa ≤ Pu pa, ∀a ∈ A, (15)
∑

a∈A

pa = K, ∀a ∈ A, (16)

xqa ≥ 0, ∀a ∈ A, ∀q ∈ Q, (17)

�a ≥ 0, ∀a ∈ A, (18)

wa ≥ 0, ∀a ∈ A, (19)

δqv ≥ 0, ∀q ∈ Q, ∀v ∈ V, (20)

pa ∈ {0, 1}, ∀a ∈ A. (21)

This model seeks to levy tolls on K arcs of the transportation network such that the average
user travel time is minimized if traffic is routed on least-cost paths. Here, the cost of a path
is defined to be the sum of the tolls levied on the arcs of the path, or the sum of tolls and free
flow times. We later describe these arc weight functions in more detail.

The decision variables for this model determine whether an arc will host a tollbooth and
the amount of toll levied at each deployed tollbooth. Denote by wa ∈ {0, Pl , Pl +1, . . . , Pu}
the toll tariff levied on arc a ∈ A, where Pl , Pu ∈ N

+ are the minimum and maximum
tariff values, respectively. For convenience we define Pl = 1. If no toll is levied on arc a,
then wa = 0. The binary decision variable pa = 1 if a tollbooth is deployed on arc a ∈ A.
The auxiliary binary variable yqa = 1 if arc a ∈ A is part of a shortest path to destination
node q ∈ Q. Finally, auxiliary variable δ

q
v is the shortest-path distance from node v ∈ V to

destination node q ∈ Q, and the constants M1, M2, and M3 are sufficiently larger numbers.

123

124 Ann Oper Res (2017) 249:119–139

Objective function (6) minimizes average user travel time. Constraints (7) define the total
flow on each arc a ∈ A while constraints (8) impose flow conservation. The other constraints
force the flow of each commodity to follow the shortest path between the corresponding
OD pair. An arc a belongs to the shortest path to destination q if the distance δ

q
ah − δ

q
at is

equal to the arc cost, which in this case is Ca + wa , where Ca will be introduced later in
this subsection. Thus, constraints (9) define the shortest path distance for each node v ∈ V
and each destination q ∈ Q. For consistency, constraints (10) require, for all q ∈ Q, that
the shortest distance from q to itself be zero. Constraints (11) and (12) together with (9) and
(10) determine whether arc a ∈ A belongs to the shortest path and thus determine the values
of yqa , for q ∈ Q. Constraints (11) require that an arc that does not belong to the shortest
path have reduced cost Ca + wa + δ

q
ah − δ

q
at > 0. Constraints (12) assure that if the reduced

cost of arc a ∈ A and destination q ∈ Q is equal to zero, then arc a belongs to the shortest
path to destination q , i.e. yqa = 1. In the computational experiments of Sect. 4.2, we used
M1 = 100 and M2 = 1,000. Constraints (13) assure that flow is sent only on arcs belonging
to a shortest path. Constraints(14) are the even-split constraints. They guarantee that flow is
split evenly among all shortest paths. In these constraints, A2

OUT(v) is the set of all ordered
groups of two distinct elements of OUT(v). We later discuss these constraints in more detail.
Constraints (15) limit the minimum and maximum tariff for a deployed tollbooth. Constraints
(16) require that exactly K tolls be deployed. The remaining constraints define the domains
of the variables.

Constraints (14) come in pairs for each node v ∈ V . For every pair of outgoing links
a ∈ OUT(v) and b ∈ OUT(v): {a, b} ∈ A2

OUT(v) and {b, a} ∈ A2
OUT(v), there are two

corresponding constraints. They model load balancing by assuring that if the flow from node
v ∈ V to destination q ∈ Q is routed on both arcs a ∈ A and b ∈ A, i.e. if yqa = yqb = 1, then
the flow on these arcs must be evenly split, i.e. xqa = xqb . To see this, suppose yqa = yqb = 1.
The constraint for pair {a, b} ∈ A2

OUT(v) implies that xqa ≤ xqb . By symmetry the constraint

for pair {b, a} ∈ A2
OUT(v) implies that xqa ≥ xqb . Consequently, xqa = xqb . Note that taking

M3 = maxq∈Q
(∑

v∈V dv,q
)

we assure that the right-hand-side of constraint (14) is bounded
from below by M3, making these constraints redundant for pairs of links with at most one of
either yka or ykb equal to one.

A model for OSPF routing, which also considers shortest paths and even flow splitting,
was previously proposed in Broström and Holmberg (2006). In their model a shortest path
graph is built for each OD pair, while we opted for building a shortest path graph from all
nodes to each node q ∈ Q. This modification reduces the number of variables and constraints
of the model.

We evaluate shortest paths according to two weight functions. In the first approach, called
SPT (Shortest Path Toll), we define the weight of an arc a ∈ A to be the tariff wa levied on
that arc. In this case, we set Ca = ε, a sufficiently small value. This way, when there are one
or more zero-cost paths, the flow is always sent along paths having smallest hop count. In
the second approach, called SPTF (Shortest Path Toll+Free flow time), we define the weight
of an arc a ∈ A to be the tariff wa levied on the arc plus the free flow time ta of the arc, i.e.
parameter Ca = ta + ε. The value ε > 0 is added to the cost with the same goal as in the
case of SPT since it is possible that ta = 0 for one or more arcs a ∈ A.

2.3 Piecewise-linear functions for the models

The performance of mixed integer linear programming solvers has improved considerably
over the last few years. The two mathematical programming models presented so far have a

123

Ann Oper Res (2017) 249:119–139 125

nonlinear objective function �. To apply these solvers, one must first linearize �, resulting in
an approximation of the nonlinear objective function. One possible option is to approximate
the nonlinear function by a piecewise linear function. Fortz and Thorup (2004) proposed a
piecewise-linear function for a general routing problem to approximate network congestion
cost. Ekström et al. (2012) describe an iterative approximation by piecewise linear function
for the travel time and total travel time, resulting in a mixed integer linear program.

In this subsection, we propose two piecewise-linear approximations of the function � =∑
a∈A �a . The first linearization ϕu , is an overestimation, and under certain conditions is an

upper bound of �. The second linearization ϕl is an underestimation and provides a lower
bound of �. It is possible to apply these linearizations to any model with this type of nonlinear
function. We apply them to models MM1 and MM2.

Let 	 be the set of constraints (2)–(5) or (7)–(21) of the previously described mathematical
models. For the case where 	 represents the constraints of the MM1 model the approximation
is called LMM1. On the other hand, when 	 represents the constraints of the MM2 model,
we call the approximation LMM2.

In approximation ϕu , the cost function of each arc a ∈ A is composed of a series of line
segments sequentially connecting coordinates

(X0,�a(X0)), (X1,�a(X1)) , . . . , (Xn,�a(Xn)),

where values X0, X1, . . . , Xn are given such that X0 = 0, and for i = 1, . . . , n, Xi ∈ R and
Xi > Xi−1.

If we denote the cost on arc a ∈ A by ϕu
a , then the resulting mathematical programming

model of the overestimation ϕu is

min
∑

a∈A

ϕu
a (22)

subject to:

Constraints 	 are satisfied, (23)

(mi
a/ca)�a + bia ≤ ϕu

a , ∀a ∈ A, ∀i = 1, . . . , n, (24)

ϕu
a ≥ 0, ∀a ∈ A, (25)

where

mi
a = (�a(Xi) − �a(Xi−1))/(Xi − Xi−1),

bia = �a(Xi) − Xim
i
a,

where

�a(Xi) = Xicata(1 + βa(Xi)
αa)/S

for X0 = 0 < X1 < · · · < Xn . Objective function (22) minimizes the approximation of
average user travel time. Constraints (24) evaluate the partial cost on each arc by determining
the approximate value ϕu

a for �a according to load la . Constraints (25) define the domain of
the variables.

The linearization requires the definition of the terms X0, X1, . . . , Xn whose values are
computed as a function of �a/ca . The number of these terms can be arbitrarily defined
according to the accuracy required for the linearization of the cost function, or according
to characteristics of the set of instances. This linearization requires a balance between the
accuracy of the computed solution and the time to compute the linearization. With a large
number n, the linearization tends to provide a better approximation of the original value,

123

126 Ann Oper Res (2017) 249:119–139

while a small value of n can save time while solving the model since each element entails
|A| additional constraints.

A second linearization, which we denote by ϕl
a , is an underestimation and gives us a

lower bound on �a . The mathematical model of this linearization is similar to that of the
overestimation. However, to estimate ϕl

a , we first compute the slope ma(x) of �a at x =
(Xi−1 + Xi)/2, for i = 1, . . . , n, as

ma(x) = ∂�a

∂x
= ta

S + (αa + 1)taβaxαa

cαa
a S .

Given x and ma(x), the independent term can be easily computed.
Linearizations ϕl

a and ϕu
a produce, respectively, an underestimation and an overestimation

of �a , as Proposition 1 states.

Proposition 1 Let ϕu = ∑
a∈A ϕu

a , ϕl = ∑
a∈A ϕl

a , and as before � = ∑
a∈A �a. Let

X0, X1, . . . , Xn be the values for which the approximation is computed. If �a/ca ≤ Xn,∀a ∈
A, then ϕl ≤ � ≤ ϕu.

Proof As � is convex, by construction ϕl
a ≤ �a , then � = ∑

a∈A �a ≥ ∑
a∈A ϕl

a = ϕl .
Thus � ≥ ϕl . Furthermore, if �a/ca ≤ Xn , then by construction ϕu

a ≥ �a , which implies
that ϕu = ∑

a∈A ϕu
a ≥ ∑

a∈A �a = �. Thus ϕu ≥ �. Therefore ϕl ≤ � ≤ ϕu . ��
Note that for Proposition 1 to hold we do not make the assumption that the underestimation

ϕl be a lower bound of �, while the overestimation ϕu requires that �a/ca ≤ Xn,∀a ∈ A be
true for the proposition to hold.

A representation of the functions ϕu
a , ϕl

a , and � is depicted in Fig. 1. It shows the cost
function � (solid line) as well as the piecewise-linear cost functions ϕu and ϕl for an arc a ∈ A
with ta = 5, ca = 200, αa = 4, βa = 0.15, and S = 1,000 using with {X0, X1, . . . , X6} =
{0, 0.65, 1, 1.25, 1.7, 2.7, 5}. Observe that there is a higher concentration of points X in the
range la

ca
= [0.65; 1.25]. This dense concentration of points in this region is used because

the flow on the majority of the arcs is concentrated around their capacity. Thus, to obtain a
good approximation requires that several X values be set to values around la

ca
= 1. Note that

a ratio of la
ca

> 1 indicates that the arc is overloaded.

3 A biased random-key genetic algorithm

In this section we describe the biased random-key genetic algorithm (BRKGA) for the toll-
booth problem, proposed in Buriol et al. (2010).

A random-key genetic algorithm (RKGA) is a metaheuristic, originally proposed by Bean
(1994), for finding optimal or near-optimal solutions to optimization problems. RKGAs
encode solutions as vectors of random keys, i.e. randomly generated real numbers in the
interval (0, 1]. A RKGA starts with a set (or population) of p random vectors of size n. Para-
meter n depends on the encoding while parameter p is user-defined. Starting from the initial
population, the algorithm generates a series of populations. Each iteration of the algorithm is
called a generation. The algorithm evolves the population over the generations by combin-
ing pairs of solutions from one generation to produce offspring solutions for the following
generation.

RKGAs rely on decoders to translate a vector of random keys into a solution of the
optimization problem being solved. A decoder is a deterministic algorithm that takes as input

123

Ann Oper Res (2017) 249:119–139 127

 0

 5

 10

 15

 20

 25

 30

 35

0.65 1 1.25 1.7 2.7

C
os

t

Utilization (la /ca)

ϕu

ϕl

Φ

Fig. 1 Comparison of the cost function with the linear piecewise-linear cost function

a vector of random keys and returns a feasible solution of the optimization problem as well
as its cost (or fitness).

At the kth generation, the decoder is applied to all newly created random keys and the
population is partitioned into a smaller set of pe elite solutions, i.e., the fittest pe solutions in
the population and another larger set of p − pe > pe non-elite solutions. Population k + 1
is generated as follows. All pe elite solutions of population k are copied without change to
population k + 1. This elitist strategy maintains the best solution on hand. In biology, as
well as in genetic algorithms, evolution only occurs if mutation is present. As opposed to
most genetic algorithms, RKGAs do not use a mutation operator, where each component of
the solutions is modified with small probability. Instead pm mutants are added to population
k + 1. A mutant is simply a vector of random keys, generated in the same way a solution of
the initial population is generated.

With pe + pm solutions accounted for population k+1, p− pe − pm additional solutions
must be generated to complete the p solutions that make up population k + 1. This is done
through mating or crossover. In the RKGA of Bean (1994), two solutions are selected at
random from the entire population. One is parent-A while the other is parent-B. A child C
is produced by combining the parents using parameterized uniform crossover (Spears and
DeJong 1991). Let ρA > 1/2 be the probability that the offspring solution inherits the key
of parent-A and ρB = 1 − ρA be the probability that it inherits the key of parent-B, i.e.

ci =
{
ai with probability ρA,

bi with probability ρB = 1 − ρA,

where ai and bi are, respectively, the i-th key of parent-A and parent-B, for i = 1, . . . , n.
This crossover always produces a feasible solution since c is also a vector of random keys
and by definition the decoder takes as input any vector of random keys and outputs a feasible
solution.

Biased random-key genetic algorithms (Gonçalves and Resende 2011) differ from Bean’s
algorithm in the way parents are selected. In a BRKGA parent-A is always selected at random
from the set of pe elite solutions while parent-B is selected at random from the set of p− pe

123

128 Ann Oper Res (2017) 249:119–139

non-elite solutions. The selection process is biased since an elite solution s has probability
Pr(s) = 1/pe of being selected for mating while a non-elite solution s̄ is selected with
probability Pr(s̄) = 1/(p − pe). Since p − pe > pe, then Pr(s) > Pr(s̄). In addition,
elite solutions have a higher probability of passing on their random keys since probability
ρA > 1/2. Though the difference between RKGAs and BRKGAs is small, the resulting
heuristics behave quite differently. Experimental results in Gonçalves et al. (2014) show that
BRKGAs are almost always faster and more effective than RKGAs.

To describe a BRKGA, one need only show how solutions are encoded and decoded,
what choice of parameters p, pe, pm , and ρA were made, and how the algorithm stops. We
describe the encoding and decoding procedures next and give values for parameters as well
as the stopping criterion in Sect. 4.

Solutions are encoded as a 2 × |A| vector X , where |A| is the cardinality of the set A of
arcs in the network. The first |A| keys correspond to the random keys which define the toll
tariffs while the last |A| keys correspond to a binary vector b, with K positions set to one,
used to indicated tolled arcs.

The decoder has two phases. In the first phase tolls are selected and arc tariffs are set
directly from the random keys. In the second phase, a local improvement procedure attempts
to change the tariffs with the goal of reducing the value of the objective function. Each tolled
arc a has a tariff in the interval [1, wmax], where wmax is an input parameter. The tariff for arc
a is simply decoded as ba · 	Xa · wmax
. In an initial solution, the K tolled arcs are selected
randomly by uniform distribution. In a crossover, if both parents have a toll in arc a, the same
arc is tolled in the child. The remaining tolls are selected randomly among the arcs whose
parents have different values.

Demands are routed forward to their destinations on shortest weight paths. For SPT, tolled
links have weights equal to their tariffs and untolled links are assumed to have weight zero.
For SPFT, we add to the tariff the free flow time to define the weight of all tolled arcs, while
each untolled arc has weight equal to its free flow time. Depending on the number of tolls and
the network, there can be several shortest paths of cost zero (especially for SPT). In this case,
we use the path with the least number of hops. Traffic at intermediate nodes is split equally
among all outgoing links on shortest paths to the destination. After the flow is defined, the
fitness of the solution is computed by evaluating the objective function �.

The second phase of the decoder is a local improvement. Local search is applied to the
solution produced in the first phase of the decoder. In short, it works as follows. Let qls be an
integer parameter and A∗ ⊆ A be the q = min{|A|, qls} arcs having the largest congestion
costs �a , i.e. |A∗| = q and �a∗ ≥ �a, for all pairs {a∗, a} such that a∗ ∈ A∗ and a ∈ A\ A∗.
For each arc a∗ ∈ A∗, in case it is tolled, its weight is increased by one unit at a time, to
induce a reduction of its load. The unit-increase is repeated until either the weight reaches
wmax or � no longer improves. If no improvement in the objective function is achieved,
the weight is reset to its initial value. In case the arc is not currently tolled, a new toll is
installed on the arc with initial weight one, and a toll is removed from some other link tested
in circular order. If no reduction in the objective function is achieved, the solution is reversed
to its original state. Every time a reduction in � is achieved, a new set A∗ is computed and
the local search restarts. The procedure stops at a local minimum when there is no improved
solution changing the weights of the candidate arcs in set A∗.

In the local improvement, every time a weight is changed (added by one unit, inserted or
removed) the current shortest paths are updated (Buriol et al. 2008) instead of recomputed
from scratch, thus saving a considerable amount of running time.

123

Ann Oper Res (2017) 249:119–139 129

Table 1 Attributes for the instances are given in each column

Set Instance Vertices Links OD pairs Source nodes Sink nodes

S1 SiouxFalls_08 8 16 48 8 8

SiouxFalls_09 9 26 68 9 9

SiouxFalls_10 10 36 84 10 10

SiouxFalls_12 12 38 126 12 12

SiouxFalls_14 14 36 172 14 14

SiouxFalls_16 16 50 218 16 16

S2 SiouxFalls 24 76 528 24 24

Friedrichshain Center 223 514 506 23 23

Prenzlauerberg Center 350 717 1,406 38 38

Tiergarten Center 361 749 644 26 26

Mitte Center 398 857 1,260 36 36

Anaheim 416 914 1,406 38 38

MPF Center 974 2,153 9,505 98 98

Barcelona 1,020 2,522 7,922 97 108

Winnipeg 1,052 2,836 4,345 135 138

ChicagoSketch 933 2,950 9,351 386 386

For each instance, its row lists the set identification (S1 or S2), instance name, number of vertices, links, OD
pairs, number of vertices in which traffic originates (Source nodes), and number of nodes in which traffic
terminates (Sink nodes)

4 Computational results

In this section we present computational experiments with the models and algorithms intro-
duced in the previous sections of this paper. Initially, we describe the dataset used in the
experiments. Then, we detail three sets of experiments. The first set evaluates the mathe-
matical models MM1 and LMM1. The second set of experiments evaluates the full model
MM2 with piecewise linear function, which considers the shortest-path constraints with even
split of loads. The last set of experiments evaluates the biased random-key genetic algorithm
presented in Sect. 3.

The experiments were done on a computer with an Intel Core i7 930 processor running at
2.80 GHz, with 12 GB of DDR3 RAM of main memory, and Ubuntu 10.04 Linux operating
system. The biased random-key genetic algorithms (BRKGA) were implemented in C and
compiled with the gcc compiler, version 4.4.3, with optimization flag -03. The commercial
solver CPLEX 12.32 was used to solve the proposed linearizations of the mathematical linear
models, while MOSEK3 was used to solve the mathematical model MM1 (with convex
objective function).

Table 1 details six synthetic instances (S1) and ten real-world instances (S2) considered
in our experiments and made available by Bar-Gera (2013).

To test model LMM2, we created the instances from set S1 from instance SiouxFalls
of S2 by removing from SiouxFalls some of its nodes and their adjacent links as well
as all OD pairs where these nodes are either origin or destination nodes. Let n < |V | be the

2 www.ibm.com/software/commerce/optimization/cplex-optimizer.
3 www.mosek.com.

123

www.ibm.com/software/commerce/optimization/cplex-optimizer
www.mosek.com

130 Ann Oper Res (2017) 249:119–139

new number of nodes. We choose to remove nodes

v ∈ V : v =
⌊

k
|V |

|V | − n
+ 1

⌋

with k = 0, . . . , |V | − n − 1.

Let v, a, b ∈ V be nodes such that a ∈ OUT(v) and b ∈ IN(v). Furthermore, let at (bt) and
ah (bh) be, respectively, the tail and head nodes of links a (b). We create a link a′ from ah to
bt if there does not already exist a link between ah and bt and furthermore |OUT(bt)| < 4 or
|IN(ah)| < 4. Link a′ has the same characteristics (free flow time, capacity, etc.) of link a.
After all extensions, we remove from the network all arcs a ∈ OUT(v) ∪ IN(v) as well as
node v.

4.1 Results for models MM1 and LMM1

The first set of experiments evaluates the models when solved with commercial solvers.
Table 2 presents, for each instance, the objective functions �, and the lower and upper
bounds ϕl and ϕu , respectively.

In the first two columns after the name of the instance, we present the objective function
values � and the computational times for model MM1 obtained with the nonlinear solver
MOSEK 6.0 using the modeling system GAMS.4 A few nonlinear solvers are part of the
GAMS system and we evaluated the performance of all of them. Some of them are general
nonlinear solvers, and have no specific routines for convex functions. Most were not able to
solve the larger instances. MOSEK presented the best performance in terms of running times
and for this reason we report only the results obtained with MOSEK. The next columns present
results for CPLEX 12.3 with the proposed piecewise-linear functions ϕl and ϕu , respectively
the lower and upper estimations of function �. In each case, we show the objective function
values in columns ϕl and ϕu , as well as �{ϕl} and �{ϕu}, the values of � considering the
arc loads obtained by the different approximations. The computational times are reported in
seconds.

From the results in Table 2, three main observations can be made. First, there are small gaps
between ϕl and �{ϕl}, as well as between ϕu and �{ϕu}, i.e. both piecewise-linear functions
ϕl and ϕu have values that are, respectively, close to �{ϕl} and �{ϕu}. In a small number
of cases the gap is significant and we observe that, as expected, this occurs in instances with
higher average or higher maximum utilization (�a/ca), like Barcelona and Winnipeg.
Second, we compare the results for models MM1 and LMM1. The gaps between ϕl and
�, and between ϕu and �, are also small, which means that the piecewise functions have
similar values to the original convex function �. However, for most of the instances, the
computational times spent by MOSEK on the convex function are two to four orders of
magnitude greater than the time spent by CPLEX on the piecewise-linear functions. The
only case where solving the model with a piecewise linear function (computing ϕu with
CPLEX) took longer than solving the model with the convex function � (using MOSEK)
was for instance ChicagoSketch. However, CPLEX found good solutions quickly, and
spent most of the time certifying optimality. For example, CPLEX found solutions with a
gap of 3 % with respect to the optimal solution in about 650 s, while MOSEK needed more
than 1,600 s to reach this gap.

The last important observation is that the MM1 model is a relaxation of MM2. Moreover,
the shortest paths and even-split constraints (Eq. 14) of model MM2 add a considerable num-
ber of variables and constraints to the model. Thus, evaluating MM2 with a convex function
became impracticable in terms of computational time, and for this reason no corresponding

4 www.gams.com.

123

www.gams.com

Ann Oper Res (2017) 249:119–139 131

Table 2 Computational results for MM1 and LMM1

Instance MM1 LMM1-lower estimate LMM1-upper estimate

� Time(s) ϕl �{ϕl } Time(s) ϕu �{ϕu} Time(s)

SiouxFalls_08 8.77 0.0 8.69 8.77 0.0 8.97 8.77 0.0

SiouxFalls_09 6.32 0.0 6.26 6.32 0.0 6.46 6.32 0.0

SiouxFalls_10 6.71 0.0 6.62 6.72 0.0 6.81 6.71 0.0

SiouxFalls_12 11.46 0.0 10.92 11.47 0.0 12.69 11.72 0.0

SiouxFalls_14 64.69 0.0 45.87 64.79 0.0 119.34 64.79 0.0

SiouxFalls_16 10.11 0.0 9.97 10.15 0.0 10.33 10.18 0.0

SiouxFalls_18 10.70 0.0 10.37 10.93 0.0 11.16 10.87 0.0

SiouxFalls 19.95 0.1 18.10 20.77 0.1 21.68 20.52 0.1

Friedrichshain Center 42.47 7.7 39.57 43.34 0.0 47.61 43.11 0.1

Prenzlauerberg Center 59.90 70.3 56.98 61.07 0.1 67.21 60.81 0.1

Tiergarten Center 52.57 164.5 47.63 53.63 0.1 59.68 52.91 0.1

Mitte Center 62.36 30.8 58.76 63.59 0.2 71.08 63.11 0.3

Anaheim 12.46 204.8 12.26 12.49 0.5 12.91 12.48 0.5

MPF Center 65.88 1,988.0 60.94 67.63 2.8 75.11 66.57 3.7

Barcelona 6.87 6,174.8 6.54 11.75 1.9 6.54 11.75 1.9

Winnipeg 13.67 2,189.0 12.25 20.83 4.7 12.25 20.83 4.7

ChicagoSketch 14.24 2,004.9 14.09 14.31 1,154.6 14.50 14.30 2,465.1

results are reported. In the next experiment we evaluate both approximations for the full
model (MM2).

4.2 Results for the tollbooth problem with piecewise-linear cost (LMM2)

This set of experiments tests the performance of CPLEX on MM2, the model that includes
shortest paths and even-split constraints. We run the model considering both weight functions
to calculate shortest paths (SPT and SPTF) and both piecewise-linear functions introduced
in Sect. 2.3.

Table 3 present results for model LMM2 when the shortest path is calculated considering
only the toll tariffs (SPT), and for tariffs plus the free flow time (SPTF), respectively. For each
instance, we tested several scenarios ofK. For each scenario we present the objective function
values of approximations ϕl and ϕu obtained by CPLEX, the corresponding �{ϕl} and �{ϕu}
values (as described in the previous subsection), the gap returned by the solver for a time
limit of 1,800 s, and finally the running times in seconds. The null values (–) indicate that a
feasible solution was not found within the time limit.

Table 3 illustrates the difficulty in solving these instances with CPLEX. For most of the
instances no optimal solution was found within 30 min, and for many of them not even a
feasible solution was found in this time limit. A small increase in the instance size implies
in a large increase in the computational effort spent to solve the model. We observe that for
SPT the solver has more difficulty in finding an initial solution, and the gap returned by the
solver is slightly higher in comparison with SPTF. Furthermore, the computational time is
slightly reduced for SPTF, and ϕl was computed slightly faster than was ϕu .

123

132 Ann Oper Res (2017) 249:119–139

Table 3 Computational results for LMM2 to SPT and SPTF

Type Instance K Approx. Obj. function Solver gap Time(s)

ϕl ϕu �{ϕl } �{ϕl } ϕl ϕu ϕl ϕu

SPT SiouxFalls_09 2 6.47 6.70 6.52 6.52 0.00 0.00 91.7 8.1

5 6.35 6.58 6.38 6.38 0.00 0.00 12.4 94.4

10 6.27 6.47 6.33 6.33 0.00 0.00 4.1 35.2

15 6.27 6.46 6.32 6.32 0.00 0.00 1.3 15.3

20 6.27 6.46 6.32 6.32 0.00 0.00 0.4 3.5

SiouxFalls_10 3 – – – – – – 1,800.0 1,800.0

7 – – – – – – 1,800.0 1,800.0

14 – – – – – – 1,800.0 1,800.0

21 6.70 6.90 6.76 6.78 0.59 0.42 1,800.0 1,800.0

28 6.70 6.90 6.76 6.78 0.23 0.21 1,800.0 1,800.0

SiouxFalls_12 3 – – – – – – 1,800.0 1,800.0

7 – – – – – – 1,800.0 1,800.0

15 – – – – – – 1,800.0 1,800.0

22 – – – – – – 1,800.0 1,800.0

30 – – – – – – 1,800.0 1,800.0

SiouxFalls_14 3 46.72 120.69 65.69 65.69 1.63 0.94 1,800.0 1,800.0

7 46.24 120.08 65.13 65.13 0.75 0.60 1,800.0 1,800.0

14 – – – – – – 1,800.0 1, 800.0

21 46.14 – 64.96 – 0.49 – 1,800.0 1,800.0

28 46.14 – 64.96 – 0.39 – 1,800.0 1,800.0

SPTF SiouxFalls_09 2 6.28 6.47 6.33 6.33 0.00 0.00 0.5 0.3

5 6.27 6.46 6.32 6.32 0.00 0.00 0.4 0.4

10 6.27 6.46 6.32 6.32 0.00 0.00 0.2 573.3

15 6.27 6.46 6.32 6.32 0.00 0.00 0.4 0.4

20 6.27 6.46 6.32 6.32 0.00 0.00 0.4 0.4

SiouxFalls_10 3 6.73 6.93 6.79 6.79 0.00 0.00 92.7 176.4

7 6.70 6.90 6.76 6.78 0.00 0.15 203.2 1,800.0

14 – 6.90 – 6.78 – 0.31 1,800.0 1,800.0

21 6.70 6.90 6.76 6.78 0.32 0.51 1,800.0 1,800.0

28 6.70 6.90 6.76 6.78 0.04 0.51 1,800.0 1,800.0

SiouxFalls_12 3 11.19 13.09 11.67 11.82 0.00 1.87 1,748.4 1,800.0

7 11.18 13.05 11.66 11.83 0.39 2.44 1,800.0 1,800.0

15 – – – – – – 1,800.0 1,800.0

22 – – – – – – 1,800.0 1,800.0

30 11.18 – 11.66 – 1.64 – 1,800.0 1,800.0

SiouxFalls_14 3 46.24 119.73 65.09 65.09 0.00 0.00 1,019.3 133.3

7 46.14 119.65 64.96 64.99 0.48 0.25 1,800.0 1,800.0

14 – – – – – – 1,800.0 1,800.0

21 – – – – – – 1,800.0 1,800.0

28 – 119.65 – 64.99 – 0.13 1,800.0 1,800.0

123

Ann Oper Res (2017) 249:119–139 133

Table 4 Parameter values in
tuning experiment

a No local search is applied

Description Parameter Values

Population size p {50,100}

Elite size pe {0.15p, 0.25p}

Mutation size pm {0, 0.05p, 0.10p}

Inheritance probability ρA {0.5, 0.7}

Restart r {0, 10}

Local Search qls {0a, 2, 5, 10}

Results for instances SiouxFalls_06 and SiouxFalls_08 were found for ϕl and
ϕu in a less than one second, and for this reason they were omitted from the table. On the
other hand, results were omitted for SiouxFalls_16, for both piecewise-linear functions
and shortest-path evaluations SPT and SPTF, since the solver was unable to find any feasible
solution within the time limit.

In summary, Table 2 shows that solving the simplified model MM1, i.e. MM2 without
the shortest paths computation and even-load constraints, takes a considerable time, while
their corresponding linearized versions ϕl and ϕu are calculated very quickly for almost all
cases. Table 3, on the other hand, shows that the linearizations ϕl and ϕu of the full model
MM2 takes a long time even for small instances. Thus, these results motivated us to propose
a heuristic solution to solve the tollbooth problem, and the results of the proposed biased
random-key genetic algorithm are presented in the next subsection.

4.3 Results for the biased random-key genetic algorithm

This section presents results for the biased random-key genetic algorithm applied on instances
from class S2. We extended the experimental study performed by Buriol et al. (2010) in which
results for only three of these instances were presented. Moreover, we provide an analysis
of the best solution for each combination of instance, value of K, and problem type (SPT or
SPTF).

To tune the parameters, a set of experiments was performed. The experiment consisted of
two steps. In the first step, we determined the fixed running time for each triplet: instance
(SiouxFalls, Prenzlauerberg Center, and Anaheim), value of K, and problem
type (SPT or SPTF). To define the fixed time, we ran the BRKGA with local search using a
set of predefined parameters: population size p = 50, elite set of size pe = 0.25p, mutant
set of size pm = 0.05p, elite key inheritance probability ρA = 0.7, and a restart parameter
r = 10. At every r generations we verify whether the best three individuals in the population
have identical fitness (within 10−3 of each other). If they do, then the second and third best
are replaced by two new randomly-generated solutions. The BRKGA was run for at least
500 and at most 2,000 generations, stopping after 100 generations without improvement of
the incumbent solution. The fixed time is defined to be the average of five independent runs.

The running time defined in the first step of the tuning phase is used in the second step
to determine the best combination of parameter values. We ran the BRKGA for this fixed
amount of time with parameters taken from the sets of values shown in the third column of
Table 4. All combinations of parameter values were considered.

Given a set of triples, each consisting of an instance, a value of K, and a problem type
(SPT or SPTF), we run the BRKGA on each triple using all combinations of the parameters
in Table 4. The relative gaps of the fitness values from each run to the best fitness over all
runs for each triple is computed. We observe that using a local search in the BRKGA results

123

134 Ann Oper Res (2017) 249:119–139

Table 5 Average of relative gaps
obtained for different parameters

Description Parameter Value Gap

Population size p 50 6.04

100 5.72

Elite size pe 0.15p 5.82

0.25p 5.93

Mutation size pm 0 6.39

0.05p 5.49

0.10p 5.76

Inheritance probability ρA 0.5 5.91

0.7 5.85

Restart r 0 6.23

10 5.53

in better solutions than using no local search. In the case of qls = 0, the average relative gap
is 29.86, while for qls = 2, 5, and 10, the relative gap was 6.70, 5.96, and 5.88, respectively.
Therefore, we analyze the remaining parameters considering only runs where qls = 10.
Table 5 shows the average relative gaps for these remaining parameters. The best observed
parameter values (in bold) were p = 100 for population size, pe = 0.15p for elite population
size, pm = 0.05p for mutant population size, ρA = 0.70 for inheritance probability, and
r = 10 for restart.

Once the parameters were set, we ran the BRKGA with local search (BRKGA+LS) with
a time limit of 3,600 (except for ChicagoSketch, the largest instance, for which we ran
with a time limit of 7,200 s). We allow the maximum number of generations to be 2,000, and
the maximum number of generations without improvement to be 100.

Table 6 shows averages over five runs of BRKGA+LS and a comparison between SPT
and SPTF. For each value of K, it lists the best solution value (Best �) over the five runs,
average fitness value (Avg �), standard deviation (SD), and average running time in seconds.

The first observation is that as the value of K increases, the value of � tends to decrease
and have less variance. In fact, in most cases, the best solutions were found for K ≥ |A|

2 . With
small K it is easy for flow to bypass tolled arcs, which impairs traffic engineering. On the
other hand, the search space increases considerably for larger K values, making the problem
hard to solve. Since there are

(|A|
K

)
configurations for the location of K tolls and for each

configuration each toll can have 20 different values, then the size of the solution space is
σ(K) = (|A|

K
)
20K. Thus, the solution space size is much larger for K ≥ |A|

2 than for K <
|A|
2 .

Furthermore, even though the maximum of σ(K) is achieved for a value of K < |A|, in all
of the instances, σ(K′) > σ(K) for all K′ > K, where K′ is the largest K value tested. For
example, for the SiouxFalls instance, for which the largest value of K tested was 70,
σ(K) = (76

K
)
20K, which achieves a maximum for K = 73.

In most entries of Table 6 the standard deviation is small, showing robustness of the
algorithm. The table also shows that for small values of K, SPTF has smaller � than SPT.
This occurs because, for small values of K, SPT has many zero-cost paths, making it difficult
to influence flow distribution with tolls.

Table 7 presents, for each instance, the shortest average user travel time using tolls obtained
by BRKGA in comparison with the optimal distribution flow obtained by solving linear
program MM1. An optimal solution for MM1 is a lower bound for the tollbooth problem.
The results show that with tolls it is possible to obtain a near-optimal flow distribution.

123

Ann Oper Res (2017) 249:119–139 135

Table 6 Detailed results of SPT and SPTF for BRKGA+LS

Instance K SPT SPTF

Best � Avg � SD Time (s) Best � Avg � SD Time (s)

SiouxFalls 10 52.38 54.48 2.88 34.83 25.19 25.19 0.00 27.57
20 32.14 38.01 6.08 59.52 22.72 22.86 0.10 30.26
30 27.05 28.37 1.90 68.43 22.10 22.30 0.17 32.34
50 21.59 21.90 0.27 41.81 21.64 21.83 0.18 48.74
70 21.38 21.53 0.15 32.39 21.55 21.94 0.23 17.18

Friedrichshain
Center

10 56.44 56.80 0.34 263.53 46.38 47.23 0.68 218.38
50 46.59 48.32 2.44 526.92 43.45 43.52 0.06 226.39

100 43.52 43.93 0.37 710.33 43.41 43.50 0.07 273.65
300 42.90 43.45 0.33 395.85 43.38 43.59 0.14 209.36
500 44.04 44.46 0.38 207.16 43.56 44.01 0.37 236.48

Prenzlauerberg
Center

10 79.19 80.18 0.99 924.55 65.99 66.13 0.14 682.22
50 68.21 69.95 1.80 1,780.96 61.72 62.61 0.75 890.95

100 63.31 63.72 0.26 1,344.99 61.58 61.65 0.07 785.03
450 61.82 62.18 0.26 1,015.67 61.63 61.81 0.16 735.60
700 62.42 63.26 0.81 1,066.42 63.03 63.68 0.44 703.19

Tiergarten
Center

10 61.97 62.00 0.07 418.51 53.24 53.28 0.06 401.85
50 56.45 56.69 0.23 1,148.33 52.88 52.92 0.03 534.28

100 54.14 54.79 0.47 1,499.94 52.92 53.04 0.13 505.92
450 53.11 53.26 0.13 764.01 52.87 52.93 0.06 444.03
700 53.60 53.98 0.25 578.06 52.97 53.10 0.12 331.22

Mitte Center 10 79.78 80.11 0.26 805.12 65.84 66.47 0.38 807.10
50 69.74 70.58 0.67 1,880.73 63.86 64.03 0.21 1,096.38

100 68.39 68.71 0.33 2,233.21 63.75 63.94 0.19 1,536.11
400 63.94 64.11 0.15 2,323.10 63.90 64.17 0.22 955.07
800 64.19 64.47 0.34 1,102.89 63.96 64.30 0.22 879.13

Anaheim 10 15.39 15.42 0.01 785.38 12.72 12.73 0.01 1,328.61
50 14.01 14.05 0.04 2,611.93 12.58 12.60 0.02 2,058.35

100 13.41 13.54 0.09 3,406.09 12.58 12.60 0.01 2,034.47
500 12.73 12.89 0.11 3,602.11 12.62 12.68 0.05 3,601.32
800 12.60 12.65 0.05 3,096.01 12.57 12.63 0.05 3,041.08

MPF Center 10 91.64 92.03 0.28 3,616.48 70.73 71.14 0.24 3,615.19
100 82.28 82.62 0.51 3,616.98 66.64 66.73 0.07 3,611.59
250 82.54 82.84 0.25 3,616.24 66.76 66.93 0.12 3,615.17

1,000 75.08 75.89 0.90 3,612.88 67.92 68.39 0.38 3,611.87
2,000 71.21 72.58 0.90 3,607.61 68.11 68.58 0.30 3,602.20

Barcelona 10 15.84 15.84 0.00 3,622.16 7.82 7.91 0.13 3,618.36
100 9.41 9.48 0.05 3,622.80 7.25 7.26 0.01 3,613.41
500 9.62 9.87 0.23 3,619.05 8.15 8.24 0.13 3,613.71

1,500 9.65 10.32 0.43 3,615.32 9.20 9.40 0.13 3,612.30
2,500 8.05 8.23 0.19 3,605.98 7.85 8.00 0.13 3,607.16

Winnipeg 10 32.34 35.22 2.09 3,627.08 17.45 17.59 0.10 3,625.19
100 20.41 20.90 0.41 3,627.86 15.50 15.62 0.09 3,619.40
500 26.76 31.68 4.59 3,629.67 19.45 19.69 0.17 3,617.72

1,500 20.34 21.70 1.02 3,616.06 18.96 19.92 0.87 3,618.39
2,800 16.67 16.72 0.06 3,607.96 16.04 16.49 0.29 3,606.33

ChicagoSketch 10 100.18 100.30 0.07 7,267.29 19.24 19.44 0.12 7,254.08
100 22.14 22.58 0.41 7,257.85 16.62 16.70 0.05 7,268.57
500 22.77 24.29 0.96 7,268.40 17.99 18.25 0.26 7,277.62

1,500 76.87 154.37 62.94 7,243.13 19.27 20.46 0.77 7,246.76
2,900 16.95 17.51 0.45 7,218.88 15.72 16.04 0.20 7,212.14

123

136 Ann Oper Res (2017) 249:119–139

Table 7 Approximation of the lower bound with tolls

Instance Lower bound BRKGA+LS

SiouxFalls 19.95 21.38

Friedrichshain Center 42.47 42.90

Prenzlauerberg Center 59.90 61.57

Tiergarten Center 52.57 52.87

Mitte Center 62.36 63.59

Anaheim 12.46 12.57

MPH Center 65.88 66.64

Barcelona 6.87 7.25

Winnipeg 13.67 15.50

ChicagoSketch 14.24 15.72

We next explore the main characteristics of the near-optimal solutions found by
BRKGA+LS. For the best solution found in the five runs, Table 8 lists the average number
of paths for each OD pair (#Path), the average number of hops among all OD shortest paths
(#Hop), the average sum, over all OD pairs, of the tariffs on the shortest paths (#Toll), and
the average number of distinct arcs used, over all OD pairs (#UArc).

Columns #Path in Table 8 show that when K increases, a strong reduction in the number
of shortest paths is observed for SPT, while for SPTF, the reduction is not as pronounced.
Again, this occurs because of the large number of zero-cost paths present in SPT when K
is small. Of these, traffic flows on one or more paths of minimum hop count. On the other
hand, for SPTF, the inclusion of free flow time to the arc weight leads to paths of distinct
cost, with a few of minimum cost (in many cases a single minimum cost path).

Columns #Hop in Table 8 show the minimum hop count distance between OD vertices.
For large values of K we observe that as the number of installed tolls increases, the hop
count decreases in both SPT and SPTF. This occurs because with a large number of tolls it is
possible to do better traffic engineering. For small values of K in SPT, the hop count is small
because it corresponds to a minimum hop-count path among the zero-cost shortest paths.

The columns #Toll in Table 8 show the average number of tolls that a user traverses on
an OD shortest path. Clearly, this value increases with K. Since an increase in K leads to a
decrease in the number of shortest paths (column #Path), the number of distinct arcs (column
#UArc) consequently decreases.

5 Conclusions

In this paper we presented an extensive study of the tollbooth problem. Two mathematical
formulations for different versions of the tollbooth problem were presented, as well as lin-
earizations that give lower and upper bounds for their objective functions. Computational
tests were conducted taking into account the original and the linearized models, applied on
two sets of synthetic and real-world instances. Moreover, a random-key genetic algorithm
was run for this same set of instances.

When analyzing the results for the mathematical models, we concluded that the model
MM2, which includes shortest paths and even-split constraints, has a large number of variables

123

Ann Oper Res (2017) 249:119–139 137

Table 8 Detailed results of best solution found by BRKGA+LS algorithm

Instance K SPT SPTF

#Path #Hop #Toll #UArc #Path #Hop #Toll #UArc

SiouxFalls 0 1.97 2.51 – 4.97 1.05 2.14 – 3.24
10 1.78 2.58 0.21 4.84 1.07 2.10 0.38 3.25
30 1.32 2.48 1.12 4.00 1.13 2.25 1.09 3.46
50 1.13 2.28 1.89 3.50 1.09 2.22 1.88 3.34
70 1.10 2.34 2.96 3.45 1.06 2.20 2.71 3.30

Friedrichshain
Center

0 1.96 9.36 – 11.94 1.52 12.24 – 12.82
10 1.91 9.99 0.21 12.21 1.63 13.63 0.31 13.04

100 1.42 11.43 1.76 12.58 1.48 12.49 2.14 12.48
300 1.17 11.50 5.39 12.33 1.00 10.68 5.57 11.68
500 1.03 10.35 10.39 11.20 1.00 10.44 10.49 11.44

Prenzlauerberg
Center

0 2.75 14.72 – 17.11 1.79 18.67 – 18.00
10 2.61 15.65 0.07 18.02 1.53 16.48 0.38 17.19

100 1.60 16.41 2.08 17.33 1.30 16.06 2.20 17.02
450 1.15 15.85 8.07 16.69 1.07 15.86 7.95 16.70
700 1.12 15.00 15.14 15.97 1.01 14.57 14.69 15.62

Tiergarten
Center

0 1.92 15.40 – 17.32 1.12 17.43 – 18.51
10 2.07 17.20 0.00 18.57 1.07 15.76 0.42 17.23

100 1.20 16.37 1.01 18.08 1.04 15.98 2.35 17.26
450 1.03 15.74 8.14 16.98 1.00 16.11 8.95 17.11
700 1.00 15.81 13.74 16.83 1.00 15.97 15.20 16.97

Mitte Center 0 2.79 14.95 – 17.75 1.33 17.49 – 17.81
10 3.12 16.81 0.00 18.99 1.38 17.37 0.48 17.60

100 1.34 15.83 0.45 17.61 1.14 16.13 2.53 16.84
400 1.05 15.84 6.65 16.77 1.00 15.29 6.58 16.29
800 1.02 15.12 13.21 16.11 1.02 15.48 14.21 16.32

Anaheim 0 8.71 15.64 – 21.45 1.35 15.67 – 17.46
10 16.79 19.71 0.00 23.19 1.35 15.16 0.07 16.96

100 3.29 18.31 0.02 20.61 1.39 15.52 0.74 16.51
500 1.05 14.78 6.48 15.89 1.04 14.31 6.43 15.45
800 1.01 14.32 11.85 15.41 1.00 14.50 12.20 15.50

MPF Center 0 5.09 24.35 – 27.54 2.28 31.51 – 29.17
10 5.25 26.00 0.00 27.95 2.15 30.50 0.23 28.48

250 3.54 27.98 0.54 29.08 1.34 27.47 2.29 27.37
1,000 1.10 24.98 8.63 25.87 1.21 26.63 9.40 26.33
2,000 1.09 23.79 20.41 24.21 1.00 24.00 20.90 25.00

Barcelona 0 7.37 15.85 – 20.82 1.16 18.73 – 20.73
10 7.00 18.28 0.01 24.80 1.13 18.70 0.07 20.85

500 5.02 21.25 0.14 25.03 1.14 19.01 0.69 20.58
1,500 1.38 19.51 8.36 20.35 1.03 18.37 7.21 19.35
2,500 1.08 15.87 16.45 16.77 1.01 16.12 16.69 17.10

Winnipeg 0 3.92 20.72 – 25.96 1.04 24.98 – 25.73
10 4.22 21.96 0.00 27.15 1.05 24.80 0.15 25.36

500 3.02 31.04 0.82 32.02 1.17 25.69 2.32 26.11
1,500 1.65 31.76 9.83 25.91 1.11 24.78 9.82 24.84
2,800 1.04 19.77 20.12 20.82 1.01 20.15 20.60 21.14

ChicagoSketch 0 20.04 14.86 – 23.69 1.01 12.30 – 13.32
10 21.24 15.23 0.00 24.35 1.01 12.19 0.09 13.20

500 9.88 15.72 0.49 22.49 1.00 12.33 0.95 13.35
1,500 2.64 19.38 4.82 17.57 1.00 12.52 4.97 13.53
2,900 1.16 12.23 12.91 13.22 1.00 11.54 12.23 12.55

123

138 Ann Oper Res (2017) 249:119–139

and constraints, making it difficult to be solved with general-purpose solvers, even when
we limit ourselves to small instances. On the other hand, if shortest paths and even-split
constraints are removed from the model, giving rise to a simplified version of the problem,
the linearized versions of the problem can be solved efficiently with CPLEX. However, results
obtained with the biased random-key genetic algorithm for the complete model shows it has
a good tradeoff between computation time and solution quality on this problem.

Finally, considering that users naturally take the least costly path, toll setting can be used
to better distribute the flow in the network and consequently reduce traffic congestion.

Acknowledgements This work has been partially supported by CAPES (Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior), FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do
Sul), and PRH PB-217—Petrobras S.A., Brazil. The work of Mauricio G. C. Resende was done when he was
employed at AT&T Labs Research, in Middletown, New Jersey, USA.

References

Bai, L., Hearn, D. W., & Lawphongpanich, S. (2004). Decomposition techniques for the minimum toll revenue
problem. Networks, 44(2), 142–150. doi:10.1002/net.20024.

Bai, L., Hearn, D. W., & Lawphongpanich, S. (2010). A heuristic method for the minimum toll booth problem.
Journal of Global Optimization, 48, 533–548. doi:10.1007/s10898-010-9527-7. ISSN 0925-5001.

Bar-Gera, H. (2013). Transportation networks test problems. http://www.bgu.ac.il/~bargera/tntp
Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on

Computing, 6, 154–160.
Beckmann, M. J., McGuire, C. B., & Winsten, C. B. (1956). Studies in the economics of transportation. New

Haven, CT: Yale University Press.
Broström, P., & Holmberg, K. (2006). Multiobjective design of survivable ip networks. Annals of Operations

Research, 147, 235–253. doi:10.1007/s10479-006-0067-y. ISSN 0254-5330.
Bureau of Public Roads. (1964). Bureau of public roads: Traffic assignment manual. US Department of

Commerce, Urban Planning Division.
Buriol, L. S., Resende, M. G. C., & Thorup, M. (2008). Speeding up dynamic shortest-path algorithms.

INFORMS Journal on Computing, 20, 191–204.
Buriol, L. S., Hirsch, M. H., Pardalos, P. M., Querido, T., Resende, M. G. C., & Ritt, M. (2010). A biased

random-key genetic algorithm for road congestion minimization.OptimizationLetters,4(619–633), 1862.
doi:10.1007/s11590-010-0226-6. ISSN-4472.

Dial, R. B. (1999a). Minimal-revenue congestion pricing part II: An efficient algorithm for the general case.
Transportation Research Part B, 34, 645–665.

Dial, R. B. (1999b). Minimal-revenue congestion pricing part I: A fast algorithm for the single origin case.
Transportation Research Part B, 33, 189–202.

Ekström, J., Sumalee, A., & Lo, H. K. (2012). Optimizing toll locations and levels using a mixed integer linear
approximation approach.Transportation ResearchPart B:Methodological, 46(7):834–854. doi:10.1016/
j.trb.2012.02.006, http://www.sciencedirect.com/science/article/pii/S0191261512000318. ISSN 0191-
2615.

Fortz, B., & Thorup, M. (2004). Increasing internet capacity using local search. Computational Optimization
and Applications, 29(1), 189–202.

Gonçalves, J. F., & Resende, M. G. C. (2011). Biased random-key genetic algorithms for combinatorial
optimization. Journal of Heuristics, 17, 487–525.

Gonçalves, J. F., Resende, M. G. C., & Toso, R. F. (2014). An experimental comparison of biased and unbiased
random-key genetic algorithms. Pesquisa Operacional, 34, 143–164.

Hearn, D. W., & Ramana, M. V. (1998). Solving congestion toll pricing models. Equilibrium and Advanced
TransportationModeling, 109–124. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.141.4999

Hearn, D. W., & Yildirim, M. B. (2002). A toll pricing framework for traffic assignment problems with elastic
demand. In Transportation and network analysis: Current trends. Miscellanea in honor of Michael
Florian (p. 149). Dordrecht: Kluwer.

Schrank, D., Lomax, T., & Eisele, B. (2011). Urban mobility report. Technical report, Texas Transportation
Institute. http://mobility.tamu.edu/files/2011/09/congestion-cost.pdf

123

http://dx.doi.org/10.1002/net.20024
http://dx.doi.org/10.1007/s10898-010-9527-7
http://www.bgu.ac.il/~bargera/tntp
http://dx.doi.org/10.1007/s10479-006-0067-y
http://dx.doi.org/10.1007/s11590-010-0226-6
http://dx.doi.org/10.1016/j.trb.2012.02.006
http://dx.doi.org/10.1016/j.trb.2012.02.006
http://www.sciencedirect.com/science/article/pii/S0191261512000318
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.141.4999
http://mobility.tamu.edu/files/2011/09/congestion-cost.pdf

Ann Oper Res (2017) 249:119–139 139

Spears, W. M., & DeJong, K. A. (1991) On the virtues of parameterized uniform crossover. In Proceedings of
the fourth international conference on genetic algorithms (pp. 230–236).

Tsekeris, T., & Voß, S. (2009). Design and evaluation of road pricing: State-of-the-art and methodological
advances. Netnomics, 10, 5–52. doi:10.1007/s11066-008-9024-z. ISSN 1385-9587.

Wardrop, J. G. (1952). Some theoretical aspects of road traffic research. Proceedings of the Institution of Civil
Engineers, Part II, 1, 325–378.

Wen, W. (2008). A dynamic and automatic traffic light control expert system for solving the road congestion
problem. Expert Systems with Applications, 34(4), 2370–238. doi:10.1016/j.eswa.2007.03.007. http://
www.sciencedirect.com/science/article/pii/S09574174070013031. ISSN 0957-4174.

Yang, H., & Zhang, X. (2003). Optimal toll design in second-best link-based congestion pricing.Transportation
Research Record: Journal of the Transportation Research Board, 1857(1), 85–92. doi:10.3141/1857-10.

123

http://dx.doi.org/10.1007/s11066-008-9024-z
http://dx.doi.org/10.1016/j.eswa.2007.03.007
http://www.sciencedirect.com/science/article/pii/S09574174070013031
http://www.sciencedirect.com/science/article/pii/S09574174070013031
http://dx.doi.org/10.3141/1857-10

	On the minimization of traffic congestion in road networks with tolls
	Abstract
	1 Introduction
	2 Problem formulation
	2.1 Model for minimization of average user travel time (MM1)
	2.2 Model for the tollbooth problem (MM2)
	2.3 Piecewise-linear functions for the models

	3 A biased random-key genetic algorithm
	4 Computational results
	4.1 Results for models MM1 and LMM1
	4.2 Results for the tollbooth problem with piecewise-linear cost (LMM2)
	4.3 Results for the biased random-key genetic algorithm

	5 Conclusions
	Acknowledgements
	References

