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Abstract We describe a study of application of novel risk modeling and optimization tech-
niques to daily portfolio management. In the first part of the study, we develop and compare
specialized methods for scenario generation and scenario tree construction. In the second
part, we construct a two-stage stochastic programming problem with conditional measures
of risk, which is used to re-balance the portfolio on a rolling horizon basis, with transaction
costs included in the model. In the third part, we present an extensive simulation study on
real-world data of several versions of the methodology. We show that two-stage models out-
perform single-stage models in terms of long-term performance. We also show that using
high-order risk measures is superior to first-order measures.

Keywords Stochastic programming · Scenario tree generation · Coherent measures
of risk · Portfolio optimization · Risk

1 Introduction

The main objective of this paper is to evaluate the usefulness of several risk modeling and
optimization techniques for daily stock portfolio optimization. In the portfolio optimization
problem in its simplest form, the return rates of n assets are represented by an n-dimensional
random vector R, with R j denoting the return rate of asset j = 1, . . . , n. The n-dimensional
vector z represents the distribution of the capital among assets: z j is equal to the fraction of
the capital invested in asset j . The total return rate of the portfolio at the end of the investment
period is
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R�z =
n∑

j=1

R j z j .

The portfolio problem is to find an “optimal” way to distribute the initial capital among the n
assets, under the condition that z ∈ Z , where Z ⊂ �n is a convex and compact set of feasible
asset allocations. As the return rates of the assets are random, the portfolio return rate is a
random variable, and thus the meaning of “optimal” depends of the modeling approach.

In a pioneering study, Markowitz (1952) argued that portfolio performance can be mea-
sured by using two scalar characteristics: the mean of the portfolio return, E

[
R�z

]
, and the

variance of the return, Var
[
R�z

]
, which characterizes its riskiness. We can then minimize

the variance for a fixed value of the mean, or maximize the mean, while keeping the variance
bounded. Since then, numerous theoretical and practical studies evaluated the usefulness of
the mean–variance approach in portfolio optimization.

Further improvement was made by considering more general mean–risk models, with
different measures of variability (Kijima andOhnishi 1993). By considering consistencywith
stochastic dominance, the papers (Ogryczak and Ruszczyński 1999, 2001, 2002), introduced
a family of mean–semideviation models, which are particularly useful for portfolio models
(see, e.g., Mansini et al. 2003; Ruszczyński and Vanderbei 2003).

In the last decade, axiomatic models of risk have been studied extensively, in particular,
coherent risk measures, introduced by Artzner et al. (1999). In the following definition, the
uncertain outcomes X and Y represent losses, and 1 denotes the sure loss of 1. Coherent
risk measures are functionals ρ : X → � defined on a suitable vector space X of random
outcomes, which satisfy the following axioms:

Convexity: ρ(αX + (1 − α)Y ) ≤ αρ(X) + (1 − α)ρ(Y ), ∀X, Y ∈ X , α ∈ [0, 1];
Monotonicity: If X, Y ∈ X , and X ≤ Y , then ρ(X) ≤ ρ(Y );
Translation Property: If a ∈ � and X ∈ X ,then ρ(X + a1) = ρ(X) + a;
Positive Homogeneity: If β ≥ 0 and X ∈ X , then ρ(βX) = βρ(X).

The inequality in the monotonicity axiom is understood in the almost sure sense.
Important examples of coherent risk measures are models of the form

ρ(x) = E[X ] + γ r [X ], (1)

where r(·) is the upper semideviation of order p ≥ 1, given in Eq. (2), or a weighted mean-
deviation from quantile in Eq. (3):

r(X) = E[(X − E[X ])p+]1/p, (2)

rα(X) = min
η

E

[
max

(
1 − α

α
(X − η), η − X

)]
, α ∈ (0, 1). (3)

For these both cases, when γ ∈ [0, 1], the mean-risk model is coherent (Ruszczyński and
Shapiro 2006b). It is also worth mentioning that the deviation from quantile (3) is related to
the Average (Conditional) Value at Risk (see, Rockafellar and Uryasev 2000, 2002) by the
formula [cf. Shapiro et al. 2009, sec. 6.2.4]

E[X ] + rα[X ] = AVaRα[X ] = 1

α

∫ 1

1−α

F−1
X (β) dβ = min

η

{
η + 1

α
E

[
(X − η)+

]}
.

Here F−1
X (·) is the quantile function of X .
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We can formulate the general one-stage portfolio problem with a risk measure ρ(·) as an
objective function as follows:

min
z∈Z ρ[−R�z]. (4)

We adapt the convention that the argument of the risk measure ρ[·] represents cost (losses)
and that is why we use the minus sign in front of the return rate. A fundamental modeling
issue is to choose the risk function r(·) used in this model. For the measures of risk (2) with
p = 1 and (3), the resulting optimization problem (4) is a linear programming problem,
which can be efficiently solved by specialized techniques (Mansini et al. 2003). Parametric
methods of Ruszczyński and Vanderbei (2003) allow for generating a family of solutions,
corresponding to a range of values of the parameter γ in (1).

However, if a portfolio optimization model is used in a rolling horizon fashion, as in
Matmoura and Penev (2013), with re-balancing in regular time intervals, it makes sense to
include the re-balancing action and associated transaction costs into the model. To address
this issue in the simplest possible way, a two-stage model can be formulated. In this model,
an option to re-balance the portfolio at the end of the first period is available. Let us denote
by Rt

j the return rate of asset j = 1, . . . , n in stage t ∈ {1, 2}. Asset allocations are denoted
by n-dimensional vectors z and y, where z j represents the amount of capital invested in
asset j at stage 1, and y j the amount invested at stage 2. The vector y may depend on the
observations gathered in stage 1. The end portfolio value in stage 1 is given by (ξ1)�z and
the end value at stage 2 is (ξ2)�y, where

ξ t = 1 + Rt ,

with 1 denoting the sure outcome of 1. The random vectors ξ1 and ξ2 are, in general,
dependent. If they have have finite numbers of realizations, the most transparent way is to
represent them in a form of a scenario tree. An example of such a tree is depicted in Fig. 1.
The nodes at levels one and two represent realizations of ξ1 and ξ2, respectively. The node at
level zero is known as the root node and represents the beginning of the process. Each node at
level one represents a different realization of ξ1. It is connected to a set of children nodes at
level two, which represent possible outcomes of ξ2, following the first stage outcome. With
each arc of the tree, a probability is associated. Probabilities of arcs leading to nodes at level
one are the probabilities of realizations of ξ1. The probabilities of arcs leading to nodes at
level 2, are conditional probabilities of realizations of ξ2.

The two-stage portfolio problem allows us to model the re-allocation option within an
optimization problem. In stage 1, asset allocations z are to be determined. Then a realization

Fig. 1 Scenario tree
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of ξ1 is observed, and the allocations can be changed to y. In the scenario tree setting,
there can be a different value of y for each node at level 1. Finally, the realization of ξ2 is
observed. As a result, the final portfolio value can be calculated. Such an approach, with the
use of dynamic measures of risk, has been first developed in Miller (2008) and Miller and
Ruszczyński (2011). We formally define the two-stage model in Sects. 2 and 3.

Our intention is to advance these ideas, by exploring new scenario tree generationmethods
and using higher order measures of risk.

In Sect. 2, several scenario tree generation methods are described. First, a multivariate
GARCH model is used to generate an adequate number of scenarios to model the ran-
dom returns. Then, three different tree construction algorithms are developed: K-means and
Two-Step cluster algorithms in forward and backward forms, and a backward multi-facility
location algorithm. In order to evaluate the quality of the scenario trees, Monge–Kantorovich
transportation model is formulated to compare the probability distributions of the “original”
probability distribution (empirical distribution supported on the scenarios generated) with
the probability distributions supported on the constructed scenario trees.

In Sect. 3, a two-stage portfolio problem with an option to re-balance is modeled by using
higher-order conditional risk measures. A risk-averse multicut method is proposed to solve
this model.

In Sect. 4, computational results will be presented to compare scenario generation tech-
niques and performance of the constructed portfolios on portfolios constructed from the
components of the Dow Jones Index.

Finally, at the conclusion of this study, an overall summary of our contribution and a list
of some possible future research directions will be presented.

2 Scenario tree generation

2.1 Background

A substantial body of literature exists about generating scenario trees for stochastic optimiza-
tion models. Heitsch and Romisch (2009) proposed a theory-based heuristics for generating
scenario trees from an initial set of scenarios, and applied these heuristics in electric power
management. Their proposed heuristics have a recursive scenario reduction algorithm and
also bundling steps based on forward or backward scenario tree generation methods. They
used the stability result in multi-stage stochastic programs from the study in Heitsch et al.
(2006) to compare the closeness of the original probability distribution to its scenario tree
approximation. The conditions on the initial approximation in applications is constructed
from a discrete probability distribution by using a sampling method or from a general prob-
ability distribution by using discretization schemes. However, the algorithm can be used as
a heuristics for scenario tree generation in other applications.

Hochreiter and Pflug (2007) showed that the problem of obtaining accurate and valuable
scenario tree approximations can be viewed as the problem of optimally approximating a
given distribution by using a distance function. In that paper, it is found that the best approach
is to use the Wasserstein distance in tree approximation. The resulting optimization problem
can be formulated as a multi-dimensional facility location problem, and then well-known
heuristic algorithms for multi-facility location problems can be applied. They also showed
that a scenario tree is constructed as a nested facility location problem to use in multi-stage
stochastic programs. A multi-stage stochastic mean-risk financial programming problem is
used to test the model. They concluded that if the objective of the approximation is to achieve
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a controlled matching of certain moments and a controllable coverage of heavy tails, scenario
tree generation based on multidimensional facility location will be the best fit.

Our approach builds on these contributions, with the intention to be able to handle huge
trees arising in financial applications.

2.2 Scenario generation

Financial data are insufficient for construction optimization models based on empirical dis-
tributions alone. It is imperative to generate scenarios that were not observed in practice, but
are possible according to statistics. For this purpose, we need amodel for scenario generation.

The first step in scenario generation is to obtain data to construct scenarios. In this study,
daily stock price data of the 30 companies included in the Dow Jones index are obtained for
a period of three years, from September 2, 2008, to November 30, 2011.

Next, in order to model the probabilistic information in the data, an adequate number of
scenarios must be generated. As we are interested in an adequate modeling of the tail behav-
ior, multivariate GARCH models appear to be particularly useful. In multivariate GARCH
models, the most important issue is the parametrization of the covariance matrix, at a min-
imum loss of generality. In this study, we will use multivariate GO-GARCH(1,1) (Van Der
Weide 2002) model to generate scenarios. Its structure can be summarized as follows.

We assume that the observed vector-valued time series {xt } (of dimension m = 30) is a
linear combination of unobserved m-dimensional normal vectors {yt } having uncorrelated
components, that is,

xt = Zyt , t = 0, 1, 2, . . .

The square matrix Z is assumed to be constant over time and invertible.
Unobserved components have a diagonal covariance matrix Ht = diag{hi,t , i =

1, . . . ,m}, and thus the covariance matrix of xt is V = E
[
xt xTt

] = ZHt ZT . The cru-
cial component of the model is the evolution of the diagonal elements hi,t of the covariance
matrix Ht :

hi,t+1 = (1 − αi − βi ) + αi y
2
i,t + βi hi,t , i = 1, . . . ,m, t = 0, 1, 2, . . . ,

where the initial matrix H0 = I .
The historical data are used to calculate the least-squares estimates of the matrix Z and

the coefficients (αi , βi ), i = 1, . . . ,m.
Once the model is constructed, it can be used to generate an arbitrary number of scenarios.

Assuming that the data were collected for the period t = 0, 1, . . . , T , we generate scenarios
for times T + 1, T + 2, . . .. In our case, we use only two next steps, that is, T + 1 and T + 2,
to prepare scenarios for ξ1 and ξ2.

2.3 Tree generation

Raw scenarios are not suitable for two-stage optimizationmodels, because after stage 1, while
deciding about allocations y for the second stage, we would know not only the past return
realizations ξ1, but also the future realizations ξ2 (see the left part of Fig. 2). Constructing a
scenario tree eliminates this problem as it can be seen in the right part of Fig. 2.

There are two different ways to design scenario tree generation methods, forward and
backward. In a forward tree construction, starting at the first stage, one merges selected nodes
into clusters and moves forward until the last stage. Forward tree construction is illustrated
in Figs. 2 and 3. In a backward tree construction, one starts at the last stage, merges selected
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Fig. 2 First-stage clustering
in a forward tree construction

Fig. 3 Second-stage clustering
in a forward tree construction

Fig. 4 Second-stage clustering
in a backward tree construction

Fig. 5 First-stage clustering in a
backward tree construction

nodes into clusters and this will join all their predecessors as well. In this way, we move
backward until the first stage. Backward tree construction is illustrated in Figs. 4 and 5. In
scenario tree generation, it is important to maintain probability information while reducing
the number of scenarios, that is, to assign to a scenario representing a group of scenarios the
sum of their probabilities.

Since the quality of multi-stage stochastic optimization models depends heavily on the
quality of the underlying scenario model, this study will focus on constructing a scenario tree
for two-stage portfolio optimization problem, so that portfolio optimization problem with
rebalancing can be solved in a more time-efficient way.

Five different scenario generation methods are used in this study: K-means and two-step
clustering methods in forward and backward versions, and a backward scenario generation
method based on the idea of a multi-facility location problem. Then, these five models will
be compared by using a mass-transportation model.
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2.4 Multi-facility-location-based scenario tree generation method

Wewill use a hybridmethodwhich is composed of twodifferent algorithmswithin a backward
scenario tree generation method. In the first part, a nearest centroid based heuristic is used
to form a given number of clusters in the second stage.

Choosing initial centroids is very important in a clustering algorithm since bad initial-
ization can lead to poor results. The fastest and easiest way to choose initial centroids is
pure random. However, it will very likely lead to poor results since it can choose these initial
centroids close to each other. In the initialization part of our algorithm, we want to choose the
initial centroids that are spread out from each other. We will use a very similar initialization
approach as in Arthur and Vassilvitskii (2007). Nearest centroid based heuristic is explained
in Algorithm 1.

Algorithm 1 Nearest centroid heuristic
Initialization:
The first cluster mean is chosen randomly from the data points.
Next cluster mean is chosen from the remaining data points with a probability given to each point based on
squared distance from its closest existing cluster mean.
Iteration:
Find the center for each cluster.
For each node, calculate the distance to the each center constructed before. If there is a closer center for that
node, reassign the selected node to its closest center.
Continue until no new reassignments.

The distance measure used in this algorithm is as follows:

di j =
√√√√

30∑

n=1

[
(r1(i, n) − r1( j, n))2 + (r2(i, n) − r2( j, n))2

]
, (5)

where r1 represents the return rate at the first stage, r2 represents the return rate at the second
stage, i and j represent the scenarios, and n represents the security.

In the second part of this hybrid method, in order to aggregate first-stage nodes, a multi–
facility location problem is formulated.

We denote by J the total number of scenarios (after the initial greedy aggregation) and
by I < J the desired number of first-stage nodes. For i, j = 1, . . . , J we use di j to denote
the distance calculated according to formula (5). The multi-facility location problem can be
formulated as follows:

min
J∑

i=1

J∑

j=1

di j xi j

s.t.
J∑

i=1

xi j = 1, ∀ j = 1, . . . , J,

J∑

i=1

vi = I,

xi j ≤ vi , ∀i, j = 1, . . . , J,

all x and v variables are binary.
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In the problem above, vi is the decision to use scenario i as a first-stage node, and xi j
represents the assignment of scenario j to node i . It is a large-scale problem, and we solve it
by a greedy method using the linear programming relaxation, in which the binary variables
x and v are allowed to take any values in [0,1]. After a relaxed problem is solved, all vi = 1
are permanently fixed; if none is equal to 1, we choose the one that is closest to 1, and fix
it at 1. After that, a reduced problem with a smaller number of variables is solved, etc. Our
experience indicates that this procedure does not lead to significant errors and allows for
processing large data sets.

2.5 K-means scenario tree generation method

K-means is a clustering method in which a set of n observations S = {x1, x2, . . . , xn} are
partitioned into k clusters (k ≤ n). Each scenario is a d-dimensional vector, where d = 30
in this study (the number of Dow Jones stocks). Let S = S1 ∪ S2 ∪ · · · ∪ Sk be the partition
of the set; the objective of the K-means method is to minimize the sum of squares within
clusters:

min
S1,...,Sk

k∑

i=1

∑

x j∈Si

∥∥x j − mi (Si )
∥∥2

subject to S1 ∪ S2 ∪ · · · ∪ Sk = S,

Si ∩ S j = ∅ if i 
= j.

In the problem above, mi (Si ) is the mean of the points in Si .
The first k initial means are randomly selected from the scenario set. Then, every scenario

is associated with the nearest mean. Next, the centroid of each cluster becomes the newmean
for that cluster. Finally, when no new centroids are created, the method stops.

The K-means algorithm is used to construct scenario trees in two-stage stochastic portfolio
problem is given in Algorithm 2.

Algorithm 2 K-means
First-Stage

Initialization: Given an initial set of k means m(1)
1 ,m(1)

2 , . . . ,m(1)
k

Assignment Step: Assign each observation to the cluster with the closest mean.

S(t)
i =

{
x j :

∥∥∥x j − m(τ )
i

∥∥∥ ≤
∥∥∥x j − m(τ )

i∗
∥∥∥ , ∀i∗ = 1, . . . , k

}

Update Step: Calculate the new means to be the centroid of the observations in the cluster.

m(τ+1)
i = 1∣∣∣S(τ )

i

∣∣∣

∑

x j∈S(τ )
i

x j

Stop when the assignments do not change.
Second-Stage
Let ei be the number of children nodes for each cluster in the first-stage, i = 1, . . . , k
for i = 1 to k do
Initialization: From ei observations select an initial set of li means m(1)

1 ,m(1)
2 , . . . ,m(1)

li
.

Assignment Step: Assign each observation to the cluster with the closest mean.

S(τ )
i =

{
x j :

∥∥∥x j − m(τ )
i

∥∥∥ ≤
∥∥∥x j − m(τ )

i∗
∥∥∥ , ∀i∗ = 1, . . . , li

}

Update Step: Calculate the new means to be the centroid of the observations in the cluster.

m(τ+1)
i = 1∣∣∣S(τ )

i

∣∣∣

∑

x j∈S(τ )
i

x j

Calculate the probabilities and conditional of each first-stage and second-stage scenarios, respectively.
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In the K-meansmodel, Euclidean distance is used as ametric, and the number of first-stage
clusters k, and second stage clusters l, are input parameters. Therefore, good results from
this method depend on the appropriate choice of k and l.

2.6 Two-step clustering

IBM’s (SPSS Inc 2004) two-step clustering scenario tree generation method is designed for
very large data sets. The method requires only one pass of the data, and has two major steps.
In the first step, scenarios are grouped into many small preclusters. Then, these preclusters
are clustered into a desired number of clusters. The method is explained in Algorithm 3.

Algorithm 3 Two-Step Clustering Algorithm
First-Stage
Step 1: Formation of Preclusters
Form preclusters by making each scenario a cluster in itself.
For each scenario, find if it should be merged with a previously formed precluster or there should be a
new precluster based on a selected distance measure considering the weights (agglomerative hierarchical
clustering).
When preclustering is complete, all scenarios in one precluster become a single entity.
Step 2: Clustering of Preclusters
Take the preclusters obtained in Step 1 as an input, and group them into desired number of clusters by using
agglomerative hierarchical clustering considering the weights.
Second-Stage
Let ei be the number of children nodes for each cluster in the first-stage, i = 1, . . . , k
for i = 1 to k do
Apply Step 1 & 2 explained above to each cluster i with ei observations.

Calculate the probabilities and conditional probabilities of the first-stage and second-stage scenarios.

As it is in K-means model, Euclidean distance is used as a metric, and the number of
clusters at the first stage k, and at the second stage l, are input parameters.

2.7 Quality of scenario trees

No universally good scenario tree generation method exists. Therefore, we need a measure
to evaluate the quality of the trees generated. One possibility is use error values of methods
or convergence of the objective function values can be used. Pflug defined an approximation
error in Pflug (2001) as follows. Let the original problem be

min
x∈X F(x; ξ̃ ),

and the tree-based problem be

min
x∈X F(x; η̃),

with the solution x∗. Then, the approximation error can be calculated as follows:

e f (η̃, ξ̃ ) = F(x∗; ξ̃ ) − min
x

F(x; ξ̃ ) ≥ 0.

However, to calculate this error function is not easy because we need to find the true objec-
tive value for a given solution x , and the true optimal solution, which is practically impos-
sible. Therefore, in this study a mass transportation model will be formulated to compare
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the original distribution with the distribution in the scenario tree. The model evaluates the
Monge–Kantorovich metric.

In the model below, we use the following data:

pi—the probability of path i in the original distribution

q j—the probability of path j in the tree

di j—euclidean distance between path i in the original distribution and path

j in the tree based on Formula (5)

We look for the cheapest way to move the probability mass from the “original” distribution
(the empirical distribution supported on the generated scenarios) and the distribution on the
tree. The variables fi j represent the probability mass to be moved from path i in the original
distribution to path j in the tree:

min
∑

i

∑

j

di j fi j

subject to
∑

j

fi j = pi , ∀ i,

∑

i

fi j = q j , ∀ j,

fi j ≥ 0, ∀i, j.

(6)

The optimal value of this problem will be used as a measure of the quality of the tree.

3 Two-stage portfolio optimization problem with risk measures

3.1 General formulation

The problem (4), when the risk function is a semideviation of order 1, or weighted mean-
deviation from quantile, can be formulated and solved as a linear programming problem (see
Mansini et al. 2003; Ruszczyński and Vanderbei 2003 and also Miller and Ruszczyński 2011
for additional insights). We shall focus on the two-stage version, as outlined in Sect. 1. In
what follows, we assume that the sequence of returns (R1, R2) has a distribution supported
on a scenario tree.

Let p1 be the first-stage probability vector, with p1i denoting the probability of outcome
R1
i at the first stage, and let p2i be the conditional probability vector for each node i in the

first level, with p2il denoting the probability of moving to node l in the second-stage from
node i . The corresponding realizations R2

il with probabilities p2il represent the conditional
distribution of R2, given that the realization R1

i occurred.
The two-stage portfolio optimization problem can be formulated as follows

min
z∈Z ρ1

[
V (z)

]
, (7)

where V (z) is a random variable representing the conditional risk measure at stage 2. Its
realizations, Vi (z), are the optimal values of the second stage problem:

Vi (z) = min
yi∈Yi (z)

ρ2i
[ − (ξ2i )�yi

]
. (8)
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In Eq. (8), the argument of the conditional measure of risk ρ2i [·] is the negative of the total
wealth after stage 2. The feasible set Yi (z) depends on the initial investments z and the realiza-
tion of the returns in the first stage, which is represented by the branch index i . In the absence
of transaction costs, it would have the form resulting from the simple cash balance equation:

Yi =
{
y ∈ Y : (

ξ1
)�

z = 1�y

}
.

However, the presence of transaction costs makes this formulation insufficient. In the next
section, we describe a detailed model for the case of a mean–semideviation measure of risk.

The use of composition risk measures in (7)–(8) follows form the general theory of time-
consistent dynamic measures or risk (see, Ruszczyński 2010 and the references therein).

For the main concepts and results of the theory of dynamic measures of risk, see Artzner
et al. (2007), Cheridito et al. (2006), Föllmer and Penner (2006), Fritelli and Scandolo (2006),
Pflug and Römisch. (2007), Riedel (2004) and Ruszczyński and Shapiro (2006a) and the
references therein.

3.2 The mean-semideviation model

In this section, risk averse two-stage portfolio problem will be formulated with the mean-
semideviation risk function of order r .
Indices:

i ∈ {1, . . . , I }—First-stage scenarios,
l ∈ {1, . . . , L(i)}—Second-stage scenarios for each first-stage scenario,
j ∈ {1, . . . , n}—Securities.

Parameters:
pi—probability of a first-stage scenario i ,
pil—conditional probability of second-stage scenario l after the first-stage scenario i ,
R ji—return rate of security j in first-stage scenario i ,
R jil—return rate of security j in second-stage scenario l after the first-stage scenario i ,
ε j—relative transaction cost of security j ,
γ—risk aversion constant,

First-Stage Variables:
z j—amount invested in security j in the first-stage,
ξ—auxiliary variables representing shortfalls at the first-stage,
u—expectation at the first-stage,

Second-Stage Variables:
y ji—new position in security j in scenario i after the first-stage,
b ji—amount spent to buy security j in scenario i after the first-stage,
s ji—value of security j sold in scenario i after the first-stage,
σ—auxiliary variables representing shortfalls at the second-stage,
m—conditional expectation at the second-stage.

We assume that the initial capital is 1, and thus (in the simplest version)

z ∈ Z =
{
z ∈ Rn :

n∑

j=1

z j = 1, z j ≥ 0, j = 1, . . . , n

}
;

more complex restrictions on the initial investments are possible as well, as long as they
define a polyhedral set Z . In order to estimate the (relative) transaction costs, the following
bid-ask spread formula is used:
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ε j = (AskPrice j − BidPrice j )/2

AskPrice j
, j = 1, . . . , n.

This formula assumes that a “fair price” is half-way between the bid and the ask prices, and
ignores transaction costs due to the price impact of large trades. The link between the first-
stage variables z and the second-stage variables y is provided by the cash balance equation:

y ji = (1 + R ji )z j + (1 − ε j )b ji − (1 + ε j ) · s ji , (9)

in which we symmetrically assign transaction costs to the sales and purchases. The first-stage
problem (7) with mean-semideviation risk functions of order r ≥ 1 can be now formulated
as follows:

min
z∈Z

I∑

i=1

pi Vi (z) + γ

( I∑

i=1

pi

(
max(Vi (z) − p�V (z), 0)

)r)1/r

,

where Vi (z) is the optimal value of i th second-stage problem (8).
The first-stage problem can be rewritten as follows:

min u + γ
( I∑

i=1

piξ
r
i

)1/r

s.t. u =
I∑

i=1

pi Vi (z),

u ≤ Vi (z) + ξi , i = 1, . . . , I,

ξ ≥ 0,

z ∈ Z .

(10)

The second-stage problem (8) with mean-semideviation risk function of order r ≥ 1 is
formulated in scenario i as follows:

min − mi + γ
( L(i)∑

l=1

pilσ
r
il

)1/r

s.t. y ji = (1 + R ji )z j + (1 − ε j )b ji − (1 + ε)s ji , j = 1, . . . , n,

n∑

j=1

(
b ji − s ji

) = 0,

Wil =
n∑

j=1

(1 + R jil)y ji , l = 1, . . . , L(i),

mi =
L(i)∑

l=1

pilWil ,

mi ≤ Wil + σil , l = 1, . . . , L(i),

b ≥ 0, s ≥ 0, σ ≥ 0.

(11)

The optimal value of this problem is denoted by Vi (z). In a more general formulation, we
may use different risk-aversion parameters γ in the first-stage problem (10) and in the second
stage problems (11), making them dependent on the scenario i . We can also add to problem
(11) additional restrictions on the allocations y ji , j = 1, . . . , n, as long as they define a
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nonempty polyhedral set. In particular, keeping the first-stage investments unchanged, that
is, setting y ji = (1 + R ji )z j , j = 1, . . . , n, should be feasible for problem (11).

3.3 Risk-averse multicut method for higher-order conditional measures of risk

If r = 1, the problems (10) and (11) (for i = 1, . . . , I ) can be put together into a large-
scale linear programming problem, with Vi , i = 1, . . . , I , treated as variables [given by
the formula in the first row of (11)]. The dimension of this problem, however, is of order
I × (L + n) variables and constraints, which becomes unmanageable for realistic sizes of
scenario trees. If r > 1, an additional complication arises from the fact that we have to deal
with a large-scale nonlinear optimization problem.

We shall, therefore, develop a decompositionmethod for solving problem (10)–(11), based
based on Benders decomposition. In order to describe this method, we have to recall the dual
representation of measures of risk. For a coherent measure of risk ρ : X → �, where X
is the vector space of random variables on a finite probability space having I elementary
events, a closed convex set A of probability measures on this space exists, such that

ρ(V ) = max
μ∈A

I∑

i=1

μi Vi , V ∈ X . (12)

This representation, first proved in Artzner et al. (1999), is valid in a much more general
setting as well (see, Ruszczyński and Shapiro 2006b; Shapiro et al. 2009 and the references
therein). The set A is the subdifferential of ρ(·) at zero. Analytical expressions for the sets
A for popular measures of risk (including the mean-semideviation measure) are available
(see Shapiro et al. 2009).

Owing to (12), the first-stage problem (7) becomes

min
z∈Z max

μ∈A

I∑

i=1

μi Vi (z), (13)

Two main issues arise from this formulation. First, solving the “max” problem above is hard
by using all of the elements inA , especially, when r > 1. Second, there is no easy expression
for Vi (z), i = 1, . . . , I , which are optimal values of problems (11).

In order to handle the first issue, rather than using A , it approximation from within,
conv

({μ0, μ1, . . . , μk−1}) will be used. Here conv(C) denotes the convex hull of a set C ,
and μ1, . . . , μk−1 are elements of A collected in iterations 1, . . . , k − 1 of the method. For
μ0 we substitute the nominal probability distribution p, which is an element of A for all
practically relevant measures of risk, including the mean–semideviation measure.

We construct an approximation of problem (13) as

min
z∈Z max

κ=0,1,...,k−1

I∑

i=1

μκ
i Vi (z).

It is an approximation from below, because the maximum is evaluated over a subset of A
rather than over A . Equivalently, the problem above can be written as linear programming
problem:

min α

s.t. α ≥
I∑

i=1

μκ
i Vi (z), κ = 0, 1, . . . , k − 1.
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It is essential to stress that when new pointsμκ are added, then these approximations become
more and more accurate, leading eventually to the solution of the original problem, as in
standard cutting-plane methods of convex optimization.

To dealwith the second issue, the unknown functions Vi (z)will be replacedwith piecewise
linear convex functions constructed from cuts, derived from the solutions of subproblems (11)
at earlier iterations. This is a standard way of dealing with parameter dependent subproblems,
similar to expected-value two-stage problems (see, Ruszczyński 2003 and the references
therein). In general, each cut is an inequality

Vi (z) ≥ v̂κ
i + (

gκ
i

)�(
z − zκ

)
,

where v̂κ
i is an optimal value of problem (11) for scenario i in iteration κ of the method, with

z = zκ . The subgradient giκ can be calculated from the Lagrange multipliers πκ
i associated

with the constraints of problem (11) involving the parameters z:

gκ
i j = (1 + R ji )π

κ
j i . (14)

The reader may consult (Miller and Ruszczyński 2011) for details of the cut construction in
two-stage risk-averse linear programming, which is identical in our case.

The algorithm for risk-averse multicut method is presented below.

Risk-averse multicut method

Step 0: Set k = 1.
Step 1: Solve the master problem,

min
z,v,α

α

s.t. α ≥
I∑

i=1

μκ
i vi , κ = 0, 1, . . . , k − 1,

vi ≥ v̄iκ + g�
κ (z − zκ ), κ = 1, . . . , k − 1, i = 1, . . . , I,

z ∈ Z , v ≥ vmin.

Denote the solution by zk , αk , vk .
Step 2: For each i = 1, . . . , I :

Solve the second-stage problem (11) and let v̂ki be its optimal value and πk
ji the

Lagrange multiplier associated with the re-balancing constraint for security j in
constraint (9). Then, calculate gκ by using Eq. (14).

Step 3: Calculate ρk
1 = ρ1

[
v̂k

]
and μk ∈ ∂ρ1

[
v̂k

]
.

Step 4: If ρk
1 = αk , then stop; otherwise, increase k by 1 and go to Step 1.

In the risk-averse multicut method we assume that the set Z is compact, and that we know
lower bounds v̂min for the optimal values of each second stage problem.

From general convergence results in Ruszczyński (2006), convergence of this method is
finite with the mean-semideviation risk function of order 1. If r ≥ 2, convergence still can
be proved, by the general properties of cutting plane methods for convex programming (see,
e.g., Ruszczyński 2006, Thm 7.7).

The calculation of μ in Step 3 depends on the risk measure applied. For mean-
semideviation risk function of order r , the subgradient can be calculated as follows. We
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calculate the shortfall values

σi = max
(
0, v̂ki −

I∑

m=1

pm v̂ki

)
, i = 1, . . . , I,

and the semideviation of order r ,

ϕ =
( I∑

i=1

pi (σi )
r
)1/r

.

Then, by applying the rules of subdifferential calculus (see, e.g., Ruszczyński 2006, sec. 2.5),
we can obtain μk ∈ ∂ρ1

[
v̂k

]
from the following formula:

μk
i = pi

[
1 + γ

(ϕ)r−1

(
(σi )

r−1 −
I∑

m=1

(σm)r−1 pk
)]

, i = 1, . . . , I. (15)

4 Computational results

First, daily returns of Dow Jones companies’ from September 2, 2008 to November 30, 2011
were used to calibrate a multivariate GO-GARCH(1,1) model of the returns. The model was
used to generate a large number of scenarios for the next two days. The generated scenarios
were used to construct two-stage scenario trees by employing all five scenario tree generation
methods discussed in Sect. 2. The methods were compared in terms of their time and solution
quality. The results in Table 1 show that two-step clustering methods are slightly faster in
terms of CPU times compared to other methods.

Because of computational complexity, for the purpose of comparing tree generation meth-
ods, the sizes of the scenario trees were restricted to 10,000 and 20,000 scenarios. Table 2
contains the comparison of the quality of scenario trees obtained by different methods: the
optimal value of theMonge–Kantorovichmetric given by (6). The results show that tree qual-
ity is stable for each scenario tree generation technique. However, the multi-facility location
clustering method is better with scenario trees constructed from both 10,000 and 20,000

Table 1 CPU Time (in secs) of scenario tree generation methods

Original
scenario size

Tree scenario
size

K-means
(forward)

K-means
(backward)

Two-step
(forward)

two-step
(backward)

Multi-facility
Location

80,000 5,000 675.2 682.1 628.2 621.4 850.7

80,000 10,000 1,210.8 1,272.6 1,152.4 1,145.3 1,675.4

Table 2 Accuracy of scenario tree generation methods

Original
scenario size

Tree scenario
size

K-means
(forward)

K-means
(backward)

Two-step
(forward)

Two-step
(backward)

Multi-facility
Location

10,000 500 0.00719 0.00735 0.00859 0.00875 0.00705

20,000 500 0.00718 0.00733 0.00855 0.00869 0.00699
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Fig. 6 Simulation analysis

scenarios. Therefore, in the next part of the study, we used the multi-facility location-based
method to generate scenario trees in a rolling horizon fashion.

In the next part of the study, a simulation analysis was carried out. Each day, the preceding
619 days of data were used to calibrate a multivariate GO-GARCH(1,1) model. The model
was then used to generate 80,000 scenarios for the following two days. Themulti-facility loca-
tion clusteringmethodwas used to construct a scenario tree for the next twodays. Then the tree
modelwith conditionalmeasures of riskwas solved, the investmentswere re-balanced, and the
method continued. On the next day, new return data were available, new scenario trees were
generated, new models solved, etc. The steps of the simulation study are depicted in Fig. 6.

The simulation study had two objectives. First, we compared the two-stage portfoliomodel
with the static model where b ji = s ji = 0. Based on the cumulative wealth graphs in Figs. 7
and 8, we can say that two-stage portfolio model performs better than the static model for
both mean-semideviation risk functions of order 1 and 2. This was partly due to the reduced
volume of trades, which resulted in significantly lower transaction costs, but also to a better
portfolio composition.

Secondly, we compared two-stage portfolio models with the mean-semideviation risk
measures of first-order and higher orders (2 and 3) with static minimum variance model
where b ji = s ji = 0. In each case we used fixed γ = 0.9 and bid-ask spread transaction
costs. The two-stage portfolio optimization problem was solved with the risk-averse multi-
cut method, implemented in MATLAB with the CPLEX solver. We observed that there is
no significant difference between two-stage portfolio problem with mean-semideviation risk
measure of second order and third order. As we can see from Figs. 8 and 9, using the second-
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Fig. 7 Performance of the static and two-stage portfolios with mean-semideviation (Order 1)

Fig. 8 Performance of the static and two-stage portfolios with mean-semideviation (Order 2)

order methods leads to significant improvements in cumulative wealth trajectories compared
to first order andMarkowitz’s minimum variance models. This is consistent with the findings
ofMatmoura and Penev (2013), where other higher-order riskmeasures were employed (with
a static model and no transaction costs).

Finally, we can compare the performance of the portfolios with mean-semideviation of
order 1 and 2 with Dow Jones Index. Based on the following graph, the simulation analysis
shows that portfoliowithmean-semideviation of order 2 performs better than other portfolios.

Next, we compare β values of the portfolios with mean-semideviation of order 2 when
risk aversion constant is either γ = 0.9 or γ = 0.5. β value of portfolio (0.92) with γ = 0.5
is slightly more than β value of portfolio (0.85) with γ = 0.9. This means both portfolios
generally move in the same direction as the benchmark (Dow Jones). However, movement of
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Fig. 9 Performance of the two-stage portfolios and Dow Jones Index

themean-semideviation portfolio of order 2with γ = 0.9 is generally less than themovement
of the mean-semideviation portfolio of order 2 with γ = 0.5.

5 Conclusion

In this study, two-stage portfolio models with higher-order conditional risk measures are
studied. First, adequate number of scenarios are generated to model the probabilistic infor-
mation on random data. Next, scenario trees are constructed by different methods, and the
best one is chosen based on the distance between the probability distribution on the scenario
tree and the empirical distribution on the raw scenarios. It is found that the two-step forward
clustering method is most efficient in terms of the CPU time, because it passes over the data
just once. However, that multi-facility location clustering method is the most accurate, in
terms of the Monge-Kantorovich metric.

Next, conditional mean-semideviation risk functions of first-order and higher-orders
(Order 2 and 3) are used to formulate the risk-averse two-stage portfolio problem on the
trees generated from the multi-facility location clustering method. The problems are solved
by a generic risk averse multicut algorithm for any higher-order risk function. The results
show that the portfolio allocations for mean-semideviation models of first-order and higher-
orders are similar. However, portfolios with the mean-semideviation of second-order and
third-order perform better compared to mean-semideviation of first-order, minimum vari-
ance model, and the Dow Jones index. All two-stage models outperform the static model.
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Ruszczyński, A. (2003). Decomposition methods. In A. Ruszczyński & A. Shapiro (Eds.), Stochastic Pro-
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