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Abstract In this study, we propose a single server retrial queueing system with balking,
second optional service and single vacation. At the arrival epoch, if the server is busy, the
arriving job join the orbit or balks the system whereas if the server is free, then the arriving
job starts its service immediately. For each job, the server provides two phases of service.
All the jobs demand the first essential service, whereas only some of the jobs demand for the
second optional service. If the system is empty, then the server becomes inactive and begins
a single vacation. If server comes back from the vacation, it does not go for another vacation
even if the system is still empty at that time. The steady state distributions of the server state
and the number of jobs in the orbit are obtained along with other performance measures. The
effects of various parameters on the system performance are analyzed numerically. A general
decomposition law for this retrial queueing system is established.

Keywords Retrial queue · Balking · Second optional service · Single vacation

Mathematics Subject Classification 60K25 · 90B22 · 68M20

1 Introduction

The queueing system is a powerful tool for modeling communication networks, transporta-
tion networks, production lines and operating systems. In recent years, computer networks
and data communication systems are the fastest growing technologies, which have led to
significant development in applications such as swift advance in internet, audio data traffic,
video data traffic, etc.

The retrial queueing system is characterized by an arriving job who finds the server busy
leaves the service area and repeat its demand after some time. Between trials, the blocked
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job joins a pool of unsatisfied jobs called orbit, for example, web access, telecommunication
networks, packet switching networks, collision avoidance, star local area networks, etc.

The server works continuously as long as there is at least one job in the orbit. When the
server finishes serving a job and finds the orbit empty, it leaves the system for a period of
time called a vacation. This is seen in maintenance activities, telecommunication networks,
customized manufacturing, production systems, etc.

Artalejo (2010) and Templeton (1999) have concluded explicit surveys on retrial queueing
systems. Gomez-Corral (1999) widely discussed a single server retrial queueing system with
general retrial times. Krishna Kumar et al. (2002) introduced an M/G/1 retrial queueing
system with a two phase service and preemptive resume. Krishna Kumar and Arivudainambi
(2002) analyzed a single server retrial queue with bernoulli vacation schedules and general
retrial times.

Gharbi and Ioualalen (2010) presented an approach for modeling and analyzing finite-
sourcemultiserver systemswith single andmultiple vacations of servers for all stations, using
the Generalized Stochastic Petrinets model. Arivudainambi andGodhandaraman (2012) con-
sidered an MX/G/1 retrial queue with two phases of service, balking, feedback and K
optional vacations. The stationary distributions of the number of jobs in the system and orbit
are obtained.

Katehakis and Smit (2012) discussed a successive lumping procedure for a class ofMarkov
chain. The results for discrete time Markov chains extend to semi-Markov processes and
continuous time Markov processes. Arivudainambi et al. (2014) investigated a single server
retrial queue with working vacation, in which the server works with different service rates
rather than completely terminating the service during its vacation period. Katehakis and
Smit (2014) derived explicit solutions and simple truncation bounds for the steady state
probabilities of both down entrance state (DES) and restart entrance state (RES) processes.

Though a lot of work has been done in retrial queueing systems, there have not been many
significant studies on single server retrial queue with general retrial time, balking, second
optional service and single vacation. In this paper, we have given a mathematical description
in Sect. 3, and a justification for the model in Sect. 2. Section 4 deals with the derivations of
the steady state distribution of the server. The mean number of jobs in a system and several
performance measures are discussed in Sect. 5. Existence of the stochastic decomposition
property is also demonstrated in Sect. 6. In Sect. 7, some important special cases of this
model are briefly discussed. Numerical results related to the effect of various parameters on
system performance measures are analyzed in Sect. 8.

2 Practical justification of the suggested model

The suggested model has potential application in the transfer model of an email system.
Simple mail transfer protocol (SMTP) is used to deliver the messages between the mail
servers. On a remote machine, a mail transfer program contacts a server for TCP connection.
When the TCP is connected, SMTP allows the sender to identify itself, specify a recipient,
and then transfer an email message.

When the sender deposits the email in his/her own mail server, the mail server repeat
continuously (retrial) until the contact message is delivered. In the mail server, the contact
message follows the Poisson process. At the arrival epoch, the arriving message starts its
service immediately if the server is free or else joins the buffer. In the buffer, each message
waits for some amount of time and retries the service again. Each time it tries but fails, it will
wait for another period of time before trying again. The mail server employs a spam filter
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service to prevent spam mails clogging, this is done to filter the incoming messages via the
normal mail-receiving service. To keep the mail server functioning well, some maintenance
activities are needed.

For example, virus scan is an important maintenance activity in the mail server. When
the maintenance activity is finished, the mail server waits for the arrival of messages. The
reason for the proposed model is to design a program to collect information of the contacting
messages. In this scenario, the buffer in the sender mail server, the receiver mail server, spam
filter server and normalmail receiving service, the retransmission policy, and themaintenance
activities correspond to the orbit, the server, two phases of service, the retrial and the vacation
policy respectively in queueing terminology.

3 Model description and ergodicity condition

An arrival of a job follows a Poisson process with rate λ and start its service immediately
if the server is available. If an arriving job finds the server busy, then the job either balk the
systemwith probability 1−b or joins the orbit with probability b. The job from the orbit to the
server is governed by an arbitrary law with distribution function R(t) and Laplace-Stieltjes
transform (LST) R∗(θ).

In succession, a single server provides two phases of service to each job. The first phase
of service (FPS) is followed by the second phase of service (SPS). On completion of regular
service, a job desires to have the second optional service with probability p or may leave
the system with probability q . It is assumed that the service Si (i = 1, 2) of the i th phases
of service follows a random variable with distribution function Si (t) and Laplace-Stieltjes
transform S∗

i (θ). When no jobs are found in the orbit, the server deactivates and goes for
a single vacation of random length V with distribution function V (t) and Laplace-Stieltjes
transform V ∗(θ).

The state of the system at time t can be defined by the Markov process {N (t); t ≥ 0} =
{(C(t), X (t), ξ0(t), ξ1(t), ξ2(t), ξ3(t), t ≥ 0}, where C(t) denotes the server state (0, 1, 2
and 3, according to the server being free, busy with FPS, busy with SPS and with vacation
respectively) and X (t) is the number of jobs in the orbit at time t . If C(t) = 0 and X (t) > 0,
then ξ0(t) represents the elapsed retrial time, if C(t) = i , then ξi (t), i = 1, 2 represents the
elapsed service time of the job, if C(t) = 3 and X (t) ≥ 0, then ξ3(t) represents the elapsed
vacation time at time t . The functions θ(x), μi (x) and ν(x) are the conditional comple-
tion rates for repeated attempts, service and vacation respectively at time x . i.e., θ(x)dx =
dR(x)/(1 − R(x)), μi (x)dx = dSi (x)/(1 − Si (x)), ν(x)dx = dV (x)/(1 − V (x)).

3.1 Ergodicity condition

Let {tn; n ∈ N } be the sequence of epochs of either service completion times or vacation
termination time. The sequence of random vectors Zn = {C(tn+), X (tn+)} form a Markov
chain which is the embedded Markov chain for our queueing system. Its state space is
S = {0, 1, 2 and 3} × N .

Theorem 1 The embedded Markov chain {Zn; n ∈ N } is ergodic if and only if λb[E(S1) +
pE(S2)] < R∗(λ).

Proof It is clear that {Zn; n ∈ N } is an irreducible and aperiodic Markov chain. To prove the
ergodicity may use Foster’s criterion, which states that an irreducible and aperiodic Markov
chain is ergodic if there exists a non-negative function f ( j), j ∈ N and ε > 0 such that the
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mean drift χ j = E[ f (zn+1) − f (zn)|zn = j] is finite for all j ∈ N and χ j ≤ −ε for all
j ∈ N , except perhaps for some finite number j . In this case, consider the function f ( j) = j ,
then we have

χ j =
{

λb[E(S1) + pE(S2)] − R∗(λ), j = 1, 2, · · ·
λb[E(S1) + pE(S2)] − 1, j = 0

The inequality λb[E(S1) + pE(S2)] < R∗(λ) is a sufficient condition for ergodicity.
The same inequality is also necessary for ergodicity. The necessary condition follows from
Kaplan’s condition as noted in Sennot et al. (1983), namely χ j < ∞ for all j ≥ 0 and there
exists j0 ∈ N such that χ j ≥ 0 for j ≥ j0. In this case, Kaplan’s condition is fulfilled
because there exists h such that ri j = 0 for j < i − h and i > 0, where R = (ri j ) is the one
step transition matrix of {Zn; n ≥ 1}. Then, the inequality λb[E(S1) + pE(S2)] ≥ R∗(λ)

implies the non-ergodicity of the Markov chain. ��

4 Steady state distribution of the server state

For the process {N (t), t ≥ 0}, the probabilities are define as
P0(t) = P{C(t) = 0, X (t) = 0}

Pn(x, t)dx = P{C(t) = 0, X (t) = n, x ≤ ξ0(t) < x + dx}, t ≥ 0, x ≥ 0, n ≥ 1

Qi,n(x, t)dx = P{C(t) = i, X (t) = n, x ≤ ξi (t) < x + dx}, i = 1, 2, x ≥ 0, n ≥ 1

Gn(x, t)dx = P{C(t) = 3, X (t) = n, x ≤ ξ3(t) < x + dx}, t ≥ 0, x ≥ 0, n ≥ 0.

Assuming that the steady state condition λb[E(S1)+ pE(S2)] < R∗(λ) is fulfilled, so that
the limiting probability P0 = limt→∞ P0(t) and limiting densities Pn(x) = limt→∞ Pn(t, x)
for x ≥ 0, n ≥ 1, Qn(x) = limt→∞ Qn(t, x) for x ≥ 0, n ≥ 0 and Gn(x) =
limt→∞ Gn(t, x) for x ≥ 0, n ≥ 0. By the method of supplementary variables, system
of equations that govern the dynamics of the system behavior are obtained as

λP0 =
∫ ∞

0
G0(x) ν(x)dx (1)

d

dx
Pn(x) + [λ + θ(x)] Pn(x) = 0, x > 0, n ≥ 1 (2)

d

dx
Qi, 0(x) + [λ + μi (x)] Qi, 0(x) = λ(1 − b)Qi, 0(x), x > 0, i = 1, 2 (3)

d

dx
Qi, n(x) + [λ + μi (x)] Qi, n(x) = λbQi,n−1(x) + λ(1 − b)Qi,n(x),

n ≥ 1, i = 1, 2 (4)
d

dx
G0(x) + [λ + ν(x)]G0(x) = λ(1 − b)G0(x), x > 0 (5)

d

dx
Gn(x) + [λ + ν(x)]Gn(x) = λbGn−1(x) + λ(1 − b)Gn(x), n ≥ 1 (6)

The above set of equations can be solved using the steady state boundary conditions at x = 0,

Pn(0) =
∫ ∞

0
Gn(x) ν(x)dx + q

∫ ∞

0
Q1, n(x) μ1(x)dx +

∫ ∞

0
Q2, n(x) μ2(x)dx (7)

Q1, 0(0) = λP0 +
∫ ∞

0
P1(x) θ(x)dx (8)
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Q1, n(0) =
∫ ∞

0
Pn+1(x) θ(x)dx + λ

∫ ∞

0
Pn(x)dx (9)

Q2, n(0) = p
∫ ∞

0
Q1, n(x) μ1(x)dx, n ≥ 1 (10)

G0(0) = q
∫ ∞

0
Q1, 0(x) μ1(x)dx +

∫ ∞

0
Q2,0(x)μ2(x)dx (11)

The normalization condition is given by

P0 +
∞∑
n=1

∫ ∞

0
Pn(x)dx +

∞∑
n=0

2∑
i=1

∫ ∞

0
Qi, n(x)dx +

∞∑
n=0

∫ ∞

0
Gn(x)dx = 1 (12)

Let us define the probability generating functions as P(x, z) = ∑∞
n=1 z

n Pn(x) for |z| ≤ 1
and x > 0, P(0, z) = ∑∞

n=1 z
n Pn(0) for |z| ≤ 1, Qi (x, z) = ∑∞

n=0 z
nQi,n(x) for |z| ≤ 1

and x > 0, Qi (0, z) = ∑∞
n=0 z

nQi,n(0) for |z| ≤ 1 and i = 1, 2, G(x, z) = ∑∞
n=0 z

nGn(x)
for |z| ≤ 1 and x > 0 and G(0, z) = ∑∞

n=0 z
nGn(0) for |z| ≤ 1 and x > 0.

Theorem 2 Under the stability condition λb[E(S1) + pE(S2)] < R∗(λ), the stationary
distributions of the number of jobs in the system when the server being idle, busy with FPS,
busy with SPS and on vacations are

P(z) =
{ [1 − V ∗(λb(1 − z))] + V ∗(λb)[1 − (q + pS∗

2 (λb(1 − z)))S∗
1 (λb(1 − z))]

V ∗(λb){[z + (1 − z)R∗(λ)][q + pS∗
2 (λb(1 − z))]S∗

1 (λb(1 − z)) − z}
}

× z[1 − R∗(λ)]P0 (13)

Q1(z) = P0

{ [1 − V ∗(λb(1 − z))][z + (1 − z)R∗(λ)] + (1 − z)R∗(λ)V ∗(λb)}
[z + (1 − z)R∗(λ)][q + pS∗

2 (λb(1 − z))]S∗
1 (λb(1 − z)) − z

}

× [1 − S∗
1 (λb(1 − z))]

V ∗(λb)b(1 − z)
(14)

Q2(z) = P0

{ [1 − V ∗(λb(1 − z))][z + (1 − z)R∗(λ)] + (1 − z)R∗(λ)V ∗(λb)}
[z + (1 − z)R∗(λ)][q + pS∗

2 (λb(1 − z))]S∗
1 (λb(1 − z)) − z

}

× p

{
S∗
1 (λb(1 − z))[1 − S∗

2 (λb(1 − z))]
V ∗(λb)b(1 − z)

}
(15)

G(z) = P0

[ [1 − V ∗(λb(1 − z))]
V ∗(λb)b(1 − z)

]
(16)

P0 = V ∗(λb){R∗(λ) − λb[E(S1) + pE(S2)]}{λbE(V ) + R∗(λ)V ∗(λb)
+ (1 − b){λE(V )R∗(λ) + λ[E(S1) + pE(S2)]R∗(λ)V ∗(λb)}}−1 (17)

Proof Multiplying equations (2) - (6) by suitable powers of z and summing over n, we obtain
the following partial differential equations

∂P(x,z)
∂x + [λ + θ(x)]P(x, z) = 0, x > 0 (18)

∂Qi (x,z)
∂x + [λb(1 − z) + μi (x)]Qi (x, z) = 0, x > 0, i = 1, 2 (19)

∂G(x,z)
∂x + [λb(1 − z) + ν(x)]G(x, z) = 0 (20)

Solving the above partial differential equations (18) - (20), we get

P(x, z) = P(0, z)[1 − R(x)]e−λx , x > 0 (21)

Qi (x, z) = Qi (0, z)[1 − Si (x)]e−λb(1−z)x , x > 0, i = 1, 2 (22)
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G(x, z) = G(0, z)[1 − V (x)]e−λb(1−z)x , x > 0 (23)

From equation (5), we obtain

G0(x) = G0(0)[1 − V (x)]e−λbx , x > 0 (24)

Multiplying equation (24) by ν(x) on both sides and integrating with respect to x from n = 0
to ∞ and using equation (1), we have

G0(0) = λP0
V ∗(λb)

(25)

Multiplying equation (7) by suitable powers of z, summing over n from 1 to ∞ and after
some algebraic simplification we arrive,

P(0, z) =
∫ ∞

0
G(x, z)ν(x)dx + q

∫ ∞

0
Q1(x, z)μ1(x)dx +

∫ ∞

0
Q2(x, z)μ2(x)dx

−G0(0) − λP0 (26)

Multiplying equations (8) – (11) by appropriate powers of z, summing over n from 0 to ∞
and after some algebraic manipulation, we get

Q1(0, z) = 1

z

∫ ∞

0
P(x, z) θ(x)dx + λ

∫ ∞

0
P(x, z)dx + λP0 (27)

Q2(0, z) = pQ1(0, z)S
∗
1 (λb(1 − z)) (28)

G(0, z) = λP0
V ∗(λb)

(29)

Further using equations (22) - (23), (25) and (29) in equation (26), we get

P(0, z) = λP0
V ∗(λb)

[V ∗(λb(1 − z)) − 1] + Q1(0, z)[q + pS∗
2 (λb(1 − z))]S∗

1 (λb(1 − z))

− λP0 (30)

Substituting equation (21) in (27), we obtain

Q1(0, z) = P(0, z)

[
z + (1 − z)R∗(λ)

z

]
+ λP0 (31)

Using equation (31) in equation (28), we get

Q2(0, z) = p

[
P(0, z)

(
z + (1 − z)R∗(λ)

z

)
+ λP0

]
S∗
1 (λb(1 − z)) (32)

Substituting equation (31) in (30), we obtain

P(0, z) =
{ [1 − V ∗(λb(1 − z))] + V ∗(λb)[1 − (q + pS∗

2 (λb(1 − z)))S∗
1 (λb(1 − z))]

V ∗(λb){[z + (1 − z)R∗(λ)][q + pS∗
2 (λb(1 − z))]S∗

1 (λb(1 − z)) − z}
}

× λzP0 (33)

Substituting equation (33) in (31), we get

Q1(0, z) =
[ [1 − V ∗(λb(1 − z))] + V ∗(λb)[1 − (q + pS∗

2 (λb(1 − z)))S∗
1 (λb(1 − z))]

V ∗(λb){[z + (1 − z)R∗(λ)][q + pS∗
2 (λb(1 − z))]S∗

1 (λb(1 − z)) − z}
]

× λP0[z + (1 − z)R∗(λ)] + λP0 (34)
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Utilizing equation (33) in (32) and by simplifying we get

Q2(0, z) =
[ {[1 − V ∗(λb(1 − z))] + V ∗(λb)[1 − (q + pS∗

2 (λb(1 − z)))S∗
1 (λb(1 − z))]}

V ∗(λb){[z + (1 − z)R∗(λ)][q + pS∗
2 (λb(1 − z))]S∗

1 (λb(1 − z)) − z}
× λpP0[z + (1 − z)R∗(λ)] + λpP0

]
S∗
1 (λb(1 − z)) (35)

Substituting equations (33)-(35) in equations (21)-(23) and after some algebraic manipula-
tion, we obtain,

P(x, z) =
[ [1 − V ∗(λb(1 − z))] + V ∗(λb)[1 − (q + pS∗

2 (λb(1 − z)))S∗
1 (λb(1 − z))]

V ∗(λb){[z + (1 − z)R∗(λ)][q + pS∗
2 (λb(1 − z))]S∗

1 (λb(1 − z)) − z}
]

× λzP0[1 − R(x)] e−λx

Q1(x, z) =
[

λP0{[1 − V ∗(λb(1 − z))][z + (1 − z)R∗(λ)] + (1 − z)R∗(λ)V ∗(λb)}
V ∗(λb){[z + (1 − z)R∗(λ)][q + pS∗

2 (λb(1 − z))]S∗
1 (λb(1 − z)) − z}

]

×[1 − S1(x)]e−λb(1−z)x

Q2(x, z) =
[ {[1 − V ∗(λb(1 − z))][z + (1 − z)R∗(λ)] + (1 − z)R∗(λ)V ∗(λb)}
V ∗(λb){[z + (1 − z)R∗(λ)][q + pS∗

2 (λb(1 − z))]S∗
1 (λb(1 − z)) − z}

]

× λzP0S
∗
1 (λb(1 − z))[1 − S2(x)]e−λb(1−z)x

G(x, z) = λP0
V ∗(λb)

[1 − V (x)]e−λb(1−z)x

��
Finally, integrating the above equations with respect to x from 0 to∞, the required results

(13)–(16) are obtained. At this point, the only unknown is P0, which can be determined
using the normalization condition P0 + P(1) + Q1(1) + Q2(1) + G(1) = 1. Let K (z) =
P0 + P(z)+ z[Q1(z)+Q2(z)]+G(z) be the probability generating function for the number
of jobs in the system and H(z) = P0 + P(z) + Q1(z) + Q2(z) + G(z) be the probability
generating function for the number of jobs in the orbit at stationary point of time.

Theorem 3 Under the stability condition λb[E(S1) + pE(S2)] < R∗(λ), the probability
generating function of the system size and orbit size distribution at stationary point of time
is given by:

K (z) = P0

{ {[z + (1 − z)R∗(λ)][1 − V ∗(λb(1 − z))] + (b − z)R∗(λ)V ∗(λb)}
bV ∗(λb){[z + (1 − z)R∗(λ)][q + pS∗

2 (λb(1 − z))]S∗
1 (λb(1 − z)) − z}

× [q + pS∗
2 (λb(1 − z))]S∗

1 (λb(1 − z))

+ (1 − b){zR∗(λ)V ∗(λb) − z[1 − R∗(λ)][1 − V ∗(λb(1 − z))]}
bV ∗(λb){[z + (1 − z)R∗(λ)][q + pS∗

2 (λb(1 − z))]S∗
1 (λb(1 − z)) − z}

}

(36)

H(z) = P0

{ [bz + (1 − bz)R∗(λ)][1 − V ∗(λb(1 − z))] + (1 − bz)R∗(λ)V ∗(λb)
bV ∗(λb){[z + (1 − z)R∗(λ)][q + pS∗

2 (λb(1 − z))]S∗
1 (λb(1 − z)) − z}

− (1 − b)[q + pS∗
2 (λb(1 − z))]S∗

1 (λb(1 − z))R∗(λ)V ∗(λb)
bV ∗(λb){[z + (1 − z)R∗(λ)][q + pS∗

2 (λb(1 − z))]S∗
1 (λb(1 − z)) − z}

}

(37)

where P0 is given in equation (17).
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5 Performance measures

We analyze some system performance measures of the retrial queueing system under study.
Differentiating equation (36) with respect to z and evaluating at z = 1, the mean number of
jobs in the system Ls is obtained as

Ls = Nr1

Dr1
+ Nr2

Dr2
where Nr1 = λ2b2[E(V 2) + 2E(V )(E(S1) + pE(S2))] + 2λb[E(V )(1 − R∗(λ))

+ (E(S1) + pE(S2))R
∗(λ)V ∗(λb)] + (1 − b){λ2b2[E(S21 ) + pE(S22 )

+ 2pE(S1)E(S2)]R∗(λ)V ∗(λb) + 2λbE(V )[R∗(λ) − 1] + λ2b2E(V 2)

×[R∗(λ) − 1]}
Nr2 = {λE(V ) + R∗(λ)V ∗(λb) + (1 − b){λ[E(S1) + pE(S2)]R∗(λ)V ∗(λb)

+ λE(V )[1 − R∗(λ)]}}{λ2b2[E(S21 ) + 2pE(S1)E(S2) + pE(S22 )]
+ 2λb[E(S1) + pE(S2)][1 − R∗(λ)]}

Dr1 = 2b{λbE(V ) + R∗(λ)V ∗(λb) + (1 − b){λE(V )R∗(λ)

+ λ[E(S1) + pE(S2)]R∗(λ)V ∗(λb)}}
Dr2 = 2{R∗(λ) − λb[E(S1) + pE(S2)]}{λbE(V ) + R∗(λ)V ∗(λb)

+ (1 − b){λE(V )R∗(λ) + λ[E(S1) + pE(S2)]R∗(λ)V ∗(λb)}}
Differentiating equation (37) with respect to z and evaluating z = 1, the mean number of
jobs in the orbit Lq is given by

Lq = Nr3

Dr3
+ Nr4

Dr4
where Nr3 = λ2b2E(V 2) + 2λb[1 − R∗(λ)] + (1 − b){λ2bE(V 2)R∗(λ)

+ λ2b[E(S21 ) + 2pE(S1)E(S2) + pE(S22 )]R∗(λ)V ∗(λb)}
Nr4 = {λ2b[E(S21 ) + 2pE(S1)E(S2) + pE(S22 )]

+ 2λ[E(S1) + pE(S2)][1 − R∗(λ)]}
Dr3 = 2{λbE(V ) + R∗(λ)V ∗(λb) + (1 − b){λE(V )R∗(λ)

+ λ[E(S1) + pE(S2)]R∗(λ)V ∗(λb)}}
Dr4 = 2{R∗(λ) − λb[E(S1) + pE(S2)]}

6 Stochastic decomposition

Stochastic decomposition has been widely observed among M/G/1 type queues with gen-
eralized vacations Fuhrmann and Cooper (1985), in which the vacations begins at the end of
each service time. Let Π(z) be the probability generating function of the number of jobs in
the M/G/1 queueing system (see Gross and Harris (2011)), in steady state at a random point
in time, χ(z) be the probability generating function of the number of jobs in the generalized
vacation at a random point in time given that the server is on vacation or idle, and K (z)
be the probability generating function of the random variable being decomposed. Then the
mathematical version of the stochastic decomposition law is

K (z) = Π(z)χ(z)
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The M/G/1 queueing system (see Gross and Harris (2011)), we have

Π(z) = [1 − λE(S)](1 − z)S∗(λ(1 − z))

S∗(λ(1 − z)) − z

To obtain an expression for χ(z), the generalized vacation is defined as

χ(z) = P0 + P(z) + G(z)

P0 + P(1) + G(1)

Using the equations (13), (16) and (17), we obtain

χ(z) = Nr

Dr
P0

where Nr = {{[z + (1 − z)R∗(λ)][1 − V ∗(λb(1 − z))] + b(1 − z)R∗(λ)V ∗(λb)}
× {[q + pS∗

2 (λb(1 − z))]S∗
1 (λb(1 − z)) − bz}

− (1 − b)z[1 − V ∗(λb(1 − z))]}{λbE(V ) + R∗(λ)V ∗(λb)
+ (1 − b){λE(V )R∗(λ) + λ[E(S1) + pE(S2)]R∗(λ)V ∗(λb)}}

Dr = b(1 − z){[z + (1 − z)R∗(λ)][q + pS∗
2 (λb(1 − z))]S∗

1 (λb(1 − z)) − z}
× V ∗(λb){λbE(V ) + R∗(λ)V ∗(λb) + (1 − b)λE(V )R∗(λ)

− λb[E(S1) + pE(S2)][λE(V ) + R∗(λ)V ∗(λb)]}
where P0 is given in (17).

7 Special cases

In this section, we analyze briefly some special cases of our model, which are consistent with
the existing literature.
Case 1: If b = 1 and p = 0, the model reduces to the M/G/1 retrial queue with general
retrial times and a single vacation. The probability generating function of the number of jobs
in the system K (z), the idle probability P0 and the mean system size Ls are obtained in the
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Fig. 1 P0 versus p for b = 0.1, 0.5, 0.9
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Fig. 2 P0 versus λ for p = 0.1, 0.5, 1
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Fig. 3 P0 versus θ for p = 0.1, 0.5, 1

following form andwhich are in accordancewith those of KrishnaKumar andArivudainambi
(2002).

P0 = [R∗(λ) − λE(S)]V ∗(λ)

λE(V ) + V ∗(λ)R∗(λ)

K (z) = P0{[1 − V ∗(λ − λz)][z + (1 − z)R∗(λ)] + (1 − z)R∗(λ)V ∗(λ)}S∗(λ − λz)

V ∗(λ){[z + (1 − z)R∗(λ)]S∗(λ − λz) − z]}
Ls = λE(S) + {λ2[E(V 2)] + 2λE(V )[1 − R∗(λ)]}{2[λE(V ) + R∗(λ)V ∗(λ)]}−1

+{λ2[E(S2) + 2λ[1 − R∗(λ)]E(S)}{2[R∗(λ) − λE(S)]}−1

Case 2: If V ∗(λ) = 1, b = 1 and p = 0, our model reduces to M/G/1 retrial queue
with general retrial times and two phases of service and this result is equivalent to the result
obtained by Choudhury (2009).
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Fig. 4 P0 versus θ for λ = 1, 5, 10
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Fig. 5 Ls versus p for b = 0.1, 0.5, 0.9

P0 = R∗(λ) − λ[E(S1) + pE(S2)]
R∗(λ)

K (z) = P0{(1 − z)[q + pS∗
2 (λ − λz)]S∗

1 (λ − λz)R∗(λ)}
[z + (1 − z)R∗(λ)][q + pS∗

2 (λ − λz)]S∗
1 (λ − λz) − z

Ls = λ[E(S1) + pE(S2)] + λ2[E(S21 ) + 2pE(S1)E(S2) + pE(S22 )]
2[R∗(λ) − λ(E(S1) + pE(S2))]

+ λ[1 − R∗(λ)][E(S1) + pE(S2)]
[R∗(λ) − λ(E(S1) + pE(S2)]

Case 3: If V ∗(λ) = 1, b = 1 and p = 0, we get an M/G/1 retrial queue with general retrial
times. In this case, the probability generating function of the number of jobs in the system
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Fig. 6 Ls versus λ for p = 0.1, 0.5, 1
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Fig. 7 Ls versus θ for p = 0.1, 0.5, 1

K (z), the probability of no job in the system P0 and the mean system size Ls can be rewritten
in the following form and the results agree with Gomez-Corral (1999).

P0 = R∗(λ) − λE(S)

R∗(λ)

K (z) = P0(1 − z)R∗(λ)S∗(λ − λz)

[z + (1 − z)R∗(λ)]S∗(λ − λz) − z

Ls = λE(S) + λ2E(S2) + 2λE(S)[1 − R∗(λ)]
2[R∗(λ) − λE(S)]

Case 4: If R∗(λ) → 1, V ∗(λ) = 1, b = 1 and p = 0, our model is reduced to the M/G/1
queueing system. In this case, the probability generating function of the number of jobs in
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Fig. 9 Ls versus λ for θ = 1, 5, 10

the system K (z), the idle probability P0 and the mean system size Ls can be simplified to
the following expressions which are consistent with well known the P-K formula Gross and
Harris (2011).

P0 = 1 − λE(S)

K (z) = [1 − λE(S)](1 − z)S∗(λ − λz)

S∗(λ − λz) − z

Ls = λE(S) + λ2E(S2)

2[1 − λE(S)]
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Fig. 10 Ls versus b for θ = 1, 5, 10
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Fig. 11 P0 versus θ and λ

8 Numerical illustrations

In this section, some numerical results using Matlab in order to illustrate the effect of various
parameters on the main performance measures of the system is presented. Choosing arbitrary
values for the parameters λ = 10, μ1 = 20, μ2 = 25 and various values of parameters
b, p, θ and p such that the stability condition is satisfied.

Two dimensional graphs are drawn in Figs. 1–10. Figure 1 shows that the idle probability
P0 decreases for increasing optional service rate p with varying balking rate b. The idle
probability P0 decreases for increasing arrival rate λ with varying optional service rate p
as shown in Fig. 2. The probability value of P0 decreases for increasing retrial rate θ and
increasing arrival rate λ as shown in Figs. 3 and 4 respectively. Figure 5 shows that the mean
system size Ls increases for increasing optional service rate p with varying balking rate b.
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Figure 6 shows that the mean system size Ls increases for increasing arrival rate λ with
varying optional service rate p. The mean system size Ls increases for increasing retrial rate
θ with varying optional service rate p is shown in Fig. 7. Figure 8 shows that the mean system
size Ls increases for increasing retrial rate θ with varying arrival rate λ. Figure 9 shows that
the mean system size Ls increases for increasing arrival rate λ with varying retrial rate θ . In
Fig. 10, the mean system size Ls increases for increasing balking rate b with varying retrial
rate θ .

Three dimensional graphs are drawn in Figs. 11–18. The surface displays a downward
trend for P0 against increasing retrial rate θ and arrival rate λ as shown in Fig. 11. In Fig. 12,
the surface displays a downward trend for P0 against increasing p and θ . The surface displays
a downward trend for increasing p and b against idle probability P0 as shown in Fig. 13. For
increasing optional service rate p and arrival rate λ, the surface displays a downward trend for
the idle probability P0 as expected is shown in Fig. 14. The surface displays an upward trend
for Ls against increasing retrial rate and arrival rate as expected in Fig. 15. In Fig. 16, the
surface displays an upward trend for Ls against increasing p and θ . For increasing optional
service rate p and balking rate b, the surface displays an upward trend for Ls as expected is
shown in Fig. 17. In Fig. 18, the surface displays an upward trend for Ls against increasing
p and λ.

9 Conclusion

In this chapter, a single server retrial queueing systemwith general repeated attempts, balking,
second optional service and single vacation are considered. For this model, explicit expres-
sions are obtained for the probability generating function of the server state and the number
of jobs in the system and orbit are found using the supplementary variable technique. Various
performance measures and special cases have been analyzed. The general decomposition law
holds for this model also. The effect of various parameters on the performance measure are
illustrated numerically and graphically.
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