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Abstract The paper proposes a novel probabilistic model with chance constraints for locat-
ing and sizing emergency medical service stations. In this model, the chance constraints
are approximated as second-order cone constraints to overcome computational difficulties
for practical applications. The proposed approximations associated with different estimation
accuracy of the stochastic nature are meaningful on a practical uncertainty environment.
Then, the model is transformed into a conic quadratic mixed-integer program by employing
a conic transformation. The resulting model can be efficiently addressed by a commercial
optimization package. A special case is also considered and a class of valid inequalities is
introduced to improve computational efficiency. Lastly, computational experiences on real
data and randomly generated data are reported to illustrate the validity of the program.

Keywords Emergencymedical service ·Chance constraint · Second-order cone constraint ·
Valid inequality

1 Introduction

Designing an effective and optimal emergency medical service (EMS) system is of extreme
importance formetropolitan areas inmost countries since such a system could savemore lives
and improve the satisfaction level without increasing the burden of the tax payers. However,
it has never been a trivial process to design a good EMS system, especially for large cities. It
requires determination of the locations of emergency facilities (EMS stations) and the number
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of emergency vehicles (ambulances) to allocate to each facility under a limited budget and
perplexing facility conditions.

The present research is motivated by a real-world application, designing the EMS of the
metropolitan of Beijing, China. The existing EMS system in Beijing is not able to provide
high-quality services due to the fast growing population and quick changes in the geomet-
ric distribution of the population. In order to satisfy the growing demand for emergency
medical service with the limited budget, the existing system has to be reconfigured with the
consideration of EMS stations and demand sites.

Two major approaches have been proposed to solve the EMS design problem under
demand uncertainty. One is the queueing model-based approach, the other is the stochastic
programming-based approach (Essen et al. 2013). However, the computational complexity
of these approaches limits their applications (Snyder 2006; Beraldi and Bruni 2009).

In this work, we study an EMS design problem under demand uncertainty and propose
a novel formulation to overcome the limitation. We firstly formulate the EMS design prob-
lem as a probabilistic model with chance constraints. The concept of maximum number of
concurrent demands (MNCD) is introduced to estimate the number of emergency vehicles at
each station. We then derive closed-form approximations of the chance constraints that are
valid for three families of probability distributions. Such approximations allow the noncon-
vex chance constraints to be converted into convex second-order cone constraints and thus
make the problem computationally tractable.

The major contributions of our work are listed as follows. (1) A novel method is pro-
posed to approximate the chance constraints into a class of second-order cone constraints
characterized by the mean and variance of MNCDs. In doing that, we can apply the mean
and covariance of random variables, which can be obtained through statistical processing, to
construct the approximation and avoid identification of scenarios, which is extensively used
to linearize noncovex chance constraints (Snyder 2006). After using the conic transforma-
tion, the resulting model can be solved efficiently by commercial optimization packages. (2)
We provide managerial insights for designing an emergency medical service system through
a case study.

The remainder of the paper is organized as follows. Section 2 provides a literature review
on the EMS design. In Sect. 3, our EMS design problem is presented and formulated as a
probabilistic model with chance constraints. In Sect. 4, the probabilistic model is converted to
a conic quadratic program which can be efficiently solved. Section 5 considers a special case
of the program. Section 6 reports the computational experiences on real data and randomly
generated data. Managerial insights are explored as well. We conclude this study in Sect. 7.

2 Literature review

Numerous investigation efforts have been devoted to the EMS design problems (Marianov
and ReVelle 1995; Brotcorne et al. 2003; Coskun and Erol 2010; Li et al. 2011; Aringhieri
et al. 2013; Kou and Wu 2014). Early studies treated the EMS design as a deterministic
problem with the assumption that the emergency demands were known in advance. Yet,
this assumption is unlikely to be realistic. The emergency demands and the busy fraction
of the emergency vehicles usually vary with location and time. Since 1980s, the inherent
probabilistic feature of EMS, such as stochastic demands, has therefore received increasing
attention andmany probabilisticmodels have been developed in order to capturing this feature
(Aly and White 1978; Daskin 1983; ReVelle and Hogan 1989; Marianov and ReVelle 1996).
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There are twomajor approaches used in these studies for solving the EMSdesign problems
under demand uncertainty. The first approach relies on the queueing model (Silva and Serra
2007; Takeda et al. 2007;McLay 2009; Geroliminis et al. 2009; Iannoni et al. 2010; Chanta et
al. 2011) for evaluating the performance measures of the EMS system. The second approach
uses the stochastic programming paradigm. This approach often incorporates the chance
constraints in the formulation (Beraldi et al. 2004; Jia et al. 2007; Beraldi and Bruni 2009;
Noyan 2010; Murali et al. 2012; Lejeune 2013; Ozbay et al. 2013; Hong et al. 2014), and
provides probabilistic guarantees to a solution satisfying a given constraint (see the review
by ReVelle (1989)).

The most well-known queuing models for EMS location problems are the hypercube and
approximated hypercube models. Galvão and Morabito (2008) presented a comprehensive
literature review on the use of the hypercube queueing model for the EMS design. The hyper-
cube and approximated hypercube models were developed based on the spatially distributed
queueing theory and Markovian analysis approximations (Iannoni et al. 2009). It has been
shown that they are effective for planning server-to-customer systems. Iannoni et al. (2008)
further incorporateed the hypercube model into a genetic algorithm for analyzing EMS on
highways involving partial backup andmultiple dispatching of ambulances. Rajagopalan and
Saydam (2009) implemented the hypercubemodel to calculate the busy probabilities of EMS
stations and developed a heuristic search algorithm to solve a minimum expected response
location problem (MERLP). The model was applied to a real application from Mecklenburg
County (Greater Charlotte), North Carolina and promising results were obtained. Geroliminis
et al. (2011) integrated the hypercube model into a location model and deployed emergency
response units in a real case. A genetic algorithm-based two-step approach was developed
to solve the resulting model. Baptista and Oliveira (2012) applied the approximated hyper-
cube model to assess alternative dispatching rules in operating Lisbon emergency medical
services. Toro-Díaz et al. (2013) developed a mathematical formulation that combined an
integer programming model representing location and dispatching decisions, with a hyper-
cube model representing the queuing elements and congestion phenomena. Davoudpour et
al. (2014) introduced a new probabilistic coverage model, which uses the ideas of the max-
imum expected covering location problem including the availability probability of queuing
model and the average requests arrival of Poisson process, and mixed them with the hyper-
cube queuing model. Although the idea of embedding the hypercube queueing model into
probabilistic models is to make them more adherent to the real world (Galvão and Morabito
2008), the resulting formulations are usually solved by metaheursitc algorithms due to the
computational complexity (Beraldi and Bruni 2009; Rajagopalan and Saydam 2009).

For the second approach, the major advantage of the chance constrained programming
technique lies in that its deterministic equivalent problemhas a limited programsize even if the
number of uncertain parameters can be large. Since the nonconvexity of chance-constrained
problems always causes computational difficulties, these studies usually convert chance con-
straints into linear deterministic equivalents. For example, Beraldi and Bruni (2009) used a
joint chance constraint to ensure that the probability of total emergency demands in a pre-
determined period less than the number of emergency vehicles at each demand site under
each scenario must be larger than a reliability level. They created a deterministic equivalent
scenario-based counterpart and applied the big-M method to solve the problem.

Noyan (2010) further introduced integrated chance constraints (ICCs) (Haneveld and
Vlerk 2006) into EMS system design. The ICCs proposed firstly by Klein Haneveld (1986)
were considered as relaxations of chance constraints and defined as expectation type con-
straints using maximal penalty functions. Given a scenario set and the corresponding
probabilities, the expectations were expressed to deterministic equivalent formulations. Then
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convex approximations of the generally non-convex feasible sets defined by chance con-
straints were obtained. However, this scenario based approach has the two major drawbacks
(Snyder 2006). One is the difficulty to identify scenarios. The other is that only a small num-
ber of scenarios can be identified due to computational cost, which limits the range of future
states for decision making.

Recently, chance constraints have been extensively used in general location-allocation
research. Murali et al. (2012) formulated a facility location problem to determine the medi-
cine distribution points in a large city and used chance constraints to address the demand
uncertainty. A locate-allocate heuristic was developed to solve the nonconvex program. Leje-
une (2013) investigatedmulti-period service level policies for stochastic demands, whichwas
applied in an opening problem of emergency operations centers. These service levels were
formulated as chance constraints that can be linearized with system of inequalities. Then, the
reformulated linear program can be solved by CPELX. Ozbay et al. (2013) proposed math-
ematical programming models with chance constraints in order to address incident response
and resource allocation problem.An enumeration algorithmproposed byPrekopa et al. (1998)
was applied to solve the nonlinear problem. Hong et al. (2014) proposed a risk-averse sto-
chastic modeling approach for a pre-disaster relief network design problem under uncertain
demand and transportation capacities. A chance constraint on the existence of a feasible flow
was introduced to ensure that the demand for relief supplies across the network is satisfied
with a specified high probability.

3 Problem statement and formulation

We consider an EMS network, which consists of multi candidate EMS stations and multi
demand sites. In this network, the EMS stations provide emergency services for the cor-
responding demand sites once occurring emergency demands such as traffic accidents and
emergent diseases. The demand at each site is uncertain and its mean, variance and covari-
ance are known in advance. Emergency vehicles at an EMS station have to arrive at the
demand sites that are serviced by this EMS station within a given time. We propose a model
to determine the location of EMS stations and the number of emergency vehicles at each
EMS station to minimize the expected total cost.

The following notations are used throughout this paper in order to simply the description.

Parameters

I set of demand sites, indexed by i
J set of candidate EMS stations, indexed by j
I j set of demand sites that can be covered by EMS station j , i.e., I j = {i ∈ I |ci j ≤ T }
Ji set of candidate EMS stations that can cover demand site i , i.e., Ji = { j ∈ J |ci j ≤ T }
T the maximal time length required for the service trip
f j (daily) construction cost at EMS station j
a j (daily) maintain and purchase costs of per emergency vehicle at EMS station j
ci j distance between demand site i and EMS station j
β unit transportation cost
ηi (daily) mean of demand at demand site i
di maximum number of concurrent demands (MNCD) occurred at demand site i with mean

of μi and variance of σ 2
i

α service level at each EMS station
M a large enough positive number
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Decision variables

Xi j percentage of demand at demand site i served by EMS station j
Y j 1, if a EMS station is constructed at candidate EMS station j ; 0, otherwise
N j number of emergency vehicles at EMS station j

For each EMS station, an individual chance constraint is expressed as follows:

P

⎛
⎝∑

i∈I j
di Xi j ≤ N j

⎞
⎠ ≥ α.

This constraint suggests that the probability that the sum of the maximum number of
concurrent demands (MNCDs) occurred at all the demand sites (di ) assigned to EMS station
j is no more than the number of emergency vehicles is larger than a predetermined service
level.

Note that although the individual chance constraints introduced above do not ensure to
attain a service level for the entire geographical area (Beraldi et al. 2004; Beraldi and Bruni
2009), these constraints are still adopted due to their easy manageability for each site since
we can apply a performance indicator decomposition procedure to decompose a service level
for the entire geographical area into a service level for each EMS station, and determine
an identical service level for each individual site exogenously so as to ensure high-quality
services.

Given the above constraints and notations, we formulate the EMS design problem as a
probabilistic model with the chance constraints as follows:

M : min
∑
j∈J

f j Y j +
∑
j∈J

a j N j +
∑
j∈J

∑
i∈I

βci jηi Xi j , (1)

s.t.
∑
j∈Ji

Xi j = 1, ∀i ∈ I, (2)

Xi j ≤ Y j , ∀i ∈ I, j ∈ J, (3)

N j ≤ MYj , ∀ j ∈ J, (4)

P

⎛
⎝∑

i∈I j
di Xi j ≤ N j

⎞
⎠ ≥ α, ∀ j ∈ J, (5)

0 ≤ Xi j ≤ 1, ∀i ∈ I, j ∈ J, (6)

Y j ∈ {0, 1}, ∀ j ∈ J, (7)

N j ∈ Z+, ∀ j ∈ J. (8)

This model minimizes the expected total cost, which is the sum of fixed costs of constructing
EMS stations (daily amortization of the cost of establishing the EMS station), maintenance,
and purchasing costs of emergency vehicles as well as the expected transportation costs
between EMS stations and corresponding demand areas. Constraint (2) requires that the
demand of each site is completely assigned to the associated EMS stations. Constraints (3)
and (4) imply that demand sites and emergency vehicles can only be assigned to open EMS
station, respectively. Constraint (5) is the chance constraints, which has been described above.
Constraint (6) represents the range of Xi j . Constraints (7) and (8) are standard binary and
integral constraints.
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4 Reformulation

It is intractable to solve the proposed program due to the non-convexity of chance constraints
(5) (Haneveld and Vlerk 2006). Traditionally, these constraints were linearized using sce-
nario based approaches (Haneveld and Vlerk 2006; Beraldi and Bruni 2009; Noyan 2010).
However, the drawbacks of the scenario based approach limit its applications in the network
design (Snyder 2006).

Approximation methods for linearizing chance constraints have increasingly attracted
attentions in other application fields such as network design (Baron et al. 2011) and portfolio
optimization (Bonami and Lejeune 2009). Bonami and Lejeune (2009) studied a probabilistic
constraint that is expressed as:

P
(
ξ T X ≥ R

)
≥ α,

in which the coefficients ξ multiplying the decision variable X are stochastic and not (neces-
sarily) independent, guarantees that the expectation of ξ T X is above the prescribed minimal
level of return R with a high probability α. If random variable ξ follows symmetric or posi-
tively skewed probability distributions and α ∈ [0.5, 1), then a class of convex approximation
was derived, which is expressed as

μT X + F−1(1 − α) ‖ Σ
1
2 X ‖2≥ R.

in which F−1(1−α) is the (1−α)-quantile of F which is cumulative probability distribution
of normalized ξ T X ,Σ is variance-covariancematrix of ξ . The approximation has beenwidely
used in the robust optimization methodology (Ben-Tal et al. 2009) and differs in terms of
their conservativeness.

Inspired by these approximation methods, we propose a novel approach to approximate
chance constraints (5) to a second-order convex cone constraints without the assumption of
independence of MNCDs as describe blow.

Theorem 1 Let D j = ∑
i∈I di Xi j . The chance constraint

P(Dj ≤ N j ) ≥ α, (9)

can be approximated as the following second-order cone constraint

μT X̄ j + α̂ ‖ Σ
1
2
j X̄ j ‖2≤ N j , (10)

where, X̄ j = (X1 j , X2 j , · · · , Xnj )
T , μ = (μ1, μ2, · · · , μn)

T , μi = E[di ], n = |I |, Σ j is
variance-covariance matrix of D j , and

α̂ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
α

1−α
, if di is a arbitray random variable,√

1
2(1−α)

, if di is a symmetric random variable, α ∈ [0.5, 1)√
2

9(1−α)
, if di is a unimodal symmetric random variable, α ∈ [0.5, 1).

Proof See Appendix 8. ��
In comparison with the work of Bonami and Lejeune (2009), we propose a second-order

convex approximation for a different type of probability constraint. Moreover, the proposed
approximation can be applied to three types of random variables, which follow arbitrary,
symmetric and unimodal symmetric probability distributions, respectively. To the best of
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our knowledge, it is the first study which applies this type of constraints to design an EMS
system.

Substitute constraint (5) with constraint (10), the resulting model is a conic quadratic
mixed-integer program (CQMIP), which is defined as follows:

Definition 1 A conic quadratic mixed-integer program (CQMIP) is an optimization problem
of the form:

minc′x
s.t. ‖ Ai x + bi ‖2 ≤ d ′

i x + ei , i = 1, . . . , p,

where x ∈ Z
n × R

m , Ai ∈ Rni×(n+m), ‖ · ‖2 is the Euclidean norm, and all parameters are
rational.

The type of the program can be solved efficiently by branch-and-cutmethod in commercial
optimization package.

Note that

Remark 1 Constraint (4) is redundant because inequality (10) guarantees that Xi j ≤ N j .

Remark 2 Constraint (2) ensures that Xi j ≤ 1.

And, employing a conic transformation to linearize inequality (10), we further reformulate
the model as follows:

M a : min
∑
j∈J

f j Y j +
∑
j∈J

a j N j +
∑
j∈J

∑
i∈I

βci jηi Xi j , (11)

s.t.
∑
j∈Ji

Xi j = 1, ∀i ∈ I, (12)

Xi j ≤ Y j , ∀i ∈ I, j ∈ J, (13)

μT X̄ j + α̂Wj ≤ N j , ∀ j ∈ J, (14)

Wj ≥‖ Σ
1
2
j X̄ j ‖2, ∀ j ∈ J, (15)

Y j ∈ {0, 1}, ∀i ∈ I, j ∈ J, (16)

N j ∈ Z+, ∀ j ∈ J, (17)

Xi j ,Wj ∈ R+, ∀ j ∈ J. (18)

where Wj is an auxiliary variable.
We illustrate a potential advantage of the proposed method by comparing our model with

the model proposed by Beraldi et al. (2004). In which, the following chance constraints are
mentioned.

P

⎛
⎝∑

j∈Ji

ni j ≥ di

⎞
⎠ ≥ α, ∀i ∈ I, (19)

where ni j denotes the number of emergency vehicles located at j that are used to cover
the service requests at the demand site i . Constraint (19) ignores the correlation among the
demand sites. According to Theorem 1, the chance constraint (19) is approximated as:

μi + α̂σi ≤
∑
j∈Ji

ni j , ∀i ∈ I. (20)
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Then, we derive the following property and the benefit of capacity pooling is illustrated.

Property 1 In comparison to the model with chance constraint (20), M a estimates less
number of emergency vehicles used in a station.

Proof See Appendix 9. ��
It implies that at a given service level the higher utilization of the emergency vehicles at

each station can be achieved due to the value of pooling capacity (Jain 2007) and therefore
the cost can be reduced.

5 A special case

In practical applications, the following two assumptions are often made (Beraldi and Bruni
2009; Toro-Díaz et al. 2013):

– one demand site can only be served by one EMS station;
– the MNCDs among the demand sites are independent.

Therefore, Xi j is redefined as a binary variable: 1, if demand site i is served byEMS station
j ; 0 otherwise. The problem becomes more complicated because more binary variables are
presented. We introduce a class of valid inequality to speed up the solution process.

Constraint (15) is rewritten:

Wj ≥
√∑

i∈I
σ 2
i X

2
i j , ∀ j ∈ J, (21)

Property 2 The RHS of Constraint (21) is a submodular function.

Proof Refer to Atamtürk and Narayanan (2008). ��
For this kind of submodular function, a class of valid inequality can be added to the model

for improving the computational efficiency.

Theorem 2 DefineQ f as the lower convex envelopeof the sets of solutionswhichConstraints
(21) are hold, i.e.,

Q f = conv

⎧⎨
⎩Wj ∈ R : Wj ≥

√∑
i∈I

σ 2
i X

2
i j

⎫⎬
⎭ .

Then, the inequality
∑

i∈I πi Xi j ≤ Wj is valid for Q j , where πi =
√∑

i∈S(i)
σ 2
i −√∑

i∈S(i−1)
σ 2
i , S = {i |Xi j = 1} and S(i) = {(1), (2), · · · , (i)}, 1 ≤ i ≤ |I | for some

permutation.

Proof Note X2
i j = Xi j and define g(S) = √

σ(S), where σ(S) = ∑
i∈S σ 2

i . Since it is a

submodular function, πi = √
σ(S(i)) − √

σ(S(i−1)) is an extreme point of the polyhedron
associated with the submodular function g (Edmonds 1970). The polyhedron is named as
extended polymatriod (EPg) (Schrijver 2003) and is defined as:

EPg :=
{
π ∈ RN |π(S) ≤ g(S)

}
.

Therefore, π(S) ≤ g(S) ≤ Wj . ��
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The separation problem for the inequality can be computed by a greedy algorithm
described in Wolsey and Nemhauser (1999) and Atamtürk and Narayanan (2008). Then,
the valid inequality is added to the root node of the branch and bound tree.

6 Computational experiences

We report the computational experience in this section in order to assess and validate our
model. We code the model using CPLEX12.1 and the experiments are carried on SUN
Fire X4600 server with Solaris 10 X86-64 OS. The MIQCP solver of CPLEX 12.1, which
solves CQMIP relaxations at the nodes of the branch-and-bound tree, was used to solve the
model.

6.1 Design of computational experiments

Two types of test data are used to test the performance of our algorithm.
Firstly, we apply the proposed model to several problem instances which come from a

real application of designing the EMS of the metropolitan of Beijing, China. We assume
that each site is a demand site as well as a candidate EMS station. Note that all of the data
used in the instances was collected empirically. The detailed records of vehicle dispatching
history in 2005 were used including the request time, site, phone number etc. Three datasets
with the number of candidate EMS stations 30, 50, 69 were considered in the computational
experiments. The 30-dataset and 50-dataset were subsets of the 69-dataset generated by
taking first 30 and 50 data points from the 69-dataset.

Secondly, test data are generated randomly to evaluate the efficiency of the approach for
large scale instances.

The parameters used in the model were determined as follows.

– The cost-related parameters were determined empirically. We assume that fixed asset
investment will be depreciated straight-line to zero over ten years. Consequently, the
(daily) construction cost at EMS stations was 50. The (daily) maintaining and purchasing
costs of an emergency vehiclewas 2. The service level (α) is {95, 96, 97, 98, 99%} and the
unit transportation cost (β) is set to {1, 2, 5, 10, 20, 50}. For the demand realization, it is
generated based on the historical data of emergency calls. We made statistical processing
to make the data available for our model. We use the mean daily number of emergency
calls to represent the mean of demand (η) at the corresponding demand site. According
to the national standard, the coverage distance threshold of an EMS station is ranged
from 3∼15 km in center area and 10∼50 km in urban fringe area. We set ci j to be the
distance between EMS station j and demand site i if the current serving area of demand
i is also within the coverage distance of EMS station j . And we replace the unavailable
value in the distance matrix with a large enough positive number (M).

– To calculate MNCD, we assume that the average time of an emergency task is one hour.
It is a reasonable time required for the service trip according to the national standard. The
assumption is also applied in Beraldi et al. (2004) and Noyan (2010). At a demand site,
suppose the first call comes on 1 o’clock, we count the number of emergency calls come
in the subsequent one-hour period and a number of concurrent demand (NCD) during
this time period is obtained. We repeat it again on the second emergency call till to the
last one. If there are S calls in one day, we can obtain S − 1 NCDs and MNCD is the
maximum one.
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Fig. 1 Performance of the algorithm: di is a arbitrary random variable

6.2 Performance of the approach

We test the performance of the approach as follows. For each dataset, we generate ten test
instances by multiplying the values of the real data and the fixed costs by (1 + ε), where ε

is drawn from a uniform [−0.1, 0.1]. For different unit transportation costs (β) and service
levels (α), the average running times of ten instances are shown graphically in Figs. 1, 2 and
3, which are associated with the different type of MNCD, respectively. In each subfigure,
X-axis indicates the number of candidate EMS stations and Y-axis refers to the running time.
And, the average running times of the instances with different service level from 0.95 to 0.99
are reported.

From the extensive computational experiments, we find that:

– the optimal solutions of the all instances can be found in a reasonable amount of time;
– the impact of the unit transportation cost β on the running time seems to be intricate.

As the number of candidate EMS stations increases from 30 to 69, the running time
increases when the unit transportation cost is cheap (β = 1, 2, 5, 10). However, once
the unit transportation cost becomes expensive (β = 20, 50), the running time no longer
increases monotonically with the number of the candidate EMS stations. When β = 20
and 50, some instances exhibit shorter running times when considering more candidate
EMS stations.

– the impact of the service level (α) and the type of MNCD on the running time is insignif-
icant.

Furthermore, several test data are generated randomly by using the following parameter
values (Table 1) to test the efficiency of the approach for large scale instances.

The means and the covariance matrix of the MNCDs are drawn from several series of
[d1, d2, · · · , d|I |] whose elements are generated uniformly from [0.1, 10]. We use them to
simulate the three types of MNCDs because the means and the covariance matrix are used
only in the model. The other parameter values are set to the same values as these used in the
previous computational experiments.
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Fig. 2 Performance of the algorithm: di is a symmetric random variable
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Fig. 3 Performance of the algorithm: di is an unimodal symmetric random variable

For each group of the parameter values, five instances are generated and the average
running time and the optimal gaps are reported in Table 2. The first column lists the numbers
of candidate EMS stations and demand sites. The following two columns show the average
running times and average optimal gaps, respectively. Although the running time increases
significantly when the number of candidate site increases, it is expected for the planning
problem. Also, the computations become efficient when we estimate the MNCDs more
accurately.

The performance of the valid inequality
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Table 1 Parameter values used
to generate test data

Parameter Value

|I |, |J | : 100, 150, 200

f j : Uniformly drawn from [25, 75]

a j : Uniformly drawn from [1, 3]

ci j : Uniformly drawn from [3, 50]

η : Uniformly drawn from [0.1, 5]

di : Uniformly drawn from [0.1, 10]

β : 5

α : 0.99

Table 2 Performance of the
approach, time limits = 7200 s

|I | × |J | Average running time (s) Average optimal gap (%)

di is an arbitrary random variable

100 × 100 2901.0 0.0010

150 × 150 7211.3 0.5278

200 × 200 7229.3 2.495

di is a symmetric random variable

100 × 100 1911.3 0.0010

150 × 150 7211.6 0.5421

200 × 200 7235.7 1.0285

di is an unimodal symmetric random variable

100 × 100 1686.0 0.0010

150 × 150 7208.8 0.5931

200 × 200 7232.3 0.8337

In the rest of this section, a comparison between CPLEX with and without the valid
inequality is made to test the performance of the valid inequality for the special case. The
same test data are used and the covariances of the MNCDs betweens two different demand
sites are set to be zero. The valid inequality is added to the root node of the branch and bound
tree and the default setting of CPLEX is used. The results are reported in Table 3. The first
column shows the number of candidate sites. The sequent two columns report the running
time, optimal gaps when directly using CPLEX to solve the problem. The last three columns
report the running time, optimal gaps, and the number of the valid inequalities added when
using CPLEX with the valid inequality to solve the problem. The model associated with
the special case become computational intractable. The instances with more candidate sites
(> 100) can not find a feasible solution within the time limits. As shown in Table 3, CPLEX
with the valid inequality outperforms CPLEX without the valid inequality in terms of both
quality of solutions obtained and computational time.

6.3 Validity of the second-order cone constraint

We test the valid of the approximation of Constraint (5) by Monte Carlo simulation. Under
different service level (α) and three kinds of the MNDC (arbitrary, symmetric, and unimodal
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Table 3 Comparisons between CPLEX with and without the valid inequality, time limits = 7200 s

|I | × |J | CPLEX CPLEX + CUTS

CPU time (s) Gap (%) CPU time (s) Gap (%) Num. of cuts

30 × 30 76.4 0.0100 36.31 0.0099 37

50 × 50 5378.5 0.0100 2187.0 0.0100 26

69 × 69 7208.9 2.7340 7210.9 2.3735 18

90 × 90 7202.0 − 7202.8 4.0191 25

100 × 100 7201.3 135.6400 7200.8 89.7530 22

– means that the instance can not find a feasible solution within the time limits

symmetric), a Monte Carlo simulation procedure is summarized as follows. First, we solve
the problem with the 50-dateset. And, the optimal EMS networks and the corresponding
ambulance numbers at each EMS station are obtained. Then, we generate the MNCD at each
demand site by assuming that the MNCD follows Normal distributions with the same means
and variance-covariance matrix with those of the 50-dateset. At last, the MNCDs generated
at the demand sites are served partially or completely by the EMS stations that are assigned
to those demand sites. At each EMS station, the number of MNCDs and the ambulances are
recorded. For each type of MNCD and each service level, one million of experiments are
carried out and the ratio of the number of experiments that the number of MNCDs is less
than the number of ambulances to the total experiments is the approximated service level of
the EMS station.

The ratios are reported in Table 4. The first column lists the open EMS stations. “A”, “S”,
and “U” in the first row refer to that the MNCD is arbitrary, symmetric, and unimodal sym-
metric random variables, respectively. Spaces in the table refer to that the corresponding EMS
station is not constructed under that condition. As shown in the table, all the approximated
service levels exceed the predetermined service level (α), which implies that the approxima-
tion of constraint (10) is valid. Moreover, the approximated service levels become smaller if
we can estimate the distribution of the MNCD more exactly, which implies the reduction of
the costs.

The rows labeled by “Service levelnorm” list the service levels when we assume the
MNCDs follow Normal distributions, which are determined by searching the values of α̂

from the standard Normal distribution table. Under different α, the minimal approximated
service levels are exactly approximated to that service levels when the MNCDs are symmet-
ric (columns with label of “S (%)” in the table) or unimodal symmetric random variables
(columns with label of “U (%)” in the table) that are the properties of a Normal distribution
function.

6.4 Sensitivity analysis

In order to explore the behavior of the system, we carry out sensitivity analysis on the model
parameters. The number of candidate EMS stations is 69 and an extensive computational
study is performed. In Figs. 4 and 5, the black and white bars with numbers represent the
total numbers of EMS stations and emergency vehicles respectively. The curve indicates the
optimal objective value. And, the X-axis in Figs. 4 and 5 refer to the unit transportation costs
and service levels, respectively. The left Y-axis indicates the number of EMS stations and
emergency vehicles and the right Y-axis means the optimal value of the objective function.
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Table 4 Approximated service levels obtained from Monte Carlo simulation, |I | × |J | = 50 × 50, β = 5

Open EMS α = 60% α = 70% α = 80%

A (%) S (%) U (%) A (%) S (%) U (%) A (%) S (%) U (%)

2 89.69 86.90 77.23 93.66 90.13 80.53 97.86 94.29 85.39

5 90.79 86.84 77.20 93.24 93.19 80.62 97.73 94.26 85.45

17 88.95 86.87 77.26 93.65 90.14 80.54 97.75 94.30 85.41

20 88.95 86.80 77.20 93.69 90.13 80.57 97.70 94.32 85.35

21 88.95 86.82 77.26 93.69 90.16 80.56 97.73 94.31 85.43

24 88.97 86.87 77.12 94.49 90.15 80.55 97.73 94.30 85.38

26 88.96 86.85 77.16 92.97 91.66 80.75 97.74 94.30 85.39

30 88.94 86.78 77.18 93.72 90.16 81.21 97.75 94.33 85.38

31 88.94 86.91 77.17 94.37 90.16 80.49 97.70 94.32 85.42

32 88.96 86.88 77.27 93.70 90.15 92.17 97.81 94.30 85.38

35 95.41 96.85 77.25 96.43 96.95 80.49 97.50 97.48 97.50

37 88.96 86.70 79.18 95.82 95.80 79.23 95.83 95.79 86.81

39 89.01 86.77 77.15 93.71 90.16 79.79 97.73 94.34 85.39

41 90.30 90.29 80.26 95.95 90.25 80.24 98.59 95.93 88.82

43 88.96 86.78 77.63 93.67 90.18 79.73 97.72 94.34 85.44

44 88.95 85.65 78.97 93.67 90.16 80.98 97.74 94.34 85.39

45 89.83 86.76 84.41 93.66 90.20 84.46 97.73 96.25 87.20

46 89.05 86.80 77.13 93.68 90.95 80.51 97.74 94.32 85.45

Service levelnorm 94.31 86.82 77.20 96.61 90.17 80.53 98.73 94.31 85.41

Open EMS α = 90% α = 95% α = 99%

A (%) S (%) U (%) A (%) S (%) U (%) A (%) S (%) U (%)

2 99.87 99.01 93.21 100.00 99.93 98.24 100.00 100.00 100.00

5 99.91 98.70 93.19 100.00 99.91 98.24 100.00 100.00 100.00

17 99.87 98.74 93.18 100.00 99.94 98.24 100.00 100.00 100.00

20 99.86 98.75 93.24 100.00 99.92 98.25 100.00 100.00 100.00

21 99.86 98.72 93.18 100.00 99.92 98.25 100.00 100.00 100.00

24 99.86 98.73 93.50 99.91 98.26

26 99.91 98.74 92.95 100.00 99.93 98.25 100.00 100.00 100.00

28 100.00 100.00 100.00

30 99.87 98.72 93.22 99.91 98.26

31 99.87 98.45 93.18 100.00 99.94 98.25 100.00 100.00 100.00

32 99.87 98.74 93.16 100.00 99.92 98.25 100.00 100.00 100.00

35 96.82 98.73 94.78 100.00 99.92 98.25 100.00 100.00 100.00

37 99.86 99.06 95.81 100.00 99.84 98.79 100.00 100.00 100.00

39 99.87 99.16 93.21 100.00 99.93 98.25 100.00 100.00 100.00

41 99.58 98.73 93.23 100.00 99.92 98.95 100.00 100.00 100.00

43 99.86 98.73 93.18 100.00 99.92 98.03 100.00 100.00 100.00

44 99.86 98.74 93.19 100.00 99.93 98.24 100.00 100.00 100.00

45 99.88 98.73 94.11 100.00 99.92 99.50 100.00 100.00 100.00

46 99.87 98.75 93.21 100.00 99.92 98.26 100.00 100.00 100.00

Service levelnorm 99.92 98.73 93.20 100.00 99.92 98.25 100.00 100.00 100.00

123



Ann Oper Res (2015) 229:813–835 827

Figure 4 shows that the higher unit transportation cost (β) leads to more expensive trans-
portation cost and then more EMS stations are constructed and more emergency vehicles are
needed. As shown in Fig. 5, in order to obtain the higher service level, total costs increase
and more emergency vehicles are maintained. While, the number of EMS stations has a little
impact on the service level. It implies that it is a preferred decision for improving the service
levels to invest to emergency vehicles instead of to EMS stations. Furthermore, the number
of EMS stations shows a tiny decrease in case of service levels 98%. The similar results are
also observed in other instances (For example, β = 2 and 10 in Figs. 7, 8 and 9 in Appendix
10). Therefore, it is interesting to note that sometimes construction of more EMS stations
has a negative impact on the service level of the system.

The benefit of accurate evaluation of the random MNCD is found as well. As shown
in Table 5, with fixed unit transportation unit and service level, the total costs are cut
down and the number of emergency vehicles also decreases if more accurate estimation
of the distribution of the MNCD is carried out. The number of EMS stations is affected
a little. The same conclusion can be drawn from the instances shown in Figs. 7, 8 and 9
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Fig. 4 Number of EMS stations and emergency vehicles and optimal objective value as β varies: di is an
unimodal symmetric random variable
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Fig. 5 Number of EMS stations and emergency vehicles and optimal objective value as α varies: di is an
unimodal symmetric random variable
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Table 5 The numbers of EMS stations and ambulances and the optimal objective values of the instance with
|I | × |J | = 69 × 69 and β = 5

α (%) Number of EMS stations Number of ambulances Optimal objective value

A S U A S U A S U

95 35 35 35 226 190 159 9098.98 9026.30 8965.02

96 35 35 35 242 200 167 9131.32 9050.42 8982.81

97 35 35 35 263 218 178 9176.28 9083.42 9000.21

98 34 34 35 296 241 193 9250.94 9135.62 9037.78

99 34 34 35 381 299 236 9423.81 9256.62 9121.18

in Appendix 10. Therefore, a cost-efficient network with less emergency vehicles can be
designed. The drawbacks of the accurate evaluation are that high quality historical data are
needed.

Moreover, for different type of MNCD (di ), the location and the size of EMS stations
may be different even the total number of EMS stations is identical. Figure 6 illustrates the
location and size of EMS stations in two instances that have the idential total number of EMS
stations. The number associated with each EMS station represents the number of emergency
vehicles in that station. EMS station in rectangle uniquely emerges in the corresponding
figure. We also observe that the change of service level (α) impacts the location and the size
of EMS stations. Thus, greedy algorithms that myopically add/remove EMS stations to the
solution are not likely to be very effective.

7 Conclusions

To handle the inherent uncertainty of EMS, we propose a probabilistic model with chance
constraints to determine the location of EMS stations and the number of emergency vehi-
cles at each station. A mean-variance constraint, which is well studied in finance applica-
tions, is derived. Then, the original model is transformed to a conic quadratic mixed-integer
program by approximating the chance constraints as a second-order cone constraints and
employing a conic transformation. The advantages of the resulting model are as follows:
(1) from the modeling perspective: both mean and variance of the MNCD are taken into
consideration and independence among the demand sites are relaxed; (2) from the com-
putational perspective: it is a convex program and the computational experiments on real
data show that it is capable of addressing the cases with practical scales in a reasonable
time.

According to the numerous computational studies, we find that (1) the proposed model
performs well when solving problems of practical sizes; (2) the number of the emergency
vehicles has significant impact on the service level of the system. Therefore, it is a more
cost-efficient method for improving the service levels to increase the number of emergency
vehicles instead of the number of EMS stations. (3) Moreover, more accurate estimation of
MNCD from historical data contributes to the design of cost-efficient EMS system. (4) The
different value of the parameters (service level, distribution of MNCD, etc) has impact on the
location and sizing decisions of EMS stations. Therefore, greedy algorithms that myopically
add/remove EMS stations to the solution, which is generated from less accurate estimation
of MNCD, are not likely to be very effective.
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Fig. 6 Location and size of each EMS station, total number of constructed EMS stations=42, α = 0.95,
β = 10
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Finally, we suggest some avenues of further research. Firstly, robust optimization (RO) is
an alternative method used to deal with uncertainty if it is hard to extract exactly the distribu-
tion function from data. Secondly, this model can naturally be extended to a capacitated EMS
design problem and more efficient algorithms have to be proposed. Thirdly, a bi-objective
model with minimization of the response time and the costs is interesting as well.

8 The proof of Theorem 1

Proof D j = ∑
i∈I di Xi j and it follows probability distribution with mean μT X̄ j and vari-

ance X̄ T
j Σ X̄ j .

(1) For arbitrary random variable di , applying the following inequality (Popescu 2005)

P(Dj > N j ) ≤
⎧⎨
⎩

X̄ T
j Σ X̄ j

X̄ T
j Σ j X̄ j+(N j−μT X̄ j )

2 , i f N j − μT X̄ j > 0,

1, otherwise,

we obtain

1 − P(Dj ≤ N j ) ≤ X̄ T
j Σ j X̄ j

X̄ T
j Σ j X̄ j + (N j − μT X̄ j )2

,

P(Dj ≤ N j ) ≥ 1 − X̄ T
j Σ j X̄ j

X̄ T
j Σ j X̄ j + (N j − μT X̄ j )2

.

Therefore,

1 − X̄ T
j Σ j X̄ j

X̄ T
j Σ j X̄ j + (N j − μT X̄ j )2

≥ α

is sufficient for constraint (9) to hold. The expression above can be rewritten as

α X̄ T
j Σ j X̄ j ≤ (N j − μT X̄ j )

2(1 − α),

μT X̄ j +
√

α

1 − α

√
X̄ T

j Σ j X̄ j ≤ N j ,

μT X̄ j +
√

α

1 − α
‖ Σ

1
2
j X̄ j ‖2≤ N j .

(2) For symmetric randomvariablesdi , the following inequalities are hold (Popescu2005):

P(Dj > N j ) ≤
⎧⎨
⎩

1
2min

[
1,

X̄ T
j Σ j X̄ j

(N j−μT X̄ j )
2

]
, i f N j − μT X̄ j > 0,

1, otherwise.

Because α ∈ [0.5, 1), the following inequalities are satisfied in order to hold constraint
(9).
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P(Dj ≤ N j ) ≥ 1 − 1

2

X̄ T
j Σ j X̄ j

(N j − μT X̄ j )2
≥ α.

Then,

μT X̄ j +
√

1

2(1 − α)
‖ Σ

1
2 X̄ j ‖2≤ N j .

(3) For unimodal symmetric random variables di , the following inequalities are hold
(Popescu 2005):

P(Dj > N j ) ≤
⎧⎨
⎩

1
2min

[
1, 4

9
X̄ T

j Σ j X̄ j

(N j−μT X̄ j )
2

]
, i f N j − μT X̄ j > 0,

1, otherwise.

Using the same approach as that of the symmetric random variable, we can show the result
for the unimodal symmetric random variables:

μT X̄ j +
√

2

9(1 − α)
‖ Σ

1
2 X̄ j ‖2≤ N j .

Constraint (10) is a second-order cone constraint since ‖ Σ
1
2
j X̄ j ‖2 is convex. ��

9 The proof of Property 1

Proof The total number of emergency vehicles at EMS station j satisfies the following
inequality

∑
i∈I j

Xi j (μi + α̂σi ) ≤
∑
i∈I j

Xi j

∑

j ′ ∈Ji

ni j ′ =
∑
i∈I j

ni j = N j .

By Cauchy inequality we know that cov(ξη) ≤ [D(ξ)] 1
2 [D(η)] 1

2 , then

μT X̄ j + α̂ ‖ Σ
1
2
j X̄ j ‖2≤ μT X̄ j + α̂σ T X̄ j ≤ N j .

��

10 The computational results for three classes of the random MNCD

See Figs. 7, 8 and 9.
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Fig. 7 Number of EMS stations and emergency vehicles and optimal objective value: di is a arbitrary random
variable

Fig. 8 Number of EMS stations and emergency vehicles and optimal objective value: di is a symmetric
random variable

123



Ann Oper Res (2015) 229:813–835 833

Fig. 9 Number of EMS stations and emergency vehicles and optimal objective value: di is an unimodal
symmetric random variable
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