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Abstract This paper presents a robust optimization model for the design of a supply chain
facing uncertainty in demand, supply capacity and major cost data including transportation
and shortage cost parameters. We first present a base model that aims to determine the
strategic ‘location’ and tactical ‘allocation’ decisions for a deterministic four-tier supply
chain. The model is then extended to incorporate uncertainty in key input parameters using
a robust optimization approach that can overcome the limitations of scenario-based solution
methods in a tractable way, i.e. without excessive changes in complexity of the underlying
base deterministic model. The application of the approach is investigated in an actual case
study where real data is utilized to design a bread supply chain network. Numerical results
obtained frommodel implementation and sensitivity analysis experiments arrive at important
managerial insights and practical implications.
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1 Introduction and foundational literature background

Supply chain network design incorporates both strategic (long-term) and tactical (mid-term)
decisions. Strategic decisions typically concern the supply chain structure/configuration
(e.g. facility location decisions) with long-lasting impacts, generally over several years
(Aryanezhad et al. 2010; Bashiri et al. 2012; Cordeau et al. 2006). Tactical decisions deter-
mine an outline of the regular operations, in particular the flow quantities for a given supply
chain configuration (Fahimnia et al. 2013). Melo et al. (2009) review supply chain models
with respect to incorporated strategic and tactical decisions. They find that both strategic
and tactical decisions can be highly affected by various sources of uncertainty. Demand and
supply interruptions, lead time variability, exchange rate volatility, and capacity variations
are examples of such uncertainty sources (Esmaeilikia et al. 2014b).

A comprehensive review by Klibi et al. (2010) shows that ‘stochastic programming’ has
been the predominant technique to tackle uncertainty issues in the past studies. Although a
powerful approach for modeling non-deterministic problems form a theoretical perspective,
stochastic programming, in the context of supply chain management, has serious limitation
in real world applications. For instance, stochastic programming techniques usually require
the availability of probability distributions of random variables (Klibi et al. 2010), such as the
likelihood of an interruption occurrence and its magnitude of impact. Such historical data,
especially for those rare events, is limited or non-existent making it difficult or impossible
to estimate the actual distribution of uncertain parameters.

A popular type of stochastic programming for supply chain design problems under uncer-
tainty is scenario-based stochastic programming which considers a set of discrete scenar-
ios and their corresponding occurrence probabilities for random variables. Scenario-based
stochastic programming typically optimizes the expected value of the objective functions
without directly applying the decision makers’ preferences (Azaron et al. 2008). More
recently, robust scenario-based supply chain design models have been proposed to overcome
this drawback. Table 1 summarizes the characteristics of the published robust scenario-
based supply chain models. Most of these models are based on the approach introduced by
Mulvey et al. (1995), named robust stochastic optimization or scenario-based robust
approach. Mulvey et al. (1995) extended scenario-based stochastic programming by defining
the objective function as a mean-variance function incorporating risk measures and deci-
sion makers’ preferences in model formulation. Table 1 also shows the other scenario-based
supply chain models that use regret criterion. Regret criterion is defined as the difference
between the cost of a solution in a given scenario and the cost of the optimal solution for that
scenario (Assavapokeea et al. 2008a).

Solutions of a scenario-based robust model are highly dependent on the accuracy of the
defined scenarios and their occurrence probabilities. For example, the discrete probabilities
assigned to scenarios can have substantial impacts on the derived solutions. Solving such
models becomes more difficult as the number of scenarios increases, and this is the primary
reasonwhy scenario relaxationmethods (Assavapokeea et al. 2008b) or near optimal solution
methods like heuristics and meta-heuristics (Bozorgi-Amiri et al. 2012;Jabbarzadeh et al.
2012) have become more popular. In this paper, we present a robust supply chain design
model that enables determining the desirable robust decisions without the need to consider
different scenarios and their occurrence probabilities. The proposed model is based on a
robust optimization approach with interval data uncertainty (Bertsimas and Sim 2004).

The robust formulation with interval data uncertainty was first introduced in mathematical
programming by Soyster (1973). Soyster considered the uncertain technological coefficients
in the standard form of linear mathematical programming. In this methodology, the maxi-
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mum level of conservatism is incorporated in the model by substituting the supremum values,
or worst-case values, of the uncertain technological coefficients. The drawback of Soyster’s
approach is that the robust solution can be highly over- conservative in practical cases because
the probability at which uncertain parameters reach their worst values is as low as they
reach their normal values. More recent developments in robust optimization have focused on
the design of less conservative solution methods which are also computationally tractable.
Ben-Tal and Nemirovski (2000) proposed a robust formulation for the linear problem under
the box and ellipsoid uncertainty sets where uncertain parameters simultaneously take their
worst values resulting in conservative solutions. To reduce the conservatism of robust for-
mulation under the box uncertainty set, they defined ellipsoid uncertainty set which restricts
uncertain parameters to obtain their worst values at the same time by applying a parameter
to determine the magnitude of uncertainty. Under the ellipsoid uncertainty set, the model
complexity increases, and a linear problem becomes a second order cone problem (SOCP).

Baron et al. (2011) applied the robust approach of Ben-Tal and Nemirovski (2000) to
formulate uncertainties in demandparameter in amulti-period facility location problem.Their
approach changed the MILP deterministic model to a mixed integer conic program model
under the ellipsoidal uncertainty set. This robust formulation with interval data uncertainty
was more recently applied to tackle the uncertainty of the number of emergency calls and the
maximum number of concurrent calls in a bi-objective emergency medical service (EMS)
design problem (Zhang and Jiang 2014). The deterministic modelminimizes costs of locating
EMS stations, assigning demands to EMS stations and the number of vehicles per EMS
station. Using ellipsoidal uncertainty set, the deterministic MILP model is changed to a
conic quadratic mixed-integer program. The study finds that the increase in the number of
candidate EMS stations increases the computational efforts to a large extent.

Ben-Tal et al. (2004) introduced Adjustable Robust Counterpart (ARC) method which
allows uncertain parameters to be adjusted as parameter values become realized. ARC is an
infinite-dimensional problem and is computationally intractable. Dynamic programmingwas
applied to enhance the tractability of ARC formulation. In other studies, Tang (2006) and
Ben-Tal et al. (2011) demonstrated the application of AffinelyAdjustable Robust Counterpart
(AARC) in emergency logistics distribution and system optimum dynamic traffic assignment
problems. Despite the successful application of AARC in these problems, its performance
may be affected in situations where recourse variables contain high nonlinearity in terms of
the primitive uncertainties (Chen and Zhang 2009).

To overcome the conservatism issue in the approach proposed by Soyster (1973) and
computational intractability of methodologies proposed by Ben-Tal and Nemirovski (2000)
and Ben-Tal et al. (2004), a robust formulation was presented by Bertsimas and Sim (2004)
that has the flexibility of adjusting the conservativeness level of solutionswhile preserving the
computational complexity of the nominal problem. The method can be effective in modeling
complex optimization problems such as supply chain planning problem (Najafi et al. 2013;
Alem and Morabito 2012). In a more recent study, Hatefi and Jolai (2014) presented a robust
and reliable forward-reverse logistics model applying robust formulation of Bertsimas and
Sim (2004) to address demand uncertainty.

This paper presents a robust supply chain network designmodel that incorporates different
sources of uncertainty. The proposed model aims to simultaneously determine the strategic
location decisions and tactical allocation decisions for a supply chain comprised of multiple
suppliers, factories, warehouses and markets. Our model contributes to the existing literature
of robust supply chain design in the followings ways. Unlike most of the published robust
supply chain network design models that use scenario-based stochastic robust optimization
approaches, we adopt the robust formulation with interval data uncertainty introduced by
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Bertsimas and Sim (2004) to overcome the aforementioned limitations of scenario-based
models (e.g. dependency on the characteristics of scenarios defined as well as the com-
putational overhead for managing a large number of scenarios). Using our approach, the
model remains computationally tractable given the unchanged complexity of the underlying
deterministic model. Addressingmultiple uncertainty types including uncertainty in demand,
supply and the key cost components is another feature of the model presented in this paper.

The remainder of the paper is organized as follows. Section 2 describes the background of
robust optimization formulation. Problem statement and primary assumptions of the deter-
ministic supply chain design modelunder investigation arepresented in Sect. 3. Section 4
presents the robust formulation of the proposed deterministic model. The application of the
proposed robust model in a real world context is investigated in Sect. 5. Section 6 includes
a summary of the study and results, model and study limitations, and guidance for future
research.

2 Background of robust optimization

We first describe the framework of the robust formulation introduced by Bertsimas and Sim
(2004). Let us consider a linear mathematical programming model as:

Min
∑

i, j

ci j x j

S.t :
∑

j

ãi j x j ≥ bi ∀i

x j ≥ 0 ∀ j, (1)

where coefficients ãi j are uncertain. Let Ji be the set of uncertain coefficients in the i th
constraint. Each uncertain parameter ãi j for j ∈ Ji is a symmetric and bounded random
variable which takes values in interval [ai j − âi j , ai j + âi j ]. Where ai j is the nominal value of
the uncertain parameter and âi j denotes the perturbation/variation in each uncertain parameter
ãi j . For each i , a parameter Γi , not necessarily integer, is introduced. This parameter is called
uncertainty budget and adjusts the uncertainty level in each row varying in interval of [0, |Ji |].
The role of Γi is thus to adjust the robustness of the proposed method against the level of
solution conservatism. It seems unlikely that coefficient ai j , j ∈ Ji will change from its
nominal values. The robust formulation aims to protect against all cases that up to |Γi | of
these coefficients are allowed to change and coefficient ãi j changes by (Γi − �Γi�)âi j . As
a result, when Γi is set equal to zero, the constraints are equivalent to that of the nominal
problem. Similarly, when Γi is set equal to |Ji |, the robust model acts as conservative as in
the robust formulation of Soyster (1973). Varying Γ helps adjusting the conservatism level
of the robust formulation. Bertsimas and Sim (2004) proved that the nonlinear form of the
uncertain model (1) can be written as:

Min c′x

S.t :
∑

j

ai j x j − max
�

⎧
⎨

⎩
∑

j∈Si

âi j x j + (Γi − �Γi�)âi ti x j

⎫
⎬

⎭ ≥ bi ∀i

x ≥ 0 (2)

where� = {Si ∪{ti }|Si ⊆ Ji , |Si | = �Γi� , ti ∈ Ji\Si } defines the uncertainty set. Recall that
Si determines which coefficients can be changed by âi j , and ti shows the parameter which
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may change by (Γi −�Γi�)âi j . Suppose x∗ is the optimal solution of (2), Bertsimas and Sim
(2004) demonstrate that the i th constraint is protected by βi (x∗, Γi ) = max�{∑ j∈Si

âi j x∗
j +

(Γi − �Γi�)âi ti x∗
j } against uncertainty. The function βi (x∗, Γi ) is called protection function

and can be written as a linear optimization problem as follows:

βi (x
∗, Γi ) = max

⎧
⎨

⎩
∑

j∈Ji

âi j x∗
j wi j

⎫
⎬

⎭
∑

j∈Ji
wi j ≤ Γi

0 ≤ wi j ≤ 1 ∀ j ∈ Ji (3)

Since (3) is feasible and bounded for all Γi ∈ [0, |Ji |], its dual form is also feasible and
bounded according to the strong duality property. Substituting the dual form of (3) in (2), the
robust counterpart of the uncertain linear programming model is derived as:

Min
∑

j

c j x j

S.t :
∑

j

ai j x j − λiΓi −
∑

j∈Ji

μi j ≥ bi , ∀i

λi + μi j ≥ âi j x j ∀i, j ∈ Ji

μi j ≥ 0, ∀i, j ∈ Ji

λi ≥ 0, ∀i

x j ≥ 0, ∀ j (4)

where λi and μi j are dual auxiliary variables.
Note that this approach has the property that if up to Γi number of uncertain coefficients

perturb from their nominal values, the robust solution will remain feasible. If more than Γi

change in the i th constraint, the robust solution still remains feasible with the probability of:

P

⎛

⎝
∑

j

ãi j x∗
j > bi

⎞

⎠ ≤ 1 − �
(
Γi − 1/

√|Ji |
)

. (5)

In inequality (5), x∗
i is the optimal solution of the robust model, and �(θ) is the cumulative

distribution function of a standard normal random variable. Identical steps can be followed
to employ this robust formulation for uncertain coefficients of the objective function.

3 Formulation of the deterministic model

The objective is to design a supply chain network comprised of suppliers, factories, ware-
houses and markets. Suppliers provide the required raw materials to factories where a single
product type is produced to satisfy the market demands through a set of warehouses. Figure 1
illustrates the structure of this supply chain network. The goal is to determine the optimal
location of factories andwarehouses (strategic decisions) and the quantity ofmaterial shipped
from suppliers to factories, from factories to warehouses, and from warehouses to markets
(tactical decisions).

Primary assumptions include the followings:

(1) A shortage penalty is applied proportionate to unsatisfied market demand.
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Warehouses 
(Factories)

Factories MarketsSuppliers

Fig. 1 The schematic of the proposed supply chain network

(2) Candidate nodes for locating factories and warehouses are known.
(3) Direct product flow from factories to markets is not allowed.
(4) Suppliers and warehouses have limited and known capacities.

Parameters and decision variables are defined bellow.
Indices

H Set of suppliers (h = 1, . . . , l)
I Set of potential factory locations (i = 1, . . . , n)

E Set of potential warehouse locations (e = 1, . . . , t)
J Set of markets ( j = 1, . . . , m)

Parameters

d j Demand of customer j
ki Production capacity of a factory located at i
sh Supply capacity of supplier h
we Capacity of a warehouse located at e

f F
i Fixed cost of locating a factory at i

f W
e Fixed cost of locating a warehouse at e

cSF
hi Unit shipment cost from supplier h to factory i

cFW
ie Unit shipment cost from factory i to warehouse e

cW M
ej Unit shipment cost from warehouseeto market j

p j Unit penalty cost for unsatisfied demand at market j
ωi Raw material consumption coefficient in a factory i
θe Product consumption coefficient in factory/warehouse e

Decision variables

yi A binary variable, equal to 1 if a factory is opened at site i ; 0, otherwise.
ze A binary variable, equal to 1 if a warehouseis opened at site e; 0, otherwise.
xhi Quantity of raw material shipped from supplier h to factory i
uie Quantity of product shipped from factory i to factory/warehouse e
vej Quantity of product shipped from factory/warehouse e to market j
I j Quantity of unsatisfied demand at market j

The deterministic supply chain network design model is formulated as follows:
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Min F =
n∑

i=1

f F
i yi +

t∑

e=1

f W
e ze +

l∑

h=1

n∑

i=1

cSF
hi xhi

+
n∑

i=1

t∑

e=1

cFW
ie uie +

t∑

e=1

m∑

j=1

cW M
ej vej +

m∑

j=1

p j I j (6)

S.t :
n∑

i=1

xhi ≤ sh ∀ h (7)

d j −
t∑

e=1

vej ≤ I j ∀ j (8)

t∑

e=1

uie ≤ ki yi ∀ i (9)

m∑

j=1

vej ≤ weze ∀ e (10)

l∑

h=1

xhi = ωi

t∑

e=1

uie ∀ i (11)

n∑

i=1

uie = θe

m∑

j=1

vej ∀e (12)

xhi ≥ 0 ∀ h, i; uie ≥ 0 ∀ i, e; vej ≥ 0 ∀ e, j;
yi ∈ {0, 1} ∀ i; ze ∈ {0, 1} ∀ e; I j ≥ 0 ∀ j (13)

The objective function (6) minimizes the total network cost including the costs of locat-
ing factories and warehouses, transportation costs for the shipment of raw materials and
products (from suppliers to factories, from factories to warehouses, and from warehouses to
markets) and shortage/penalty costs. Constraint (7) expresses limitations in supply capacities.
Constraint (8) ensures that supply quantity does not exceed the market demands. Capacity
restrictions of factories and warehouses are expressed in constraints (9) and (10). Constraint
(11) ensures that the quantity of raw materials shipped to a factory is equal to the quantity of
products shipped from the factory to warehouses. Constraint (12) guarantees that the quantity
of products entered into a factory or warehouse is equal to the quantity of product leaving that
warehouse to market locations. It should be noted that θe would be equal to 1 in situations
when we have a warehouse in the third echelon of the supply chain.

4 The robust model formulation

This section aims to extend the deterministic model introduced in Sect. 3 to arobust optimiza-
tion model in which demand, supply and all cost parameters are considered uncertain. The
uncertain parameters f̃ F

i , f̃ W
e , d̃ j , s̃h, c̃SF

hi , c̃FW
ie , c̃W M

ej and p̃ j are bounded and distributed in

their correspondent intervalswith the nominal values of f F
i , f W

e , d j , sh, cSF
hi , cFW

ie , cW M
ej and

p j , and the maximum variations of f̂ F
i , f̂ W

e , d̂ j , ŝh, ĉSF
hi , ĉFW

ie , ĉW M
ej and p̃ j , respectively.
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For example, f̃ F
i belongs to the interval [ f F

i − f̂ F
i , f F

i + f̂ F
i ]. Given that the main concern

in a robust formulation is the impact of parameters’ worst case under uncertainty and that
only positive deviations in the uncertain parameters of the present logistics model, except
supply parameter(s̃h), can lead to the worst cases, we assume that only positive deviations in
f̃ F
i , f̃ W

e , d̃ j , c̃SF
hi , c̃FW

ie , c̃W M
ej and p̃ jparameters are allowed. The uncertainty budgets (	)

are also assumed to take only integer values.
In the following subsections, we first apply uncertainties to the cost parameters, except

the shortage cost. Next, demand and supply uncertainties are incorporated into the model.
The model is then extended to include uncertainties in shortage costs. The resulting robust
model is finally presented integrating uncertainty in all aforementioned parameters.

4.1 Uncertainty in cost parameters, except shortage cost

Assuming that parameters f̃ F
i , f̃ W

e , c̃SF
hi , c̃FW

ie , and c̃W M
ej are uncertain, by means of Equa-

tion (2), the nonlinear robust counterpart of the objective function can be written as:

Min F̃ =
n∑

i=1

f F
i yi +

t∑

e=1

f W
e ze

+
l∑

h=1

n∑

i=1

cSF
hi xhi +

n∑

i=1

t∑

e=1

cFW
ie uie +

t∑

e=1

m∑

j=1

cW M
ej vej +

m∑

j=1

p j I j

+ max
� f1� f2�C1�C2�C3

⎧
⎨

⎩
∑

j∈S f1

f̂ F
i yi +

∑

j∈S f2

f̂ W
e ye +

∑

(h,i)∈SC1

ĉSF
hi xhi

+
∑

(i,e)∈SC2

ĉFW
ie xie+

∑

(e, j)∈SC3

ĉW M
ej xej

⎫
⎬

⎭

� f1 =
{

S f1 |S f1 ⊆ J f1 , |S f1 | ≤ 	 f1
}

, J f1 =
{

i | f̂ F
i > 0

}
&	 f1 ∈ [0, |J f1 |]

� f2 =
{

S f2 |S f2 ⊆ J f2 , |S f2 | ≤ 	 f2
}

, J f2 =
{

e| f̂ W
e > 0

}
&	 f2 ∈ [0, |J f2 |]

�C1 =
{

SC1 |SC1 ⊆ J C1 , |SC1 | ≤ 	C1
}

, J C1 =
{
(h, i)|ĉSF

hi > 0
}
&	C1 ∈ [0, |J C1 |]

�C2 =
{

SC2 |SC2 ⊆ J C2 , |SC2 | ≤ 	C2
}

, J C2 =
{
(i, e)|ĉFW

ie > 0
}
&	C2 ∈ [0, |J C2 |]

�C3 =
{

SC3 |SC3 ⊆ J C3 , |SC3 | ≤ 	C3
}

, J C3 =
{
(e, j)|ĉW M

ej > 0
}
&	C3 ∈ [0, |J C3 |]

(14)

Using the approach discussed in Sect. 2, the nonlinear formulation (14) can be converted
into the equivalent linear model. Linear protection functions are derived for the uncertain
coefficients f̃ F

i , f̃ W
e , d̃ j , s̃h, c̃SF

hi , c̃FW
ie and c̃W M

ej , and to obtain the linear form of the robust
counterpart. Considering (3), for instance, the protection function of the shipment cost from
suppliers to factories (c̃SF

hi ) for a given x∗
hi is as follows:

βC1
(

x∗
hi , 	

C1
)

= max
�C1

∑

(h,i)∈J C1

ĉSF
hi x∗

hi (15)
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This can be written in form of an optimization problem as bellow:

max
∑

(h,i)∈J C1

ĉSF
hi w

C1
hi x∗

hi

S.t :
∑

(h,i)∈J C1

w
C1
hi ≤ 	C1

0 ≤ w
C1
hi ≤ 1 ∀(h, i) ∈ J C1 (16)

The dual form of (16) also can be obtained as:

min λC1	C1 +
∑

(h,i)∈J C1

μ
C1
hi (17)

S.t :
μ

C1
hi + λC1 ≥ ĉSF

hi xhi ∀(h, i) ∈ J C1

μ
C1
hi ≥ 0 ∀(h, i) ∈ J C1

λC1 ≥ 0, (18)

where λc1 and μ
c1
i j are dual variables. The linear dual forms of protection functions for

the remaining uncertain parameters including f̃ W
e , c̃FW

ie and c̃W M
ej are also formulated. The

protection function of f̃ F
i is defined as:

β f1(y∗
i , 	 f1) = max

� f1

∑

i∈J f1

f̂ F
i y∗

i (19)

The equivalent optimization problem of the protection function of f̃ F
i is written as:

max
∑

i∈J f1

f̂ F
i w

f1
i y∗

i

S.t :
∑

i∈J f1

w
f1

i ≤ 	 f1

0 ≤ w
f1

i ≤ 1 ∀i ∈ J f1 (20)

Ultimately, the dual form of the abovementioned linear optimization problem can be
expressed as bellows:

min λ f1	 f1 +
∑

h∈J f1

μ
f1
h (21)

S.t :
μ

f1
i + λ f1 ≥ f̂ F

i yi ∀i ∈ J f1

μ
f1
i ≥ 0 ∀i ∈ J f1

λ f1 ≥ 0 (22)

λ f1 and μ
f1
i are dual variables corresponding to the constraints of the primal optimization

model.
Furthermore, the protection function of f̃ W

e can be written as:

β f2(z∗
e , 	

f2) = max
� f2

∑

e∈J f2

f̂ F
e z∗

e (23)
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And, the linear optimization problem of (23) can be defined as:

max
∑

e∈J f2

f̂ W
e w

f2
e z∗

e

S.t :
∑

e∈J f2

w
f2

e ≤ 	 f2

0 ≤ w
f2

e ≤ 1 ∀e ∈ J f2 (24)

The dual form of (24) can be expressed by applying λ f2 and μ
f2
e as dual variables:

min λ f2	 f2 +
∑

e∈J f2

μ
f2
e (25)

S.t :
μ

f2
e + λ f2 ≥ f̂ W

e ze ∀e ∈ J f2

μ
f2
e ≥ 0 ∀e ∈ J f2

λ f2 ≥ 0 (26)

The protection function of c̃FW
ie is defined as:

βC2(u∗
ie, 	

C2) = max
�C2

∑

(i,e)∈J C2

ĉFW
ie u∗

ie (27)

Also, the linear optimization problem of (27) can be written as:

max
∑

(i,e)∈J C2

ĉFW
ie w

C2
ie u∗

ie

S.t :
∑

(i,e)∈J C2

w
C2
ie ≤ 	C2

0 ≤ w
C2
ie ≤ 1 ∀(i, e) ∈ J C2 (28)

And, the dual form of the abovementioned formulation can be expressed as:

min λC2	C2 +
∑

(i,e)∈J C2

μ
C2
ie (29)

S.t :
μ

C2
ie + λC2 ≥ ĉFW

ie uie ∀(i, e) ∈ J C2

μ
C2
ie ≥ 0 ∀(i, e) ∈ J C2

λC2 ≥ 0 (30)

λC3 andμ
c3
ej are dual variables corresponding to the constraints of the primal linear optimiza-

tion model.
The protection function of c̃W M

ej is defined as:

βC3(v∗
ej , 	

C3) = max
�C3

∑

(e, j)∈J C3

ĉW M
ej v∗

ej (31)
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Also, the linear form of (31) can be written as:

max
∑

(e, j)∈J C3

ĉW M
ej w

C3
ej v∗

ej

S.t :
∑

(e, j)∈J C3

w
C3
ej ≤ 	C3

0 ≤ w
C3
ej ≤ 1 ∀(e, j) ∈ J C3 (32)

The dual formulation of (32) is expressed as bellow, using λC3 and μ
c3
ej as dual variables:

min λC3	C3 +
∑

(e, j)∈J C3

μ
C3
ej (33)

S.t :
μ

C3
ej + λC3 ≥ ĉW M

ej vej ∀(e, j) ∈ J C3

μ
C3
ej ≥ 0 ∀(e, j) ∈ J C3

λC3 ≥ 0 (34)

Substituting the obtained linear dual forms of the protection functions for the uncertain
parameters f̂ F

i , f̂ W
e , ĉSF

hi , ĉFW
ie and ĉW M

ej in (14), the robust model can bewritten as follows:

Min F̃ =
n∑

i=1

f F
i yi +

t∑

e=1

f W
e ze +

l∑

h=1

n∑

i=1

cSF
hi xhi +

n∑

i=1

t∑

e=1

cFW
ie uie +

t∑

e=1

m∑

j=1

cW M
ej vej

+ λ f1	 f1 +
∑

h∈J f

μ
f1
h + λ f2	 f2 +

∑

e∈J f

μ
f2
e + λC1	C1 +

∑

(h,i)∈J C1

μ
C1
hi

+ λC2	C2 +
∑

(i,e)∈J C2

μ
C2
ie + λC3	C3 +

∑

(e, j)∈J C3

μ
C3
ej +

m∑

j=1

p j I j (35)

S.t:
Constraints (7) to (13)
Constraints (18), (22), (26), (30) and (34).

4.2 Uncertainty in demand and supply capacity parameters

This section utilizes the robust approach proposed by Bertsimas and Thiele (2006) to formu-
late the uncertainty in demand and supply capacity parameters as right-hand side parameters
in the model. According to this approach, the parameters d̃ j and s̃h are independently distrib-
uted in the common ranges [d − d̂, d + d̂] and [s − ŝ, s + ŝ] corresponding to all markets and
suppliers. Also, common uncertainty budgets are considered for demands ofall markets and
supplies of all supply centers. Here,	m denotes the common uncertainty budget for demands
in all markets taking values between zero and the number of markets; that is, 	m ∈ [0, m].
And, 	l is the common uncertainty budget for supply capacities in all supply centers, and
takes the values between zero and the total number of suppliers (	l ∈ [0, l]).

Demand parameters can have influences on shortage costs. A unit shortage cost is denoted
by p j , and the total shortage cost at node j is equal to p j I j .To formulate the influences of
demand uncertainty on shortage costs, we define auxiliary variable Hj and add constraint
(36) to the model:
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p j I j ≤ Hj ∀ j (36)

By this, the term p j I j can be replaced by Hj in the objective function. In other words,Hj

is related to the shortage cost of unsatisfied items that needs to be included in the objective
function to be minimized (p j I j ). Considering (8), we can now rewrite (36) to include the
uncertain demand d̃ j as follows:

p j

(
d̃ j −

t∑

e=1

vej

)
≤ Hj ∀ j (37)

Using the adjusted upper bound of the interval [d − d̂, d + d̂] by the common budget of
uncertainty in inequality (37), that is “d + 	m

m d̂”, its left hand side takes its maximum value
that should be minimized. Hence, (37) and (8) can be modified to the following robust form:

p̃ j

(
d + 	m

m
d̂ −

t∑

e=1

vej

)
≤ Hj ∀ j (38)

d + 	m

m
d̂ −

t∑

e=1

vej ≤ I j ∀ j (39)

Following this logic, the adjusted lower bound of the interval [s − ŝ, s + ŝ] leads to the
worst Sh auxiliary variable value, what the model seeks to minimize. Therefore, (7) can be
rewritten in robust forms as follows:

n∑

i=1

xhi − s + 	l

l
ŝ ≤ Sh ∀h (40)

4.3 Uncertainty in the shortage cost

Shortage costs are next considered to be uncertain and, without loss of generality, only take
the positive variations from their nominal values. Therefore, we can write p̃ j = p j + p̂ jw j

forw j ∈ [0, 1], wherew j is derived byw j =
(

p̃ j −p j

p̂ j

)
as the scaled deviation. To determine

w j in a way that the left hand side of constraint (38) is maximized, the following problem
needs to be solved:

max p̂ jw j

(
d + 	m

m
d̂ −

t∑

e=1

vej

)

s.t :
w j ≤ 	

p
j ∀ j

0 ≤ w j ≤ 1 ∀ j (41)

Note that Γ
p
j denotes the associate budget uncertainty belonging to the interval [0, 1]. The

dual form of (41) is formulated as:

min λ
p
j Γ

p
j + μ

p
j ∀ j

s.t :
λ

p
j + μ

p
j ≥ p̂ j

(
d + 	m

m
d̂ −

t∑

e=1

vej

)
∀ j
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μ
p
j ≥ 0 ∀ j

λ
p
j ≥ 0 ∀ j (42)

Thus, constraint (38) can be rewritten as bellow:

p j

(
d + 	m

m
d̂ −

t∑

e=1

vej

)
+ λ

p
j 	

p
j + μ

p
j ≤ Hj ∀ j

λ
p
j + μ

p
j ≥ p̂ j

(
d + 	m

m d̂ − ∑t
e=1 vej

)
∀ j

μ
p
j ≥ 0 ∀ j

λ
p
j ≥ 0 ∀ j (43)

According to Sects. 4.1 and 4.3, the resulting robust model that integrates uncertainties in
demand, supply and cost parameters is expressed as follows:

Min F̃ =
n∑

i=1

f F
i yi +

t∑

e=1

f W
e ze +

l∑

h=1

n∑

i=1

cSF
hi xhi +

n∑

i=1

t∑

e=1

cFW
ie uie +

t∑

e=1

m∑

j=1

cW M
ej vej

+ λ f1	 f1 +
∑

h∈J f

μ
f1
h + λ f2	 f2 +

∑

e∈J f

μ
f2
e + λC1	C1 +

∑

(h,i)∈J C1

μ
C1
hi + λC2	C2

+
∑

(i,e)∈J C2

μ
C2
ie + λC3	C3 +

∑

(e, j)∈J C3

μ
C3
ej +

m∑

j=1

Hj (44)

S.t:
Constraints (9) to (13),
Constraints (18), (22), (26), (30), (34), (39), (40) and (43).

4.4 Applying stochastic programming on conservatism degrees

In the proposed robust supply chain model, there are various uncertain parameters (	) the
values of which have direct impact on the values of decision variables. One way to determine
the values of these parameters is to run the model several times for each 	 value and choose
the most appropriate alternative that best suits a specific situation. This is typically a time-
consuming process. To cope with this difficulty, we adopt the approach suggested by Alem
and Morabito (2012) to aggregate different values of conservatism degrees using stochastic
programming. A set of scenarios (�) is generated. An occurrence probability, denoted by
ps, is assigned to each scenario. Obviously, we will have:

∑S
s=1 ps = 1, ps ≥ 0. Each 	

takes an index s ∈ � = {1, . . . , S}.
Auxiliary variables Shs, I js and Hjs are used to apply scenarios to constraints (39), (40)

and (43) as follows:

d + 	m
s

m
d̂ −

t∑

e=1

xej ≤ I js ∀ j, s (45)

∑n
i=1 xhi − s + 	l

s
l ŝ ≤ Shs ∀h, s (46)

p j

(
d + 	m

s
m d̂ − ∑t

e=1 xej

)
+ λ

p
j 	

p
j + μ

p
j ≤ Hjs ∀ j, s

λ
p
j + μ

p
j ≥ p̂ j

(
d + 	m

s
m d̂ − ∑t

e=1 xej

)
∀ j, s
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μ
p
j ≥ 0 ∀ j

λ
p
j ≥ 0 ∀ j (47)

The expected values for Shs, I js and Hjs are obtained from the following constraints:

S∑

s=1

ps Hjs ≤ Hj ∀ j (48)

S∑

s=1

ps I js ≤ I j ∀ j (49)

S∑

s=1

ps Shs ≤ Sh ∀h (50)

Therefore, the objective function (44) can be rewritten as:

Min F̃ =
n∑

i=1

f F
i yi +

t∑

e=1

f W
e ze +

l∑

h=1

n∑

i=1

cSF
hi xhi +

n∑

i=1

t∑

e=1

cFW
ie uie +

t∑

e=1

m∑

j=1

cW M
ej vej

+
∑

h∈J f

μ
f1
h +

∑

e∈J f

μ
f2
e +

∑

(h,i)∈J C1

μ
C1
hi +

∑

(e, j)∈J C3

μ
C3
ej +

∑

(i,e)∈J C2

μ
C2
ie

+
S∑

s=1

ps(λ
f1	

f1
s + λ f2	

f2
s + λC1	C1

s + λC2	C2
s + λC3	C3

s ) +
m∑

j=1

Hj (51)

Applying stochastic programming to the conservatism degrees, the constraints of the ultimate
model are constraints (9) to (13), constraints (18), (22), (26), (30), (34) and constraints (45)
to (50).

5 Model implementation and numerical results

The application of the proposed model is investigated using real data collected from a bread
supply chain in Iran. The model is coded in Lingo 11 and the numerical experiments are
conducted on a PC with Pentium IV CPU and two gigabyte of RAM.

5.1 Case study description

According to a national report released by Iranian Ministry of Health and Hygiene, approx-
imately one fifth of children under 6years old, teenagers and pregnant women in Iran are
diagnosed with anemia due to lack of minerals and vitamins in blood cells. Anemia is a
blood disorder that may be cured by regular consumption of nutrients like iron and folic acid.
Iranian health experts have found that an important action to prevent anemia is to produce
and distribute enriched bread throughout the country because of the significant nutritional
role of bread in Iranian meals. Enriched bread is produced by adding necessary minerals and
vitamins includingiron, vitamin B, folic acid, riboflavin, niacin and thiamine to the white
flour. The proposed robust optimization approach in this study was used to design an effec-
tive bread supply chain network consisting of wheat suppliers, flour factories, bread factories
(second-stage factories) and markets. Demand was considered to be the bread consumption
of Iran’s southern provinces where anemia is more common. These provinces were zoned
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Fig. 2 Schematic location of potential markets and candidate suppliers, wheat factories and bread factories

Table 3 Values of the primary
input parameters

Parameter Nominal values

Annual supply of wheat (Sh) 5,000 Tons

Annual demand for enriched bread (Dj) 2,900 Tons

Shortage penalty per each ton of enriched
bread (Pj)

$1,500

Enriched flour factory opening cost (fi) $2,000,000

Enriched bread factory opening cost (fe) $4,000,000

Production capacity of an enriched flour
factory (ki)

9,000 Tons

Production capacity of an enriched bread
factory (We)

8,500 Tons

according to their population and the supply capacity of wheat. For example, bread demand in
Khouzestan province was zoned to three regions as Dezfoul, Khoramshahr and Ramhormoz
cities. Table 2 outlines the locations of candidate wheat suppliers, flour and bread factories
and markets. Figure 2 provides an illustration of the geographically dispersed location of
these nodes on the country map.

The values of the primary input parameters are shown in Table 3. The approximate demand
was calculated by multiplying the estimated annual bread consumption per capita by the
population of that zone. Tables 4, 5, 6 show the transportation costs between the supply chain
participants obtained from the available third-party logistics providers. The consumption
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Table 4 Cost of transportation between candidate wheat suppliers and flour factories ($ per Ton)

F1 F2 F3 F4 F5 F6 F7

S1 967 659 1,330 810 1,159 1, 081 375

S2 280 1,523 1,637 1,038 911 1,276 879

S3 1,032 368 1,042 1,152 470 1,390 1,212

S4 1,623 1,325 999 1,173 924 873 1,543

S5 414 1,112 1,288 653 838 953 320

S6 1,653 619 485 975 1,284 657 1,327

S7 329 949 1,125 464 649 736 263

S8 1,143 120 680 485 950 350 830

S9 731 1,181 1, 273 600 370 911 911

Table 5 Cost of transportation between candidate flour factories and bread factories ($ per Ton)

B1 B2 B3 B4 B5 B6 B7 B8 B9

F1 1,553 1,909 1,353 900 757 450 1,623 505 1,300

F2 490 1,123 571 659 485 881 1,325 773 100

F3 485 552 100 1,230 661 1,273 550 949 571

F4 975 1,213 661 745 300 320 1,173 288 585

F5 1,084 1,378 1,073 886 396 270 924 507 1,181

F6 557 913 361 981 300 527 673 588 575

F7 1,227 1,583 1,031 300 370 711 1,543 206 855

coefficient of wheat to produce enriched flour (ωi ) is 0.83 and the consumption coefficient
of enriched flour to produce enriched bread (θe) is 1.3.

5.2 Numerical results and practical implications

Computational experiments were conducted for 5, 10, 15 and 20% of variability in uncertain
parameters from their nominal values presented in Sect. 5.1. The variability percent of the
uncertain parameters are tuned based on the expert advice received from professionals in
food logistic domain. Let γ denote the percent of variability in uncertain parameters. The
variation in demand (d̂m) can then be obtained from.Analogous approach is used to obtain the
variations in the other uncertain parameters. The robust optimizationmodel with interval data
uncertainty has 669 variables, including 16 integer variables, and 412 constraints. Optimal
solutions were found in 3,112 iterations completed in only 3 s with a optimality gap of
1.8 × 10−12.

To determine the sensitivity of the objective function value to variations in uncertain
parameters, sensitivity analysis experiments are performed using different degrees of conser-
vatism. With nine suppliers, seven candidate flour factories, nine candidate bread factories
and 19 markets, the corresponding conservatism degrees can take integer values in intervals
of [0,9], [0,7], [0,9], [0,19], respectively. In addition, the conservatism degrees associated
with transportation costs coefficients cSF

hi , cFW
ie and cW M

ej belong to intervals [0,63], [0,63]
and [0,171], respectively.
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Fig. 3 Sensitivity of the proposed model to variations in demand data
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Fig. 4 Sensitivity of the proposed model to variations in supply capacity data

Figures 3, 4, 5, 6, 7, 8 and 9 showhow the value of objective function is affected by different
degrees of conservatism and variations in uncertain parameters. Normalized deviation of the
optimal value of objective function is used in all experiments. For this, let Z N and Z R

denote the optimal values for the deterministic model (6) and the robust formulation (32).
The increase in the optimal value of objective function is obtained using (Z R − Z N )/Z N .
In addition to the changes in the value of objective function, Figs. 3, 4, 5, 6, 7, 8 and 9 also
show the probabilities of constraint violation (5) at different conservatism degrees (	m).

Numerical results presented in Figs. 3, 4, 5, 6, 7, 8 and 9 can provide some interesting
insights. Figures 3 and 4 show thatthe worst objective value is obtained at a point when the
conservatism degree of uncertain demand and supply parameters have their highest values;
that is when 	 = |J |.Conversely, Figures 5, 6, 7, 8 and 9 indicate thatthe worst objective
value is reached at a pointwhen conservatismdegrees of uncertain cost parameters are smaller
than their maximum (i.e.	C1 = 15 <

∣∣J C1
∣∣ = 63, 	C2 = 10 <

∣∣J C2
∣∣ = 63, 	C3 = 25 <∣∣J C3

∣∣ = 171, 	 f1 = 5 <
∣∣J f1

∣∣ = 7 and 	 f2 = 6 <
∣∣J f2

∣∣ = 9, respectively). The initial
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Fig. 5 Sensitivity of the proposed model to variations in supplier-factory transportation cost data
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Fig. 6 Sensitivity of the proposed model to variations in flour factory-bread factory transportation cost data

implications are now evident. The greater the conservatism degree of uncertain demand and
supply parameters are, the larger the impacts will be on the value of objective function. This
is not the case for variations in cost parameters where increase in the degree of conservatism
can only cause limited impacts on the objective value.

A second insight can be drawn by comparing the magnitude of impacts on the objective
value caused by variations in uncertain parameters. When γ is equal to 0.2 (i.e. a maximum
20% variation in uncertain parameters), variation in demand data has a high deterioration
impact of 22.7% on the value of objective function. For the same situation of γ = 0.2, the
impacts on the value of objective function imposed by the other uncertain parameters include
2.05% caused by supply uncertainty, 2.16% caused by supplier-factory transportation cost
uncertainty, 1.38% caused by factory-factory transportation cost uncertainty, 1.52% caused
by factory-market transportation cost uncertainty, 1.09% caused by uncertainty in cost of
locating flour factories, and 2.62% caused by uncertainty in cost of locating bread factories.
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Fig. 7 Sensitivity of the proposed model to variations in factory-marker transportation cost data
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Fig. 8 Sensitivity of the proposed model to variations in costs of locating flour factories

A practical implication from this finding is that the primary focus should be placed on more
accurate forecast of demand data as it can have the highest influence on overall system cost.

We next design additional experiments aiming to assist a decision maker in choosing the
appropriate conservatism degrees. One method for selecting the appropriate conservatism
degrees is the use of probability of constraint violation. In this method, a decision maker
seeks the degrees of conservatism that ensure the probability of constraint violation will not
exceed a specific value/percentage. Table 7 illustrates the choice of conservatism degrees so
that violation probability (5) is less than a specific percentage α, where α can be equal to 1,
5, 10, 30, 40 or 50%. In other words, Table 7 provides the smallest values of conservatism
(	), that guarantee violation probability of less than α%. It also includes the values of 	

|J | ,
indicating the percentage of the number of uncertain data protected. For instance, to guarantee
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Fig. 9 Sensitivity of the proposed model to variations in costs of locating bread factories

Table 7 Selection of the conservatism degrees based on α% of violation probabilities (5)

	m 	m

|J m |
(%)

	l 	l

|J l |
(%)

	C1 	c1

|J c1 |
(%)

	C2 	c2

|J c2 |
(%)

	C3 	c3

|J c3 |
(%)

	 f1 	 f1

|J f1 |
(%)

	 f2 	 f2

|J f2 |
(%)

α = 1% 11 58 8 88 21 33 27 33 33 19.3 7 100 8 88

α = 5% 8 42 6 67 14 22 14 22 22 12.8 5 71 6 67

α = 10% 6 52 5 56 11 17.5 11 17.5 17 10 4 57 5 56

α = 30% 3 16 2 23 5 8 5 8 7 4.1 2 28.5 2 23

α = 40% 2 10 2 23 3 4.7 3 4.7 4 2.4 2 28.5 2 23

α = 50% 1 5 1 11 1 1.5 1 1.5 1 0.5 1 14.2 1 11

violation probability of less than 1%, a 	 equal to 11 is required, standing for 58% of the
number of uncertain demand data.

Not surprisingly, the value of objective function is greater at larger variability levels in all
probability sets. The objective value under the first probability set (the pessimistic behavior
of Set1) is more sensitive to such variations when compared to the other two probability
sets. What is interesting in these findings is that the optimal decisions of locating the flour
and bread factories are analogous in pessimistic, neutral and optimistic decision-making
behaviors. Flour factories F2, F3, F5 and F7 and bread factories B1, B3, B4, B5 and B9 are
opened in three decision-making situations implying the decisions to locate flour and bread
factories are robust. For the three probability sets, Tables 11, 12, 13 summarize the optimal
allocation decisions for the wheat, flour and bread distribution at 20% variability level.

Comparing the values of 	
|J | for different uncertain parameters result in some additional

insights. The highest value of 	
|J | in all instances belong to the uncertainty in cost of locating

bread factories. For example, the results in Table 7 indicate that the complete protection

against uncertainty in locating bread factories (i.e. 	 f1

|J f1 | = 100%) ensures a violation prob-

ability of less than 1%, whereas other cost parameters require considerably smaller values

of 	
|J | to reach this goal (i.e. 	c1

|J c1 | = 33%, 	c2

|J c2 | = 33% 	c3

|J c3 | = 19.3% and 	 f2

|J f2 | = 88%).
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Table 8 Conservatism degrees
at each scenario Scenario no. 	m 	l 	C1 	C2 	C3 	 f1 	 f2

1 0 0 0 0 0 0 0

2 2 1 2 1 2 1 1

3 4 2 3 2 5 2 2

4 6 3 4 3 8 2 3

5 8 4 5 4 11 3 4

6 10 5 7 5 14 3 5

7 12 6 8 6 17 4 6

8 14 7 9 7 20 4 7

9 16 8 10 8 23 5 8

10 19 9 11 9 25 5 9

Table 9 Occurrence
probabilities of scenarios for each
set

Scenario no. Set1 Set2 Set3

1 0.05 0.1 0.25

2 0.05 0.1 0.15

3 0.05 0.1 0.15

4 0.05 0.1 0.1

5 0.05 0.1 0.1

6 0.1 0.1 0.05

7 0.1 0.1 0.05

8 0.15 0.1 0.05

9 0.15 0.1 0.05

10 0.25 0.1 0.05

Table 10 Objective values
corresponding to different
probability sets and variability
degrees $

Set3 Set2 Set1

0.05% data variability 174,282,000 172,929,600 171,498,500

0.1% data variability 180,911,600 178,138,300 175,190,500

0.15% data variability 188,463,900 184,139,900 179,670,600

0.2% data variability 193,875,300 188,643,000 182,613,600

This implies that the cost of locating bread factories required more degrees of conservatism
compared to the other cost parameters. Another observation from Table 7 is that for all α

values, the percentage of 	l

|J l | is greater than
	m

|J m | . An important practical implication from
this observation is that supply uncertainty demands greater level of conservatism compared
to demand uncertainty during supply chain design phase.

Another method of choosing the values of conservatism degrees is to run the model for
different values of 	and choose the most appropriate alternative that best fits a specific situa-
tion. Even though the flexibility of this method in adjusting the value of	 may be appealing at
the beginning, the process of running the model for different 	values can become extremely
inefficient in terms of the time it demands (see Alem and Morabito 2012). To overcome
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Table 11 Wheat distribution
from suppliers to opened flour
factories at three probability sets

F2 F3 F5 F7

S1 Set1 2,433 1,900

Set2 2,177 2,157

Set3 2,177 2,157

S2 Set1 979 1,919 1,040

Set2 876 2,446 617

Set3 670 3,084 188

S3 Set1 4,333

Set2 4,333

Set3 4,333

S4 Set1 4,333

Set2 4,333

Set3 4,333

S5 Set1 4,333

Set2 4,333

Set3 4,333

S6 Set1 4,333

Set2 4,333

Set3 4,333

S7 Set1 764 3,569

Set2 597 3,736

Set3 166 4,168

S8 Set1 4,077 256

Set2 4,333 0

Set3 4,333 0

S9 Set1 4,333

Set2 4,333

Set3 4,333

Table 12 Flour distribution from
opened flour factories to opened
bread factories at three
probability sets

B1 B3 B4 B5 B9

F2 Set1 2,462 6,539

Set2 2,462 6,539

Set3 2,462 6,539

F3 Set1 2,315 6,538

Set2 1,878 6,538

Set3 1,348 6,538

F5 Set1 1,113 4,076

Set2 1,550 4,076

Set3 1,546 4,609

F7 Set1 0 6,538 2,461

Set2 0 6,538 2,461

Set3 533 6,538 1,928
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this drawback, we design the following experiments based on the stochastic programming
formulation presented in Sect. 4.4 in which different conservatism degrees are aggregated in
one optimization model requiring a single model run. Ten scenarios of conservatism degrees
are defined for use in the proposed scenario stochastic programming formulation. Table 8
shows the values of conservatism degrees for each scenario.

To help examining the behavior of the proposed stochastic programming formulation, a
sensitivity analysis is performed using different probability sets and variability levels. Three
probability sets are defined for each scenario, denoted by Set 1, Set 2 and Set 3. The three sets
stands for decision making under pessimistic, neutral and optimistic behaviors, respectively.
For each scenario, Table 9 shows the occurrence probabilities at each probability set. Table
10 shows the values of objective function (50) corresponding to the defined probability sets
and variability levels (γ ). The model has 1,162 variables, including 16 integer variables,
and 1031 constraints. The model was solved in 15,678 iterations completed in 5 s with an
optimality gap is 9.3 × 10−9.

Numerical results in Tables 11, 12, 13 show that the optimal assignment decisions for
the three probability sets are very similar. The flour factories in most cases are assigned to
the same suppliers under the three probability sets. Likewise, the optimal allocations of the
flour factories to the bread factories and the optimal assignments of the bread factories to the
markets are nearly analogous in all probability sets. However, the optimal quantities of flour
and bread shipments from suppliers to flour factories, from flour factories to bread factories
and frombread factories tomarkets differ at each probability set.Similarly, the shortage values
at the bottom of Table 13 indicate that the shortage amounts (an indicator of service level)
are larger at higher levels of conservatism. One managerial implication from these findings is
that the shipment quantities (flow decisions) and shortage amounts (service level decisions)
are more sensitive to probability degree and the decision maker behavior when compared to
location and allocation decisions. Flow and service level decisions may hence require more
careful attention in network design process due to the sensitivity of their optimal values to
level of optimism.

6 Conclusions

We presented in this paper a robust optimization model for the design of a supply chain oper-
ating in an uncertain environment. The proposed robust formulation minimizes the overall
supply chain costs to determine optimal location and allocation strategieswhen uncertainty
exist in product demand, supply capacity, and transportation and shortage cost data. A base
deterministic location/allocationmodel was extended to incorporate uncertainty factors using
a robust optimization approach with interval data uncertainty. The extended model remains a
linear and traceablemodel, while overcoming the limitations of the equivalent scenario-based
and heuristics methods.

Real data was utilized to investigate the application of the developed model in design of
an actual supply chain involved in bread production and distribution.We have shown how the
proposed model and solution method can be used to determine location/allocation decisions
and complete sensitivity analysis experiments. Our discussions on the numerical results
arrived at important managerial and practical insights. For example, we found that demand
and supply uncertainties (associated with a decision maker’s conservatism degree) can have
a more pronounceable direct influence on the supply chain costs and location/allocation
decisions when compared to uncertainty in cost parameters. This observation could further
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allow us identify where across the supply chain the uncertainty mitigation efforts should be
focused to minimize the impacts on the strategic supply chain costs.

While we have shown a real world application of our robust optimization model, our
study is not without limitations. The proposed model can be extended for the incorporation
of additional tactical and operational decisions such as production planning and routing
decisions (Esmaeilikia et al. 2014a). The incorporation of such factors and measures can
result in additional insights and managerial implications not fully grasped in other studies.
The risks associated with supply chain disruptions, including both random and intended
disruption risks, can also be incorporated in our model. Another direction for further research
can be the incorporation of the decision-maker’s conservatism degree as a decision variable
or fuzzy parameter to investigate system behavior in different scenarios. Our model can also
set the stage for the inclusion and analysis of customer responsiveness and agility elements
such as service time and delivery lead-time, the critical performance metrics of fast-paced
business environments.

References

Alem, J. D., & Morabito, R. (2012). Production planning in furniture settings via robust optimization. Com-
puters & Operations Research, 39, 139–150.

Aryanezhad, M. B., Jalali, S. G., & Jabbarzadeh, A. (2010). An integrated supply chain design model with
random disruptions consideration. African Journal of Business Management, 4, 2393–2401.

Assavapokeea, T., Realff, M. J., & Ammonsc, J. C. (2008a). Min–max regret robust optimization approach on
interval data uncertainty. Journal of Optimization Theory and Applications, 137, 297–316.

Assavapokeea, T., Realff, M. J., Ammonsc, J. C., & Hongd, I. H. (2008b). Scenario relaxation algorithm for
finite scenario-based min–max regret and min–max relative regret robust optimization. Computers &
Operations Research, 35, 2093–2102.

Azaron, A., Brown, K. N., Tarim, S. A., & Modarres, M. (2008). A multi-objective stochastic programming
approach for supply chain design considering risk. International Journal of Production Economics, 116,
129–138.

Babazadeh, R., & Razmi, J. (2012). A robust stochastic programming approach for agile and responsive logis-
tics under operational and disruption risks. International Journal of Logistics Systems and Management,
13(4), 458–482.

Baron, O., Milner, J., & Naseraldin, H. (2011). Facility location: A robust optimization approach. Production
and Operations Management, 20(5), 772–785.

Bashiri, M., Badri, H., & Talebi, J. (2012). A new approach to tactical and strategic planning in production–
distribution networks. Applied Mathematical Modeling, 36, 1703–1717.

Ben-Tal, A., & Nemirovski, A. (2000). Robust solutions of linear programming problems contaminated with
uncertain data. Mathematical Programming, Series B, 88, 411–424.

Ben-Tal, A., Goryashko, A., Guslitzer, E., & Nemirovski, A. (2004). Adjustable robust solutions of uncertain
linear programs. Mathematical Programming, 99(2), 351–376.

Ben-Tal, A., Chung, B. D., Mandala, S. R., & Yao, T. (2011). Robust optimization for emergency logistics
planning: Risk mitigation in humanitarian relief supply chains. Transportation Research Part B, 45(8),
1177–1189.

Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35–53.
Bertsimas, D., & Thiele, A. (2006). A robust optimization approach to inventory theory. Operations Research,

54(1), 150–168.
Bozorgi-Amiri, A., Jabalameli, M. S., & Mirzapour Al-e-Hashem, S. M. (2011). A multi-objective robust

stochastic programming model for disaster relief logistics under uncertainty. OR Spectrum, pp. 1–29.
Bozorgi-Amiri, A., Jabalameli, M. S., Alinaghian, M., & Heydari, M. (2012). A modified particle swarm opti-

mization for disaster relief logistics under uncertain environment. The International Journal of Advanced
Manufacturing Technology, 60(1), 357–371.

Chen, X., & Zhang, Y. (2009). Uncertain linear programs: Extended affinely adjustable robust counterparts.
Operations Research, 57(6), 1469–1482.

Cordeau, J. F., Pasin, F., & Solomon, M. M. (2006). An integrated model for logistics network design. Annals
of Operations Research, 144(1), 59–82.

123



44 Ann Oper Res (2017) 257:15–44

Esmaeilikia, M., Fahimnia, B., Sarkis, J., Govindan, K., Kumar, A., & Mo, J. (2014a). A tactical supply
chain planning model with multiple flexibility options: An empirical evaluation. Annals of Operations
Research, 1–26.

Esmaeilikia, M., Fahimnia, B., Sarkis, J., Govindan, K., Kumar, A., & Mo, J. (2014b). Tactical supply chain
planning models with inherent flexibility: Definition and review. Annals of Operations Research, 1–21.

Fahimnia, B., Farahani, R., & Sarkis, J. (2013). Integrated aggregate supply chain planning using Memetic
Algorithm: A performance analysis case study. International Journal of Production Research, 51(18),
5354–5373.

Georgiadis, M. C., Tsiakis, P., Longinidis, P., & Sofioglou, M. K. (2011). Optimal design of supply chain
networks under uncertain transient demand variations. Omega, 39, 254–272.

Hatefi, S. M., & Jolai, F. (2014). Robust and reliable forward-reverse logistics network design under demand
uncertainty and facility disruptions. Applied Mathematical Modelling, 38(9), 2630–2647.

Jabbarzadeh, A., Jalali Naini, S.G., Davoudpour, H., Azad, N. (2012). Designing a supply chain network under
the risk of disruption. Mathematical Problems in Engineering. doi:10.1155/2012/234324.

Jabbarzadeh, A., Fahimnia, B., & Seuring, S. (2014). Dynamic supply chain network Design for the supply of
blood in disasters: A robust model with real world application. Transportation Research Part E: Logistics
and Transportation Review, 70, 225–244.

Jeong, K. Y., Hong, J. D., &Xie, Y. (2014). Design of emergency logistics networks, taking efficiency, risk and
robustness into consideration. International Journal of Logistics Research and Applications: A Leading
Journal of Supply Chain Management, 17(1), 1–22.

Klibi, W., Martel, A., & Guitouni, A. (2010). The design of robust value-creating supply chain networks: A
critical review. European Journal of Operational Research, 203, 283–293.

Lalmazloumian, M., Wong, K. Y., Govindan, K., & Kannan, D. (2013). A robust optimization model for agile
and build-to-order supply chain planning under uncertainties. Annals of Operations Research. doi:10.
1007/s10479-013-1421-5.

Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management—a
review. European Journal of Operational Research, 196, 401–412.

Mirzapour Al-e-hashem, S. M. J., Malekly, H., & Aryanezhad, M. B. (2011). A multi-objective robust opti-
mization model for multi-product multi-site aggregate production planning in a supply chain under
uncertainty. International Journal of Production Economics, 134, 28–42.

Mulvey, J.M., Vanderbei, R. J., &Zenios, S. A. (1995). Robust optimization of large-scale systems.Operations
Research, 43(2), 264–281.

Najafi, M., Eshghi, K., & Dullaert, W. (2013). A multi-objective robust optimization model for logistics
planning in the earthquake response phase. Transportation Research Part E, 49, 217–249.

Pan, F., & Nagi, R. (2010). Robust supply chain design under uncertain demand in agile manufacturing.
Computers & Operations Research, 37, 668–683.

Soyster, A. L. (1973). Convex programming with set-inclusive constrains and applications to inexact Linear
programming. Operations Research Letters, 21(5), 1154–1157.

Tang, T. S. (2006). Perspectives in supply chain risk management. International Journal of Production Eco-
nomics, 103, 451–488.

Wang, B., & He, S. (2009). Robust optimization model and algorithm for logistics center location and allo-
cation under uncertain environment. Journal of Transportation Systems Engineering and Information
Technology, 9(2), 69–74.

Yu, Ch S, & Li, H. L. (2000). A robust optimization model for stochastic logistic problems. International
Journal of Production Economics, 64, 385–397.

Zhang, Z. H., & Jiang, H. (2014). A robust counterpart approach to the bi-objective emergencymedical service
design problem. Applied Mathematical Modelling, 38(3), 1033–1040.

123

http://dx.doi.org/10.1155/2012/234324
http://dx.doi.org/10.1007/s10479-013-1421-5
http://dx.doi.org/10.1007/s10479-013-1421-5

	Robust supply chain network design: an optimization model with real world application
	Abstract
	1 Introduction and foundational literature background
	2 Background of robust optimization
	3 Formulation of the deterministic model
	4 The robust model formulation
	4.1 Uncertainty in cost parameters, except shortage cost
	4.2 Uncertainty in demand and supply capacity parameters
	4.3 Uncertainty in the shortage cost
	4.4 Applying stochastic programming on conservatism degrees

	5 Model implementation and numerical results
	5.1 Case study description
	5.2 Numerical results and practical implications

	6 Conclusions
	References




