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Abstract This paper develops an economic ordering policy model for non-instantaneous
deteriorating items with selling price- and inflation-induced demand under the effect of
inflation, permissible delay in payments and customer returns. Shortages are allowed and
partially backlogged. The customer returns are assumed to increase with both the quantity
sold and the product price. The main objective is to determine the optimal selling price, the
optimal length of time in which there is no inventory shortage, and the optimal replenishment
cycle simultaneously, to minimize the present value of the total profit. An efficient algorithm
is presented to find the optimal solution of the developed model. Finally, a numerical example
is extracted to solve the presented inventory model using the proposed algorithm.

Keywords Optimal pricing and inventory · Permissible delay in payments ·
Non-instantaneous deteriorating items · Customer returns · Inflation

1 Introduction

Recently, many researchers have studied the inventory problems for deteriorating items such
as fashionable items, electronics products, fruits, and green vegetables, and many others.
Ghare and Schrader (1963) was the first to establish an economic order quantity (EOQ)
model for deteriorating items. Afterward, Covert and Philip (1973) extended their work by
presenting a variable rate of deterioration. Goyal and Giri (2001) presented a great literature
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review on deteriorating inventory items. Later, there are many papers presented in the analysis
of deteriorating inventory, such as Dye et al. (2007a), Balkhi (2011), Skouri et al. (2011),
and Wang and Lin (2012).

In all the above-mentioned models, it is assumed that the items in the inventory start
to deteriorate from the instant of their arrival in the stock. However, in practice, an item
would have a span of maintaining original state or quality, i.e., there is no deterioration
occurring during that period, such as fashionable items, electronics products, fruits, and green
vegetables. Wu et al. (2006) introduced the phenomenon as “non-instantaneous deterioration”
and developed the optimal replenishment policy for non-instantaneous deteriorating item with
stock dependent demand and partial backlogging. For these types of items the assumption
that the deterioration starts from the instant of arrival in stock may lead to make an unsuitable
replenishment policy due to overstating relevant inventory cost. As a result, it is necessary
to consider the inventory models for non-instantaneous deteriorating items.

When the demand depends on the price of an item, the inventory control model should
incorporate the selling price as a decision variable. Therefore, Optimal pricing strategy is
one of the major policies for sellers or retailers to obtain its maximum profit. Thus, several
researchers have studied the pricing and inventory control problem under a variety of con-
ditions, such as Abad (1996, 2001), You (2005), Dye (2007), Dye et al. (2007b), Chang et
al. (2006), Shi et al. (2012), Tsao and Sheen (2008), Samadi et al. (2013), and Chao et al.
(2014).

In the classical inventory model, it is tacitly assumed that the retailer must pay off from
the instant of reception of the items. However, in today’s competitive business environment,
the supplier could encourage the retailer to buy more by allowing a certain fixed period for
settling the account and there is no charge on the amount owed during this period.

Recently, some researchers have studied the problem of joint pricing and inventory con-
trol for non-instantaneously deteriorating items. Ouyang et al. (2006) investigated the inven-
tory model for non-instantaneous deteriorating items considering permissible delay in pay-
ments. Yang et al. (2009) considered the optimal pricing and ordering strategies for non-
instantaneous deteriorating items with partial backlogging and price dependent demand.
Chang et al. (2010) developed the inventory model for non-instantaneous deteriorating items
with stock dependent demand. Geetha and Uthayakumar (2010) studied the EOQ inventory
model for non-instantaneous deteriorating items with permissible delay in payments and par-
tial backlogging. Musa and Sani (2010) proposed the inventory model for non-instantaneous
deteriorating items with permissible delay in payments. Maihami and Nakhai-Kamalabadi
(2012) developed the joint pricing and inventory control model for non-instantaneous dete-
riorating items with price and time dependent demand and partial backlogging.

Since 1975, a series of related papers appeared that considered the effects of time value
of money and inflation on the inventory system. Buzacott (1975) was the first to establish
EOQ model with inflation subject to different types of pricing policies. Later, there are many
papers considered the effects of time value of money and inflation on the inventory system,
such as Misra (1979), Park (1986), Datta and Pal (1991), Hall (1992), Goal et al. (1991),
Bose et al. (1995), Hariga and Ben-Daya (1996), Horowitz (2000), Sarker and Pan (1994),
Moon and Lee (2000), Dye et al. (2007a, b), Mirzazadeh et al. (2009), Sarkar and Moon
(2011), Sarkar et al. (2011), Taheri-Tolgari et al. (2012), Wee and Law (2001), Hsieh and
Dye (2010), Gholami-Qadikolaei et al. (2013), Ghoreishi et al. (2013a), Ghoreishi et al.
(2014), Tripathi et al. (2014) and Guria et al. (2013). Ghoreishi et al. (2013b) studied the
optimal pricing and inventory control policy for non-instantaneously deteriorating items with
the finite replenishment rate considering time- and price-dependent demand, customer returns
and time value of money. Our paper include the following new, more realistic assumptions,
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when compared with Ghoreishi et al. (2013b) study: (1) In our proposed paper, we discuss the
effects of permissible delay in payments, however, in the Ghoreishi et al. (2013b), the effects
of permissible delay in payments is not considered. (2) In the Ghoreishi et al. (2013b),
shortages are not allowed, but in our presented work, shortages are allowed and partially
backlogged. (3) In our current paper, we consider selling price- and inflation-induced demand,
but in Ghoreishi et al. (2013b), the demand is function of price and time. (4) Our current
work considers infinite replenishment rate, while Ghoreishi et al. (2013b) discussed finite
replenishment rate.

Hess and Mayhew (1997) found that the number of returns has a strong positive linear
relationship with the quantity sold by using regression models. Anderson et al. (2006) pro-
vided evidence to show that customer returns increase with both the quantity sold and the
price set for the product. Chen and Bell (2009) showed that customer returns affect the firm’s
pricing and inventory policies. In this model, the quantity of returned product is a function
of both the quantity sold and the price.

In dealing with these shortcomings above, we investigate an inventory model for non-
instantaneous deteriorating items with price- and inflation-dependent demand rate and partial
backlogging. The effects of permissible delay in payments, customer returns and time value
of money on replenishment policy are also discussed. In the classical inventory model, it is
tacitly assumed that the retailer must pay off from the instant of reception of the items. How-
ever, in today’s competitive business environment, the supplier could encourage the retailer
to buy more by allowing a certain fixed period for settling the account and there is no charge
on the amount owed during this period. Also, in the traditional inventory model, it is assumed
that the items in the inventory start to deteriorate from the instant of their arrival in the stock.
However, in practice, an item would have a span of maintaining original state or quality, i.e.,
there is no deterioration occurring during that period, such as fashionable items, electronics
products, fruits, and green vegetables. Therefore, in order to incorporate realistic conditions,
in is necessary to consider inventory problems for non-instantaneous deteriorating items.
In addition, today, inflation has become a perpetual feature of the economy and affects the
demand of certain products. As inflation increases, the value of money goes down and erodes
the future worth of saving and forces one for more current spending. Usually, these spending
are on peripherals and luxury items that give rise to demand of these items. Consequently, the
effect of inflation and time value of the money cannot be ignored for determining the optimal
inventory policy. Moreover, in practice, customer returns increase with both the quantity sold
and the product price. Furthermore, when the demand depends on the price of an item, the
inventory control model should incorporate the selling price as a decision variable. There-
fore, optimal pricing strategy is one of the major policies for sellers or retailers to obtain its
maximum profit. Thus, in this work, we develop the problem of simultaneously determin-
ing a pricing and inventory replenishment strategy for non-instantaneous deteriorating items
with price- and inflation-dependent demand rate, partial backlogging, permissible delay in
payments and customer returns. A computational procedure is proposed to derive the optimal
selling price, the optimal length of time in which there is no inventory shortage, and the opti-
mal replenishment cycle simultaneously when the present value of total profit is maximized.
A numerical example is provided to illustrate the proposed model. The impact of customer
returns, inflation, non-instantaneous deterioration, and permissible delay in payments on the
optimal solution are also discussed.

To the authors’ best knowledge, nobody considered a pricing and inventory control model
with permissible delay in payments, price- and inflation-induced demand, partial backlogging
shortage, non-instantaneously deteriorating items, and customer returns. The backlogging
rate is variable and dependent on the time of waiting for the next replenishment. The main
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objective is to determine the optimal selling price, the optimal length of time in which there
is no inventory shortage, and the optimal replenishment cycle simultaneously such that the
present value of total profit is maximized. This is the first work that follows the above more
realistic assumptions.

2 Notation and assumptions

The following notation and assumptions are used throughout the paper:

2.1 Notation

A Constant purchasing cost per order,
c Purchasing cost per unit,

c1 Holding-cost per unit per unit time,
c2 Backorder-cost per unit per unit time,
c3 Cost of lost sale per unit,
p Selling price per unit, where p > c (decision variable),
θ Constant deterioration rate,
r Constant representing the difference between the discount

(cost of capital) and the inflation rate,
Q Order quantity,
T Length of replenishment cycle time (decision variable),
t1 Length of time in which there is no inventory shortage (decision

variable),
td Length of time in which the product exhibits no deterioration,

SV Salvage value per unit,
H Length of planning horizon,
N Number of replenishments during the time horizon H ,

T ∗ Optimal length of the replenishment cycle time,
Q∗ Optimal order quantity,
t∗1 Optimal length of time in which there is no inventory shortage,
p∗ Optimal selling price per unit,

I1(t) Inventory level at time t ∈ [0, td ],
I2(t) Inventory level at time t ∈ [td , t1],
I3(t) Inventory level at time t ∈ [t1, T ],

I0 Maximum inventory level,
S Maximum amount of demand backlogged,

f (p, t1, N ) Present value of total profit over the time horizon,
Ie Interest earned per dollar per unit time,
Ip Interest charged per dollar per unit time,
M Trade-credit period.

2.2 Assumptions

In this paper, the following assumptions are considered:

1. There is a constant fraction of the on-hand inventory deteriorates per unit of time and
there is no repair or replacement of the deteriorated inventory.

2. A single non-instantaneous deteriorating item is assumed.
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Fig. 1 Graphical representation of the inventory system

3. The replenishment rate is infinite and the lead time is zero.
4. Demand is inflation rate and selling price dependent, i.e., D(t) = (a − bp)ekrt (where

0 < k < 1, a > 0, b > 0).
5. Shortages are allowed. The unsatisfied demand is backlogged, and the fraction of shortage

backordered is β (x) = k0e−δx (δ > 0, 0 < k0 ≤ 1), where x is the waiting time up to the
next replenishment and δ is a positive constant and 0 ≤ β (x) ≤ 1, β (0) = 1 [1].

6. Following the empirical findings of Anderson et al. (2006), we assume that customer
returns increase with both the quantity sold and the price. We use the general form:
R (p, t) = αD (p, t) + βp (β ≥ 0, 0 ≤ α < 1) that was presented by Chen and Bell
(2009). Customers are assumed to return R (p, t) products during the period for full
credit and these units are available for resale in the following period. We assume that the
salvage value of the product at the end of the last period is SV per unit.

7. The time horizon is finite.

3 Model formulation

Here, we use the Yang et al.’s (2009) inventory shortage model as follows: I0 units of
item arrive at the inventory system at the beginning of each cycle. During the time interval
[0, td ], the inventory level decreases due to demand only. Afterwards, during the time interval
[td , t1], the inventory level drops to zero due to both demand and deterioration. Finally, a
shortage occurs due to demand and partial backlogging during the time interval [t1, T ] (see
Fig. 1).

The equation representing the inventory status in the system for the first interval is derived
as follows:

During the time interval [0, td ], the differential equation representing the inventory status
is given by

d I1(t)

dt
= −D (t) = −(a − bp)ekrt . (1)

With the condition I1(0)= I0, solving Eq. (1) yields

I1 (t) = (−a + bp) ekrt − bp + I0kr + a

kr
(0 ≤ t ≤ td) . (2)

In the second interval [td , t1], the inventory level decreases due to demand and deteriora-
tion. Thus, the differential equation below represents the inventory status:
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d I2(t)

dt
+ θ I2 (t) = −D (t) . (3)

By the condition I2 (t1) = 0, the solution of Eq. (3) is

I2 (t) = − (a − bp) (et(kr+θ) − et1(kr+θ))e−θ t

kr + θ
(td ≤ t ≤ t1) . (4)

It is clear from Fig. 1 that I1(td) = I2(td), therefore, the maximum inventory level I0 can
be obtained

I0 = 1

(kr + θ) kr

(
(a − bp)

(
e−θ td kret1(kr+θ) − e−θ td kretd (kr+θ) +

(
−1 + ekrtd

)
(kr + θ)

))
.

(5)

In the third interval, [t1, T ], shortage is partially backlogged according to fraction
β · (T − t). Therefore, the inventory level at time t is obtained by the following equation:

d I3(t)

dt
= −D (t) · β (T − t) = −D(t)

eδ(T −t)
(t1 ≤ t ≤ T ). (6)

The solution of the above differential equation, after applying the initial value condition
I3(t1) = 0, is

I3 (t) = − (a − bp) (e(−T +t)δ+krt − e(kr+δ)t1−δT )

kr + δ
(t1 ≤ t ≤ T ) . (7)

If we put t = T into I3 (t), the maximum amount of demand backlogging (S) will be
obtained:

S = −I3 (T ) = (a − bp) (ekrT − e(kr+δ)t1−δT )

kr + δ
. (8)

The order quantity per cycle (Q) is the sum of S and I0, i.e.,

Q = S + I0 = 1

(kr + θ) kr (kr + δ)

(
(a − bp)

((−k2r2 − θkr
)

e(kr+δ)t1−δT

+ ke−θ td r (kr + δ) et1(kr+θ) − ke−θ td r (kr + δ) etd (kr+θ)

+
(
(kr + δ) ekrtd − kr + krekrT − δ

)
(kr + θ)

))
. (9)

So far, we derived the equations representing the inventory status. Equations (2) and (4)
represent the inventory level when there is no inventory shortage, while Eq. (7) represents
inventory level when there is inventory shortage. Therefore, using the above mentioned
equations, we can obtain the present value inventory costs and sales revenue for the one
cycle, which consists of the following elements:

1. Since replenishment in each cycle has been done at the start of each cycle, the present
value of replenishment cost for the one cycle will be A, which is a constant value.

2. Inventory occurs during period t1, therefore, the present value of holding cost (HC) for
the one cycle is

HC = c1

(∫ td

0
I1 (t) · e−r ·t dt + e−r ·td

∫ t1

td
I2 (t) · e−r ·t dt

)
. (10)

3. The present value of shortage cost (SC) due to backlog for the one cycle is

SC = c2

(
e−r ·t1

∫ T

t1
−I3(t) · e−r ·t dt

)
. (11)
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4. The present value of opportunity cost due to lost sales (OC) for the one cycle is

OC = c3

(
e−r ·t1

∫ T

t1
D (t) (1 − β · (T − t)) · e−r ·t dt

)
. (12)

5. The present value of purchase cost (PC) for the one cycle is

PC = c
(

I0 + Se−r ·T )
. (13)

6. The present value of return cost for each cycle.
We assume that returns from period i −1 are available for resale at the beginning of period
i (except of the first period in which there is no cycle previous to it). It is also assumed
that the salvage value of the product at the end of the last period (i = N ) is SV. Therefore,
the present value of return cost and resale revenue for each cycle is obtained as follows:

RCi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
∫ t1

0
(αD (t) + βp) e−r ·t dt, for i = 1,

RC = p
∫ t1

0
(αD (t) + βp) e−r ·t dt − c

∫ t1

0
(αD(t) + βp) dt,

for i = 2, 3, . . . , N − 1,

p
∫ t1

0
(αD (t)+βp) e−r ·t dt−c

∫ t1

0
(αD (t)+βp) dt−SV e−r ·T

∫ t1

0
(αD (t)+βp) dt,

for i = N .

(14)

7. The present value of sales revenue (SR) for the one cycle is

S R = p

(∫ t1

0
D(t) · e−r ·t dt + S · e−r ·T

)
. (15)

8. The present value of interest payable for the one cycle.
For each cycle, we need to consider cases where the length of the credit period is longer or
shorter than the length of time in which the product exhibits no deterioration (td) and the
length of time in which there is no inventory shortage (t1). Thus, we calculate the present
value of interest payable for the items kept in stock under the following three cases.

Case 1 The delay time of payments occurs before deteriorating time or 0 < M ≤ td (see
Fig. 2).

In this case, payment for items is settled and the retailer starts paying the interest charged
for all unsold items in inventory with rate Ip . Thus, the present value of interest payable for
the one cycle is given by

I P1 = cIp

[
e−r ·M

∫ td

M
I1 (t) · e−r ·t dt + e−r ·td

∫ t1

td
I2 (t) · e−r ·t dt

]
. (16)

Case 2 The delay time of payments occurs after deteriorating time and before the length of
time in which there is no inventory shortage; i.e., td < M ≤ t1 (see Fig. 3).

The conditions of this case are similar to those for Case 1. Thus, the present value of interest
payable for the one cycle is given below:

I P2 = cIp

[
e−r ·M

∫ t1

M
I2 (t) · e−r ·t dt

]
. (17)
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Fig. 2 0 < M ≤ td (Case 1: the delay time of payments occurs before the the deteriorating time)
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Fig. 3 td < M ≤ t1 (Case 2: the delay time of payments occurs after the deteriorating time and before the
production period time)
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Fig. 4 t1 < M ≤ T (Case 3: the delay time of payments occurs after the production period time and before
the duration of inventory cycle)

Case 3 The delay time of payments occurs after the length of time in which there is no
inventory shortage and before the duration of inventory cycle or t1 < M ≤ T (see Fig. 4).

In this case there is no opportunity cost. Therefore, I P3 = 0.

9. The present value of interest earned for the one cycle.
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There are different ways to tackle the interest earned. Here, we use the approach used
in Geetha and Uthayakumar (2010). We assume that during the time when the account is
not settled, the retailer sells the goods and continues to accumulate sales revenue and earns
interest with rate Ie. Therefore, the present value of the interest earned for the one cycle is
as given below for the three different cases.

Case 1 The delay time of payments occurs before the deteriorating time or 0 < M ≤ td :

IE1 = pIe

∫ M

0
t · D (p, t) · e−r ·t dt. (18)

Case 2 The delay time of payments occurs after the deteriorating time and before the pro-
duction period time; i.e., td < M ≤ t1:

IE2 = pIe

∫ M

0
t · D (p, t) · e−r ·t dt. (19)

Case 3 The delay time of payments occurs after the production period time and before the
duration of inventory cycle or t1 < M ≤ T :

IE3 = pIe

[∫ t1

0
t · D (p, t) · e−r ·t dt + (M − t1)

∫ t1

0
D(p, t) · e−r ·t dt

]
. (20)

There are N cycles during the planning horizon. Since inventory is assumed to start and
end at zero, an extra replenishment at t = H is required to satisfy the backorders of the last
cycle in the planning horizon. Therefore, the total number of replenishment will be N + 1
times; the first replenishment lot size is I0, and the 2nd, 3rd, …, N th replenishment lot size
is as follows:

Q = S + I0.

Finally, the last or (N + 1)th replenishment lot size is S. Therefore, the present value of total
profit during the planning horizon, denoted by f (p, t1, N ), is derived as follows:

f (p, t1, N )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 (p, t1, N ) =
N−1∑
i=0

(S R − PC − K − HC − RC + IE1 − I P1) e−r ·i ·T

+SV · e−r ·H
∫ t1

0
(αD (p, t) + βp) dt − c

∫ t1

0
(αD (p, t) + βp) dt,

if 0 < M ≤ td , (21a)

f2 (p, t1, N ) =
N−1∑
i=0

(S R − PC − K − HC − RC + IE2 − I P2) e−r ·i ·T

+SV · e−r ·H
∫ t1

0
(αD (p, t) + βp) dt − c

∫ t1

0
(αD (p, t) + βp) dt,

if td < M ≤ t1, (21b)

f3 (p, t1, N ) =
N−1∑
i=0

(S R − PC − K − HC − RC + IE3 − I P3) e−r ·i ·T

+SV · e−r ·H
∫ t1

0
(αD (p, t) + βp) dt − c

∫ t1

0
(αD (p, t) + βp) dt,

if t1 < M ≤ T, (21c)
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which we want to maximize subject to the following constraints:

p > 0, 0 < t1 < T, N ∈ N.

The value of the variable T can be replaced by the equation T = H/N , for some con-
stant H > 0, and we will use the geometric series formula for the following explanation:∑N−1

i=0 e−r ·i ·T = (1− e−r ·N ·T )/(1− e−r ·T ). Thus, the objective of this paper is to determine
the values of t1, p and N that maximize f (p, t1, N ) subject to p > 0 and 0 < t1 < T , where
N is a discrete variable and p and t1 are continuous variables. However, since f (p, t1, N )

is a very complicated function due to high-power expressions in the exponential function,
it is difficult to show analytically the validity of the sufficient optimality conditions. Hence,
if more than one local maximum exists, we would attain the largest of the local maximum
values over the regions subject to p > 0 and 0 < t1 < T . The largest value is referred to
as the global maximum value of f (p, t1, N ). So far, the procedure is to locate the optimal
values of p and t1 when N is fixed. Since N is a discrete variable, the following approximate
algorithm can be used to determine the optimal values of p, t1 and N .

4 The optimal solution procedure

The objective function has three variables. The number of production cycles (N ) is a discrete
variable, the production period in an inventory cycle (t1) and the selling price per unit (p)

are continuous variables. We use the algorithm for Case 1, 0 < M ≤ td , to obtain the optimal
amount of t1, p and N . One can develop this algorithm for Cases 2 and 3.

The proposed algorithm has two parts. In the first part, for simplicity, we solve our model
without constraints and then we can use the following algorithm, where, without loss of
generality, we focus on f1 rather than f2 or f3:

Step 1-1 Let N = 1.
Step 1-2 Take the partial derivatives of f1 (p, t1, N ) with respect to p and t1, and equate

the results to zero, the necessary conditions for optimality are

∂

∂p
f1 (p, t1, N ) = 0 (22)

and
∂

∂tp
f1 (p, t1, N ) = 0. (23)

In “Appendix”, we use the formula of f1 (p, t1, N ) from Eq. (21a), inserted into Eqs. (22)
and (23).

Step 1-3 For given values of N , derive t∗1 and p∗ from Eqs. (22) and (23). Substitute
(p∗, t∗1 , N ) into f1 (p, t1, N ) from Eq. (21a) to derive f1(p∗, t∗1 , N ).

Step 1-4 Add one unit to N and repeat Steps 1-2 and 1-3 for the new N until the maximum
f1

(
p∗, t∗1 , N∗) is found.

The point (p∗, t∗1 , N∗) and the value f1(p∗, t∗1 , N∗) constitute the optimal solution and
satisfy the following conditions:

� f1
(

p∗, t∗1 , N∗) < 0 < � f1
(

p∗, t∗1 , N∗ − 1
)
, (24)

where
� f1

(
p∗, t∗1 , N∗) = f1

(
p∗, t∗1 , N∗ + 1

) − f1
(

p∗, t∗1 , N∗) . (25)

We substitute (p∗, t∗1 , N∗) into Eq. (9) to derive the N th replenishment lot size.
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If the objective function was strictly concave, the following sufficient conditions should
be satisfied: (

∂2 f1

∂p∂t1

)2

−
(

∂2 f1

∂t2
1

) (
∂2 f1

∂p2

)
< 0, (26)

and anyone of the following conditions:

∂2 f1

∂t2
1

< 0,
∂2 f1

∂p2 < 0. (27)

It is difficult to show the validity of the above sufficient conditions analytically, due to involve-
ment of a high-power expression of the exponential function. However, in most practical cases
it can be assessed numerically.

Step 1-5 Check whether the optimal solution satisfies all constraints. If at least one of the
constraints is not satisfied, then use the second part of the algorithm.

In the second part of the algorithm, the model is solved using Lagrange multiplier method.
Therefore, the Lagrange function will be as follows:

L (p, t1, λ1, λ2, λ3, N ) = f1 (p, t1, N ) + λ1 p + λ2t1 + λ3 (T − t1) . (28)

In the real world, this situation would rarely occur. However, for the sake of theoretical
clarity, we will discuss this situation in the following second part of the algorithm for the
above unconstrained function:

Step 2-1 Let N = 1.
Step 2-2 Take the partial derivatives of L (p, t1, λ1, λ2, λ3, N ) with respect to p, t1, λ1, λ2

and λ3 and equate the results to zero, the necessary conditions for optimality are

∂

∂p
L (p, t1, λ1, λ2, λ3, N ) = 0, (29)

∂

∂tp
L (p, t1, λ1, λ2, λ3, N ) = 0, (30)

∂

∂λ1
L (p, t1, λ1, λ2, λ3, N ) = 0, (31)

∂

∂λ2
L (p, t1, λ1, λ2, λ3, N ) = 0 (32)

and
∂

∂λ3
L (p, t1, λ1, λ2, λ3, N ) = 0. (33)

Step 2-3 For given values of N , derive p∗, t∗1 , λ∗
1, λ

∗
2 and λ∗

3 from Eqs. (29)–(33).
Substitute (p∗, t∗1 , λ∗

1, λ
∗
2, λ

∗
3, N ) into L (p, t1, λ1, λ2, λ3, N ) from Eq. (28) to derive

L(p∗, t∗1 , λ∗
1, λ

∗
2, λ

∗
3, N ).

Step 2-4 Add one unit to N and repeat Steps 2-2 and 2-3 for the new N until the maximum
L(p∗, t∗1 , λ∗

1, λ
∗
2, λ

∗
3, N∗) is found.

The point (p∗, t∗1 , λ∗
1, λ

∗
2, λ

∗
3, N∗) and the value L(p∗, t∗1 , λ∗

1, λ
∗
2, λ

∗
3, N∗) constitute the

optimal solution and satisfy the following conditions:

�L
(

p∗, t∗1 , λ∗
1, λ

∗
2, λ

∗
3, N∗) < 0 < �L

(
p∗, t∗1 , λ∗

1, λ
∗
2, λ

∗
3, N∗ − 1

)
, (34)

where
�L

(
p∗, t∗1 , λ∗

1, λ
∗
2, λ

∗
3, N∗) = L

(
p∗, t∗1 , λ∗

1, λ
∗
2, λ

∗
3, N∗ + 1

)

− L
(

p∗, t∗1 , λ∗
1, λ

∗
2, λ

∗
3, N∗) . (35)
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Table 1 Optimal solution of the
example

a Optimal solution

N p Time interval Q f1

t1 T

39 30.345 0.305 1.026 78.943 7,901.240

40a 30.357a 0.288a 1.000a 76.897a 7,901.628a

41 30.370 0.271 0.976 74.943 7,900.637

Table 2 The impact of customer
returns on the optimal solution of
the example which optimal
solution is derived from Table 1

α, β p∗ t∗1 T ∗ Q∗ f ∗
1

α = 0, β = 0 30.915 0.961 1.379 107.311 10,645.594

α = 0, β = 0.3 29.639 0.758 1.290 105.445 9,475.199

α = 0.2, β = 0 30.990 0.608 1.250 94.576 8,713.973

α = 0.2, β = 0.3 30.357 0.288 1.000 76.897 7,901.628

We substitute (p∗, t∗1 , N∗) into Eq. (9) to derive the N th replenishment lot size.
If the objective function was strictly concave, the Hessian matrix at the stationary point(

p∗, t∗1 , λ∗
1, λ

∗
2, λ

∗
3, N∗) should be negative definite.

5 A numerical example

To illustrate the solution procedure and the results, let us apply the proposed algorithm to
solve the following numerical example. The results can be found by using Maple 13. This
example is based on the following parameters and functions:

c = $10 per unit, c1 = $1 per unit/per unite time, c2 = $5 per unit/per unite time, c3 = $25
per unit, td = 0.08 unit time, A = $250 per order run, θ = 0.08, r = 0.12, δ = 0.1, H = 40
unit time, α = 0.2, β = 0.3, SV = $3 per unit, a = 200, b = 4, k = 0.03, M = 0.01 unit
time, Ip = 0.15/$ per unit time, Ie= 0.12/$ per unit time.

From Table 1, the maximum present value of total profit is found in 40th cycle. The total
number of order therefore is N + 1 or 41. With 41 orders, the optimal solution is as follows:

p∗ = 30.357, t∗1 = 0.288, T ∗ = 1.000, f ∗
1 = 7901.628, Q∗ = 76.897.

It is observed that all constraints are satisfied, and as a result, it is not required to use the
second part of the algorithm. In practice, it could be expected to solve most problems just by
the first part of the algorithm.

By substituting the optimal values of N∗, p∗ and t∗1 into Eq. (27), it will be shown that f1

is strictly concave (see Fig. 5 for an illustration):

∂2 f1

∂t2
1

= −10,209.452,
∂2 f1

∂p2 = −60.255.

From Table 2 it is observed that when the returns only depended on the quantity sold (i.e.,
β = 0), the price increases and the order quantity decreases, but if the returns are dependent
on the price only (i.e., α = 0), the price goes down and the order quantity increases. The
results verify that when returns increase with the product price (when purchase costs are
constant), the firm should set a lower price (in order to discourage returns). Increasing α

and/or β reduces the firm’s profit.
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Fig. 5 The graphical representation of the concavity of the present value of total profit function f1 (p, t1, 40)

which optimal value is derived from Table 1

Table 3 The impact of the
discount rate of inflation on the
optimal solution of the Example
which optimal solution is derived
from Table 1

r p∗ t∗1 T ∗ Q∗ f ∗
1

0.02 31.767 0.934 2.105 151.453 22,242.570

0.06 30.475 0.288 1.052 80.267 15,012.463

0.12 30.357 0.288 1.000 76.897 7,901.628

0.16 30.294 0.290 0.975 75.357 5,823.166

The numerical results of the Table 3 are summarized in Fig. 6a–c.
Moreover, as it can be seen in Table 3, when the net discount rate of inflation (r ) decreases,

then, the optimal order quantity, the optimal cycle time, and the optimal present value of total
profit increase. Thus, the results confirm that when the discount rate of inflation decreases,
the purchasing power will be raised, which will lead to an enhancement in order quantity.
As a result, it is important to consider the effects of inflation and the time value of money on
inventory policy.

Also, If td = 0, the model convert to the instantaneous deterioration items case, and the
optimal present value of total profit can be found as follows: f ∗

1 = 7,749.093. It can be seen
that the optimal present value of total profit in the instantaneous deterioration items case
decreases. This implies that the optimal present value of total profit could be increased by
changing the instantaneously to non-instantaneously items using the improved stock condi-
tion.

In addition, when the supplier does not provide a credit period (i.e., M = 0), the
optimal present value of retailer total profit and cycle time can be found as follows:
f ∗
1 = 7,892.824. It can be seen that the optimal present value of total profit decreases.

Thus, retailers should try to get credit periods for their payments if they wish to increase their
profit.
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Fig. 6 The numerical results of the Table 3 which include the impact of the discount rate of inflation (r) on
the optimal solution of the Example. a Impact of r on optimal cycle time. b Impact of r on optimal order
quantity. c Impact of r on optimal present value of total profit

6 Conclusion and outlook

In this paper, we consider the effects of permissible delay in payments, inflation and customer
returns on joint pricing and inventory control model for non-instantaneous deteriorating items
with inflation- and selling price-dependent demand and partial backlogging. The backlogging
rate is variable and dependent on the time of waiting for the next replenishment. The customer
returns are assumed as a function of price and demand simultaneously. The mathematical
models are derived to determine the optimal selling price and replenishment policy. An opti-
mization algorithm is presented to derive the optimal decision variables. Finally, a numerical
example is solved and the effects of the customer returns, inflation, non-instantaneous dete-
rioration, and delay in payments are also discussed.

From Table 2 it can be observed that when the customer returns depend on the quantity of
product sold only (i.e., β = 0), the price increases and order quantity decreases. On the other
hand, when the customer returns increase with price only (i.e., α = 0), the price reduces
and the order quantity increases. Also, observed in Table 3, it can be seen that there is an
improvement in the optimal cycle time, optimal order quantity, and in the optimal present
value of total profit when the discount rate of inflation decreases. Moreover, from Table 4 it
can be observed that the optimal present value of total profit in the instantaneous deterioration
items case decreases. In addition, the results show that when a delay in payments is allowed,
the optimal present value of the total profit for the retailer does enhance. Thus, retailers should
try to get credit periods for their payments if they wish to increase their profit.
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Table 4 The results of the
example with instantaneous and
non-instantaneous deteriorating
models

td p∗ t∗1 T ∗ Q∗ f ∗
1

0 30.549 0.287 1.025 78.001 7,749.093

0.08 30.357 0.288 1.000 76.897 7,901.628

0.16 30.134 0.254 0.930 72.357 8,140.682

0.24 29.830 0.145 0.754 59.514 8,556.265

Our model could be implemented in engineering and management sciences, business
administration, financing and economics.

To the best of our knowledge, this is the first model in pricing and inventory control
models that consider permissible delay in payments, inflation- and selling price-dependent
demand rate, partial backlogging, and customer returns for non-instantaneously deteriorating
items. The proposed model can be further extended in several ways. For example, we could
incorporate: (i) stochastic demand function, (ii) two warehouse, (iii) quantity discount, (iv)
stochastic inflation (v) two-level trade credit or trade credit linked to order quantity and (vi)
deteriorating cost. In addition, we consider to extend our model which consists of ordinary
differential equations to the presence of random fluctuation as included by a system of sto-
chastic differential equations, and solve our optimization problem within such a new setting.
Finally, a detailed complexity investigation of our research, in terms of class identification
and complexity reductions, may be conducted in future. In fact, we could consider methods
of nonlinear mixed-integer programming, and look for a priori information, e.g., on data
structures, identifying the problem in the classes P or NP, or as NP complete even, and for
conditions under which complexity can be diminished in our study.

Acknowledgments The authors greatly appreciate the anonymous referees for their valuable and helpful
suggestions regarding earlier version of the paper.

7 Appendix

For a given value of N , the necessary optimality conditions for finding the optimal values p∗
and t∗1 are given as follows and were implemented by us:

∂

∂p
f1 (p, t1, T ) = ((bkr2c3e−r t1 (r + θ)(k − 1)(kr + θ)(kr + δ)e(δ+(k−1)r)t1−δT

+ bkr2c1e−r td (k − 1) (kr + δ) (−r + kr + δ) et1(kr+θ)−td (r+θ)

− (kr + θ) (−r + kr + δ) (k − 1)
(

b((e−r t1 ))2c2 − c2e−r t1 be−rT + r ((c − 2p) b + a) e−rT
)

r (r + θ) ke(kr+δ)t1−δT − bkrc2e−r t1 (r + θ) (k − 1) (kr + θ)
(
−e−r t1 + e−rT

)

(−r + kr + δ) e(−T +t)δ+krt + bkre−td (r+θ)c1 (k − 1) (kr + δ) (−r + kr + δ) (r + θ)

et1(kr+θ)+r td + bθe−td (r+θ)c1(k − 1) (kr + δ) (−r + kr + δ) (r + θ) e((1+k)r+θ)td

bkr (k − 1) (kr + δ) (−r + kr + δ) (r + θ)
(

e−θ td cr − e−td (r+θ)c1

)
et1(kr+θ)

−
(

c1 (r + θ) e−td (r+θ) + ce−θ td r2(k − 1)
)

b (−r + kr + δ) (r + θ) k (kr + δ)

etd (kr+θ) + (kr + θ) (−r + kr + δ) rk(−bc3 (r + θ) e−r t1 − e−r td bc1

+ (r + θ) (−2bp + a) (kr + δ) ert1(k−1) + (bkrc1e−r td (kr + δ) (−r + kr + δ) ertd (k−11)

123



236 Ann Oper Res (2015) 226:221–238

+ kr + θ)(bc1etd (r+θ) (kr + δ) (−r + kr + δ) e−td (r+θ) + r(bkc3e−r t1δ (kr + δ) erT (k−1)

+ (−r + kr + δ)((kr + δ) k
(
−α (−2bp + a) ekrt1 + (−2βpk − 2αbp + 2βp + αa) ert1

+ 2pβ(k − 1)
)

e−r t1 − bcα (k − 1) (kr + δ) ekrt1 + r ((c − 2p) b + a) kekrT (k − 1) e−rT

−
(
−bc (k − 1) ekrtd − βt1crk2 + (βt1cr + (−2p + c − cα) b + a) k + bc (−1 + α)

)

(kr + δ)))))(r + θ))(−1 + e−r H )/
(
(kr + θ)(k − 1)r2(kr + δ)k(r + θ)(−r + kr + δ)

(−1 + e− r H
N )) + SV e−r H

(
αb − αbekrt1 + βt1kr

)

kr
+ c(−βt1kr + αbekrt1 − αb

kr

)

+ 1

r (r + θ)
(
−1 + e− r H

N

)
(

Ipc (a − bp)
(
−1 + e−r H

) (
e−r M

(
e(kr+θ)t1+r M − e(kr+θ)t1+r td

)

(r + θ) e(−r−θ)td −r M +re−r td
(
−e(kr+θ)t1−(r+θ)td + ert1(k−1)

)))
= 0

and

∂

∂t1
f1(p, t1, T ) = (−(k − 1)(r + θ)e−r t1r(a − bp)(−1 + e−r H )((−2 + k)r + δ)(kr + δ)

c3e(δ+(k−1)r)t1−δT − (k − 1)r(δ + (k − 1)r)(a − bp)c1(−1 + e−r H )(kr + δ)e−r td

et1(kr+θ)−td (r+θ) + (k − 1)(((−2 + k)r + δ)c2((e
−r t1 ))2 − e−rT (δ + (k − 1)r)c2e−r t1

+ e−rT r(kr + δ)(c − p))(r + θ)(δ + (k − 1)r)(a − bp)(−1 + e−r H )e(kr+δ)t1−δT

− (k − 1)(r + θ)e−r t1r(δ + k − 1)r)(a − bp)(−1 + e−r H )c2(−2e−r t1 + erT )e(−T +t)δ+krt

+ (−(k − 1)(r + θ)(δ + (k − 1)r(a − bp)c1(−1 + e−r H )e−td (r+θ)et1(kr+θ)+r td

− (k − 1)(r + θ)r(δ + (k − 1)r)(α(a − bp)ekrt1 + βp)(c − SV e−r H )e− r H
N

− (k − 1)(r + θ)(δ + (k − 1)r)(e−θ td cr − e−td (r+θ)c1)(a − bp)(−1 + e−r H )et1(kr+θ)

+ r((c3(r + θ)(−2 + k)e−r t1 + (k − 1)(e−r td c1 + p(r + θ))(δ + (k − 1)r)(a − bp)

(−1 + e−r H )e−r t1(k−1) + (r + θ)(δc3e−r t1 (−1 + e−r H )(a − bp)erT (k−1) + (k − 1)

((−SV + c − pe−r t1 )e−r H + pe−r t1 )(δ + (k − 1)r)(α(a − bp)ekrt1 + βp))))

(kr + δ))/((k − 1)(r + θ)r(δ + (k − 1)r)(−1 + e− r H
N )(kr + δ))

+ 1

(k − 1)2(kr + θ)kr2(r + θ)(−1 + e− r H
N )

((−1 + e−r H )

(−(r + θ)(k − 1)Ipbe−r M c(−(k − 1)kre(kr+θ)t1+r M + (r + θ)ke(kr+θ)td +r M

+ (−kr − θ)e(r+θ)td +kr M − e((k+1)r+θ)td θ(k − 1))e(−r−θ)td −r M

+ k + k(r2cIpbe−r td (k − 1)2e(kr+θ)t1−(r+θ)td

+ (r + θ)Ie(kr + θ)(−2bp + a)(kr M − 1 − r M)er M(k−1) + cbr Ipe−r td (r + θ)(k − 1)

ertd (k−1) + (−cbr Ipe−r td (k − 1)ert1(k−1) + (r + θ)Ie(−2bp + a)(kr + θ)))) = 0.
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