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Abstract We describe a compact method to transform arc routing problem instances into
node routing problem instances. Any node routing problem instance thus created must be
solved by a branch-and-price process, such as the one described in this paper. The purpose
is to make the number of nodes in the resulting transformed graphs greater by only one unit
than the number r of required arcs (arcs having demand) in the original graph, that is, r + 1
nodes. This low increase in the number of nodes represents an improvement compared to the
methods previously presented by Pearn, Assad and Golden (3r + 1 nodes) and by Longo,
Poggi de Aragão and Uchoa and also by Baldacci and Maniezzo (2r + 1 nodes). Using an
adapted version of an existing branch-cut-and-price algorithm for a capacitated node routing
problem on the transformed graph results in an effective approach for a capacitated arc routing
problem. Computational experiments using this approach produced useful lower bounds in
reasonable computational time for many challenging numerical instances from the literature.
Additionally, some such previously open instances were solved to optimality for the first
time.
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1 Introduction

Classical vehicle routing is concerned with the identification of a set of routes to be carried
out by a fleet of vehicles in order to serve a given set of customers. The routes are valid
circuits over an appropriate road network that start at a pre-defined depot, serve customers
and return to the depot. Each route is carried out by a single vehicle such that all of the
requirements of the customers it serves are fulfilled and the operational constraints on the
vehicle are satisfied. The aim is to identify a set of such routes that satisfy all customers, with
the lowest global transportation cost.

There are two main classes of vehicle routing problems, depending upon where in the road
network the customers are located. In the Node Routing Problem, the customers are located
at the connection points of the network—the network nodes. In the Arc Routing Problem, the
customers are located on a full stretch of a road or street of the network—the network arcs.

The classical node routing problem was first introduced by Dantzig and Ramser (1959) for
the delivery of fuel to gasoline stations. It involves a known quantity of a single commodity
to be delivered by a single vehicle to each customer that is located at an individual node
of the network. All the delivery routes begin and end at a depot that is located at a unique
network node. The vehicles have known capacities to carry the commodity. Each arc of the
network has a known transportation cost. These arc costs are summed to calculate the cost
of each closed tour, a depot-to-depot connected sequence of nodes and arcs of the network.
Each tour is performed by one vehicle and the aim is to identify a collection of closed tours
of minimal total cost that satisfy all customer demands and the capacity constraint of each
vehicle. The node routing problem is commonly applied to vehicle scheduling for activities
such as: the collection or delivery of goods and the routing of salespeople or maintenance
units.

The classical arc routing problem was first introduced by Golden and Wong (1981). It
is similar to the node routing problem discussed earlier, with the main difference being
that customer demand is now satisfied on the arcs of the network, rather than at its nodes.
Once again, a fleet of vehicles each of limited capacity is based at a single depot node.
There is a subset of the arcs of the network that have a demand in the form of a task (in
common units) that must be completed by a single vehicle during one traversal of the arc.
Such arcs are termed required. Each route is a closed walk, a depot-to-depot connected
sequence of arcs. The arc routing problem involves identifying a set of routes of minimal
total cost. Any required arc can be traversed more than once but serving takes place during
exactly one traversal of the arc. Any other traversals of the arc do not involve serving of
the arc but still incur the arc cost and are termed “deadheading”. The total demand of all
required arcs on each route cannot exceed the capacity of the vehicle that traverses the route.
The arc routing problem is commonly applied to vehicle scheduling activities such as: snow
removal, street cleaning, municipal solid waste removal and the distribution of salt on roads in
winter.

Despite these similarities, the arc routing problem and the node routing problem have
been treated differently over the years. There has been a great effort to study node routing
problems and this has contributed to a significant development of techniques for solving
them. This situation has motivated the construction of arc-to-node graph transformations, to
take advantage of the efficiency and robustness of existing node routing problem solution
techniques in order to resolve specific arc routing problems. The goal of an arc-to-node
graph transformation is to turn a graph that models an arc routing problem instance into
a graph that models a node routing problem instance. Previously reported transformations
are based on producing a node routing problem instance that is equivalent to the original arc
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routing problem instance. That is, any optimal solution to a transformed node routing problem
instance corresponds to an optimal solution to the original arc routing problem instance.

The node routing problem instance resulting from the arc-to-node transformation of Pearn
et al. (1987) contains 3r +1 nodes, where r is the total number of required arcs in the original
arc routing graph, while the transformations of Longo et al. (2004, 2006) and of Baldacci
and Maniezzo (2004, 2006) result in a node routing instance with 2r + 1 nodes. The basis
of the Longo et al. and of the Baldacci and Maniezzo transformations is the elimination of
one of every three nodes generated by the Pearn et al. transformation. Since this node was
created by Pearn et al. with a specific, but redundant goal, both Longo et al. and also Baldacci
and Maniezzo showed that it can be eliminated because the same objective can be achieved
by other means. The present article proposes a transformation that eliminates two of every
three nodes generated by the Pearn et al. transformation. In this case, the resulting node
routing problem instance contains only r + 1 nodes. However, it must be said that any node
routing problem instance thus constructed cannot be solved by any ordinary node routing
algorithm. It is necessary to alter such algorithms to take into account the specific details
of the node routing instances generated by the proposed transformation. One possibility is
to adapt an existing node routing branch-and-price process, as explained in detail in Sect. 5.
The transformations just introduced are described in the next section.

2 Arc routing to node routing graph transformations

The arc routing problem is here modeled as an undirected graph G = (V, E), where V =
{0, 1, . . . , n} is the set of nodes. The depot is represented by node 0, the customers by the
other nodes in V and E is the set of edges. See Foulds (1991) for the necessary graph
theory notation and terminology. Each undirected edge {i, j} ∈ E has associated with it a
real-valued, symmetric transportation cost c(i, j) > 0 that represents the cost of any vehicle
traveling along {i, j} in either direction. The set of edges in E that represent actual customers,
each with a positive demand d(i, j) (the required edges) is denoted by R ⊆ E . Let r = |R|.
Each required edge must be served by exactly one walk in G.

The node routing problem that is created by any of the transformations described later is
modelled as an undirected graph H = (N , A), where N = {0, 1, . . . , m} is the set of nodes
and A is the set of edges. The depot is represented by node 0 and each customer (a required
edge in R) is associated with a unique subset of nodes in N . The customer demand d(i, j) for
each edge {i, j} ∈ R is distributed among its associated subset of nodes in N to create node
demands in H . Each such demand must be served by exactly one tour in H . How the travel
costs of the edges in A are derived from the edge and path costs in G are described in the
following subsections. The objective of both the arc routing and the node routing problem is
to identify a collection of feasible routes of minimal total cost.

2.1 The Pearn et al. (1987) transformation

In the arc-to-node transformation proposed by Pearn et al. (1987) each required edge {i, j} ∈
E is represented by three new nodes in N : two lateral and one central (si j , mi j , s ji ), over
which d(i, j) is distributed. The purpose of the central node mi j is to ensure that the shortest
path between the two lateral nodes si j and s ji is always the three nodes in the sequence
〈si j , mi j , s ji 〉 or in the sequence 〈s ji , mi j , si j 〉. The complete undirected graph H = (N , A)

for the node routing problem created by the transformation is defined as:

N = {0} ∪ {
si j , mi j , s ji | {i, j} ∈ R

}
. (1)
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The depot is represented by node 0 and the customers (the required edges in R) by the
other nodes in N .

The costs of the edges of H are defined by Eqs. (2)–(4) below, where dist (i, j) represents
the cost of the shortest path between nodes i and j in the original graph G:

w(si j , sk�) =
{

1
4 (c(i, j) + c(k, �)) + dist (i, k), if {i, j} �= {k, �},
0, if {i, j} = {k, �}; (2)

w(0, si j ) = 1
4 c(i, j) + dist (i, 0); (3)

w(mi j , v) =
{

1
4 c(i, j), if v = si j or v = s ji ,

∞, otherwise.
(4)

Each demand d(i, j) > 0, of each edge {i, j} ∈ E of the arc routing instance in G must
be distributed over the equivalent new nodes: si j , mi j and s ji in H , so that its sum is equal
to the original demand. That is, it is required that:

f
(
si j

) + f
(
s ji

) + f
(
mi j

) = d(i, j), ∀ {i, j} ∈ A. (5)

2.2 The Longo et al. and Baldacci and Maniezzo transformations

In the transformation described in Sect. 2.1, the only purpose of the central node mi j , is to
ensure that a route that passes through any lateral node also passes in sequence through the
associated central node and then through the other associated lateral node. Both Longo et al.
(2004, 2006) and Baldacci and Maniezzo (2004, 2006) proposed removing the central node,
but still ensuring that the lateral nodes are traversed sequentially. Thus, the new node routing
graph H has only 2r + 1 nodes.The node set is defined as:

N = {0} ∪ {
si j , s ji | {i, j} ∈ R

}
. (6)

The costs between a lateral node and the depot (node 0) and between two lateral nodes are
defined, respectively, by Eqs. (7) and (8) below. The expression dist (i, j) again represents
the cost of the shortest path between the nodes i and j in the original graph G:

w(0, si j ) = dist (0, i); (7)

w(si j , sk�) =

⎧
⎪⎨

⎪⎩

0, if {i, j} = {k, �},
c(i, j), if {i, j} = {�, k},
dist (i, k), if {i, j} �= {k, �} and {i, j} �= {�, k}.

(8)

The demand d(i, j) of each edge {i, j} ∈ R in G is distributed between the equivalent
new nodes si j and s ji in H , so that the sum of the constituent parts equals d(i, j):

f
(
si j

) + f
(
s ji

) = d(i, j), ∀ {i, j} ∈ A. (9)

The proposed transformation that is the main subject of the present article is described in
the next section.

2.3 The proposed transformation

For most practical instances arising in industry, representing each required edge of an arc
routing problem graph by even only two nodes in the corresponding node routing problem
graph creates a graph with an excessive number of nodes compared with the original arc
routing graph. The proposed transformation described in this article represents each required
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Fig. 1 Transforming an edge in
G to a node in H and allocating
the edge demand to the new node

edge by a single node, thus significantly reducing the number of nodes in the transformed
node routing problem graph.

This proposed transformation is illustrated in Fig. 1. Each required edge of the arc routing
graph G, is represented by a node in the node routing graph H . The proposed transformation
generates a graph H , that has a number of nodes equal to the number of required edges in
the arc routing graph G, plus one (the depot).

The node set of the graph H is defined as:

N = {0} ∪ {
mi j | {i, j} ∈ R and i < j

}
. (10)

H is defined as the complete graph on N . Each node mi j ∈ N is defined only when i < j .
The demand associated with each required edge of R is assigned to the corresponding node
in N as follows:

f (mi j ) = d(i, j), ∀ {i, j} ∈ R. (11)

3 Concepts and notation for problem equivalence

Consider a closed walk W ′ say, being a route that is part of a feasible solution to an arc
routing problem in a given graph G. (The definition of “a feasible solution” is provided
in Sect. 3.2.) Let R′ ⊆ R denote the set of required edges that are served in W ′, where
r ′ = |R′| ≥ 1. The walk W ′ can be represented unambiguously by specifying: (i) the order
in which the edges of R′ are visited, (ii) the direction in which each is traversed and (iii)
the subwalks that connect them. We shall index the nodes incident with the required edges
as they are served in W ′ as v1, v2, . . . , v2r ′ ; in the order that they are encountered during a
traversal of W ′. Thus, R′ = {{v2p−1, v2p} | p = 1, 2, . . . , r ′; v2p−1, v2p ∈ V } is the set of r ′
required edges served by W ′. During a traversal of W ′, the edges in R′ are served in the order:
{v1, v2}, {v3, v4}, . . . , {v2r ′−1, v2r ′ }; and when served, each of these edges is traversed in the
direction: (v2p−1, v2p), p = 1, 2, . . . , r ′. Furthermore, let W (i, j) be the subwalk of W ′ in
G from node i to node j , where i, j ∈ V . Thus, W ′ = {W (0, v1)} ∪ {W (vp, vp+1) | p =
1, 2, . . . , r ′} ∪ {W (v2r ′ , 0)}.

In general, as depicted in Fig. 2a, W ′ can be expressed unambiguously as:

W ′ = 〈W (0, v1), {v1, v2}, W (v2, v3), . . . ,

{v2p−1, v2p}, W (v2p, v2p+1), {v2p+1, v2p+2}, . . . ,
W (v2r ′−2, v2r ′−1), {v2r ′−1, v2r ′ }, W (v2r ′ , 0)〉. (12)

A route in H that serves the same set of customers as W ′ can be expressed as:

T ′ = 〈0, mu1u2 , mu3u4 , . . . , mu2p−1u2p , mu2p+1u2p+2 , . . . , mu2r ′−1u2r ′ , 0〉, (13)

where
{u2p−1, u2p} = {v2p−1, v2p}, p = 1, 2, . . . , 2r ′. (14)
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(a)

(b)

Fig. 2 a A general route in G. b The degenerate cases where deadheading is absent in a route in G

3.1 Degeneracy in routes in G

Due to the structure of G and the possibility of deadheading, there may a repetition of nodes
or even of edges in W ′. As observed earlier, even in these cases each required edge is served
exactly once and any other traversals of it constitute deadheading with its traversal cost still
incurred each time. We now cover the degenerate cases for (12) where deadheading does not
occur in one or more of the subwalks of W ′. Figure 2b depicts the special case where each
subwalk W ′(i, j) degenerates to W ′(i, i) (which is also W ′( j, j)) with distance zero:

1. If v1 = 0 (the depot), then there is no deadheading immediately after leaving node 0
and subwalk W (0, v1) degenerates to W (0, 0) with distance zero and is removed from
W ′. Edge {v1, v2} becomes the served edge {0, v2} and the initial part of W ′ becomes
〈0, {0, v2}, v2, . . .〉.

2. If v2p = v2p+1 for any p = 1, 2, . . . , r ′ −1; then there is no deadheading between edges
{v2p−1, v2p} and {v2p+1, v2p+2} and they are served in immediate succession. Subwalk
W (v2p, v2p+1) degenerates to subwalk W (v2p, v2p) with distance zero and is removed
from W ′. The corresponding intermediate part of W ′ becomes

〈. . . , v2p−1, {v2p−1, v2p}, v2p, {v2p, v2p+2}, v2p+2, . . .〉.

3. If v2r ′ = 0, then there is no deadheading immediately before arriving at node 0 and
subwalk W (2r ′, 0) degenerates to W (0, 0) with distance zero and is removed from W ′.
Edge {v2r ′−1, v2r ′ } becomes the served edge {v2r ′−1, 0} and the final part of W ′ becomes
〈. . . , v2r ′−1, {0, v2r ′−1}, 0〉.
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In each of these cases, the corresponding inter-node distance is zero and two successive
nodes in (12) are the same actual node in G. However, without loss of generality and for the
sake of simplicity, from now on we shall retain all the original vertices in (12), as shown in
Fig. 2a, even if an absence of deadheading implies degeneracy. Case 3 above is illustrated in
the numerical examples in Sect. 4.

3.2 Route feasibility in G

Consider an arc routing problem instance AR(G) say, for a given graph G. Suppose SAR(G)

is a solution for AR(G). Let the set of closed walks, each containing 0 (the depot node), that
constitutes SAR(G) be denoted by {Wq | q = 1, 2, . . . , Q}, for some Q. Furthermore, for
q = 1, 2, . . . , Q; let Rq ⊆ R denote the set of required edges that are served in Wq . Then
SAR(G) is a feasible solution for AR(G) if, and only if, (15)–(17) hold:

Rq �= Ø, ∀ q = 1, 2, . . . , Q; (15)

Q⋃

q=1

Rq = R and Rq ′ ∩ Rq ′′ = Ø (q ′ �= q ′′). (16)

Equation (15) states that each walk in SAR(G) serves at least one required edge and (16) states
that the set of required edges is partitioned and each required edge is served on exactly one
walk. Additionally, the sum of demands associated with the subset Rq of required edges may
be limited to a given bound Cq (for example, the capacity of the vehicle that serves Rq ):

∑

{i, j}∈Rq

d(i, j) ≤ Cq , ∀ q = 1, 2, . . . , Q. (17)

3.3 Dividing edge costs in G

In order to prepare for calculating edge costs in H , consider the four possible ways to serve
required edges {i, j} and then {k, �} say, in G in immediate succession with the shortest
possible cost, as shown in Fig. 3a–d. The dashed circles and lines represent nodes and edges
of G, respectively. The solid disks and undirected lines represent nodes and edges of H ,
respectively. The four ways are:

(a) traverse edge {i, j} in the direction (i, j), follow a shortest path in G connecting node j
to node k and traverse edge {k, �} in the direction (k, �) (Fig. 3a); or

(b) traverse edge {i, j} in the direction (i, j), follow a shortest path in G connecting node j
to node � and traverse edge {k, �} in the direction (�, k) (Fig. 3b); or

(c) traverse edge {i, j} in the direction ( j, i), follow a shortest path in G connecting node i
to node k and traverse edge {k, �} in the direction (k, �) (Fig. 3c); or

(d) traverse edge {i, j} in the direction ( j, i), follow a shortest path in G connecting node i
to node � and traverse edge {k, �} in the direction (�, k) (Fig. 3d).

The cost of (a) is c(i, j)+dist ( j, k)+c(k, �), where dist ( j, k) is the minimum cost of any
subwalk between nodes j and k in G. The costs of (b), (c) and (d) are: c(i, j) + dist ( j, �) +
c(k, �), c(i, j) + dist (i, k) + c(k, �) and c(i, j) + dist (i, �) + c(k, �), respectively. (Here,
the function c and hence the function dist are assumed to be symmetric.) The equivalent
subtours in graph H serve node mi j and then serve node mk� in immediate succession. It is
important to note that in H (a node routing problem) a subtour that serves node mi j must be
equivalent) to a subwalk in G (an arc routing problem) that serves the required edge {i, j}.
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(a) (b)

(c) (d)

Fig. 3 The four possible ways to traverse two required edges in G in sequence

Thus, to ensure equivalence between the two problems, the cost c(i, j) of a required edge
{i, j} in R must be incurred by any route that serves node mi j ∈ N . In other words, the cost
c(i, j) must be divided between the edge that arrives at node mi j and the edge that leaves
node mi j in H . For example, if a tour reaches node mi j from node mgh say, and continues to
node mk� say, then c(i, j) must be divided between edges {mgh, mi j } and {mi j , mk�} ∈ A. In
this case, c(i, j) will be incurred exactly when the route includes the edges {mgh, mi j } and
{mi j , mk�}. As will be seen later, without loss of generality, we adopt the convention that half
of c(i, j) is incurred when {mgh, mi j } is traversed and the other half of c(i, j) is incurred
when {mi j , mk�} is traversed.

We wish to avoid the situation where a separate version of H must be created with edge
weights corresponding to each of the orientations illustrated in Fig. 3. In this case a node
routing problem would have to be solved for each orientation and the optimal solution to the
original arc routing problem could be deduced from the node routing problems in H among
those that are minimal. The major problem with this approach is that an exponential number
of node routing problems has to be solved. In Sect. 5 we explain how a branch-cut-and-price
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algorithm achieves optimality for the transformed node routing problem by identifying the
most favourable partition of R (corresponding to routes) and simultaneously selects only the
necessary combination of required edge directions, on an as-needed basis.

3.4 Edge costs in H

To prepare for the calculation of edge costs in H , consider two edges {i, j} and {k, �} ∈ R say,
as shown in Fig. 3a–d. We now consider the direction of travel of a required edge {i, j} ∈ R
say, served in a route W ′ of G and the directions of travel of edges in the equivalent route in
H that are incident with the corresponding node mi j ∈ N . In order to specify the direction
of travel of such edges in H we introduce pairs of binary variables (ai j , ak�), defined for all
edges {mi j , mk�} ∈ A, only for i < j and k < �, as:

1. (ai j , ak�) = (0, 0), if W ′ departs {i, j} by node i and arrives at {k, �} at node k (Fig. 3c),
2. (ai j , ak�) = (0, 1), if W ′ departs {i, j} by node i and arrives at {k, �} at node � (Fig. 3d),
3. (ai j , ak�) = (1, 0), if W ′ departs {i, j} by node j and arrives at {k, �} at node k (Fig. 3a),

and
4. (ai j , ak�) = (1, 1), if W ′ departs {i, j} by node j and arrives at {k, �} at node � (Fig. 3b).

For the sake of consistency in 1–4 just defined, the following relation must hold:

If (ai j , ak�) = (0, 0) then (ai j , agh) = (0, δ), ∀ {g, h} ∈ R \ {{i, j}, {k, �}}, (18)

where δ ∈ {0, 1}.
Definitions 1–4 and relation (18) taken together ensure that the equivalent route in H is

consistent and are based on the facts that if ai j = 0(1) the travel direction of edge {i, j} is j
to i (i to j), where i < j .

The notation w(m
ai j
i j , mak�

k� ) denotes the cost associated with {mi j , mk�} ∈ A when its node

departure and arrival regime is defined as (ai j , ak�). With reference to Fig. 4a, w(m
ai j
i j , mak�

k� )

can be calculated as the sum of:

1. c(i, j)/2, i.e., half of the cost of the edge {i, j} (the departing edge),
2. the cost of the shortest path in G from the departing node of {i, j} (which is (1−ai j )·i +

(ai j )· j) to the arriving node of {k, �} (which is (1 − ak�)·k + (ak�)·�) and
3. c(k, �)/2, i.e., half of the cost of the edge {k, �} (the arriving edge).

The notation w(0, m
ai j
i j ) denotes the cost associated with {0, mi j } ∈ A, when its arrival

node is specified by ai j . With reference to Fig. 4b, w(0, m
ai j
i j ) can be calculated as the sum

of:

1. c(i, j)/2, i.e., half of the cost of the edge {i, j} in G and
2. the cost of the shortest path in G from the arrival node of {i, j}, which is (1 − ai j )·i +

(ai j )· j .

The cost w(m
ai j
i j , 0) can be calculated analogously.

With this convention, Eqs. (19)–(22) determine w(m
ai j
i j , mak�

k� ) for all possible (ai j , ak�)

pairs. Equations (23) and (24) determine w(0, m
ai j
i j ), the cost of traversing an edge in H that

connects node 0 to any other node mi j ∈ N . As the cost functions c and dist are symmetric,
w is also symmetric.
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(a) (b)

Fig. 4 a An edge connecting two customer nodes; b An edge connecting the depot to a customer node

w(m0
i j , m0

k�) = w(m0
k�, m0

i j ) = c(i, j)/2 + dist (i, k) + c(k, �)/2, ∀ mi j , mk� ∈ N ;
(19)

w(m0
i j , m1

k�) = w(m1
k�, m0

i j ) = c(i, j)/2 + dist (i, �) + c(k, �)/2, ∀ mi j , mk� ∈ N ;
(20)

w(m1
i j , m0

k�) = w(m0
k�, m1

i j ) = c(i, j)/2 + dist ( j, k) + c(k, �)/2, ∀ mi j , mk� ∈ N ;
(21)

w(m1
i j , m1

k�) = w(m1
k�, m1

i j ) = c(i, j)/2 + dist ( j, �) + c(k, �)/2, ∀ mi j , mk� ∈ N ;
(22)

w(0, m0
i j ) = w(m0

i j , 0) = c(i, j)/2 + dist (0, i), ∀ mi j ∈ N ; (23)

w(0, m1
i j ) = w(m1

i j , 0) = c(i, j)/2 + dist (0, j), ∀ mi j ∈ N . (24)

Equations (19)–(22) can be generalized as:

w(m
ai j
i j , mak�

k� ) = w(mak�

k� , m
ai j
i j ) = c(i, j)/2 + dist ((1 − ai j )·i

+ (ai j )· j, (1 − ak�)·k + (ak�)·�)
+ c(k, �)/2, ∀ mi j , mk� ∈ N . (25)

Equations (23) and (24) can be generalized as:

w(0, m
ai j
i j ) = w(m

ai j
i j , 0) = c(i, j)/2 + dist (0, (1 − ai j )·i + (ai j )· j), ∀ mi j ∈ N . (26)

We now complete the preparation for demonstrating that the proposed transformation pro-
duces equivalent problems by making some final remarks. The edge costs in H are dependent
upon the (ai j , ak�) pairs where {i, j}, {k, �} ∈ R. If the binary values ai j are assembled in
some fixed order into a binary vector a say, it is evident that every binary vector a ∈ {0, 1}r

gives rise to a specification of the edge costs in H , that is, to a numerical instance of a node
routing problem in H . The implication of this is as follows. Suppose there is an arc routing
problem (G, R) with given graph G and required edge set R, that is turned into a node routing
problem on graph H by the proposed transformation. Since H is the fixed, complete graph
with node set {mi j | {i, j} ∈ R and i < j} ∪ {0} there is exactly one node routing problem
numerical instance for each binary vector a ∈ {0, 1}r . We now use these facts to demonstrate
problem equivalence.
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4 Problem equivalence

We now demonstrate the equivalence of the original arc routing problem and any of the node
routing problems that arise from it via the proposed transformation.

Lemma 1 Suppose that the proposed transformation is used to turn a given arc routing
problem instance based on a graph G, into a node routing problem instance based on a graph
H. For any feasible solution SAR(G) say, to the arc routing problem instance in G, there exists
a binary vector a ∈ {0, 1}r such that there is a feasible solution to the corresponding node
routing problem in H with cost no greater than the cost of SAR(G).

(A numerical example illustrating Lemma 1 is provided immediately after the following
proof).

Proof Consider an arc routing problem instance AR(G) say, for a given graph G. Suppose
that SAR(G) is any feasible solution to AR(G). Let the set of routes of SAR(G) be denoted by
{Wq | q = 1, 2, . . . , Q}, for some Q ≥ 1. Furthermore, for q = 1, 2, . . . , Q; let Rq ⊂ R
denote the set of required edges that are served in Wq . Following the discussion leading up
to Eq. (12), if |Rq | = rq ≥ 1 say, each route Wq ∈ SAR(G) can be represented as:

Wq = 〈Wq(0, v1), {v1, v2}, Wq(v2, v3), {v3, v4}, . . . ,
Wq(v2rq−2, v2rq−1), {v2rq−1, v2rq }, Wq(v2rq , 0)〉. (27)

Let zWq be the cost of Wq and z(Wq(i, j)) be the cost of the subwalk Wq(i, j). Then

zWq = z(Wq(0, v1)) + c(v1, v2) + z(Wq(v2, v3)) + c(v3, v4) + · · ·
+ z(Wq(v2rq−2, v2rq−1)) + c(v2rq−1, v2rq ) + z(Wq(v2rq , 0)). (28)

We show how a feasible solution to a node routing problem instance in H can be con-
structed from SAR(G). By using the proposed transformation, let H be the graph constructed
from G and N R(H) be the node routing problem instance constructed from AR(G). A fea-
sible solution to N R(H), denoted by SN R(H), can be constructed from SAR(G) as follows.
Let {Tq | q = 1, 2, . . . , Q} denote the set of routes in H that constitutes SN R(H). There is a
one-to-one correspondence between the routes in SN R(H) and the routes in SAR(G) because,
for q = 1, 2, . . . , Q; Tq is associated with Wq . Each route Tq ∈ SN R(H) is constructed as
follows. The node set of Tq is {0} ∪ {mi j | {i, j} ∈ Rq}. Tq is defined by assembling its nodes
in the same order as their corresponding required edges are encountered during a traversal
of Wq . As each node mi j ∈ N R(H) is defined only for i < j , we have to introduce another
index u, for the internal nodes: v1, v2, . . . , v2rq of Wq as follows:

u2p−1 = v2p−1 and u2p = v2p, if v2p−1 < v2p (29)

and

u2p−1 = v2p and u2p = v2p−1, if v2p−1 > v2p, for p = 1, 2, . . . , rq . (30)

Then Tq is defined as:

Tq = 〈0, mu1u2 , mu3u4 , . . . , mu2rq −1u2rq
, 0〉. (31)

With reference to (15)–(17), as SAR(G) is feasible for AR(G), by substituting f (mi j ) for
d(i, j) in (17), it is clear that SN R(H) is feasible for N R(H). Letting S P(i, j) denote any
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shortest path from node i to node j in G, Tq can be interpreted in G as:

Tq = 〈S P(0, v1), {v1, v2}, S P(v2, v3), {v3, v4}, . . . ,
S P(v2rq−2, v2rq−1), {v2rq−1, v2rq }, S P(v2rq , 0)〉. (32)

The cost zTq say, of Tq can be calculated as:

zTq = w(0, m
au1u2
u1u2 ) + w(m

au1u2
u1u2 , m

au3u4
u3u4 ) + · · · + w(m

au2rq −1u2rq
u2rq −1u2rq

, 0). (33)

From (27) it can be seen that in Wq , for p = 1, 2, . . . , rq , required edge {v2p−1, v2p} is
arrived at by node v2p−1 and departed from by node v2p . This implies that the relevant edge

costs for Tq are of the form: w(0, m
au1u2
u1u2 ), w(m

au2p−1u2p
u2p−1u2p , m

au2p+1u2p+2
u2p+1u2p+2 ) for p = 1, 2, . . . , rq −

1; and w(m
au2rq −1u2rq
u2rq −1u2rq

, 0), where

w(0, m
au1u2
u1u2 ) =

{
w(0, m0

u1u2
), if v1 < v2,

w(0, m1
u1u2

), if v1 > v2;
(34)

w(m
au2p−1u2p
u2p−1u2p , m

au2p+1u2p+2
u2p+1u2p+2 ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w(m1
u2p−1u2p

, m0
u2p+1u2p+2

), if v2p−1 < v2p and v2p+1 < v2p+2,

w(m1
u2p−1u2p

, m1
u2p+1u2p+2

), if v2p−1 < v2p and v2p+1 > v2p+2,

w(m0
u2p−1u2p

, m0
u2p+1u2p+2

), if v2p−1 > v2p and v2p+1 < v2p+2,

w(m0
u2p−1u2p

, m1
u2p+1u2p+2

), if v2p−1 > v2p and v2p+1 > v2p+2,

(35)

for p = 1, 2, . . . , rq − 1;

w(m
au2rq −1u2rq
u2rq −1u2rq

, 0) =
{

w(m1
u2rq −1u2rq

, 0), if v2rq−1 < v2rq ,

w(m0
u2rq −1u2rq

, 0), if v2rq−1 > v2rq .
(36)

With the use of (25), (26) and (34)–(36); and some rearrangement we have:

zTq = dist (0, v1) + c(v1, v2) + dist (v2, v3) + c(v3, v4) + · · ·
+ dist (v2rq−2, v2rq−1) + c(v2rq−1, v2rq ) + dist (v2rq , 0). (37)

By definition,

dist (0, v1) ≤ z(W (0, v1)), (38)

dist (v2p−1, v2p) ≤ z(W (v2p, v2p)), p = 1, 2, . . . , rq ; (39)

dist (v2rq , 0) ≤ z(W (v2rq , 0)). (40)

By using (38)–(40) to compare (28) and (37), we have:

zTq ≤ zWq . (41)

The above process can be repeated for all walks Wq ∈ SAR(G). Let zSAR(G)
(zSN R(H)

) be
the cost of SAR(G)(SN R(H)). Then, by definition:

zSAR(G)
=

Q∑

q=1

zWq (42)

and
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(a) (b)

Fig. 5 a The original arc routing graph G. b The equivalent node routing graph H

zSN R(H)
=

Q∑

q=1

zTq . (43)

By using (41) to compare (42) and (43), we have the following result, which completes
the proof of Lemma 1:

zSN R(H)
≤ zSAR(G)

. (44)

��

Numerical illustration of Lemma 1

To illustrate Lemma 1, consider the arc routing problem instance shown in Fig. 5a as graph G,
where R = {{0, 3}, {1, 2}, {4, 5}} (with the required edges shown in bold) and the numbers
on the edges represent edge costs. The proposed transformation has been used to turn this
problem into the node routing problem instance, shown in Fig. 5b as graph H , where nodes:
m12, m45 and m03 must be served. Graph G is shown in Fig. 5b in dotted form. It is assumed
that all three customers can be served on a single route. The following walk W1, is a feasible
solution to the arc routing problem for the graph G:

W1 = 〈[W (0, 1)], {1, 2}, [W (2, 4)], {4, 5}, [W (5, 3)], {0, 3}, W (0, 0)〉
= 〈[0, {0, 1}, 1], {1, 2}, [2, {2, 3}, 3, {3, 4}, 4], {4, 5}, [5, {3, 5}, 3], {0, 3}, [0]〉.

The order in which the nodes incident with the required edges are visited in W1 is
〈v1, v2, v3, v4, v5, v6〉 = 〈1, 2, 4, 5, 3, 0〉. Note that subwalk W (2, 4) is not a shortest path
between nodes 2 and 4. W1 has cost:

zSAR(G)
= zW1 = [c(0, 1)] + c(1, 2) + [c(2, 3) + c(3, 4)] + c(4, 5) + [c(3, 5)] + c(0, 3)

= 2 + 2 + 2 + 2 + 2 + 2 + 2

= 14.

Let T1 be the corresponding feasible node routing tour for the graph H in Fig. 5b. T1 can
be established by using Lemma 1. Observing the order in which the required edges are visited
in W1 leads to T1 being constructed as:

T1 = 〈0, m12, m45, m03, 0〉.
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The order of the revised node index is 〈u1, u2, u3, u4, u5, u6〉 = 〈1, 2, 4, 5, 0, 3〉. T1 has
cost:

zSN R(H)
= zT1 = w(0, m0

12) + w(m1
12, m0

45) + w(m1
45, m1

03) + w(m0
03, 0)

= dist (0, 1) + c(1, 2) + dist (2, 4) + c(4, 5) + dist (5, 3) + c(0, 3) + dist (0, 0)

= c(0, 1) + c(1, 2) + c(2, 4) + c(4, 5) + c(3, 5) + c(0, 3) + 0

= 2 + 2 + 2 + 2 + 2 + 2 = 12

< zW1 = zSAR(G)
.

T1 can be interpreted in G as an alternating sequence of shortest paths (SP) and required
edges, as follows:

〈[S P(0, 1)], {1, 2}, [S P(2, 4)], {4, 5}, [S P(5, 3)], {0, 3}, [S P(0, 0)]〉
= 〈[0, {0, 1}, 1], {1, 2}, [2, {2, 4}, 4], {4, 5}, [5, {3, 5}, 3], {0, 3}, [0]〉.

Note that the situation with no deadheading from node 3 to node 0 is an example of the
degenerate Case 3 discussed in Sect. 3.1. Also, T1 costs less than W1 because W1 does not
minimize the cost of deadheading from node 2 to node 4. We now demonstrate that the cost
of an optimal solution to a particular node routing problem instance in H is equal to the cost
of the optimal solution to the original arc routing problem instance in G.

Theorem 1 Suppose that the proposed transformation is used to turn a given arc routing
problem instance AR(G) say, based on a graph G, into a node routing problem N R(H) say,
based on a graph H. Let z∗

AR(G) be the cost of the optimal solution to AR(G). Further, for all
a ∈ {0, 1}r , let z∗

a be the optimal solution to the instance of N R(H) with edge costs specified
by a. Then

min
a∈{0,1}r

z∗
a = z∗

AR(G). (45)

(A numerical example illustrating Theorem 1 is provided immediately after the following
proof).

Proof We shall demonstrate how the optimal solution to a particular node routing problem
instance in H can be used to construct an optimal solution to the original arc routing problem
instance AR(G) say, in G, with both solutions having the same cost. Consider a node routing
problem N R(H) say, for a graph H that was created by the proposed transformation from
an arc routing problem instance in a given graph G. As discussed in the last paragraph of
Sect. 3.4 each vector a ∈ {0, 1}r give rise to an instance N Ra(H) say, of N R(H). Now,
∀ a ∈ {0, 1}r let the optimal solution to N Ra(H) and its cost be denoted by S∗

a and z∗
a,

respectively. Let the solution in {N Ra(H) | a ∈ {0, 1}r } with least cost solution be denoted
by S∗

N R(H) and its cost by z∗
N R(H). That is,

z∗
N R(H) = min

a∈{0,1}r
z∗

a. (46)

Let the set of routes that constitutes S∗
N R(H) be denoted by {T ∗

q |q = 1, 2, . . . , Q}, for some
Q ≥ 1. Furthermore, for q = 1, 2, . . . , Q; let N∗

q ⊆ N denote the nonempty set of internal
nodes of T ∗

q . Let r∗
q = |N∗

q |. In order to represent each tour T ∗
q ∈ S∗

N R(H) unambiguously,
we must specify: (i) the order in which its internal nodes (the set N∗

q ) are visited, and (i i)
the traversal direction of each required edge that is represented by an internal node of T ∗

q .
Let N∗

q = {mv2p−1v2p | p = 1, 2, . . . , r∗
q } be the set of r∗

q ≥ 1 nodes corresponding to the
set of required edges {v2p−1, v2p} ∈ R for p = 1, 2, . . . , r∗

q ; served in T ∗
q . The subscripts of

123



Ann Oper Res (2015) 226:177–200 191

the elements of N∗
q are indexed according to the order in which they are visited by a traversal

of T ∗
q in the following sense. As T ∗

q is toured from node 0, its nodes are encountered in the
order: mv1v2 , mv3v4 , . . . , mv2r∗

q −1v2r∗
q

. Thus

T ∗
q = 〈0, mv1v2 , mv3v4 , . . . , mv2r∗

q −1v2r∗
q
, 0〉. (47)

Let zT ∗
q

be the cost of T ∗
q , where

zT ∗
q

= w(0, m
av1v2
v1v2 ) + w(m

av1v2
v1v2 , m

av3v4
v3v4 ) + · · · + w(m

av2r∗
q −1v2r∗

q
v2r∗

q −1v2r∗
q

, 0). (48)

With the use of (25) and (26); and some rearrangement we have:

zT ∗
q

= dist (0, (1 − av1v2)·v1 + (av1v2)·v2) + c(v1, v2) + · · · + c(v2p−1, v2p)

+ dist ((1 − av2p−1v2p )·v2p−1 + (av2p−1v2p )·v2p, (1 − av2p+1v2p+2)·v2p+1

+ (av2p+1v2p+2)·v2p+2)

+ c(v2p+1, v2p+2) + · · · + c(v2r∗
q −1v2r∗

q
) + dist ((1 − av2r∗

q −1v2r∗
q
)·v2r∗

q −1

+ (av2r∗
q −1v2r∗

q
)·v2r∗

q
, 0). (49)

Relationships (25) and (26) can be used to interpret T ∗
q as a route Wq say, in G as follows.

Firstly, the arguments of the dist () function in (49) correspond to the following shortest
paths in G:

1. S P(0, (1 − av1v2)·v1 + (av1v2)·v2),
2. S P((1−av2p−1v2p )·v2p−1+(av2p−1v2p )·v2p, (1−av2p+1v2p+2)·v2p+1+(av2p+1v2p+2)·v2p+2),

for p = 1, 2, . . . , 2r∗
q − 1;

3. S P((1 − av2r∗
q −1v2r∗

q
)·v2r∗

q −1 + (av2r∗
q −1v2r∗

q
)·v2r∗

q
, 0),

where S P(i, j) is a shortest path in G from node i to node j . Secondly,
4. The required edges to be served in Wq and the order in which they are served, are indicated

by the subscripts in (47).

Assembling the information in 1– 4 above, allows the construction of Wq as:

Wq = 〈S P(0, (1 − av1v2)·v1 + (av1v2)·v2), {v1, v2}, . . . , {v2p−1, v2p},
S P((1 − av2p−1v2p )·v2p−1 + (av2p−1v2p )·v2p, (1 − av2p+1v2p+2)·v2p+1

+ (av2p+1v2p+2)·v2p+2),

{v2p+1, v2p+2}, . . . , {v2r∗
q −1, v2r∗

q
}, S P((1 − av2r∗

q −1v2r∗
q
)·v2r∗

q −1

+ (av2r∗
q −1v2r∗

q
)·v2r∗

q
, 0)〉. (50)

With reference to (15)–(17), as T ∗
q is feasible for N R(H) it is clear that Wq is feasible for

AR(G). This means that walk Wq can be considered as part of a feasible solution to AR(G).
Indeed, the solution SAR(G) = {Wq | q = 1, 2, . . . , Q} is feasible for AR(G). Let zWq be the
cost of Wq . Then from (49) it is clear that

zWq = zT ∗
q
. (51)

123



192 Ann Oper Res (2015) 226:177–200

Let zAR(G) be the cost of SAR(G). Then, by definition:

zAR(G) =
Q∑

q=1

zWq , (52)

z∗
NR(H) =

Q∑

q=1

zTq . (53)

By using (51)–(53)
z∗

NR(H) = zAR(G). (54)

It remains to show only that SAR(G) is optimal for AR(G). It is straightforward to prove
this by contradiction as follows. Let us assume that SAR(G) is suboptimal; that is, there exists
a feasible solution for AR(G), SAR(G) say, with cost zAR(G) say, where

zAR(G) ≤ zAR(G). (55)

By Lemma 1, there exists a vector a ∈ {0, 1}r such that there is a feasible solution
to NR(H) with cost no greater than z AR(G). But, (54) and (55) are contradictory, which
completes the proof. ��
Numerical illustration of Theorem 1

To illustrate Theorem 1, consider once again the arc and node routing problems in Fig. 5a,b
introduced earlier. Following the notation in (47), an optimal tour T ∗

2 say, for H in Fig. 5b is
given in (56)–(58) and its cost zT ∗

2
is given in (59)–(62):

T ∗
2 = 〈0, mv1v2 , mv3v4 , . . . , mv2r∗

q −1v2r∗
q
, 0〉 (56)

= 〈0, mv1v2, mv3v4 , mv5v6 , 0〉 (57)

= 〈0, m45, m12, m03, 0〉. (58)

zT ∗
2

= w(0, m0
45) + w(m1

45, m1
12) + w(m0

12, m1
03) + w(m0

03, 0) (59)

= c(0, 4) + c(4, 5) + c(2, 5) + c(1, 2) + c(1, 3) + c(0, 3) + 0 (60)

= 1 + 2 + 1 + 2 + 1 + 2 (61)

= 9. (62)

Once again, the distance w(m0
03, 0) = 0, with no deadheading from node 3 to node 0, is

an example of the degenerate Case 3, discussed in Sect. 3.1.
The corresponding optimal arc routing walk W ∗

2 say, for the graph G in Fig. 5a can be
established by observing the subscripts and superscripts in (59). W ∗

2 (with the required edges
given in bold) is:

W ∗
2 = 〈S P(0, 4), {4, 5}{4, 5}{4, 5}, S P(5, 2), {1, 2}{1, 2}{1, 2}, S P(1, 3), {0, 3}{0, 3}{0, 3}, S P(0, 0)〉

= 〈{0, 4}, {4, 5}{4, 5}{4, 5}, {2, 5}, {1, 2}{1, 2}{1, 2}, {1, 3}, {0, 3}{0, 3}{0, 3}〉.
The walk W ∗

2 has cost:

z∗
AR(G) = zW ∗

2
= c(0, 4) + c(4, 5) + c(2, 5) + c(1, 2) + c(1, 3) + c(0, 3)

= 1 + 2 + 1 + 2 + 1 + 2 = 9

= zT ∗
2

= min
a∈{0,1}3

z∗
a.
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5 Applying the transformation to CARP

For the rest of this article we consider the special cases of the arc routing and node routing
problems termed the Capacitated Arc Routing Problem (CARP) and the Capacitated Vehicle
(node) Routing Problem (CVRP), respectively. Both problems involve the identification of a
set of routes to be carried out by a fleet of identical vehicles (all with equal capacity C , say)
in order to serve a given set of customers. The routes are feasible circuits over an appropriate
road network that start at a pre-defined depot, serve customers and return to the depot. Each
route is performed by a single vehicle such that the demand for a single commodity by each
customer it serves is met and the vehicle capacity constraint is satisfied. Each arc of the
network has a known transportation cost. These arc costs can be summed to calculate each
route cost. The aim of both the CVRP and the CARP is to identify a set of routes that satisfy
all customer demand with the lowest global transportation cost. In the CVRP the customers
are located at the network nodes and in the CARP they are located along some of the network
arcs.

We now show how the graph transformation described in Sect. 2.3 can be used to solve
CARP instances. We follow the notation introduced in Sect. 2, including representing a CARP
(CVRP) instance by graph G(H). In particular we adapt the robust branch-cut-and-price
(BCP) algorithm for the CVRP proposed by Fukasawa et al. (2006) to CARP by changing only
the pricing sub-problem algorithm. This BCP uses the following formulation, which combines
an exponential number of columns (λ variables) with a classical formulation on edge variables
(Laporte and Norbert 1983), to calculate valid lower bounds to CVRP instances:

Minimize
p∑

j=1

(
∑

e∈A

weqe
j

)

λ j , (63)

subject to
p∑

j=1

⎛

⎝
∑

e∈δ({i})
qe

j

⎞

⎠ λ j = 2, ∀ i ∈ N+, (64)

p∑

j=1

⎛

⎝
∑

e∈δ({0})
qe

j

⎞

⎠ λ j = 2K , (65)

p∑

j=1

⎛

⎝
∑

e∈δ({S})
qe

j

⎞

⎠ λ j ≥ 2k(S), ∀ S ⊆ N+, (66)

p∑

j=1

qe
j λ j ≤ 1, ∀ e ∈ A \ δ({0}), (67)

λ j ≥ 0, ∀ j ∈ {1, . . . , p}; (68)

where K is the number of vehicles and N+ = {1, . . . , n} denotes the set of customer nodes.
Given a subset S ⊆ N+, d(S) is the sum of the demands of all nodes in S, δ(S) is the cut-set
defined by S and k(S) = �d(S)/C� is the minimum number of vehicles needed to serve the
subset S of customers. The number of times that edge e appears in the j th column (variable
λ j ) is denoted by qe

j .
The pricing subproblem consists of finding columns of minimal reduced cost, that is, the

minimal sum of reduced costs of the edges in the corresponding column. The reduced cost
we of an edge e ∈ A is given by:
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we = we − γe, e = {i, j} ∈ A, (69)

where γe is the sum of the dual variables μ, ν, π , and ρ associated with constraints (64),
(65), (66) and (67), respectively:

γe =

⎧
⎪⎨

⎪⎩

μi + μ j + ∑

S | e∈δ(S)

πS + ρe, e = {i, j} ∈ A \ δ({0});
ν + μ j + ∑

S | e∈δ(S)

πS, e = {0, j} ∈ δ({0}). (70)

As observed by Christofides et al. (1981), the λ variables could ideally be associated with
elementary routes (without cycles). Unfortunately, this would require solving a pricing sub-
problem that is NP-hard in the strong sense, which is the Elementary Shortest Path Problem
with Resource Constraints with the only resource being the vehicle capacity C (Dror 1994).
When this pricing sub-problem is restricted to finding routes that are not necessarily elemen-
tary (q-routes) it corresponds to solving the Shortest Path Problem with Capacity Constraints,
which, although still NP-hard, can be solved by an algorithm of pseudo-polynomial time com-
plexity (Christofides et al. 1981). Therefore, from now on each variable λ is associated with
one of p possible q-routes, that is, a walk that starts at the depot, traverses a sequence of
customers with total demand at most C and returns to the depot. (See Christofides et al.
(1981) for a more detailed explanation of the concept of a q-route) As some customers may
be visited more than once, the set of valid CVRP routes is strictly contained in the set of q-
routes. Fukasawa et al. (2006) solved the pricing subproblem (69) by a dynamic programming
(DP) algorithm. Now we show how their approach can be adapted to use the transformation
described in Sect. 2.3.

Following the notation defined in Sect. 3.4, let τ(mak�

k� , c′) denote the shortest q-route
cost amongst all the q-routes, with arrival regime at node mk� defined by ak�, and arriving
at node mk� with c′ units of capacity still available. To extend this q-route to a node mi j ,
adding the edge e = {mk�, mi j }, it is necessary to calculate τ(m

ai j
i j , c), the cost to reach

node mi j , by node mk� with a vehicle capacity at least of c = c′ + f (mi j ), which is the
minimum necessary capacity to serve node mi j and all previous nodes on the q-route. For
the calculation of τ(m

ai j
i j , c), one can use the following recurrence relation:

τ(m
ai j
i j , c) = min

ak�∈{0,1}
c′=c− f (mi j )

mk�∈N−{mi j }

{
τ(mak�

k� , c′) + w(m1−ak�

k� , m
ai j
i j ) − γ{mk�,mi j }

}
, (71)

where mi j ∈ N , f (mi j ) ≤ c ≤ C, ai j ∈ {0, 1}. The cost for the return to the depot (node
0) by any node mgh in N , with any remaining vehicle capacity, is as defined by (26) minus
the sum γ{mgh ,0} of dual variables. The variables ai j , ak� ∈ {0, 1}, as defined in Sect. 3.4,
indicate the departure and arrival regimes to nodes mi j and mk�, respectively. Since the node
immediately preceding node mi j on the q-route is the node mk�, the necessary capacity of
the vehicle at the node mk� is given by c′ = c − f (mi j ), where c is the available capacity
when arriving at the node mi j and f (mi j ) is the demand associated with this node.

Following Fukasawa et al. (2006), we propose a dynamic programming approach for (71)
to solve the pricing subproblem. The basic data structure of the proposed DP algorithm is
an (r + 1) × C × 2 three-dimensional matrix T . Each entry T [u, c, au] represents the least
costly walk from the depot that reaches node u of N , with arrival regime at node u dictated by
the value of au in (25), with c units of vehicle capacity still available. Each entry T [u, c, au]
contains two elements: the cost of the walk (for simplicity we will refer to it as T [u, c, au])
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and a pointer to a T entry representing the walk as far as the previous node. Initially, the
empty path 〈0〉 (corresponding to entries T [0, 0, 0] and T [0, 0, 1]) has cost zero. All other
entries are initialized with labels representing empty walks with infinite cost. From entries
T [0, 0, 0] and T [0, 0, 1] the matrix is filled, starting with lower values of c (the remaining
vehicle capacity). For each value 0 < c ≤ C , the algorithm goes through each node v ∈ N ,
dictated by the value of av in (25), and for each neighbor u ∈ N of v, evaluates the extension
of the walk represented by T [u, c′ = c − f (v), au] to node v dictated by the value of av .
T [v, c, av] is updated only if T [u, c′, au]+w(u1−au , vav )−γ{u,v} < T [v, c, av]. Eventually,
we shall have the most negative walk with accumulated demand at most C that arrives at each
node v. Extending the walk to the depot (whose demand is zero), we obtain the corresponding
q-route. All q-routes with negative cost thus found (there will be at most r , one coming from
each vertex) are added to the linear program (63)–(68). There are 2rC entries in the matrix T
to be evaluated and each one is processed in O(r) time, so the total running time is O(r2C).

A similar approach was used by Longo et al. (2004, 2006), using the transformation
described in Sect. 2.2 and the same BCP algorithm of Fukasawa et al. (2006). A key idea of
the pricing algorithm of Longo et al. (2004, 2006) is to force each pair of successive nodes
si j and s ji in N , that arise from a required edge {i, j} in G, to be traversed in sequence. Here
the trick is to ensure that the value of the binary variable ai j , which is associated with the
node mi j in N that arises from a required edge {i, j} in G, is consistent with the traveling
direction of {i, j} in G. This point is crucial to ensure that any route that passes through a
node in N , incurs exactly the cost of the equivalent edge in the original graph G.

Our implementation of the DP algorithm just described also prohibits 1 and 2-cycles in
the q-route. That is, subpaths i → i and i → j → i, i �= 0, are not allowed. Therefore,
we restricted the q-routes to those without cycles or with cycles of size at least three since
it improves the formulation and does not change the complexity of the pricing subproblem.
Eliminating cycles of size three or greater is a hard task and we decided not to do it. An
algorithm for eliminating cycles of any size is described by Irnich and Villeneuve (2006).

5.1 Algorithm correctness

The following theorem, that adopts the notation and terminology used in Sect. 3 establishes
the correctness of the BCP algorithm just proposed.

Theorem 2 Suppose the proposed transformation is used to turn a given arc routing problem
instance AR(G) say, on a graph G, into a node routing problem instance N R(H) say, on
a graph H. Then, when the proposed BCP algorithm is applied to N R(H), it will identify
the least-cost set of q-routes among all possible edge cost specifications for N R(H) arising
from all a ∈ {0, 1}r .

Proof Consider a node routing problem instance N R(H) say, for a graph H that was produced
by the proposed transformation from a given arc routing problem instance AR(G) say, on a
given graph G with K identical vehicles that all have capacity C .

Each vector a ∈ {0, 1}r gives rise to an instance N Ra(H) say, of N R(H). We now demon-
strate, by induction on r , that the proposed DP algorithm to solve the pricing subproblem
constructs in the matrix T the least cost set of q-routes among all possible instances N Ra(H).

The DP algorithm initially sets the costs of all T entries as infinity, except entries T [0, 0, 0]
and T [0, 0, 1] whose costs are set to zero. Although (23) and (24) allow the q-routes be
constructed from only one of these two last entries, for the sake of simplicity we consider
both possibilities.
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We first show that the induction hypothesis is true for r = 1. That is, we prove that the DP
algorithm identifies the least-cost set of q-routes from all a ∈ {0, 1}. Suppose that r = 1, that
is, there is only one node v1 in H to be served, which has demand f (v1) and arrival regime
dictated by av1 . The DP algorithm extends the walk 〈0〉, corresponding to entries T [0, 0, 0]
and T [0, 0, 1], to 〈0, v1〉, corresponding to entries T [v1, C, 0] and T [v1, C, 1], that depict all
possible vectors a ∈ {0, 1}r . Note that, for each value 0 < c < f (v1) and av1 ∈ {0, 1}, it is
not possible to update entries T [v, c, av1 ] because the vehicle capacity c is not sufficient to
serve the demand f (v1) at node v1. For each value f (v1) < c ≤ C , the walk cost at entries
T [v1, c, av1 ], av1 ∈ {0, 1}, is updated to the same values at T [v1, f (v1), av1 ]. So, the least
cost walk from the depot to node v1 can be found either at entry T [v1, C, 0] or at T [v1, C, 1]
and thus, can be extended to the depot, producing the desired least-cost q-route. Thus, the
hypothesis is true for r = 1.

We next show that if the induction hypothesis is true for r = k, k ∈ Z and k ≥ 2,
it is true for r = k + 1. Assume that the DP algorithm identifies the least-cost set of q-
routes from all a ∈ {0, 1}k . That is, the DP algorithm constructs, for any subset of k nodes
{v, . . . , vk} ⊂ N\{0}, walks of least cost from the depot to each one of the k nodes over all
possible vectors a ∈ {0, 1}k . We now use this hypothesis to extend to the set of q-routes from
all a ∈ {0, 1}k+1.

Consider a (k + 1)th node to be served, vk+1 say. As vk+1 �= vi , i = 1, . . . , k, then
the walk cost at all entries T [vk+1, c, avk+1 ], for 0 < c ≤ C and avk+1 ∈ {0, 1}, are still
fixed as infinity. Otherwise, node vk+1 would be served by one of the walks that serve nodes
v1, . . . , vk .

To update these entries, the DP algorithm first sets avk+1 = 0 and, for each value 0 < c ≤
C , attempts to connect node vk+1 to each node vi ∈ {v1, . . . , vk} using either avi = 0 or
avi = 1. The same procedure is carried out for avk+1 = 1. The entries T [vk+1, c, avk+1 ], for

c′ + f (vk+1) ≤ c ≤ C , are updated to T [vi , c′, avi ] + w(v
1−avi
i , v

avk+1
k+1 ) − γ{vi ,vk+1} only if

T [vk+1, c, avk+1 ] > T [vi , c′, avi ] + w(v
1−avi
i , v

avk+1
k+1 ) − γ{vi ,vk+1}, where vi ∈ {v1, . . . , vk}

and c′ is the vehicle capacity sufficient to serve all the nodes in the route from the depot to
vi . Therefore, by the induction hypothesis for r = k, a least-cost q-route between the depot
and node vk+1 can be obtained by joining the walk in one of the entries T [vk+1, C, 0] and
T [vk+1, C, 1] to the depot.

That is, two extensions a′, a′′ ∈ {0, 1}k+1 of each of the vectors a ∈ {0, 1}k are considered
by the DP algorithm, one with 0 as the last element and the other with 1 as the last element.
Therefore, the DP algorithm identifies the least-cost set of q-routes from all a ∈ {0, 1}k+1. ��
5.2 Computational results

We report computational experience in applying the process just described to some classical
numerical problems from the literature. We applied the CARP algorithm implementation to
instances of the egl dataset of Li and Eglese (1996), available at http://www.uv.es/~belengue/
carp.html. This dataset was constructed using an underlying CARP graph that is based on
parts of the road network of the county of Lancashire in the United Kingdom. The original
application involved the distribution of grit on certain roads in winter. The costs of all edges
and demands of the required edges are proportional to their actual length. The algorithm was
implemented in C++ using a Linux OS, gcc v. 4.6.1 compiler and IBM cplex v. 12.4. All the
numerical tests were carried out on an Intel Core i3 personal computer with 3.0GHz clock
speed and 8GB of RAM, using just one core.
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Table 1 Comparison of lower bounds for the egl instances

Instance |V | |E | r K UB Prev. L B1 Prev.L B2 Prev.L B3 Our L B Time

e1-a 77 98 51 5 3,548 3,548 3,548 3,548 3,538 7.27

e1-b 77 98 51 7 4,498 4,468 4,464 4,487 4,461 2.39

e1-c 77 98 51 10 5,595 5,542 5,533 5,537 5545 1.70

e2-a 77 98 72 7 5,018 5,011 5,011 5,012 4,995 21.01

e2-b 77 98 72 10 6,317 6,280 6,271 6,291 6,268 7.73

e2-c 77 98 72 14 8,335 8,234 8,166 8,274 8,240 1.81

e3-a 77 98 87 8 5,898 5,898 5898 5,898 5,853 28.85

e3-b 77 98 87 12 7,775 7,697 7,689 7,715 7,644 8.98

e3-c 77 98 87 17 10,292 10,163 10,133 10,207 10,166 4.02

e4-a 77 98 98 9 6,444 6,395 6,392 6,395 6,352 37.63

e4-b 77 98 98 14 8,962 8,884 8,875 8,893 8,857 11.21

e4-c 77 98 98 19 11,550 11,427 11,374 1,1471 11,429 4.03

s1-a 140 190 75 7 5,018 5,014 5,016 5,014 5,014 37.30

s1-b 140 190 75 10 6,388 6,379 6,379 6,388 6,380 10.10

s1-c 140 190 75 14 8,518 8,480 8,473 8,494 8,485 3.12

s2-a 140 190 147 14 9,884 9,824 – 9,807 9,686 146.63

s2-b 140 190 147 20 13,100 12,968 – 12,970 12,916 59.56

s2-c 140 190 147 27 16,425 16,353 – 16,357 16,326 14.25

s3-a 140 190 159 15 10,220 10,143 – 10,146 9,982 278.60

s3-b 140 190 159 22 13,682 13,616 – 13,623 13,558 69.41

s3-c 140 190 159 29 17,194 17,100 – 17,115 17,070 20.19

s4-a 140 190 190 19 12,268 12,143 – 12,140 11,993 463.09

s4-b 140 190 190 27 16,283 16,093 – 16,082 15,977 176.55

s4-c 140 190 190 35 20,517 20,375 – 20,380 20,352 47.60

The CARP algorithm implementation is an adaption of the CVRP algorithm described by
Fukasawa et al. (2006) where the pricing sub-problem algorithm is changed, as described at
the beginning of the present section. All the other modules of the algorithm (cut generation,
branching rule and node selection) were unchanged and we used the default configuration
that was originally defined for all of them. We used as initial upper bounds, unity plus the best
upper bounds reported by Martinelli et al. (2011), Fu et al. (2010) and Santos et al. (2010).

Table 1 compares the lower bound (column ‘Our L B’) given by the root node solution to
model (63)–(68) found by the proposed BCP algorithm with the lower bounds reported by
Longo et al. (2006) (column ‘Prev. L B1’), by Baldacci and Maniezzo (2006) (‘Prev. L B2’)
and by Martinelli et al. (2011) (‘Prev. L B3’). These bounds were rounded up to the next
integer. The other columns of the table provide: the name of each instance, its number of
nodes |V |, its number of edges |E |, the number of required edges r , the minimum number
K of vehicles necessary to serve all demand, the best known upper bounds U B (reported
by Martinelli et al. (2011), Fu et al. (2010) and Santos et al. (2010)) and the total time in
seconds to process the root node. The upper limits in bold face had already been proven to
be the values of optimal solutions.

The lower bounds listed in column ‘Prev. L B1’ were previously obtained with a branch-
cut-and-price algorithm designed to solve the CVRP and adapted to solve the CARP. This
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Table 2 Optimal solutions to the egl instances produced by the BCP algorithm

Instance |V | |E | r K Opt. sol. Tree nodes Col time Cut time Total time

e1-a 77 98 51 5 3,548 15 570.81 4.62 775.01

e1-b 77 98 51 7 4,498 272 1,379.57 11.08 2,512.61

e1-c 77 98 51 10 5,595 1,570 5,335.05 36.26 9,715.20

s1-c 140 190 75 14 8,518 2,995 20,118.20 138.65 20,878.50

algorithm makes use of a specialised version of the model (63)–(68) to take advantage of the
fact that the instances arising from the CARP instances, using the transformation described
in Sect. 2.2, have r pairwise disconnected edges that must belong to every solution. Also, the
formulation was improved by enforcing the restriction that the q-routes found by the pricing
sub-problem must be free of 1, 2 and 3-cycles. ‘Prev. L B2’ bounds were also obtained
with the aid of the graph transformation described in Sect. 2.2, but with a branch-and-cut
algorithm. The ‘Prev. L B3’ bounds were obtained with a branch-cut-and-price algorithm
designed specifically to solve the CARP that does not make use of any graph transformation.

For seven of the 24 test instances the approach proposed here found a lower bound greater
than or equal to the one reported in column ‘Prev. L B1’, for six instances compared with
‘Prev. L B2’ and for two instances compared with ‘Prev. L B3’. Regarding the 15 test instances
reported either in column ‘Prev. L B1’ or in ‘Prev. L B2’ (e1-a to s1-c), our bounds are less
sensitive to the number of vehicles and are better for most of the instances where K ≥ 10.
Overall, the proposed approach found an improved lower bound only once (result in bold
face in column ‘Our L B’), compared to all previous known bounds. However, we believe
that our bounds can be improved if the pricing algorithm restricts q-routes to those without
cycles of size three or smaller.

Table 2 presents the instances solved to optimality by our approach within a time limit
of 6 h (21,600 s) of processing. The first five columns of this table are the same as in the
Table 1. The next columns show the optimal value of the instance, the number of nodes in
the branch-and-bound tree, the CPU times spent in the pricing subproblem algorithm and
in the cut generation procedures and the total CPU time. The optimal solutions to the first
two instances in the table, e1-a and e1-b, were already known, as reported in Martinelli et al.
(2011). The solutions (in bold face) corresponding to the upper bounds identified in Martinelli
et al. (2011) for the remaining two (open) instances, e1-c and s1-c, have been proven to be
optimal by the proposed BCP algorithm.

6 Conclusions

Two important examples of vehicle routing problems are the CVRP (Capacitated Vehicle
Routing Problem) and the CARP (Capacitated Arc Routing Problem). As the best known
computer codes reported in the open literature for solving the CVRP (Augerat et al. 1995;
Blasum and Hochstättler 2000; Wenger 2003; Lysgaard et al. 2004; Ralphs et al. 2003;
Fukasawa et al. 2006; Baldacci et al. 2008) resolved instances with up to only 150 nodes, the
practical application of the Pearn et al. (1987) transformation is somewhat limited.

With the transformations proposed by Longo et al. (2004, 2006) and by Baldacci and
Maniezzo (2006) there is the possibility of using CVRP methods to solve more difficult
instances of CARP in reasonable computational time. The decrease in the number of nodes
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provided by this transformation was sufficient to enable resolution of all CARP instances of
three main classes of test instances (kshs—Kiuchi et al. (1995), gdb—Golden et al. (1983)
and bccm—Benavent et al. (1992)). However, some important CARP numerical instances in
the literature, such as some instances in the dataset egl (Li and Eglese 1996), have not yet
been resolved satisfactorily.

The graph transformation proposed in Sect. 2.3 has made it possible to resolve some CARP
numerical instances in the literature that were previously open. All theoretical aspects of the
transformation developed suggest that it might be employed to provide further good results
for other arc routing problem instances.
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