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Abstract The paper deals with an economic order quantity model for variable lead-time,
order dependent purchasing cost, order size, reorder point and lead-time dependent partial
backlogging. The average expected cost function is formulated by trading off setup cost,
purchasing cost, lead-time crashing cost, inventory cost and costs of lost sale and partial
backordering. In this cost function, order quantity, reorder point and lead-time are decision
variables. The above average expected cost function is analysed by calculus method in light
of both distribution-free and known distribution function. Numerical example is illustrated
to justify our proposed model.

Keywords Order quantity · Reorder point · Lead-time · Backordering

1 Introduction

The economic order quantity (EOQ) model has a rich literature in inventory system. The
(Q, r, L)model is more realistic and applicable in any business organisations, among several
models. Our model is quite new and more appropriate in inventory literature, because order
quantity dependent purchasing cost and lead-time dependent partial backlogging are newly
introduced, unlike existing literature. Some noteworthy research works in this line of works
are mentioned as follows.

The issue of lead time is common to all enterprises. It may be controlled adding crashing
cost. Liao and Shyu (1991) discussed about lead time reduction in an inventorymodel consid-
ering lead time as a decision variable while order quantity is predetermined. Ben-Daya and
Raouf (1994) investigated an inventory model both for variable lead time and order quantity.
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Thereafter, this model was studied extensively (Ouyang et al. 1996; Ouyang and Wu 1997,
1998) incorporating the lead time demand followed by Normal distribution or distribution
free. Ouyang and Chuang (1999) developed an inventory model with quantity discount and
partial backordering in which backordering rate was a random variable. Ouyang et al. (1999)
considered a (Q, r , L) inventory model with defective items in an arrival lot, and asserted the
objective function of expected total annual cost that is consisted of setup cost, non-defective
holding cost, defective treatment cost, stock-out cost, inspecting cost, and lead time crashing
cost. Wu (2000) studied the same model both for perfect and imperfect quantities of received
order from the supplied, considering backorder and lost sales for variable lead time. Ouyang
et al. (2003) investigated a stochastic periodic review inventory model involving control-
lable backorder discount. Chuang et al. (2004) generalized Ouyang et al. (1999) model by
allowing setup cost as a decision variable in conjunction with order quantity, reorder point
and lead time. Artalejo et al. (2006) studied extensively a continuous review (s, S) inven-
tory system where the customers face the system out of stock, leave the service area and
repeat their request after some random time. This stochastic model formulation was based on
a bi-dimensional Markov process which was numerically solved to investigate the essential
operating characteristics of the system. Yadavalli et al. (2006) derived long run total expected
cost rate for a two commodity continuous review inventory system in which a buyer who
intended to buy one particular commodity might also go for another commodity. Sivkumar
and Gunaseelan (2009) established a continuous review perishable (s, S) inventory system
in which the demands arrive according to a Markovian arrival process, In this model, the
life time of each item in the stock and lead time of orders are considered to be indepen-
dently distributed as exponential. Hsu and Lee (2009) discussed the optimal strategies of
replenishment and lead-time reduction for integrated inventory system of single manufac-
turer and multiple-retailer in which the probability distribution of demand for each retailer
is unknown but its mean and variance are known. Yue (2012) suggested a new direct proof
of the tight range of the optimal solution range for the newsboy problem with known mean
and standard deviation of demand distribution, using definition of the optimal solution only.
Sivkumar et al. (2012) investigated a discrete-time inventory (s, S) model in which demands
arrive according to a discrete Markovian process and the lead time is assumed to follow a
discrete phase-type distribution. Yadavalli et al. (2012) studied a continuous review (s, S)
policy inventory system with a finite source of customers and identical multiple servers in
parallel, assuming the lead times for the orders to have independent and identical exponential
distributions. Senapati et al. (2012) studied extensively literature review on lead time reduc-
tion in inventory control which is referred to the reader. Ma and Qiu (2012) investigated a
joint decision problem of supplier and retailers’ continuous review inventory system in which
service level constrained is satisfied, based on the mean and the standard deviation of lead
time demand. Sana (2013) developed a newsvendor type inventory model both for discrete
and continuous cases incorporating two types of warehouses. Recently, Turgay et al. (2014)
formulated a robust stochastic dynamic program to investigate the structural properties of a
finite horizon, single product in discrete time inventory rationing problem, allowing random
replenishment (production) opportunities. Olsson (2014) develop a new heuristic approach
for evaluating and analyzing the proposed (R, Q) model for Poisson demand distribution of
perishable items, assuming lifetimes of the products and lead times as fixed numbers.

In this model, the (Q, r, L) model is extended incorporating variable purchasing cost
of the order quantity (Q), lead time (L) dependent partial backordering and lost sales. In
stock out situation, patience of the customers depends on the waiting time of receiving their
quantities. As a result, larger lead time increases the lost sale quantities. In this point of
view, the partial backordering is dependent on lead time. The lead time is controlled here by
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adding crashing cost. The reorder point (r) and order quantity (Q) are decision variables.
The demands of the customers during lead time and general inventory cycle follow the same
distribution function. We first formulate the model for general distribution function. Then,
the model is analysed for the case of distribution free. In numerical section, the model is
tested for normal distribution and distribution free demand patterns.

2 Notation

The following notations are used to develop the proposed model.

x = Random demand per unit time with p.d.f f (x).
μ = Expected value (mean) of x .
σ = Standard deviation of x .
k = Safety stock risk factor.
Li = Length of lead time having i-components.
ai = Minimum duration of i th component.
bi = Normal duration of i th component.
ci = Crashing cost per unit time of i th component during (bi − ai ).
A = Set up cost per cycle.
h = Inventory holding cost per unit item per unit time.
p(Q) = Purchasing cost per unit item.
pMin = Least cost of purchasing per unit item.
pMax = Maximum cost of purchasing per unit item.
QMax = Maximum order quantity per order.
π = Fixed penalty cost per unit item for shortages.
π0 = Marginal profit per unit item.
L = Length of lead time, a decision variable.
β(L) = Fraction of the demand backordered during shortage period. Here, 0 ≤ β(L) ≤ 1.
r = Level of reorder point, a decision variable.
Q = Replenishment size, a decision variable.
E(x) = Expected value of x .
E (x − r)+ = ∫∞

r (x − r) fx (x) dx where fx (x) is p.d.f with mean μL and standard
deviation σ

√
L .

3 Formulation of the model

3.1 Model for known distribution function

In this model, an order of size Q is ordered when the inventory level reaches to the reorder
point r . The lead time between placing and receiving of an order is L which is consti-
tuted by n mutually independent components. The minimum duration ith component is
ai and normal duration is bi . Here, ci (i = 1, 2, . . . , n) are crashing costs per unit time
such that c1 ≤ c2 ≤ · · · ≤ cn . Let Li is the length of lead time with components
1, 2, . . . , i and crashes to its minimum duration. In this situation, Li can be expressed as
Li = ∑n

j=1 b j −∑i
j=1

(
b j − a j

)
with L0 = ∑n

j=1 b j . Lead time usually consists of the
following components: order preparation, supplier lead time, order transit, delivery time,
setup time and transportation time. This lead time is controllable. As for example, the
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effective communication media such as electronic data interchange system may speed up
the order preparation and order transit. On the other hand, one may adopt special delivery
by air instead of ordinary delivery by water to shorten the delivery time. For these actions to
shorten lead time, extra money is certainly needed. Consequently, lead time is composed of
n mutually independent components having different crashing cost of each component for
reducing lead time. This cost is invested on equipment improvement, information technology,
order expedite, or special shipping and handling to reduce the time span of lead time. More
investment is needed to reduce the span of lead time that results in decreasing crashing cost
with increases values of lead time (L).

Therefore, the lead time crashing cost, for L ∈ [Li , Li−1
]
, per cycle is

α (L) = ci (Li−1 − L) +
i−1∑

j=1

c j
(
b j − a j

)
(1)

During lead time stock out situation may occur because demand and lead time are unpre-
dictable. Consequently, safety stock levels need to be determined to prevent stock-outs. To
weight the risk of a stock out, we assign the desired probability of not running out of stock,
using the Normal probability distribution. For example, if the value of safety stock risk factor
(k) is 1.645 (90% from the Normal probability table) then the risk of running out of stock
during the lead time is 10%(100%− 90% = 10%). To formulate this policy into a specific
safety stock level, the type of demand distribution during lead time is to be known. It is usually
acceptable to consider that the demand during the lead time is normally distributed. Thus,
safety stock is calculated by multiplying the risk factor (k) by the number of standard devia-
tions (σ ) and the square root of the lead time (

√
L). Therefore, safety stock = kσ

√
L . Thus,

the reorder point r = expected demand during lead time + safety stock = μL + kσ
√

L ,
where k is the safety stock risk factor and μ is the mean of the distribution. The expected
shortage at the end of L is given by

E (x − r)+ =
∫ ∞

r
(x − r) fx (x) dx

where fx (x) is p.d.f with mean μL and standard deviation σ
√

L . In this stock out situation,
not all customers’ demand are met. The demand of the customers who do have patience to
wait is adjusted, i.e., β(L)E (x − r)+ are backordered here. Now, β (L) = e−δL and lost
sale quantity is {1 − β(L)} E(x − r)+ = (

1 − e−δL
)

E(x − r)+. When the lead time is
too long, i.e., L → ∞, then whole backordered quantity is unsold whereas all quantities of
backordered are sold when δ → 0, i.e., the mean time of patience to wait

( 1
δ

)
tends to infinity.

For normal distribution, E (x − r)+ = σ
√

Lψ(k) where (k) = φ (k) − k[1 − ϕ (k)], φ is
standard normal density function and φ is standard normal distribution function.

The expected inventory cost is (see Fig. 1)

Ic = h

[∫ ∞

−∞

∫ Q
μ

0
(Q − xt) dt f (x) dx + Q

μ
(r − μL) + Q

μ

(
1 − e−δL

)
E (x − r)+

]

= h

[
Q2

2μ
+ Q

μ
(r − μL) + Q

μ

(
1 − e−δL

)
E (x − r)+

]

(2)
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Fig. 1 Level of inventory versus
time
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The cost for shortages is

Sc =
[
π +

(
1 − e−δL

)
π0

]
E(x − r)+

= π̄ E(x − r)+, π +
(
1 − e−δL

)
π0 = π̄(let) (3)

Purchasing cost per unit item is p (Q) = pMax − εQ. For feasibility of the model,

pMax − εQ ≥ pMin yields−→ Q ≤
(

pMax − pMin

ε

)

= QMax .

Therefore, the total purchasing cost of order size Q is

w p =
(

pMax − εQ
)

Q (4)

Therefore, the average expected cost of the whole system is

AEC(Q, r |L) = Aμ

Q
+ w pμ

Q
+ Icμ

Q
+ Scμ

Q
+ α(L)μ

Q
= Aμ

Q
+
(

pMax − εQ
) Qμ

Q

+hμ

Q

[
Q2

2μ
+ Q

μ
(r − μL) + Q

μ
(1 − e−δL)E(x − r)+

]

+ μ

Q
π̄ E(x − r)+ + μ

Q

[

ci (Li−1 − L) +
∑i−1

j=1
c j (b j − a j )

]

= Aμ

Q
+
(

pMax − εQ
)

μ + h

[
Q

2
+ (r − μL) +

(
1 − e−δL

)
E(x − r)+

]

+ μ

Q
π̄ E(x − r)+ + μ

Q

[

ci (Li−1 − L) +
∑i−1

j=1
c j (b j − a j )

]

(5)

Now, our objective is to minimize AEC (Q, r |L)subject to the constraints Q > 0, r >

0, Q ≤ QMax, i.e.,

Min AEC (Q, r |L) , such that Q > 0, r > 0, Q ≤ QMax (6)
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NowdifferentiatingAEC (Q, r |L)with respect to Q and r variables, keeping L as constant,
we have

∂

∂ Q
{AEC (Q, r |L)} = − Aμ

Q2 + h

2
− εμ − μ

Q2 π̄ E (x − r)+ − μα(L)

Q2 (7)

∂

∂r
{AEC (Q, r |L)} = h

{

1 +
(
1 − e−δL

)(∂ E

∂r

)}

+ μ

Q
π̄

(
∂ E

∂r

)

(8)

∂2

∂ Q2
{AEC (Q, r |L)} = 2μ

Q3

[
A + π̄ E (x − r)+ + α(L)

]
(9)

∂2

∂r2
{AEC (Q, r |L)} =

[

h
(
1 − e−δL

)
+ μπ̄

Q

](
∂2E

∂r2

)

(10)

∂2

∂r∂ Q
{AEC (Q, r |L)} = −μπ̄

Q2

(
∂ E

∂r

)

= μπ̄

Q2

∫ ∞

r
fx (x) dx (11)

For optimum values of AEC (Q, r |L),

∂

∂ Q
{AEC (Q, r |L)} = 0 = ∂

∂r
{AEC (Q, r |L)}

provide

Q =
√
2μ
[
A + π̄ E (x − r)+ + α(L)

]

(h − 2εμ)
, h > 2εμ (for feasibility of the model) (12)

and
(

∂ E

∂r

)

= −hQ
[
hQ

(
1 − e−δL

)+ μπ̄
]

yields−→
∫ ∞

r
fx (x) dx = hQ

[
hQ

(
1 − e−δL

)+ μπ̄
] . (13)

Solving Eqs. (12) and (13), we have the optimal solution (Q∗, r∗) at which

∂2

∂ Q2
{AEC (Q, r |L)} = (h − 2εμ)

Q
> 0 for h > 2εμ

and

∂2

∂r2
{AEC (Q, r |L)}

=
[

h
(
1 − e−δL

)
+ μπ̄

Q

](
∂2E

∂r2

)

=
[

h
(
1 − e−δL

)
+ μπ̄

Q

]

fx (r) > 0.

Now the optimal solution (Q∗, r∗) will give minimum value of AEC (Q, r |L) if

[
∂2

∂ Q2
{AEC (Q, r |L)}

]

×
[

∂2

∂r2
{AEC (Q, r |L)}

]

−
[

∂2

∂ Q∂r
{AEC (Q, r |L)}

]2
> 0,

i.e.,
(h − 2εμ)

Q

[

h
(
1 − e−δL

)
+ μπ̄

Q

]

fx (r) − (μπ̄)2

Q4

[∫ ∞

r
fx (x) dx

]2
> 0

holds at (Q∗, r∗), as

∂2

∂ Q2
{AEC (Q, r |L)} and

∂2

∂r2
{AEC (Q, r |L)}
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are both positive at (Q∗, r∗). Here, the optimal solutions are obtained for L = Li (i =
1, 2, . . . , n). Among these optimal solutions, the solution which provides minimum value of
the objective function is our required optimal solution.

3.2 Distribution-free case

In many practical situations, distribution function of demand rate does not follow the known
distribution functions. In such cases, mean and standard deviation are used to approximate

the objective function. Now, using E(x − r)+ ≤ 1
2

[√
σ 2L2 + (r − μL)2 − (r − μL)

]
(see

Ouyang and Chuang 2000) in the average expected cost function, we have the maximum
value as follows

Max AEC (Q, r, L)

= Aμ

Q
+ h

[
1

2
Q + (r − μL) + 1

2

(
1 − e−δL

) {√
σ 2L2 + (r − μL)2 − (r − μL)

}]

+
(

pMax − εQ
)

μ + μπ̄

2Q

{√
σ 2L2 + (r − μL)2 − (r − μL)

}
.

Our objective is to minimize Max AEC (Q, r, L), i.e.,

Min Max AEC (Q, r, L) such that Q > 0, r > 0, Q ≤ QMax (14)

Here,
∂

∂ Q
[Min Max AEC (Q, r, L)] = 0 = ∂

∂r
[Min Max AEC (Q, r, L)]

provide us

Q =

√√
√
√2μ

[
A + π̄

2

{√
σ 2L2 + (r − μL)2 − (r − μL)

}
+ α(L)

]

h − 2εμ
(15)

and [
(r − μL)

√
σ 2L2 + (r − μL)2

− 1

][(
1 − e−δL

)
h + μπ̄

Q

]

+ 2h = 0 (16)

Solving Eqs. (15) and (16), we have the optimal solution (Q∗, r∗), At this value,

∂2

∂ Q2 [Min Max AEC (Q, r, L)] =
(

h − 2εμ

Q

)

> 0 as h > 2εμ

and

∂2

∂r2
[Min Max AEC (Q, r, L)] = σ 2L2

2
{
σ 2L2 + (r − μL)2

}3/2

{

h
(
1 − e−δL

)
+ μπ̄

Q

}

> 0
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hold. Now, (Q∗, r∗) is our required optimal solution if

∂2

∂ Q2 [Min Max AEC (Q, r, L)] × ∂2

∂r2
[Min Max AEC (Q, r, L)]

−
{

∂2

∂ Q∂r
[Min Max AEC (Q, r, L)]

}2
> 0,

i.e.,

(
h − 2εμ

2Q
{
σ 2L2 + (r − μL)2

}3/2

)

σ 2L2
{

h
(
1 − e−δL

)
+ μπ̄

Q

}

−μ2π̄2

2Q2

{
r − μL

√
σ 2L2 + (r − μL)2

− 1

}2

> 0

holds. In this case, the optimal solutions are obtained for L = Li (i = 1, 2, . . . , n). Among
these optimal solutions, the solution which gives minimum value of the objective function
is our required optimal solution. When the optimal solutions do not satisfy the constraints,
then the constrained problem is solved by Kuhn–Tucker method.

4 Numerical example

The values of the parameters in appropriate units are considered as follows: μ = 15
units/week, σ = 7 units/week, QMax = 90 units, δ = 0.8, ε = $0.5, pMax = $75,
pMin = $30, A = $200 per order, h = $20, π = $50, π0 = $150 and probability distribu-
tion of the demand is

f (x) =
{

1

σ
√
2π

e
− 1

2

(
x−μ
σ

)2 ∣∣
∣
∣− ∞ < x < ∞

}

.

The lead times with three components with its numerical data are shown in Table 1.
The optimal solutions for different lead times are shown in Table 2. Among these solu-

tions, the required optimal solutions (Table 2) are (L∗ = 3weeks, r∗ = 50.1502 units, Q∗ =
67.4888 units, AEC∗ = $1,614.40) and (L∗ = 3weeks, r∗ = 34.0616 units, Q∗ =
119.503 units, AEC∗ = $2,184.42) for the cases of Normal distribution and distribution
free respectively.

In Table 2, it is shown that the average expected cost decreases with decreases in lead
time although the crashing cost increases with decreases in lead time. This fact occurs due
to lead time dependent backlogging. In this case, lost sales quantity increases with increases
in lead time. To avoid more cost for larger quantity of lost sales due to higher lead time,
lead time decreases in spite of higher crashing cost. When the fraction β is independent on
L , the expected average cost decreases (Table 3) with increases in β that results in higher

Table 1 Lead time data

Lead time component i Normal duration bi
(days)

Minimum duration ai
(days)

Unit crashing cost ci
($/day)

1 20 6 0.4

2 20 6 1.2

3 16 9 5.0
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Table 2 Optimal solutions for different lead times (in week)

For normal distribution model For distribution free model

(i) (Li ) α (Li ) (ri , Qi ) AEC (Qi , ri , Li ) (ri , Qi ) AEC (Qi , ri , Li )

0 8 0 (127.198, 83.4983) 1,782.61 (51.5305, 262.171) 3,960.63

1 6 5.6 (97.0572, 76.5811) 1,726.07 (54.8133, 196.345) 3,119.49

2 4 22.4 (66.2422, 69.5432) 1,655.31 (43.2347,143.448) 2,476.99

3 3 57.4 (50.1502, 67.4888) 1,614.40 (34.0616, 119.503) 2,184.42

Table 3 Optimal solutions for different lead times (in week) when β is independent on L

β For normal distribution model For distribution free model

L r Q AEC(Q, r, L) L r Q AEC(Q, r, L)

0.0 3 51.1308 66.3088 1,616.70 3 36.6316 115.5300 2,184.12

0.5 3 41.9614 80.1555 1,530.08 3 34.0456 100.4650 1,848.94

0.8 4 43.8196 97.5373 1,357.24 8 54.9179 164.6900 1,472.36

1.0 4 46.6248 66.3088 1,626.70 8 74.2402 116.1378 1,055.00

backordering. In such cases, lead time increases to reduce crashing cost. These features are
quite realistic in business economics.

5 Conclusion

In a competitive marketing system, demand rate of the customers is uncertain in practice. The
lead time, time gap between placing and receiving of an order, plays an important in EOQ
modelling. Quite often, the demand of the customers who do not have patience to wait have
are lost sales. Consequently, partial backordering varies with lead time. Moreover, larger
lead time causes negative impression of the customers that reduces customers’ demand. The
objective of this paper is to find out optimal lead time, reorder point and order quantity in
continuous review inventory model with a mixture of lead time dependent lost sales and
backorders, considering the purchasing cost per unit item as a decreasing function of order
quantity. The demand of the customers follows same type of distribution throughout the
whole cycle. First, we formulate the model considering general distribution, then, it is studied
extensively for normal distribution function. However, this model can be applied for any type
of continuous distribution functions. This model helps to determine optimal safety stock,
order quantity, reorder level and lead time such that the expected average cost by trading off
purchasing cost, crashing cost, inventory cost, shortage costs of lost sale and backordering
is minimized. Moreover, this model suggests a manager of a business organization how
to obtain an optimal strategy when probability distribution of the customers’ demand is
unknown. In such cases, distribution free model provides an approximate optimal solution of
the problem whereas the known distribution model provides better solution than the previous
one. The new contribution of the proposedmodel is incorporation of order quantity dependent
purchasing cost and lead time dependent backordering in the existing elegant (Q, r, L)model
in continuous review inventory system.

The proposed model can be extended further for discrete type demand distribution, incor-
porating effect of different price settings demand over finite time horizon. In production-
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inventory management system, this model may be studied extensively incorporating delay
in payment and supply disruption in future.
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