
Ann Oper Res (2015) 226:379–396
DOI 10.1007/s10479-014-1708-1

Measuring Olympics achievements based on a parallel
DEA approach

Xiyang Lei · Yongjun Li · Qiwei Xie · Liang Liang

Published online: 21 September 2014
© Springer Science+Business Media New York 2014

Abstract Measuring the performance of participating nations in the Olympic Games is an
important application of data envelopment analysis (DEA). Prior literature only considers
participating nations’ performance in the Summer Olympic Games. It may be unfair to some
nations who are good at the Winter Olympics, but poor at the Summer Olympics. Therefore,
we believe it is better to consider the two Olympics together when measuring performance
of participants. This paper treats the two Olympics as a parallel system in which each sub-
system corresponds to a Summer Olympics or a Winter Olympics, and extends a parallel
DEA approach to evaluate the efficiency of each participant. An efficiency decomposition
procedure is proposed to obtain the efficiency rang of each Olympic subsystem. Finally, we
apply the proposed approach to the latest real data set of the 2012 Summer Olympics and
2010 Winter Olympics.
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1 Introduction

People have paid more and more attention to the Olympic Games since the first modern games
were held in Greece in 1896. The initial spirit of the Games was individual competition, but
the Games soon became a competition among nations (Lins et al. 2003). Each participating
nation strives for a better ranking in the Olympics. Naturally, the capacity of each nation varies
greatly in achieving excellent performance. However, the International Olympic Committee
(IOC) has never issued an official ranking for participating nations.

Recently, evaluating performance of participating nations in the Olympic Games is an
important application of DEA (Charnes et al. 1978). DEA is an effective tool for efficiency
measurement of decision making unit (DMU) with multiple inputs and outputs (Emrouznejad
et al. 2010; Khodabakhshi and Aryavash 2014). It is popular in efficiency evaluation because
it makes no assumptions on the production function and imposes no given weights on inputs
and outputs (Bogetoft 1997). In the first three decades of DEA history, more than 4,000
research articles have been published in journals and book chapters (Emrouznejad et al.
2008). Moreover, DEA has been applied to areas that range from the public sector to the
private sector (Emrouznejad 2014), such as hospitals (see, e.g. Du et al. 2014; Prior 2006),
sports (see, e.g. Chen and Johnson 2010; Moreno and Lozano 2014), universities (see, e.g.
De França et al. 2010; Bougnol and Dulá 2006), supply chains of enterprises (see, e.g. Chen
et al. 2006; Zhou et al. 2013), and banks (see, e.g. Cook and Zhu 2010; Grigoroudis et al.
2013).

In the prior DEA literature on evaluating participants’ Olympics achievements, DMUs
correspond to participating nations, and outputs are usually defined as the numbers of gold,
silver and bronze medals, and inputs as population and GDP per capita or GNP. Lozano et
al. (2002) used these three outputs, and the GNP and population as two inputs to measure
performance of participating nations at five Summer Olympic Games (1984–2000). Lins et al.
(2003) found that each sum of numbers of gold, silver and bronze medals was constant, and
developed the so-called Zero-Sum Gains (ZSG) DEA model to rank participating nations
in the Olympic Games. Churilov and Flitman (2006) used self-organizing maps to group
participating countries into homogenous clusters, and then applied DEA models to evaluate
the performance of each nation in clusters. To increase the validity of evaluation results, both
Lozano et al. (2002) and Lins et al. (2003) applied the same set of assurance region (AR)
constraints for all participating nations. Li et al. (2008) claimed that different countries should
fit in with different ARs, and applied context-dependent assurance region DEA (CAR-DEA)
to measuring sports levels of nations in the Summer Olympics.

Wu et al. (2009b) applied the cross efficiency method to assessing nations’ performance
in six Summer Olympic Games. As compared to Hai (2007) which can effectively rank
participating nations but cannot set targets for inefficient nations, Wu et al. (2009b) employed
cluster analysis to select appropriate targets for inefficient nations. Considering competition
among participating nations, Wu et al. (2009a) modified DEA game cross-efficiency model
based on the assumption of variable return to scale to rank nations in the Olympic Games.

Zhang et al. (2009) discussed underlying preferences in DEA and proposed DEA models
with lexicographic preference to analyze performance of participating nations. Soares de
Mello et al. (2009) set a unitary constant input for all participating countries and built a
general ranking for the Olympic Games. Wu et al. (2010) employed integer-valued DEA
model to discuss the performance of each nation at 2008 Beijing Summer Olympics. Chiang
et al. (2011) proposed a separation method to locate a common set of weights in DEA, and
used the proposed method to measure efficiencies of participating nations in the Beijing
Summer Olympics. Soares de Mello et al. (2012) used a non-radial DEA model to evaluate
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Fig. 1 A parallel system comprised of two Olympics

all participating nations in the 2008 Olympic Games in which the input “population of the
participating nation” is defined as a non-discretionary variable. To overcome the drawback of
the bounded DEA model in determining an efficiency interval for each DMU when there is a
zero value for each output, Azizi and Wang (2013) proposed a pair of improved bounded DEA
models and measured performance of participating nations in the 2004 Summer Olympics.

However, prior literature evaluates sports levels of participating nations only considering
their performance in the Summer Olympic Games. It might be unfair to nations who have
good performance in the Winter Olympic Games rather than in the Summer Olympic Games.
For example, some countries located in cold zone like Canada, people there may be good
at Ice Sports and Snow Sports, which belong to Winter Olympic Games. If we evaluate
the sports level of these nations only considering the Summer Olympic Games, their good
performance in the Winter Olympic Games would be neglected.

The Winter Olympic Games are also international multi-sports events organized by the
IOC and are held every four years starting from 1924. It includes sports items, such as alpine
skiing, figure skating, ice hockey, ski jumping, speed skating, and so on. All of these items are
not included in the Summer Olympic Games. Similarly, sports items in the Summer Olympic
Games, such as Swimming, Gymnastics, Shooting and Weightlifting, do not belong to the
Winter Olympic Games. Therefore, sports items in the Summer Olympic Games and Winter
Olympic Games are complementary in representing a nation’s comprehensive performance
on sports, and it is better to take into account both Olympic Games when we measure the
sporting performance of each nation.

According to Kao (2012), DMUs can be treated in a parallel structure, if each DMU has
the same number of different processes and each corresponding process performs the same
function. In this sense, each participating nation in the Olympics described in this paper is a
parallel system and the two Olympics are two parallel subsystems. Figure 1 shows the basic
parallel system for each nation.

Similar to DEA-based prior literature on Olympics achievements evaluation, this paper
defines inputs as GDP per capita (in US dollars) and population of the participating nation,
and outputs as the numbers of gold, silver and bronze medals. Because we cannot get precise
inputs for each Olympic subsystem, but can obtain overall inputs for the parallel system, we
set that the two subsystems share all overall inputs. Here, X1

j and X2
j (Y 1

j and Y 2
j ) are denoted

as precise inputs (outputs) for the Winter Olympics and Summer Olympics, respectively. The
total overall inputs for the system are denoted as X j = X1

j + X2
j .

Based on the definition of parallel systems (Kao 2012), the multi-activity and multi-
component systems also belong to parallel systems. Approaches to measuring parallel sys-
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tems can be divided into two categories. The first one is to measure the efficiency of a parallel
system without shared flows (inputs or outputs), and it has been applied to areas such as grain
farms (see, e.g. Färe et al. 1997) and macro-agricultural production systems (see, e.g. Yang
et al. 2000). For details on such kind of approaches, one can refer to Kao (2012). The second
category focuses on measuring the efficiency of a parallel system with shared flows among
its subsystems. And it has been applied to many areas, such as universities (see, e.g. Beasley
1995; Kao 2012; Kao and Lin 2012; Molinero 1996), health service (see, e.g. Tsai and Mar
Molinero 2002), banks (see, e.g. Amirteimoori and Nashtaei 2006; Cook et al. 2000; Jahan-
shahloo et al. 2004), bus companies (see, e.g. Yu 2008) and in the steel industry (see, e.g.
Cook and Green 2004). For details on the second category models, one can refer to Castelli
et al. (2010).

All of these researches either focused on evaluating the overall system’s efficiency or deter-
mined both the overall system’s and subsystems’ efficiencies. It is noteworthy that both the
two kinds of efficiencies are calculated based on one of the optimal solutions to these parallel
models. However, we may have alternative optimal solutions to parallel models in calculating
the optimal efficiency of the overall system. In this case, the efficiency decomposition for
subsystems may not be unique. That is, there may have many subsystems’ efficiency combi-
nations when the overall system obtains its optimal efficiency. Then, it may be unreasonable
to randomly select one of subsystems’ efficiency combinations to determine subsystems’
efficiencies. The same problem of non-uniqueness of subsystems’ efficiencies has also been
pointed out in two-stage DEA models (see, e.g. Chen et al. 2009, 2010). However, none of
prior studies in the parallel system tackled this problem. In this paper, the YMK DEA model
of Yang et al. (2000) is extended to measure the efficiency of the overall parallel system.
And, instead of randomly selecting one combination of subsystems’ efficiencies to represent
their efficiencies, an efficiency decomposition procedure is developed to locate the efficiency
range of each parallel subsystem.

There are two contributions of this paper. First, it considers both the Summer Olympics and
Winter Olympics in one parallel system to reflect sports performance of participating nations
in the Olympics for the first time. The sports performance evaluated based on this system
can more roundly reflect participating nations’ level of sports competition. Namely, some
participating nations may have good performance in the Summer Olympics while others in the
Winter Olympics. In this sense, it is biased to use participating nations’ performance in one
Olympics to represent their sports level. Second, it introduces an efficiency decomposition
approach to calculate efficiencies of parallel subsystems. It employs the efficiency range to
represent the efficiency decomposition for parallel subsystems, rather than randomly selecting
one of subsystems’ efficiency combinations.

The rest of this paper is organized as follows: Sect. 2 represents the methodology to
evaluate efficiencies of the overall Olympic system as well as each Olympic subsystem.
Section 3 illustrates data sources and results for the Vancouver 2010 Winter Olympic Games
and London 2012 Summer Olympic Games. Conclusions are given in Sect. 4.

2 Methodology

2.1 Overall system performance assessment model

In this section, we present the DEA model to evaluate performance of participating nations in
the Olympic Games. In the DEA analysis, each DMU corresponds to a participating nation
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who has gained at least one medal from both 2010 Winter Olympic Games and 2012 Summer
Olympic Games.

Output-orientation is assumed in this paper, since the Olympics achievement is measured
with respect to medals won (Li et al. 2008). In addition, as all the DEA literature has stated,
such as Lozano et al. (2002), Lins et al. (2003), Churilov and Flitman (2006), Wu et al.
(2009a, b), the population of participating nations varies greatly, then the variable return to
scale (VRS) is an another assumption in the model.

Denote each participating nation as DMU j ( j = 1, . . . , n), in which its subsystem k
(k = 1, 2), consumes inputs (Xk

i j , i = 1, 2) to generate outputs (Y k
r j , r = 1, 2, 3). In this

paper, subsystem 1 and 2 correspond to the Winter Olympic Games and Summer Olympic
Games, respectively. Let a parameter α (0 < α < 1) denote the proportion of inputs to be
dedicated to the Winter Olympic subsystem. Then, the overall inputs Xi j (i = 1, 2) are
divided into two parts for the two subsystems as follows:

X1
i j = αXi j and X2

i j = (1 − α)Xi j , ∀ i, j (1)

where α is a parameter. If α = 0, it means that all inputs are consumed by the Summer
Olympic Games; On the contrary, α = 1 means that all inputs Xi j are consumed by the
Winter Olympic Games. Since participating nations considered in this paper are nations that
have gained at least one medal from both 2010 Winter Olympic Games and 2012 Summer
Olympic Games, inputs on each Olympics cannot be zero. That is, each participating nation
has consumed some of the overall inputs to obtain the nonzero outputs in each Olympics.
Thus, the parameter of α is in a interval range of α ∈ (0, 1).

Based on the YMK DEA model (Yang et al. 2000), we obtain a following model to
calculate the efficiency of the overall parallel Olympic system:

Min θ0 =
∑2

i=1wi Xi0 + μ1
0 + μ2

0
∑3

r=1ur
(
Y 1

r0 + Y 2
r0

)

s.t. θ1
j =

∑2
i=1wi X1

i j + μ1
0

∑3
r=1ur Y 1

r j

≥ 1, ∀ j

θ2
j =

∑2
i=1wi X2

i j + μ2
0

∑3
r=1ur Y 2

r j

≥ 1, ∀ j

u1 − βu2 ≥ 0

u2 − γ u3 ≥ 0

wi , ur ≥ 0, ∀ r, i, μk
0 f ree.

(2)

where (wi , ur ) are multipliers attached to inputs and outputs, respectively. The first two sets
of constraints ensure that efficiencies of the two subsystems for all DMUs are not more than
one since θ1

j and θ2
j are the reciprocals of the two subsystems’ efficiencies. And the next

two constraints u1−βu2 ≥ 0 and u2−γ u3 ≥ 0 indicate assurance regions (or the different
importance) among gold, silver and bronze medals. For example, u1−βu2 ≥ 0 means that a
gold medal is at least β times as important as a silver medal and u2−γ u3 ≥ 0 presents that
a silver medal is at least γ times as important as a bronze medal (Lozano et al. 2002; Wu et
al. 2009a, b). Since there is no access to know how much worthier is a gold (silver) medal
than a silver (bronze) one, so sensitivity analysis will be performed with different ARs.

In model (2), the objective function is the aggregate performance measure for DMU0,
and the first two sets of constraints capture performance measures for the two Olympic
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subsystems. θ1
0 is the performance measure for the Winter Olympics and θ2

0 is for the Summer
Olympics. It is noteworthy that the aggregate performance measure θ0 can be represented
by a combination of θ1

0 and θ2
0 , namely θ0 = λ1

0θ
1
0 + λ2

0θ
2
0 . The variable of λk

0(k = 1, 2)

represents the relative importance of subsystem k.And, it can be defined as the portion of all
outputs that DMU0 gains from subsystem k as follows:

λk
0 =

∑3
r=1ur Y k

r0
∑3

r=1ur
(
Y 1

r0 + Y 2
r0

) , ∀ k (3)

Formula (3) shows each nation can have different relative importance for its two subsystems.
For example, Australians have good performance in some sports items such as diving and
swimming which belong to the Summer Olympics. So some nations like Australia may believe
that the Summer Olympic Games is more important than the Winter Olympics. While some
nations like Canada with good performance in the Winter Olympic Games may believe that
the Winter Olympic Games is more important than the Summer Olympic Games. Therefore,
the relative importance of each subsystem can be reflected by the weighted medals it gains
from that Olympic Games as above.

Therefore, the objective function of model (2) can be represented by performance measures
for the two Olympic subsystems as follows:

θ0 = λ1 × θ1
0 + λ2 × θ2

0 =
∑3

r=1ur Y 1
r0

∑3
r=1ur

(
Y 1

r0 + Y 2
r0

) ×
∑2

i=1wi X1
i0 + μ1

0
∑3

r=1ur Y 1
r0

+
∑3

r=1ur Y 2
r0

∑3
r=1ur

(
Y 1

r0 + Y 2
r0

) ×
∑2

i=1wi X2
i0 + μ2

0
∑3

r=1ur Y 2
r0

=
∑2

i=1wi Xi0 + μ1
0 + μ2

0
∑3

r=1ur
(
Y 1

r0 + Y 2
r0

)

Since λk
0 ∈ [0, 1](k = 1, 2), then the aggregate performance measure θ0 is a convex combi-

nation of the two subsystems measures for DMU0.
Substituting (1) into model (2) and applying the Charnes–Cooper (C–C) transformation

t = 1/
∑3

r=1 ur (Y 1
r0 + Y 2

r0), vi = twi , μr = tur , ω
1
0 = tμ1

0, ω
2
0 = tμ2

0, model (2) is then
equivalent to the following model:

Min θ0 =
2∑

i=1

νi Xi0 + ω1
0 + ω2

0

s.t. α

2∑

i=1

νi Xij + ω1
0 −

3∑

r=1

μr Y 1
r j ≥ 0, ∀ j

(1 − α)

2∑

i=1

νi Xij + ω2
0 −

3∑

r=1

μr Y 2
r j ≥ 0, ∀ j

3∑

r=1

μr (Y
1
r0 + Y 2

r0) = 1

μ1 − βμ2 ≥ 0

μ2 − γμ3 ≥ 0

νi , μr ≥ 0, ∀ r, i, ω1
0, ω

2
0 f ree

(4)
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Suppose an optimal solution and the objective function of model (4) are (α∗, v∗ =
(v∗

1 , v∗
2), μ∗ = (μ∗

1, μ
∗
2, μ

∗
3), ω

1∗
0 , ω2∗

0 ) and θ∗
0 , respectively. Then, the optimal efficiency

for DMU0 is e∗
0 = 1/θ∗

0 . We have a definition and a theorem as follows:

Definition 1 The overall Olympic Games system of DMU0 is efficient if e∗
0 = 1.

Theorem 1 If the overall Olympic Games system of DMU0 is efficient, then its each sub-
system is efficient, namely e1

0 = e2
0 = 1.

Proof See the Appendix 1. ��

If the overall system is inefficient, then we should make an efficiency decomposi-
tion for each subsystem. According to prior literature, the two subsystems’ efficien-
cies can be indirectly calculated based on the optimal solution to model (4). Suppose
one optimal solution is (α∗, v∗ = (v∗

1 , v∗
2), μ∗ = (μ∗

1, μ
∗
2, μ

∗
3), ω

1∗
0 , ω2∗

0 ) as aforemen-
tioned. In this way, the efficiency of the Winter Olympic subsystem is e1

0 = 1/θ1
0 =

∑3
r=1 μ∗

r Y 1
r0/(

∑2
i=1 α∗v∗

i Xi0 + ω1∗
0 ) and the efficiency of the Summer Olympic subsys-

tem is e2
0 = 1/θ2

0 = ∑3
r=1 μ∗

r Y 2
r0/(

∑2
i=1 (1 − α∗)v∗

i Xi0 + ω2∗
0 ). However, there may

exist alternative optimal solutions to model (4). For instance, another optimal solution to
model (4) is (α∗′, v∗′ = (v∗′

1 , v∗′
2 ), μ∗′ = (μ∗′

1 , μ∗′
2 , μ∗′

3 ), ω1∗′
0 , ω2∗′

0 ). This may lead to

another efficiency combination for the two Olympic subsystems (e1′
0 , e2′

0 ) such that e1′
0 =

∑3
r=1 μ∗′

r Y 1
r0/(

∑2
i=1 α∗v∗′

i Xi0 + ω1∗′
0 ) and e2′

0 = ∑3
r=1 μ∗′

r Y 2
r0/(

∑2
i=1 (1 − α∗)v∗′

i Xi0 +
ω2∗′

0 ). Thus, the efficiency decomposition based on model (4) may not be unique, and
there may be many efficiency combinations when the overall system obtains its opti-
mal efficiency. In this sense, it is unreasonable to calculate subsystems’ efficiencies
based on one optimal solution of model (4). In next Sect. 2.2, an efficiency decompo-
sition procedure will be proposed to obtain the efficiency range of each parallel subsys-
tem.

2.2 Subsystem performance assessment model: efficiency decomposition

To further identify the inefficiency sources of the overall Olympic system, and pre-
vent the inefficiency of one subsystem to be compensated by the efficiency of the
other, it is necessary to make efficiency decomposition for the two Olympic subsys-
tems, especially when model (4) has alternative optimal solutions. The issue of effi-
ciency decomposition has been proposed by several methods, such as additive efficiency
decomposition (see, e.g. Chen et al. 2009, 2010; Yang et al. 2014), multiplicative effi-
ciency decomposition (see, e.g. Kao and Hwang 2008; Yang et al. 2014), and game-
theoretic approaches (see, e.g. Du et al. 2011; Liang et al. 2008; Li et al. 2012; Zha
and Liang 2010). However, none of these efficiency decomposition methods has been
applied to a parallel system. In this paper, we employ the additive efficiency decom-
position to obtain the efficiency range for each subsystem. Suppose the maximum and
minimum efficiencies of each Olympic Games subsystem of DMU0 can be denoted as

Ek
0 and Ek

0(k = 1, 2), respectively, then they can be calculated via the following mod-
els:
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Min/Max θk
0 =

∑2
i=1wi Xk

i0 + μk
0

∑3
r=1ur Y k

r0

s.t.

∑2
i=1wi Xi0 + μ1

0 + μ2
0

∑3
r=1ur (Y 1

r0 + Y 2
r0)

= θ∗
0

∑2
i=1wi Xk

i j + μk
0

∑3
r=1ur Y k

r j

≥ 1, ∀ j, k

u1 − βu2 ≥ 0

u2−γ u3 ≥ 0

wi , ur ≥ 0, ∀ r, i, μk
0 f ree.

(5)

where θ∗
0 is the optimal objective function value of model (4). The first set of constraints

ensures that the overall parallel Olympic system maintains its efficiency score as e∗
0 = 1/θ∗

0 .
Other constraints are the same in model (2). Model (5) is a ratio program, and can be converted
into model (6) by the C–C transformation t = 1/

∑3
r=1ur Y k

r0, vi = twi , μr = tur , ω
1
0 =

tμ1
0, ω

2
0 = tμ2

0 as follows:

Min/Max θk
0 =

2∑

i=1

νi Xk
i0 + ωk

0

s.t. θ∗
0 ×

3∑

r=1

μr (Y
1
r0 + Y 2

r0) −
(

2∑

i=1

νi Xi0 + ω1
0 + ω2

0

)

= 0

2∑

i=1

νi Xk
i j + ωk

0 −
3∑

r=1

μr Y k
r j ≥ 0, ∀ j, k

3∑

r=1

μr Y k
r0 = 1

μ1−βμ2 ≥ 0

μ2−γμ3 ≥ 0

νi , μr ≥ 0, ∀ r, i, ωk
0 f ree

(6)

Denote the maximum and minimum objective function values of model (6) as θk∗
0 and

θk∗
0 , respectively. Then maximum and minimum efficiencies of the two subsystems of

DMU0 are Ek
0 = 1/θk∗

0 and Ek
0 = 1/θk∗

0 (k = 1, 2). Therefore, the efficiency of

each subsystem of DMU0 can be determined in an interval [Ek
0 , Ek

0 ], (k = 1, 2). If

Ek
0 = Ek

0 , ∃k is satisfied, then the efficiency of the subsystem k is uniquely deter-
mined.

Theorem 2 If the overall Olympic Games system of DMU0 is efficient, then Ek
0 = Ek

0 =
1,∀k

Proof See the Appendix 2 ��
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Table 1 Descriptive statistics of input and output levels for 25 participating nations

Summary features GDP per capita Population total Gold medal Silver medal Bronze medal

Average 31,506.5072 97,040,530 13 12 12

SD 20,793.02 267,040,562 14.6580 11.3981 10.9768

Minimum 4,432.9636 1,340,161 0 2 1

Maximum 85,443.0594 1,337,825,000 15 44 42

3 An application

3.1 Data sources

The data set consists of 25 participating nations who have taken part in both the Vancouver
2010 Winter Olympic Games and London 2012 Summer Olympic Games. All of them gain
at least one medal from each Olympic Games. As mentioned above, three outputs are the
numbers of gold, silver and bronze medals, and two inputs are GDP per capita (in US
dollars) and population of the participating nation. Similar to Lozano et al. (2002), this paper
assumes that the GDP per capita captures the most important element affecting the economic
and demographic power of the participating nation. Generally, the wealthy nation is more
likely to obtain medals. However, it is insufficient to only take the wealth of participants into
account. The numbers of good athletes from participating nations have to be considered as
an input variable as well. In general, a nation with more good athletes is more likely to obtain
more medals. Since the greater the population of a nation, the more possibility it obtains good
athletes. Therefore, the population of the participating nation is considered as another input.
In addition, the two kinds of inputs affect all sporting events of the two Olympic Games.
The data set of outputs and inputs are collected from the official website of Olympics (http://
www.olympic.org/en/content/All-Olympic-results-since-1896/) and the official website of
World Bank (http://databank.worldbank.org/ddp/home.do), respectively.

It is noteworthy that the 2012 Summer Olympic Games is held after the 2010 Winter
Olympic Games. Accordingly, the problem is which year should be selected as the input data
year. The data year we select should capture the most influential factor to the two Olympic
Games. If we select the year prior to the year that the Winter Olympic Games holds, then
the earlier the year we select, the less influential inputs are reflected in the Summer Olympic
Games. Likewise, if we select the year after the Winter Olympic Games holds, the inputs
may have little impact on the Winter Olympic Games. Moreover, very few changes happen
for GDP per capita and population of each nation in several years, thus we select the year that
the Winter Olympic Games holds as the input data year. Therefore, the year 2010 is selected
as the input data year in this application.

Summary statistics characterizing inputs and outputs of the 25 participating nations appear
in Table 1, which contains the average level, standard variance, the minimum level and
maximum level. Note in Table 1 that the large standard deviation of inputs indicates scales
of participating nations vary greatly. This observation leads us to use the VRS DEA model.

3.2 Results analysis

Similar to prior literature, we first measure the sports performance of 25 participating nations
in 2010 Winter Olympic Games and 2012 Summer Olympic Games, respectively. We apply
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Table 2 The efficiencies of 25 nations based upon BCC model and model (4)

Nation BCC model Model (4)

Winter Olympics Summer Olympics Overall Olympics α

Australia 0.1862 1.0000 0.5887 0.21

Belarus 1.0000 1.0000 1.0000 [0.01, 0.99]

Canada 1.0000 0.8540 0.5750 [0.01, 0.21]

China 1.0000 1.0000 1.0000 [0.01, 0.99]

Croatia 1.0000 1.0000 0.7951 0.33

Czech Republic 1.0000 0.7703 0.6344 0.43

Estonia 1.0000 1.0000 1.0000 [0.01, 0.99]

Finland 1.0000 0.5499 0.1536 0.66

France 0.9322 0.6152 0.3989 0.04

Germany 1.0000 0.9280 0.6683 0.04

Italy 0.4909 0.5979 0.3022 0.32

Japan 0.2426 0.5855 0.2972 0.04

Kazakhstan 0.4666 1.0000 0.7578 0.24

Latvia 1.0000 1.0000 1.0000 [0.01, 0.99]

Netherlands 0.5992 0.9677 0.5576 0.21

Norway 1.0000 0.6622 0.9225 [0.2, 0.84]

Poland 0.8396 0.5166 0.2827 0.32

Russia 1.0000 1.0000 1.0000 [0.06, 0.55]

Slovakia 0.7951 0.8861 0.3239 0.40

Slovenia 1.0000 1.0000 0.6837 0.64

South Korea 1.0000 0.7250 0.7533 0.32

Sweden 0.8562 0.5924 0.4663 0.16

Switzerland 0.7510 0.5277 0.5695 0.28

United Kingdom 0.0914 1.0000 0.7269 0.45

USA 1.0000 1.0000 1.0000 [0.01, 0.99]

The results in Table 2 have been calculated using β = γ = 2 as similarly done in Lozano et al. (2002), which
implicates that one golden medal is worth at least two silver medals and a sliver one is worth at least two
bronze medals

the BCC model in Lozano et al. (2002) to the dataset which descriptive statistics shown in
Table 1. As mentioned above, we use the GDP per capital and population of the participating
nation as inputs and the medals won in the Summer Olympics or Winter Olympics as outputs.
The obtained results are reported in the second column of Table 2. It shows that fourteen
nations, such as USA, Belarus, Canada, China, and so on, are efficient when only taking into
account 2010 Winter Olympic Games, and eleven nations are efficient when just considering
2012 Summer Olympic Games.

It can be seen that some nations may have completely different performance in the two
Olympic Games. For example, Australia is efficient when only considering the Summer
Olympic Games, while its performance is very poor (the efficiency is 0.1862) in the 2010
Winter Olympic Games. On the contrary, Canada is efficient when only considering the 2010
Winter Olympic Games, but has an efficiency score of 0.8540 in the 2012 Summer Olympic
Games. Thus, Australia prefers to select the Summer Olympics to reflect the sports level,
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Table 3 The efficiency tendency
for Canada based on model (4)

k α = k × 0.01 e0(α)

1–10 0.01–0.1 0.5750

11–20 0.11–0.2 0.5750

21–30 0.21–0.3 0.5440–0.5750

31–40 0.31–0.4 0.5228–0.5402

41–50 0.41–0.5 0.4830–0.5213

51–60 0.51–0.6 0.4576–0.4799

61–70 0.61–0.7 0.4410–0.4556

71–80 0.71–0.8 0.4233–0.4396

81–90 0.81–0.9 0.3359–0.4177

91–99 0.91–0.99 0.2954–0.3304

while Canada prefers to the Winter Olympics. Therefore, it is necessary to simultaneously
consider the two Olympic Games to measure the sports levels of participating nations.

Considering the two Olympics as parallel subsystems, this paper uses model (4) to measure
performance of participating nations. Model (4) is employed to obtain the efficiency of the
overall Olympic system. It is a non-linear model, but can be solved as a linear one when
treating α as a parameter. We set α = k × ε, where ε is a relative small positive number.1

Then we increase α via increasing k and set the initial value of k to be the minimum, namely
k = 1. Corresponding to each α, model (4) can be solved as a linear program and the optimal
efficiency value can be denoted as e0(α). As a result, for any given nation, the relationship
between α and the efficiency score based on model (4) can be expressed by an efficiency
function e0 = e0(α).

To demonstrate the relationship between α and the efficiency function e0 = e0(α), we now
take Canada as an example. The optimal objective function value of model (4) corresponding
to each k is shown in Table 3. We set α = k × 0.01, where k changes from 1 to 99 as shown
in the first column of Table 3. It can be found that the maximum objective value of model
(4) is e0(0.01−0.21) = 0.5750, which implies that Canada can reach the best performance
if the Winter Olympics shares 1 to 21 percentages of the whole inputs.

Based on the similar calculation procedures, the achievable maximum efficiency and the
corresponding optimal values of α for each nation can be obtained as shown in the last column
of Table 2. It shows that out of the 25 participating nations only 6 nations are efficient, namely
USA, Belarus, China, Estonia, Latvia and Russia. Furthermore, USA, Belarus, China, Estonia
and Latvia are always efficient regardless of the value of α ∈ (0, 1). Russia is efficient in part
of the interval of α. That is, Russia would become inefficient if less than 6 percentages or
more than 55 percentages of all inputs are dedicated to the Winter Olympics. A property of
VRS model is that DMUs with the smallest input value or the biggest output value are always
efficient (Ali 1994). In this paper, USA (biggest outputs) and Estonia (smallest inputs) are
such the case. Besides, among the remaining 19 inefficient nations, 17 nations have a unique
input allocation when they reach the maximum efficiency values, such as Australia, United
Kingdom, Croatia and so on. However, Canada and Norway can achieve their maximum
efficiencies in a interval range of α.

It is interesting to note that both Slovenia and Croatia are efficient when we only consider
either the 2010 Winter Olympic Games or the 2012 Summer Olympic Games, but they are

1 In this paper, we set ε = 0.01. The smaller ε value we select, the more impossible the maximum efficiency
scores will be missed.
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Fig. 2 Tendency of efficiency values for four countries

inefficient when we treat the two Olympics as parallel subsystems. It is not surprising for this
result. The reason may be that constraints of model (4) are stricter than the ones in the BCC
model of Lozano et al. (2002). So it may overestimate the efficiency of each nation when we
only consider one kind of Olympic Games.

Figure 2 exhibits tendencies of efficiency values for four representative nations with the
gradual changes of α. There are three typical types of efficiency tendency curve as depicted
in Fig. 2: (i) the efficiency tendency curve keeps flat for all α ∈ (0, 1), USA is this case. (ii)
the efficiency tendency curve is rising at first, then keeps flat and is declining at last. Nations
such as Russia and Australia are this case, but they differ from the maximum efficiency scores
and the interval ranges of α. (iii) the efficiency tendency curve is monotone rising at first,
then is declining with the increase of α after it obtains the maximum efficiency score. Canada
is this case. Other nations are omitted here since their tendencies can be represented by the
three types.

The sensitivity analysis should be performed for different ARs since we cannot accu-
rately define the weight relations among three outputs. The above results are calculated by
setting β = γ = 2, namely one golden medal is worth at least two silver medals and a
sliver one at least two bronze medals. We should further perform sensitivity analysis for the
overall system’s efficiency with the two parameters (β, γ ). Table 4 shows the efficiency of
overall Olympic system for each nation by applying different ARs to β and γ . It shows that
few efficiency changes happen to each nation. Efficiencies of eight nations keep unchanged
irrespective of different parameters values are applied. These nations are Belarus, United
Kingdom, China, Estonia, Kazakhstan, Latvia, Russia and Switzerland. For other nations,
their efficiency scores are generally decreasing with the increasing values of β and γ . The
reason is that the feasible region of output multipliers in model (4) gets smaller. Thus, the
efficiency measure based on our proposed method seems not sensitive to the values of β and
γ .

Moreover, it is noteworthy that the six efficient nations (USA, Belarus, China, Estonia,
Latvia and Russia) remain efficient with respect to different parameters values. Based on
Theorem 1, efficiency scores of the Olympic subsystems for the six efficient nations are
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Table 4 Sensitivity analysis of efficiencies to parameters β and γ (β = γ = c)

Nation c = 1 c = 2 c = 3 c = 4 c = 5

Australia 0.6416 0.5887 0.5534 0.5156 0.4915

Belarus 1.0000 1.0000 1.0000 1.0000 1.0000

Canada 0.6301 0.5750 0.5568 0.5385 0.5281

China 1.0000 1.0000 1.0000 1.0000 1.0000

Croatia 0.8068 0.7951 0.7896 0.7841 0.7752

Czech Republic 0.6528 0.6344 0.6277 0.6239 0.6231

Estonia 1.0000 1.0000 1.0000 1.0000 1.0000

Finland 0.2891 0.1536 0.0955 0.0674 0.0515

France 0.4776 0.3989 0.3647 0.3474 0.3372

Germany 0.7507 0.6683 0.6135 0.5815 0.5611

Italy 0.3724 0.3022 0.2761 0.2631 0.2554

Japan 0.3896 0.2972 0.2484 0.2223 0.2067

Kazakhstan 0.7578 0.7578 0.7578 0.7578 0.7578

Latvia 1.0000 1.0000 1.0000 1.0000 1.0000

Netherlands 0.5777 0.5576 0.5471 0.5364 0.5300

Norway 0.9266 0.9225 0.9177 0.9141 0.9118

Poland 0.3530 0.2827 0.2526 0.2369 0.2273

Russia 1.0000 1.0000 1.0000 1.0000 1.0000

Slovakia 0.4204 0.3239 0.2816 0.2613 0.2483

Slovenia 0.8339 0.6837 0.6044 0.5573 0.5264

South Korea 0.7535 0.7533 0.7533 0.7533 0.7530

Sweden 0.4905 0.4663 0.4509 0.4377 0.4295

Switzerland 0.5695 0.5695 0.5695 0.5695 0.5695

United Kingdom 0.7269 0.7269 0.7269 0.7269 0.7269

USA 1.0000 1.0000 0.9809 0.9649 0.9551

equal to 1. As for the inefficient nations, we should perform efficiency decomposition for the
two Olympic subsystems.

To make an efficiency decomposition for each subsystem, we apply model (6) based onβ =
γ = 2. Results are given in Table 5. The last two columns of Table 5 show the maximum and
minimum efficiency scores of two Olympics for all nations. It can be found that the efficiency
of each subsystem for most nations can be uniquely determined except five nations, namely
United Kingdom, Canada, Norway, South Korea and Switzerland. For instance, the minimum
efficiency score of the Summer Olympic subsystem of United Kingdom is 0.9772 while the
maximum value is 1, so the efficiency decomposition for the Summer Olympic subsystem of
United Kingdom is not unique. The non-uniqueness of the subsystem’s efficiency verifies the
necessity of the efficiency decomposition for parallel Olympic subsystems. For convenience
of results’ comparison, the second column of Table 5 displays the efficiency of the overall
parallel Olympic system for each nation, which is the same as shown in the last column of
Table 2. It is noteworthy that the two Olympic subsystems of the six efficient nations are
efficient, which accords with Theorem 1.

Moreover, some inefficient nations have good performance in one of the Olympic subsys-
tems. These nations include Australia, United Kingdom, Canada, Kazakhstan and Norway.
Among of them, Canada and Norway have good performance in the Winter Olympic Games
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Table 5 Efficiency decomposition for two Olympics with β = γ = 2

Nation Overall system Winter Olympics Summer Olympics

e∗
0 E1

j E1
j E2

j E2
j

Australia 0.5887 0.1486 0.1486 1.0000 1.0000

Belarus 1.0000 1.0000 1.0000 1.0000 1.0000

Canada 0.5750 0.9799 1.0000 0.2583 0.2583

China 1.0000 1.0000 1.0000 1.0000 1.0000

Croatia 0.7951 0.3647 0.3647 0.9982 0.9982

Czech republic 0.6344 0.5531 0.5531 0.6837 0.6837

Estonia 1.0000 1.0000 1.0000 1.0000 1.0000

Finland 0.1536 0.1565 0.1565 0.1493 0.1493

France 0.3989 0.2648 0.2648 0.4584 0.4584

Germany 0.6683 0.9628 0.9628 0.5422 0.5422

Italy 0.3022 0.1263 0.1263 0.3805 0.3805

Japan 0.2972 0.1044 0.1044 0.3726 0.3726

Kazakhstan 0.7578 0.0042 0.0042 1.0000 1.0000

Latvia 1.0000 1.0000 1.0000 1.0000 1.0000

Netherlands 0.5576 0.3340 0.3340 0.8554 0.8554

Norway 0.9225 1.0000 1.0000 0.6550 0.6574

Poland 0.2827 0.3990 0.3990 0.2367 0.2367

Russia 1.0000 1.0000 1.0000 1.0000 1.0000

Slovakia 0.3239 0.4613 0.4613 0.2286 0.2286

Slovenia 0.6837 0.4559 0.4559 0.9944 0.9944

South Korea 0.7533 0.8214 0.8214 0.6975 0.7250

Sweden 0.4663 0.4615 0.4615 0.4757 0.4757

Switzerland 0.5695 0.6307 0.6307 0.4398 0.4417

United Kingdom 0.7269 0.0815 0.0815 0.9772 1.0000

USA 1.0000 1.0000 1.0000 1.0000 1.0000

but poor performance in the Summer Olympic Games. Generally, nations located in the
middle-high latitude areas may have good performance in the Winter Olympic Games. On
the contrary, the other three nations have good performance in the Summer Olympic Games.
This phenomenon accords with their geographical features.

These results show that our proposed approach is more general and reasonable. It may
be due to the fact that we consider two Olympics simultaneously to evaluate the sports level
of each nation. Besides, our approach also provides a guide for performance improvement.
That is, nations who expect to be efficient in the overall Olympic system should pay more
attention to improve the sports level of their inefficient subsystems. Nations are efficient in
the overall Olympic system only when both the two Olympic subsystems are efficient.

4 Conclusions

The Olympic Games are the most important and most popular sporting event in the world,
and people pay more and more attention to this event. Measuring the performance of par-
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ticipating nations in the Olympic Games is an important application of DEA. In this paper,
an output-oriented VRS parallel DEA approach is presented to evaluate sports levels of par-
ticipating nations. Prior DEA studies evaluate sports levels of nations only considering their
performance in the Summer Olympic Games. It is unfair for some nations which are good
at the Winter Olympics, but poor at the Summer Olympics. This paper treats the two kinds
of Olympic Games as two parallel subsystems and defines a parameter to divide the shared
inputs into two parts. Our proposed approach can measure the efficiency of overall Olympic
system and an efficiency decomposition procedure is used to obtain the efficiency range of
each Olympic subsystem. Such the efficiency decomposition for each subsystem can also
provide a guide for performance improvement. Then, our proposed approach is applied to
comprehensively measuring the performance of 25 nations participating both in the 2010
Winter Olympics and 2012 Summer Olympics. A more detailed and reasonable performance
evaluation result has been obtained. The majority of nations display different performance
in the two Olympics which is consistent with their geographical features. In addition, the
majority of nations obtain their maximum efficiency scores when shared inputs for the Winter
Olympics are uniquely determined.

Further developments in measuring efficiencies of participating nations in the Olympics
should take the efficiency of selecting good athletes into account. It is no doubt that good
athlete is an important factor for participating nations to obtain medals. Moreover, there are
some nations that participated in both the Winter Olympic Games and Summer Olympic
Games but did not obtain at least one medal from both Olympic Games. How to measure
Olympics achievements of these nations is a possible direction of this study.
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Appendix 1

Theorem 1 If the overall Olympic Games system of DMU0 is efficient, then its each sub-
system is efficient, namely e1

0 = e2
0 = 1.

Proof Since we have θ0 = λ1
0θ

1
0 + λ2

0θ
2
0 which is a convex combination of θ1

0 and θ2
0 . It is

apparently that θ0 = 1 if and only if θ1
0 = θ2

0 = 1. Hence, the overall Olympic parallel system
of the given DMU0 is efficient due to e0 = 1/θ0 = 1, and meanwhile, the two Olympic
subsystems are also efficient due to e1

0 = 1/θ1
0 = 1 and e2

0 = 1/θ2
0 = 1. In other words, the

overall Olympic parallel system is efficient, then its two Olympic subsystems are efficient.
Thus, Theorem 1 has been completely proven. ��

Appendix 2

Theorem 2 If the overall Olympic Games system of DMU0 is efficient, then Ek
0 = Ek

0 =
1,∀k
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Proof Theorem 1 has proved that the overall Olympic Games system of DMU0 is efficient,
then its each subsystem is efficient, namely e1

0 = e2
0 = 1. In other words, the subsystem

has a unique solution equals to 1, thus, the maximum and minimum efficiencies were only

identified, namely Ek
0 = Ek

0 = 1,∀k. Then Theorem 2 has been proved. ��
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