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Abstract The food quality has always played an important role in the retail process since
it has been considered as a direct factor to influence a consumer’s purchase decision. In
this paper, we formulate an inventory model for perishable foods, in which the demand
depends on the price and quality that decays continuously. The objective is to determine a
joint dynamic pricing and preservation technology investment strategy while maximizing
the total profit from selling a given initial inventory of foods. We first prove the existence of
an optimal solution based on Filippov–Cesari theorem. Then, we obtain all the candidates
and provide the conditions that make a certain candidate be an optimal solution according
to Pontryagin’s maximum principle. Next, we present an effective algorithm to search for
the optimal strategy. Finally, two numerical examples are employed to illustrate the solution
procedure and the results, followed by sensitivity analysis and managerial insights.

Keywords Perishable foods · Dynamic pricing · Preservation technology investment ·
Quality degradation · Maximum principle

1 Introduction

The food quality, especially the quality of perishable foods, has always played a focal point
since it permeates every level of the management of food supply chains. As pointed out in
Trienekens and Zuurbier (2008), food quality will dominate the process of production and
distribution in the future. In a sense, the importance of food quality may be more prominent in
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the retail process since it affects directly a consumer’s purchase decision. Generally speaking,
when the foods are good value for money, they will be on the list of consumers’ purchasing.

In recent decades, marketing researchers have taken the product quality as an important
influential factor of demand. Teng and Thompson (1996) develop general price-quality deci-
sion models of new products with learning production costs, in which dynamic demand is
a function of price and quality level, as well as cumulative sales. Considering cumulative
productivity and quality knowledge as state variables, Vörös (2006) provides an optimization
formulation and characterizes the dynamics of optimal price, quality and investment deci-
sions. Chenavaz (2012) assumes that the demand depends on price and quality, and analyzes
the dynamic relationships between the price and quality under an additive and a separable
multiplicative demand function, respectively. Especially, there has been a considerable body
of literature which mainly focuses on food quality. Owing to the range of quality attributes,
dynamics of food characteristics and storage conditions, the study regarding food quality
has been viewed as a challenge. Péneau et al. (2007) take freshness as a quality criterion
of consumers’ acceptance of fruit and vegetables and uncover sensory attributes influencing
consumer perception of the freshness of strawberries and carrots that varies in cultivar, as well
as with time and storage conditions. Integrating food quality in production and distribution
planning, Rong et al. (2011) present a mixed-integer linear programming model, where food
quality is strongly related to temperature control. Wang and Li (2012) further develop a food
quality degradation model by introducing a temperature dependent quality deterioration rate.
Based on dynamically identified food shelf life, they adopt discount policies to maximize the
food retailer’s profit. Other researchers such as Broekmeulen (1998), Lukasse and Polderdijk
(2003) and Ferguson and Ketzenberg (2006) also study the management problem of food
quality.

In practice, the deterioration rate of perishable foods can be controlled and reduced through
various efforts, e.g., procedural changes and specialized equipment acquisition. Therefore,
producers or retailers, according to the realistic situations, can make decisions on whether
some preservation technologies could be adopted by means of effective investment strategy to
reduce the deterioration rate of foods. Lee (2008) constructs investment models to measure the
impact of quality programs and predict the return of an investment in a multi-level assembly
system, which can be applied by decision makers to decide whether and how much to invest
in quality improvement projects. Hsu et al. (2010) investigate the optimal replenishment
cycle, shortage period, order quantity and preservation technology cost when the retailer
invests in preservation technology to reduce the deterioration rate of products. Based on the
sensitivity analysis in numerical examples, Geetha and Uthayakumar (2010) and Maihami
and Kamalabadi (2012) find that effectively reducing the deterioration rate leads to more
profits. However, Dye and Hsieh (2012) propose that when the deterioration rate is small
enough, the investment will reach zero, which implies that the inventory system doesn’t
need to invest. As shown in Hsieh and Dye (2013), the effective investment strategy can not
only reduce unnecessary waste and economic losses, but also enhance the service level to
customers and business competitiveness. Due to these competitive advantages, the firm will
have the initiative in pricing and other aspects. Other papers related to investment constraint
issue refer to Hong and Hayya (1995), Gurnani et al. (2007), Mathur and Shah (2008) and
others.

Another active area is pricing and inventory control for perishable products, as reported
in review articles by Nahmias (1982) and Goyal and Giri (2001). Chatwin (2000) develops a
continuous-time inventory model for perishable products under some assumptions, in which
the retailer can only choose from a finite number of allowable prices. On the basis of the
construction of optimal pricing policies directly characterized by a family of continuous
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pricing functions, Anjos et al. (2005) present a general methodology to react to any changes
in the predicted purchase patterns for perishable products. To obtain the optimal prices and
inventory allocations for a perishable product with a predetermined lifetime, Chew et al.
(2009) construct a discrete time dynamic programming model, where the price is assumed
to increase over time when it perishes approaches as in the airline industry and the demand
is price sensitive. Wang and Lin (2012) develop an optimal replenishment strategy with
pricing manipulation for a deteriorating product whose demand continuously decreases over
time and is sensitive to price. The proposed model can be used to determine the optimal
product life cycle. Based on the situation that some perishable assets’ value becomes zero
after a fixed expiry date, Banerjee and Turner (2012) develop a flexible and versatile model
to assign optimal prices to these perishable assets. In addition, several researchers investigate
the dynamic pricing and inventory control problem for other products, e.g., Adida and Perakis
(2010) and Akan et al. (2013).

In the existing literature, while the dynamic pricing or investment policy in preservation
technology for perishable foods has been extensively studied, simultaneously considering
both strategies as decision variables receives little attention. Accordingly, our paper com-
plements these previous works by determining the joint dynamic pricing and investment
strategy for perishable foods to maximize the total profit in a monopoly setting. Moreover,
since the quality of perishable foods can be perceived more accurately with the technological
development and application of food traceability systems, it has become a direct influential
factor of a consumer’s purchase decision. As for a retailer, the effective investment strategy
in reducing the deterioration rate of the quality plays an important role in the retail process.
Therefore, we also wish to answer the following twofold question: under what circumstances
does a retailer invest in preservation technology for perishable foods, and how do key system
parameters affect the investment time horizon when the investment activity occurs?

To that end, we develop an inventory system for perishable foods controlled by a monop-
olistic retailer, in which both inventory level and food quality are treated as state variables
of the dynamic system. The former evolves from a given initial inventory level to zero due
to demand, while the latter decays continuously owing to the nature of perishable foods.
There are also two control variables in this system: price and preservation technology invest-
ment. The retailer affects the demand directly through pricing and indirectly through food
quality by investing in preservation technology to reduce its deterioration rate, and thus max-
imizes the net profit over a time horizon, taking inventory holding and investment costs into
consideration.

Our contributions are as follows: First, for appropriate initial inventory level, we prove the
existence and uniqueness of solution for the proposed dynamic pricing and inventory control
problem by means of Filippov–Cesari theorem and Pontryagin’s maximum principle. Second,
our results suggest that investing in preservation technology in the whole time horizon for the
retailer may be inadvisable. In particular, numerical analysis shows that for relatively high
natural deterioration coefficient and low unit investment cost, there exists a time threshold,
before which, the retailer will implement investment activity and after which, the retailer
will not invest. Whereas, when the natural deterioration coefficient is relatively low and unit
investment cost is relatively high, the optimal strategy for the retailer is not to invest. Third,
we carry out the sensitivity analysis of main parameters and obtain some interesting results.

The preceding sections are organized as follows. Section 2 outlines the model notations and
assumptions used throughout this paper. Section 3 characterizes the joint dynamic pricing
and investment model in detail. In Sect. 4, we prove the existence of an optimal solution
based on Filippov–Cesari theorem, obtain all the candidates and conditions that make a
certain candidate be an optimal solution according to Pontryagin’s maximum principle, and
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present an effective algorithm to find the optimal strategy. In Sect. 5, two numerical examples
are used to elucidate the proposed solution procedure, followed by sensitivity analysis and
managerial insights. Conclusions are drawn in Sect. 6.

2 Model notations and assumptions

The model in this paper is developed on the basis of the following notations and assumptions.

2.1 Notations

[0, T ] The time horizon, in which the terminal time T is finite and unspecified
I (t) The inventory level (state variable)
q(t) The food quality (state variable)
p(t) The retail price per unit (control variable)
u(t) The investment rate (control variable)
θ(u) The deterioration coefficient under investment
D(p, q) The demand rate
I0 The initial inventory level
q0 The initial quality
θ0 The natural deterioration coefficient
h The holding cost per unit
c The investment cost per unit
U The maximum investment rate
k The reduced value of deterioration coefficient under per unit investment
α, β, γ The coefficients of relationships among price, quality and demand rate

2.2 Assumptions

A1. The inventory system involves a single kind of perishable food.
A2. The demand rate D(p, q) is a function of the retail price and quality of perishable foods,

taking the form of D(p, q) = γ q(α − βp).
A3. The sales cycle ends once the foods are exhausted.
A4. There are no production and replenishment occurring in the whole process.
A5. The intertemporal profit is not discounted.

The system parameters I0, q0, θ0, h, c, U, k, α, β, γ are all positive. In addition, the demand
function in assumption A2 follows the separable multiplicative form between control variable
and state variable, which is common in the existing literature (e.g., Jørgensen and Zaccour
1999; El Ouardighi and Kogan 2013). The consideration of price-quality dependent demand
is useful for perishable foods such as fruits, meats and so on (e.g., Wang and Li 2012).

3 Joint dynamic pricing and investment model

In this section, we consider a retailer having I0 units of perishable food at the beginning of
the sales cycle in a local place. According to assumptions A3 and A4, the evolution of the
inventory level can be described as
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İ (t) = −D(p(t), q(t)), I (0) = I0, I (T ) = 0, (1)

where T is the unspecified terminal time.
In daily life, consumers tend to pay more attention to the price and quality of perish-

able foods. Hence, these two important influential factors are taken into consideration when
constructing the demand function. Based on assumption A2, the demand function is defined
as

D(p(t), q(t)) = γ q(t)(α − βp(t)). (2)

Due to the fact that the price and demand should remain non-negative, i.e., p(t) ≥ 0 and
D(p(t), q(t)) ≥ 0, we assume that

0 ≤ p(t) ≤ α

β
. (3)

In view of the nature of perishable food, its quality can also be treated as a dynamic state
that decays continuously. Here, we suppose that the quality decays from the initial quality
q0 according to first-order reactions

q̇(t) = −θ(u(t))q(t), q(0) = q0. (4)

In practice, most perishable foods are affected by the storage environment, so the retailer
makes decisions on whether some investments in preservation technologies are adopted to
reduce the deterioration rate. In general, the investment rate u(t) is finite due to resource
limitations. Assuming that the maximum investment rate is U , the investment rate is bounded
as

0 ≤ u(t) ≤ U. (5)

The linear function regarding the deterioration coefficient θ(u(t)) and investment rate
u(t), for simplicity, is formulated as

θ(u(t)) = θ0 − ku(t). (6)

Note that for perishable foods, the quality will still decay continuously despite that the
retailer invests maximum capital. Thus it is natural to set k < θ0

U .
The inventory holding and investment costs are constructed as hI (t) and cu(t), respec-

tively. The total profit, therefore, can be described as follows

J =
∫ T

0

(
p(t)D(p(t), q(t)) − hI (t) − cu(t)

)
dt. (7)

The objective is to find a joint dynamic pricing and investment strategy that maximizes
the total profit (7), which is formulated as the following optimization problem

max
p(·),u(·) J =

∫ T

0

(
γ q(t)p(t)(α − βp(t)) − hI (t) − cu(t)

)
dt

s.t. İ (t) = −γ q(t)(α − βp(t)), I (0) = I0, I (T ) = 0,

q̇(t) = −(θ0 − ku(t))q(t), q(0) = q0,

0 ≤ p(t) ≤ α

β
, 0 ≤ u(t) ≤ U.

(8)
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4 Optimal strategy of the dynamic system

In this section, we first use Filippov–Cesari theorem (see, e.g., Seierstad and Sydsæer 1987, p.
145; Hartl et al. 1995; Adida and Perakis 2007) to prove the existence of an optimal solution.
Then, we obtain all the candidates and provide the conditions that make a certain candidate be
an optimal solution based on Pontryagin’s maximum principle. Finally, an effective algorithm
is presented to search for the joint optimal strategy.

4.1 Existence of an optimal solution

To address the existence of an optimal solution for (8) by using Filippov–Cesari theorem, we
define the feasible control set

� =
{
(p, u) | 0 ≤ p ≤ α

β
, 0 ≤ u ≤ U

}
,

and the set

Q(I, q, t) = {(
γ qp(α − βp) − hI − cu + b,−γ q(α − βp),−(θ0 − ku)q

) | b ≤ 0,

(p, u) ∈ �} .

In the following proposition, we verify that the four conditions listed in Filippov–Cesari
theorem are satisfied.

Proposition 1 For the optimization problem (8), there exists an optimal, measurable control
(p∗, u∗).

Proof (i) Consider the strategy

p = 0, u = U.

From both state equations in (8), the following equation

I0 + αγ q0

θ0 − kU

(
e(kU−θ0)T − 1

)
= 0

can be obtained immediately.
For notational simplicity, let

F(t) = I0 + αγ q0

θ0 − kU

(
e(kU−θ0)t − 1

)
.

Obviously, function F(t) is continuous. Since F(0) = I0 > 0 and lim
t→+∞ F(t) < 0 when

I0 <
αγ q0

θ0−kU , we obtain that F(t) = 0 has a solution T ∗ for the appropriate initial inventory
level.

Hence, this strategy satisfying all the constraints is an admissible pair.

(ii) Let (x1, y1, z1), (x2, y2, z2) ∈ Q(I, q, t) with

x1 = γ qp1(α − βp1) − hI − cu1 + b1,

x2 = γ qp2(α − βp2) − hI − cu2 + b2,

y1 = −γ q(α − βp1),

y2 = −γ q(α − βp2),
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z1 = −(θ0 − ku1)q,

z2 = −(θ0 − ku2)q,

b1 ≤ 0,

b2 ≤ 0,

(p1, u1) ∈ �,

(p2, u2) ∈ �.

We will show that (x̂, ŷ, ẑ) = μ(x1, y1, z1) + (1 − μ)(x2, y2, z2) ∈ Q(I, q, t) for any
μ ∈ [0, 1].

Let ( p̂, û) = μ(p1, u1) + (1 − μ)(p2, u2). It is easy to verify that ( p̂, û) ∈ �. Clearly,
ŷ = −γ q(α − β p̂) and ẑ = −(θ0 − kû)q .

Since the function J (p, u) = γ qp(α−βp)−hI −cu is concave in (p, u), which implies

γ q p̂(α − β p̂) − hI − cû
≥ μ(γ qp1(α − βp1) − hI − cu1) + (1 − μ)(γ qp2(α − βp2) − hI − cu2)

= μ(x1 − b1) + (1 − μ)(x2 − b2),

there exists b3 ≤ 0 such that

γ q p̂(α − β p̂) − hI − cû + b3 = x̂ − μb1 − (1 − μ)b2.

Let b̂ = μb1 + (1 − μ)b2 + b3 ≤ 0. It follows that

x̂ = γ q p̂(α − β p̂) − hI − cû + b̂.

Then (x̂, ŷ, ẑ) ∈ Q(I, q, t) and thus Q(I, q, t) is convex for each (I, q, t).

(iii) Obviously, the feasible control set � is closed and bounded.
(iv) There exist numbers I0 and q0 such that |I | ≤ I0 and |q| ≤ q0 for any t ∈ [0, T ] and

all admissible pairs (I, q, p, u).

As a result, according to Filippov–Cesari theorem, there exists an optimal solution (p∗, u∗)
to the optimization problem (8). �	
4.2 Candidates for an optimal solution

In the following, we apply Pontryagin’s maximum principle with control variables constrains
(see Sethi and Thompson 2000, pp. 57–80) to solve the optimal control problem (8).

Introduce the adjoint variables λ1 and λ2 to form the Hamiltonian function

H(I, q, p, u, λ1, λ2, t)=γ qp(α − βp)−hI − cu−λ1γ q(α−βp)−λ2(θ0 − ku)q. (9)

The adjoint variables λ1 and λ2 satisfy the adjoint equations λ̇1 = − ∂ H
∂ I and λ̇2 = − ∂ H

∂q ,
respectively, that is

λ̇1 = h, λ1(T ) = c1, (10)

where c1 is a constant to be determined, and

λ̇2 = γ (λ1 − p)(α − βp) + λ2(θ0 − ku), λ2(T ) = 0. (11)

It follows from (10) that

λ1 = h(t − T ) + c1, (12)

which is strictly increasing in t .
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Since the terminal time T is unspecified, it can be determined by the following equation

H(I, q, p, u, λ1, λ2, t) |t=T = 0. (13)

Note that the Hamiltonian in (9) is separable in control variables p and u. Furthermore,
it is strictly concave in the control variable p and linear in the control variable u. Hence,
maximizing the Hamiltonian and considering the control variables constrains 0 ≤ p ≤ α

β

and 0 ≤ u ≤ U shown in (3) and (5), respectively, the optimal control p∗ lies within or on
a boundary of the set of the feasible controls, and the optimal control u∗ is singular (corner
solution).

The foregoing discussion yields the optimal solution (p∗, u∗) as follows

p∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if λ1 ≤ −α

β
1

2

(
α

β
+ λ1

)
, if − α

β
< λ1 ≤ α

β
α

β
, if λ1 >

α

β
,

(14)

u∗ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if λ2q <
c

k

undefined, if λ2q = c

k

U, if λ2q >
c

k
.

(15)

Since λ2(T ) = 0, from (15) we have

u∗(T ) = 0. (16)

Proposition 2 Assume that (τ, T ] with 0 ≤ τ < T is the last time interval in which the price
p∗ can’t switch. The optimal price

p∗ = 1

2

(
α

β
+ λ1

)
, ∀t ∈ (τ, T ]. (17)

Proof Suppose that p = 0 for any t ∈ (τ, T ], which follows from (14) that λ1 ≤ − α
β

.
However, substituting (9) and the boundary conditions with respect to T in (1), (11) and (16)
into (13) yields q(T )λ1(T ) = 0, so λ1(T ) = 0, which is a contradiction.

Suppose that p = α
β

for any t ∈ (τ, T ]. It follows from the first state equation in (8) that

İ = 0. Since I (T ) = 0, we obtain I = 0 for any t ∈ (τ, T ]. This is a contradiction with
assumption A3.

As a result, the optimal price is shown in (17). �	
Then, using (10) and (17), we obtain p∗(T ) = 1

2

(
α
β

+ c1

)
. Inserting (9) and the boundary

conditions with respect to T in (1), (11) and (16) into (13), we further obtain

c1 = α

β
, (18)

which implies from (12) that

λ1 = h(t − T ) + α

β
. (19)

Based on Proposition 2 and the monotonicity of λ1, the following proposition can be
obtained immediately.
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Proposition 3 If λ1(0) < − α
β

, i.e., T > 2α
βh , the optimal price

p∗ =
⎧⎨
⎩

0, 0 ≤ t ≤ t1
α

β
+ h

2
(t − T ) , t1 < t ≤ T,

(20)

where t1 = T − 2α
βh . Otherwise, the optimal price

p∗ = α

β
+ h

2
(t − T ) (21)

over the time horizon [0, T ].
Proof The proof can be easily done by virtue of (14), (19), Proposition 2 and the monotonicity
of λ1. �	

Note from (20) and (21) that the optimal price p∗ is increasing over time and its terminal
value p∗(T ) = α

β
, which can be interpreted by the following two reasons from an economic

viewpoint. First, the retailer will adopt a lower initial price at the beginning to promote the
demand and reduce inventory level more quickly in order to avoid incurring more holding
costs, then the retailer gradually raises the retail price until the maximum value. Second, as
the quality decays continuously, the price sensitivities decrease with time, which means the
foods become more attractive to some customers as long as the foods are fit for sale and
consumption.

Define

G(t) = λ2(t)q(t), t ∈ [0, T ]. (22)

Then G(T ) = 0 since λ2(T ) = 0.

Lemma 1 The function G is strictly decreasing over the time horizon.

Proof It follows from the second state equation in (8) and the adjoint Eq. (11) that

λ̇2 = γ (λ1 − p)(α − βp) − λ2q̇

q
. (23)

Therefore, from (22) and (23) we obtain

Ġ = γ q(λ1 − p)(α − βp). (24)

Notice from (19), (20) and (21) that λ1 < p∗ and α > βp∗ for any t ∈ [0, T ). Hence
Ġ < 0, i.e., the function G is strictly decreasing over the time horizon. �	
Proposition 4 If G(0) > c

k , the optimal investment rate

u∗ =
{

U, 0 ≤ t < t2
0, t2 ≤ t ≤ T,

(25)

where t2 = G−1
( c

k

)
. Otherwise, the optimal investment rate

u∗ = 0 (26)

over the time horizon [0, T ].
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Proof Owing to the continuity and monotonicity of G(t) and G(T ) = 0, if G(0) > c
k , there

exists a unique time point t2 = G−1
( c

k

)
satisfying 0 < t2 < T and G(t) < c

k for any
t ∈ (t2, T ]. Combining (15) with (22), we get Eq. (25). If G(0) ≤ c

k , from Lemma 1, we
have G(t) ≤ c

k for any t ∈ [0, T ]. By virtue of (15) and (22), we get Eq. (26). �	
This result reflects two intuitive situations for the management of perishable foods. On one

hand, if the investment cost per unit is relatively high and the deterioration rate of food quality
is relatively low, the retailer will choose not to invest. On the other hand, if the investment
cost per unit is relatively low while the deterioration rate of food quality is relatively high,
the retailer will invest for a period of time and the investment activity will come to an end
when the inventory level becomes low.

Based on Propositions 3 and 4, the following four cases may arise:

Case 1 p = α

β
+ h

2
(t − T ) , u = 0.

Case 2 p =
⎧⎨
⎩

0, 0 ≤ t ≤ t1
α

β
+ h

2
(t − T ) , t1 < t ≤ T,

u = 0.

Case 3 p = α

β
+ h

2
(t − T ) , u =

{
U, 0 ≤ t < t2
0, t2 ≤ t ≤ T .

Case 4 p =
⎧⎨
⎩

0, 0 ≤ t ≤ t1
α

β
+ h

2
(t − T ) , t1 < t ≤ T,

u =
{

U, 0 ≤ t < t2
0, t2 ≤ t ≤ T .

We, one by one, provide the conditions that make a certain candidate be an optimal strategy
in the following.

As for Case 1, the strategy is

p = α

β
+ h

2
(t − T ) , u = 0, (27)

so from (24) and the first state equation in (8) we respectively get

Ġ = −1

4
γ q0βh2(T − t)2e−θ0t , (28)

and

İ = −1

2
γ q0βh(T − t)e−θ0t . (29)

Using the conditions G(T ) = 0, I (0) = I0 and I (T ) = 0, we further obtain from (28)
and (29) that

G(0) = γ q0βh2

4θ3
0

(
θ2

0 T 2 − 2θ0T + 2 − 2e−θ0T
)

, (30)

and

I0 − γ q0βh

2θ2
0

(
e−θ0T + θ0T − 1

)
= 0. (31)

To determine T, we solve Eq. (31). If it has a solution such that 0 < T ≤ 2α
βh and G(0) ≤ c

k ,
from Propositions 3 and 4, we obtain that the strategy given in (27) is optimal.
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As for Case 2, the strategy is

p =
⎧⎨
⎩

0, 0 ≤ t ≤ t1
α

β
+ h

2
(t − T ) , t1 < t ≤ T,

u = 0. (32)

Hence, from (24) and the first state equation in (8) we have

Ġ =

⎧⎪⎨
⎪⎩

αγ q0

(
h(t − T ) + α

β

)
e−θ0t , 0 ≤ t ≤ t1

−1

4
γ q0βh2(T − t)2e−θ0t , t1 < t ≤ T,

(33)

and

İ =
{−αγ q0e−θ0t , 0 ≤ t ≤ t1

−1

2
γ q0βh(T − t)e−θ0t , t1 < t ≤ T .

(34)

By virtue of G(T ) = 0, I (0) = I0, I (T ) = 0 and the continuity of functions G(t) and
I (t), we further obtain from (33) and (34) that

G(0) = αγ q0

θ0

(
−α

β
e−θ0t1 − α

β
+ hT + h

θ0

(
e−θ0t1 − 1

))

+ γ q0βh2

4θ3
0

(
θ2

0 (t1 − T )2e−θ0t1 + 2θ0(t1 − T )e−θ0t1 + 2e−θ0t1 − 2e−θ0T
)

, (35)

and

h(t1−T ) + 2α

β
= 0,

I0+ αγ q0

θ0

(
e−θ0t1 − 1

)− γ q0βh

2θ0
(T − t1)e

−θ0t1 − γ q0βh

2θ2
0

(e−θ0T −e−θ0t1)=0.
(36)

Solve Eq. (36) for t1 and T . If there are solutions satisfying 0 < t1 < T and G(0) ≤ c
k ,

Propositions 3 and 4 show that the strategy in (32) is optimal.
As for Case 3, the corresponding strategy is

p = α

β
+ h

2
(t − T ) , u =

{
U, 0 ≤ t < t2
0, t2 ≤ t ≤ T .

(37)

It follows from (24) and the first state equation in (8) that

Ġ =

⎧⎪⎨
⎪⎩

−1

4
γ q0βh2(T − t)2e(kU−θ0)t , 0 ≤ t < t2

−1

4
γ q0βh2(T − t)2ekUt2−θ0t , t2 ≤ t ≤ T,

(38)

and

İ =

⎧⎪⎨
⎪⎩

−1

2
γ q0βh(T − t)e(kU−θ0)t , 0 ≤ t < t2

−1

2
γ q0βh(T − t)ekUt2−θ0t , t2 ≤ t ≤ T .

(39)

Owing to the conditions that G(t2) = c
k , G(T ) = 0, I (0) = I0, I (T ) = 0 and the

functions G(t) and I (t) are continuous, we further get from (38) and (39) that
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(
(t2 − T )2

θ0
+ 2(t2 − T )

θ2
0

)
e(kU−θ0)t2 − 2ekUt2

θ3
0

(
e−θ0T −e−θ0t2

)
= 4c

kβh2γ q0
,

I0+ γ q0βh

2(θ0 − kU )

(
T − 1

θ0 − kU

) (
e(kU−θ0)t2 −1

)
− γ q0βh

2(θ0 − kU )
t2e(kU−θ0)t2

−γ q0βh

2θ0
(T − t2)e

(kU−θ0)t2 − γ q0βh

2θ2
0

(
ekUt2−θ0T − e(kU−θ0)t2

)
= 0.

(40)

If there are solutions t2 and T for (40) such that 0 < t2 < T ≤ 2α
βh , from Propositions 3

and 4, the optimal strategy is shown in (37).
As for Case 4, the corresponding strategy is

p =
⎧⎨
⎩

0, 0 ≤ t ≤ t1
α

β
+ h

2
(t − T ) , t1 < t ≤ T,

u =
{

U, 0 ≤ t < t2
0, t2 ≤ t ≤ T .

(41)

Subcase 4.1: t1 ≥ t2.
It follows from (24) and the first state equation in (8) that

Ġ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

αγ q0

(
h(t − T ) + α

β

)
e(kU−θ0)t , 0 ≤ t < t2

αγ q0

(
h(t − T ) + α

β

)
ekUt2−θ0t , t2 ≤ t < t1

−1

4
γ q0βh2(T − t)2ekUt2−θ0t , t1 ≤ t ≤ T .

(42)

and

İ =

⎧⎪⎪⎨
⎪⎪⎩

−αγ q0e(kU−θ0)t , 0 ≤ t < t2

−αγ q0ekUt2−θ0t , t2 ≤ t < t1

−1

2
γ q0βh(T − t)ekUt2−θ0t , t1 ≤ t ≤ T .

(43)

By virtue of the conditions G(t2) = c
k , G(T ) = 0, I (0) = I0, I (T ) = 0, the continuity

of G(t) and I (t), and Eqs. (42) and (43), we obtain the following equations

h(t1 − T ) + 2α

β
= 0,

αγ q0

θ0

((
ht2+ α

β
+ h

θ0
−hT

)
e(kU−θ0)t2 −

(
ht1 + α

β
+ h

θ0
− hT

)
ekUt2−θ0t1

)

−γ q0βh2

4

(
(t1 − T )2

θ0
+ 2(t1 − T )

θ2
0

)
ekUt2−θ0t1

+γ q0βh2

2θ3
0

(
ekUt2−θ0t1 − ekUt2−θ0T

)
= − c

k
,

I0 + αγ q0

θ0 − kU

(
e(kU−θ0)t2 − 1

)
+ αγ q0

θ0

(
ekUt2−θ0t1 − e(kU−θ0)t2

)

−γ q0βh

2θ0
(T − t1)e

kUt2−θ0t1 − γ q0βh

2θ2
0

(
ekUt2−θ0T − ekUt2−θ0t1

)
= 0.

(44)

If there exist solutions t1, t2 and T satisfying 0 < t2 ≤ t1 < T , from Propositions 3 and
4, we obtain that the strategy given in (41) is optimal.
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Subcase 4.2: t1 < t2.
From (24) and the first state equation in (8), we respectively get

Ġ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

αγ q0

(
h(t − T ) + α

β

)
e(kU−θ0)t , 0 ≤ t < t1

−1

4
γ q0βh2(T − t)2e(kU−θ0)t , t1 ≤ t < t2

−1

4
γ q0βh2(T − t)2ekUt2−θ0t , t2 ≤ t ≤ T,

(45)

and

İ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−αγ q0e(kU−θ0)t , 0 ≤ t < t1

−1

2
γ q0βh(T − t)e(kU−θ0)t , t1 ≤ t < t2

−1

2
γ q0βh(T − t)ekUt2−θ0t , t2 ≤ t ≤ T .

(46)

Using the conditions G(t2) = c
k , G(T ) = 0, I (0) = I0, I (T ) = 0, the continuity of

G(t) and I (t), and Eqs. (45) and (46), we have the following equations

h(t1 − T ) + 2α

β
= 0,

(
(t2 − T )2

θ0
+ 2(t2 − T )

θ2
0

)
e(kU−θ0)t2 − 2ekUt2

θ3
0

(
e−θ0T −e−θ0t2

)
= 4c

kβh2γ q0
,

I0 + αγ q0

θ0 − kU

(
e(kU−θ0)t1 − 1

)
+ γ q0βhT

2(θ0 − kU )

(
e(kU−θ0)t2 − e(kU−θ0)t1

)

− γ q0βh

2(θ0 − kU )2

(
e(kU−θ0)t2 − e(kU−θ0)t1

)
− γ q0βh

2θ0
(T − t2)e

(kU−θ0)t2

− γ q0βh

2(θ0−kU )

(
t2e(kU−θ0)t2 −t1e(kU−θ0)t1

)
− γ q0βhekUt2

2θ2
0

(
e−θ0T −e−θ0t2

)
=0. (47)

If there exist solutions t1, t2 and T which satisfy 0 < t1 < t2 < T , from Propositions 3
and 4, we obtain the optimal strategy specified in (41).

4.3 Algorithm

We have proven the existence of an optimal solution based on Filippov–Cesari theorem and
obtained all the candidates by maximum principle. To gain the optimal pricing and investment
strategies, an important problem is to seek for the critical time points t1, t2 and T by solving
Eqs. (31), (36), (40), (44) and (47), and verify whether the solutions satisfy the corresponding
conditions. Hence, a simple and effective algorithm is designed to obtain the optimal solution
(p∗, u∗) of the optimization problem (8).
Algorithm:

Step 1 Solve Eq. (31). If the solution T satisfies 0 < T ≤ 2α
βh and G(0) ≤ c

k , then the
optimal strategy is shown in (27) and stop. Otherwise, go to step 2.

Step 2 Solve Eq. (36). If the solutions t1 and T satisfy 0 < t1 < T and G(0) ≤ c
k , then the

optimal strategy is shown in (32) and stop. Otherwise, go to step 3.
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Step 3 Solve Eq. (40). If the solutions t2 and T satisfy 0 < t2 < T ≤ 2α
βh , then the optimal

strategy is shown in (37) and stop. Otherwise, the optimal strategy is shown in (41)
and stop.

Through this algorithm, we can get the optimal strategy (p∗, u∗) and then obtain the corre-
sponding optimal total profit J ∗.

5 Illustrative examples

In this section, two numerical examples are employed to illustrate the solution procedure and
the results.

Example 1 Let α = 10, β = 1, γ = 5, h = 0.2, θ0 = 0.035, k = 0.01, U = 3, q0 =
1, I0 = 300, c = 10. These parameters are chosen according to previous studies with
respect to the pricing and inventory models (e.g., Wang and Li 2012), which allows for a
comprehensive illustration. Executing the algorithm procedure proposed in Sect. 4.3, the
computational results are shown in Table 1 where C (S) denotes that the algorithm procedure
continues (stops). Under Case 1 corresponding to Step 1, we solve Eq. (31) and obtain
T = 43.2927 ≤ 2α

βh = 100 and G(0) = 963.2280 ≤ c
k = 1000. Hence, the optimal strategy

is (27), namely

p∗ = 0.1t + 5.6707, u∗ = 0, ∀t ∈ [0, 43.2927],
which implies the retail price is positive and the retailer will not invest to improve the store
conditions at the sales cycle. The corresponding total profit is J ∗ = 1365.6617.

Varying natural deterioration coefficient and keeping others unchanged, we identify a thresh-
old value θ̂0 = 0.0387, before and after which the retailer will adopt different investment
strategies. When θ0 < θ̂0, i.e., for a relatively low deterioration rate of the food quality, the
optimal strategy for the retailer is not to invest, while for a relatively high natural deterioration
rate of the food quality (θ0 > θ̂0), the retailer implements investment activity for a certain
time and then doesn’t invest any more. In the same way, we can obtain the corresponding
strategies by changing another parameter, such as γ, h or c. These observations are practical
and well validate the results acquired by theoretical analysis.

In the following example, we investigate the case that the natural deterioration rate of the
food quality is relatively high and the unit investment cost is relatively low, and provide the
optimal strategies.

Example 2 Let α = 10, β = 1, γ = 5, h = 0.2, θ0 = 0.06, k = 0.01, U = 3, q0 = 1, I0 =
300, c = 2. Executing the algorithm procedure proposed in Sect. 4.3, the computational
results are shown in Table 2. Under Case 3 corresponding to Step 3, we solve Eq. (40) and
obtain t2 = 13.8254 and T = 43.8142, which satisfy 0 < t2 < T ≤ 2α

βh . Therefore, the
optimal strategy is (37), i.e.,

p∗ = 0.1t + 5.6186, u∗ =
{

3, 0 ≤ t < 13.8254
0, 13.8254 ≤ t ≤ 43.8142,

Table 1 Computational results of example 1

Case t∗1 t∗2 G(0) T ∗ C/S

1 – – 963.2280 43.2927 S
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Table 2 Computational results
of example 2

Case t∗1 t∗2 G(0) T ∗ C/S

1 – – 1247.0 51.9274 C

2 – – 3589.0 77.5341 C

3 – 13.8254 – 43.8142 S
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Fig. 1 The demand rate with different θ0

which shows that the retailer will invest from the beginning to the time point t∗2 = 13.8254
and will not invest after t∗2 . The corresponding total profit is J ∗ = 1287.6712.

To obtain more managerial insights, we conduct sensitivity analysis on key model parameters
based on example 2. Specifically, we study the effects of changes in the values of parameters
θ0, γ, h and c on the optimal demand rate D∗, investment time t∗2 , sales cycle T ∗, price
p∗ elucidated by the initial price p∗

0 , and total profit J ∗. Varying one parameter at a time
and keeping the remaining parameters unchanged, the results are concluded in Figs. 1–4 and
Table 3.

Based on the computational results, the following observations can be made:

(1) When the natural deteriorating coefficient θ0 increases and other parameters are fixed, as
shown in Fig. 1, the optimal demand rate D∗ increases at the beginning, then decreases
and finally increases again. Table 3 reveals that the optimal investment time t∗2 and sales
cycle T ∗ increase while the optimal initial price p∗

0 and total profit J ∗ decrease. From
an economic viewpoint, this implies that when a retailer faces a higher deteriorating
rate, he may adopt a lower initial price to promote demand. Hence, the demand rate
increases with respect to θ0 at the beginning. As the quality decays continuously, the
food with a higher deteriorating rate has a greater negative effect on the demand rate,
which drops the demand rate more quickly. Then, the demand rate begins decreasing
from some time point. What’s more, the retailer will manage the inventory system with
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Fig. 2 The demand rate with different γ
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Fig. 3 The demand rate with different h

a higher deteriorating rate by prolonging the investment time, so the demand rate begins
increasing from a certain time point again. Obviously, a higher deterioration rate will
overall drop the demand rate, and increase the corresponding sales cycle for a given
initial inventory level, thus leading to a lower total profit.

(2) The optimal demand rate D∗ first increases and then decreases, and the optimal invest-
ment time t∗2 and sales cycle T ∗ decrease whereas the optimal initial price p∗

0 and total
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Fig. 4 The demand rate with different c

Table 3 Sensitivity analysis with
respect to the system parameters

Parameter Value t∗2 T ∗ p∗
0 J∗

θ0 0.050 13.2675 41.0361 5.8964 1368.1302

0.055 13.5512 42.3869 5.7613 1328.7789

0.060 13.8254 43.8142 5.6186 1287.6712

0.065 14.0874 45.3206 5.4679 1244.7519

0.070 14.3345 46.9082 5.3092 1199.9742

γ 4.00 16.5282 50.1815 4.9819 1047.5161

4.50 15.0521 46.6955 5.3304 1178.6641

5.00 13.8254 43.8142 5.6186 1287.6712

5.50 12.7873 41.3838 5.8616 1380.0537

6.00 11.8954 39.2998 6.0700 1459.5913

h 0.10 16.8669 70.1028 6.4949 1643.3823

0.15 15.0536 52.9265 6.0305 1454.1234

0.20 13.8254 43.8142 5.6186 1287.6712

0.25 12.9130 38.0374 5.2453 1137.5391

0.30 12.1949 33.9875 4.9019 999.7635

c 1.00 18.4781 42.8703 5.7130 1335.4545

1.50 15.8188 43.3499 5.6650 1309.8432

2.00 13.8254 43.8142 5.6186 1287.6712

2.50 12.2249 44.2662 5.5734 1268.1725

3.00 10.8864 44.7078 5.5292 1250.8663

profit J ∗ increase with an increase in γ . This feature is reflected in Fig. 2 and Table 3.
This result means that with an increase in the value of γ , the demand rate increases at
the beginning, then the retailer will raise the corresponding initial price. Since the price
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is increasing gradually, a higher price will drop the demand rate more quickly. Hence,
the demand rate begins decreasing from some time point. Moreover, a higher γ meaning
a greater demand rate leads to a shorter investment time. The demand rate on the whole
is increasing as γ increases, which leads to a shorter sales cycle. Note that the average
price also increases, so the total profit increases.

(3) For fixed values of θ0, γ and c, it can be observed from Fig. 3 and Table 3 that as the
holding cost per unit h increases, the optimal demand rate D∗ first increases and then
decreases from a certain time point, and the optimal investment time t∗2 , sales cycle T ∗,
initial price p∗

0 and total profit J ∗ decrease. It is reasonable that when facing a higher
holding cost per unit, the retailer will adopt a lower initial price to promote the demand
and reduce inventory level more quickly in order to avoid incurring more holding costs.
However, higher holding cost per unit will make the retailer increase the retail price more
quickly, so the demand rate decreases from a certain time point. Overall, the demand
rate is increasing, which leads to a shorter sales cycle. The higher the holding cost per
unit is, the lower total profit is.

(4) Table 3 shows that with an increase in the value of c, the optimal sales cycle T ∗ increases
while the optimal investment time t∗2 , initial price p∗

0 and total profit J ∗ decrease. The
corresponding managerial insight is that as the investment cost per unit increases, the
retailer tends to moderately shorten the investment time and reduce the initial price.
Moreover, a higher investment cost leads to a longer sales cycle and a lower total profit.
Figure 4 indicates that the impact of the unit investment cost c on the optimal demand
D∗ is similar to that of the initial deteriorating coefficient.

6 Conclusions

In most of inventory models in the literature, the inventory deterioration of perishable foods
has been extensively studied, while the quality degradation has received less attention. In
this paper, taking the joint dynamic pricing and investment strategy into consideration, we
formulate an inventory model for perishable foods, in which the demand depends on the
price and quality that decays continuously. The analytic results show that whether the retailer
should invest and how long the investment time should be adopted have a significant influence
on the total profit. At the same time, we also find that the quality degradation leads apparent
changes to the demand.

The major feature of this research is simultaneously determining the dynamic pricing
strategy and investment strategy in reducing the deterioration rate of the quality for perishable
foods, and considering the quality as a state variable and an important influential factor
on the demand. A potential extension of this paper is to consider different function forms
regarding the investment rate and deterioration coefficient. Future research can also consider
competitions among several retailers.
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