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Abstract This research considers a flexible flowshop sequence-dependent group scheduling
problem with minimization of total completion time. A mixed integer linear mathematical
model for the research problem is developed. Since the research problem is shown to be
strongly NP-hard, a metaheuristic algorithm based on memetic algorithm (MA) is proposed. A
lower bounding method based on the Branch and Price algorithm is also proposed to evaluate
the quality of the MA. In order to evaluate the performance of the proposed algorithms,
random test problems, ranging in size from small, medium, to large are generated and solved
by the MA and the lower bounding method. The results show that the average percentage
gap of the MA is 6.03 % compared to the result of the lower bounding method for randomly
generated test problems.

Keywords Flexible flowshop · Group scheduling · Sequence-dependent setup time ·
Branch and price algorithm · lower bound · memetic algorithm

1 Introduction

Flexible fowshops are becoming increasingly popular in industry, primarily due to large
workload requirements imposed by jobs on machines representing one or more stages of a
flowshop scheduling problem (Logendran et al. 2005). In a flexible flowshop environment,
there are stages in series with a number of identical parallel machines at each stage. All jobs
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have to pass through all stages. At each stage, each job should be processed by only one
machine.

Usually, the jobs assigned to a manufacturing cell are set to different groups based on
their similarities such as similar shape or required setups on machines in order to improve the
efficiency. This subject is called group scheduling (GS). GS improve the production efficiency
by a reduction in setup time, tooling needs, and work-in-process inventories. Usually, a setup
needed on a machine to transfer from one job to another job within a group is negligible.
However, it is required to consider a setup time on each machine to transfer from processing
one job of a group to a job of another group. Sometimes this setup time is dependent upon the
previously processed group on the machine. In this case the problem is called the sequence-
dependent group scheduling problem.

Schaller et al. (2000) consider minimization of makespan as the criterion, in the sequence-
dependent permutation flowshop group scheduling problem, i.e., Fm| f mls, shgi , prmu|Cmax

based on updated scheduling notations by Pinedo (2012) for the first time. They propose sev-
eral heuristic algorithms as well as a lower bounding method for the research problem. França
et al. (2005) develop two metaheuristics based on genetic algorithms (GA) and memetic
algorithms (MA) to solve the same problem proposed by Schaller et al. (2000). They show
that the MA has a superior performance than the GA as well as the heuristics proposed by
Schaller et al. (2000). Logendran et al. (2006b) propose metaheuristics algorithms based on
tabu search (TS) for the F2| f mls, shgi , prmu|Cmax problem. They also develop a lower
bounding method based on the mathematical model of the research problem to evaluate the
performance of the TS algorithms. Salmasi et al. (2011) develop a metaheuristic algorithm
based on ant colony optimization (ACO) and a lower bounding method based on the mathe-
matical model of the problem for the Fm| f mls, shgi , prmu|Cmax problem. They show that
the ACO has a better performance than the other available metaheuristics in the literature
for the proposed research problem. Ravetti et al. (2012) propose and analyze parallel hybrid
heuristics for permutation flowshop problem. The Fm| f mls, shgi , prmu| ∑ C j problem is
investigated by Salmasi et al. (2010) for the first time. They develop a mathematical model
and several metaheuristics based on TS and ACO for the proposed research problem. They
show that their proposed ACO algorithm has a superior performance than the TS. Further-
more, they develop a lower bounding method based on the branch and price (B&P) algo-
rithm. Hajinejad et al. (2011) propose a particle swarm optimization (PSO) algorithm for the
Fm| f mls, shgi , prmu| ∑ C j problem and show that their PSO has a better performance than
the ACO algorithm proposed by Salmasi et al. (2010). Naderi and Salmasi (2012) develop
two mathematical models for the same problem. They show that one of the mathematical
models is so effective that even medium size instances (problems up to 60 jobs in all groups)
are solved to optimality in a reasonable time. They also propose a hybrid metaheuristic based
on genetic and simulated annealing. They show that their proposed algorithm has a superior
performance than the ACO proposed by Salmasi et al. (2010).

Most of prior research are performed on the flowshop group scheduling problem and there
are only a few research that consider flexible flowshop environment. Logendran et al. (2005)
consider the group scheduling flexible flowshop for the first time. In their research, three con-
structive heuristic algorithms are developed for the F Fm| f mls|Cmax problem. Logendran
et al. (2006a) develop a TS algorithm for the F Fm| f mls, shgi |Cmax problem. For analyzing
both the makespan value and computation time, a detailed statistical experiment is performed.
Paternina-Arboleda et al. (2008) consider the problem of makespan minimization on a flex-
ible flowshop and propose a heuristic algorithm based on the identification and exploitation
of the bottleneck stage. Zandieh et al. (2009) develop two metaheuristic algorithms based on
simulated annealing and GA for the F Fm| f mls, shgi |Cmax problem. Salmasi et al. (2011)
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propose another TS algorithm for the same problem and show that their proposed algorithm
has a superior performance than the proposed algorithm by Logendran et al. (2006a). They
also propose a mathematical model for the proposed research problem for the first time.
Keshavarz and Salmasi (2013) propose another mathematical model as well as a metaheuris-
tic algorithm based on MA for the F Fm| f mls, shgi |Cmax problem. They show that both their
proposed mathematical model and metaheuristic algorithm have better performance than the
ones proposed by Salmasi et al. (2011). They also proposed a lower bounding mechanism
for the proposed research problem inspired from Salmasi et al. (2011).

All previous research for the F Fm| f mls, shgi |γ problem consider minimization
of makespan as the criterion. To the best of our knowledge, in this research the
F Fm| f mls, shgi | ∑ C j problem is considered for the first time. A mixed integer linear math-
ematical model and a metaheuristic algorithm based on MA are proposed for the research
problem. Also a lower bounding method based on the B&P algorithm is proposed to evaluate
the quality of the proposed MA.

The rest of the paper is organized as follows: The characteristics of the problem are
described in Sect. 2. A mathematical model for the research problem is proposed in Sect. 3.
The MA for obtaining approximate solutions to the problem is explained in Sect. 4. The
Lower bounding method is described in Sect. 5. Results of computational experiments to
evaluate the performance of the MA and the lower bounding method are reported in Sect. 6.
Finally, the results are discussed in Sect. 7 with providing directions for future research.

2 Problem descriptions

Consider a flexible flowshop environment with m stages. Assume that N groups of jobs
should be processed within these stages. Each stage (say stage i) has nmi identical parallel
machines. It is assumed that at least one stage has more than one identical machine in
parallel. Each group (say group g) consists of ng jobs. The goal is to find the best sequence
of processing the groups as well as the jobs belonging to each group in order to minimize
the total completion time. Based on Pinedo (2012) the flexible flowshop sequence-dependent
group scheduling problem (FFSDGSP) with minimization of total completion time can be
noted as F Fm| f mls, shgi | ∑ C j : Flexible flowshop with m stages (F Fm); group (family)
scheduling problem (fmls); sequence-dependent setups (shgi ); and total completion time
minimization (

∑
C j ).

The setups are assumed to be anticipatory. In other words, the setup on a machine at each
stage to process a group can be started before any job belonging to that group physically
arrives at that stage. The group scheduling assumptions are valid in this problem. In other
words, if processing of a job in a group starts on a machine, all jobs within that group should
be processed before switching the machine to process the jobs of another group.

3 The mathematical model

A binary mixed integer linear programming formulation is developed for the research prob-
lem. In this model, it is assumed that a dummy group, say group 0, is set as the first group
on each machine. This assumption is used to calculate the required setup time for the first
group on each machine at each stage. It is also assumed that the completion time of this
dummy group is equal to 0 at all stages. The notations, parameters, decision variables, and
the mathematical model are as follows:
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Parameters and notations:

N Number of groups
g Index used for representing groups g = 1, . . . , N
m Number of stages
i Index used for representing stages i = 1, . . . , m
nmi Number of parallel machines at stage i i = 1, . . . , m
ng Number of jobs in group g g = 1, . . . , N
pgji Process time of job j of group g at stage i g = 1, . . . , N ; j =

1, . . . , ng; i = 1, . . . , m
shgi Setup time for processing group g after group h on one of the machines of stage

i h = 1, . . . , N ; g = 1, . . . , N ; g �= h; i = 1, . . . , m
s0gi Setup time for processing group g as the first group on any machine of stage i

g = 1, . . . , N ; i = 1, . . . , m
M A large number

Decision variables:

Xhgi =
⎧
⎨

⎩

1 If group g is processed immediately after group h on one of the
machines of stage i

0 Otherwise

Ygj1 j2i =
{

1 If in group g job j2is processed after job j1at stage i
0 Otherwise

Cgji Completion time of job j of group g at stage i
STgi Starting time of processing the jobs of group g at stage i
FTgi Completion time of processing the jobs of group g at stage i

The model:

min
N∑

g=1

ng∑

j=1

Cgjm (1)

N∑

h=0
h �=g

Xhgi = 1 g = 1, ..., N ; i = 1, ..., m (2)

N∑

g=1
g �=h

Xhgi ≤ 1 h = 1, ..., N ; i = 1, ..., m (3)

Xhgi + Xghi ≤ 1 h = 1, ..., N ; g = 2, ..., N ; g > h; i = 1, ..., m (4)

N∑

g=1

X0gi ≤ nmi i = 1, ..., m (5)

STgi ≥ FThi + shgi − M(1 − Xhgi ) h = 0, ..., N ; g = 1, . . . , N ; g �= h; i = 1, ..., m

(6)

Cgji ≥ STgi + pgji g = 1, ..., N ; j = 1, . . . , ng; i = 1, . . . , m; pgji �= 0 (7)
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FTgi ≥ Cgji g = 1, .., N ; j = 1, . . . , ng; i = 1, . . . , m; pgji �= 0 (8)

Cg j2i ≥ Cgj1i + pgj2i − M(1 − Ygj1 j2i )

g = 1, ..., N ; j1 = 1, . . . , ng; j2 = 2, . . . , ng; j2 > j1; i = 1, . . . , m; pgj2i �= 0 (9)

Cgj1i ≥ Cgj2i + pgj1i − MYgj1 j2i g = 1, ..., N ; j1 = 1, . . . , ng; j2 = 2, . . . , ng;
j2 > j1; i = 1, . . . , m; pgj1i �= 0 (10)

Cgji ≥ Cgj(i−1) + pgji g = 1, ..., N ; j = 1, . . . , ng; i = 2, . . . , m (11)

Cgji , STgi , FTgi ≥ 0

Xhgi , Ygj1 j2i ∈ {0, 1}
The objective function is minimization of total completion time as presented by Eq. (1).
Constraint set (2) ensures that each group has exactly one preceding group at each stage. Each
group has at most one successor group at each stage. Constraint set (3) is incorporated into
the model for this reason. Each two groups such as groups h and g may have three different
positions compared to each other at any stage such as stage i : (1) group h is processed
immediately before group g (2) group h is processed immediately after group g (3) these two
groups are not processed exactly after each other (these two groups are processed either on
different machines or on the same machine but not immediately after each other). Constraint
set (4) is incorporated into the model for this reason. Constraint set (5) is incorporated into
the model to ensure that nmi machines are scheduled at stage i . At each stage such as stage i ,
nmi groups can be scheduled after the dummy group and each of these groups are assigned
to one of the parallel machines at that stage. The start time of processing each group at each
stage is greater than or equal to the completion time of its immediate predecessor group plus
the required setup time of that group. Constraint set (6) is incorporated into the model for
this reason. Constraint set (7) is incorporated into the model to make sure that the completion
time of a job at a stage is greater than the start time of processing its group, plus its processing
time at that stage. The completion time of each group is greater than the completion times
of its jobs. Constraint set (8) is incorporated into the model for this reason. The difference
between the completion times of two jobs on a machine at each stage should be greater than
the processing time of the job is processed later. Constraint sets (9) and (10) are incorporated
into the model in order to support this fact. Constraint set (11) ensures that the completion
time of each job at each stage is greater than or equal to its completion time at the previous
stage plus its processing time at this stage.

The classical 1|shg| ∑ C j and F2|| ∑ C j problems are NP-hard (Pinedo 2012). Flex-
ible flowshop is a generalization of these problems, so it can be concluded that the
F Fm| f mls, shgi | ∑ C j problem is also NP-hard. Thus, metaheuristic algorithms are
required to solve large size problems.

4 Metaheuristic–memetic algorithm

Since the research problem has been shown to be NP-hard, six metaheuristic algorithms based
on MA are developed to heuristically solve the problem. MA is an evolutionary algorithm
introduced by Moscato (1989) as a hybrid GA combined with an individual learning procedure
for local refinement. Previous research show that MA has a good performance in scheduling
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and timetabling problems (Hart and Krasnogor 2005; França et al. 2005; Keshavarz and
Salmasi 2013). Keshavarz and Salmasi (2013) propose a very efficient MA algorithm for the
F Fm| f mls, shgi |Cmaxproblem. Motivated from this, we applied the same algorithm to solve
the proposed research problem by several modifications in solution representation, calculating
the fitness of a solution, crossover operator, and local search procedure. Other features of
the applied MA are the same as the proposed MA by Keshavarz and Salmasi (2013). The
characteristics of the proposed algorithm are discussed in the following subsections.

4.1 Solution representation

Generally, solutions are represented by a string of digits called chromosome. Different steps
of the algorithm such as crossover and mutation are applied on chromosomes.

The algorithm should determine the sequence of groups as well as jobs within each group
on machines at each stage. Any sequence of groups followed by sequence of jobs within each
group can be considered as a solution. Each permutation of the digits 1 to N represents a
priority list for assigning groups to machines at every stage. Similarly, every permutation of
the digits 1 to ng represents the sequence of jobs that belong to the gth group. So, solution
representation for each stage can be presented as a string such as [G1, G2,…, G N | J11, J12,…,
J1n1 | … | JN1, JN2, …, JNnN ]. The first part of this chromosome represents the priority list
of groups. The other parts represent the sequence of jobs within each group sequentially. In
this way, chromosomes are divided into N +1 independent parts. To reduce the search space
of the MA, it is assumed that the sequence of jobs within groups does not change through
successive stages. The procedure of assigning groups and jobs to machines at each stage is
discussed in Sect. 4.10.

4.2 Calculating the total completion time of a chromosome

Assigning groups to the first available machine is not an efficient sequencing rule for the
proposed research problem since it does not consider the effect of sequence-dependent setup
time between groups. In other words, keeping some machines idle while a group is waiting
for processing may result in a better schedule. Hence, the optimal schedule may belong to a
non-delay schedule (A feasible schedule is called non-delay if no machine is kept idle while
an operation is waiting for processing).

For calculating the fitness of a chromosome, which is the total completion time value of
a chromosome, the groups are assigned to machines at each stage based on the priority list
of groups in that chromosome. By considering the setup time that is needed for processing
a group on a machine (based on the last processed group on that machine), the group is
assigned to a machine with the earliest possible start time. After assigning a group to a
machine, the completion time of its jobs are computed based on a job sequence of that group.
After computing the completion time of jobs at all stages, the sum of completion time of jobs
at the last stage is equal to the total completion time.

As an example, consider G1, G2,…, G N as the priority list of groups and let nm1 = 3.
First, group G1 is assigned to the first machine of stage 1. Then, the completion time of its
jobs are calculated based on the job sequence of this group. Assume C1 as the completion
time of group G1 at stage 1 (C1 is equal to the completion time of the last job of group
G1). Then, group G2 is assigned to the second machine of stage 1, if s0G1 ≤ C1 + sG1G2 .
Otherwise, it is assigned to the first machine and will be processed after group G1. Assume
that group G2 is assigned to the second machine and its completion time at stage 1 is C2. If
min{s0G3 , C1 + sG1G3 , C2 + sG2G3} = s0G3 , then group G3 is assigned to the third machine.
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If min{s0G3 , C1 + sG1G3 , C2 + sG2G3} = C1 + sG1G3 , group G3 is assigned to the first
machine and otherwise if min{s0G3 , C1 + sG1G3 , C2 + sG2G3} = C2 + sG2G3 , group G3 is
assigned to the second machine. Assignment of other groups to the machines is done in the
same way.

4.3 Crossover operator

Three different crossover operators, namely “Order Crossover” (OX), “Similar Job Order
Crossover” (SJOX), and “Partially Mapped Crossover” (PMX) are employed in this research
problem. OX crossover is applied by Keshavarz and Salmasi (2013). OX Crossover deter-
mines the piece of the first parent by generating two random numbers to copy over to the
offspring. The rest of the offspring is completed according to order of alleles in the sec-
ond parent. SJOX and PMX crossovers are proposed by Ruiz et al. (2003) and Goldberg
and Lingle (1985), respectively. SJOX crossover examines each position of the parents and
determines identical alleles at the same positions to copy over to both offspring. Therefore,
each offspring directly fills up all alleles from one of the parents up to a randomly chosen
cut point. PMX crossover partitions each parent two substrings, and exchanges the two sub-
strings to produce proto-offspring. A mapping relationship based on the selected substrings
is determined, and proto-offspring is legalized.

4.4 Local search procedure

Two local search procedures as (1) Swap and the Insertion Moves (SIM) and (2) Path Relink-
ing (PR) are considered as the local search procedures. Keshavarz and Salmasi (2013) pro-
pose MA based on SIM local search. In swap moves, the position of two alleles are changed,
whereas in insertion moves one allele is removed from its position and inserted in another one.
PR is a search technique originally presented by Glover and Laguna (1997) where the goal
is to explore the search space or “path” between a given set (usually two) of good solutions.
The steps of the proposed MA are presented as a flowchart in Fig. 2 in Appendix 1.

5 Lower bounding method: the branch and price algorithm

The B&P algorithm has been known as an efficient method for solving integer linear pro-
gramming problems with huge number of variables. The details of the B&P algorithm can
be found in Barnhart et al. (1998), Wilhelm (2001), and Wilhelm et al. (2003). Salmasi et al.
(2010) and Gelogullari and Logendran (2010) used B&P algorithm to find a lower bound for
the flowshop group scheduling problem.

In this research, we propose a B&P algorithm for finding the lower bound of the research
problem. The reformulated mathematical model, the column generation approach, and the
details of the proposed B&P algorithm are discussed in the following sections.

5.1 Dantzig–Wolf decomposition model

A decomposition formulation for FFSDGSP by reformulating it as a set-partitioning master
problem (MP) by using Dantzig–Wolfe decomposition is proposed. The following parameters
and decision variables beside the defined ones in Sect. 3 are required to present this model:
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Parameters:

Bi Set of all feasible schedules at stage i i = 1, . . . , m
Ki Number of all feasible schedules at stage i i = 1, . . . , m
bk

i The kth feasible schedule at stage i i = 1, . . . , m; k = 1, . . . Ki

Ck
gji Completion time of job j of group g at stage i in schedule bk

i g = 1, . . . , N ; j =
1, . . . , ng; i = 1, . . . , m

Decision variables:

λk
i =

{
1 If schedule bk

i ∈ B is selected at stage i
0 Otherwise

i = 1, . . . , m; k = 1, . . . Ki

Each column corresponds to a feasible schedule of groups and jobs at a stage.The set of all
feasible schedules at stage i is denoted by Bi . Each of these schedules bk

i , k = 1, . . . , Ki ,

where Ki = |Bi |, is defined by a set of completion times
{

Ck
gji

}
. MP is an integer pro-

gramming model with a huge number of binary variables. Since there are a huge number of
feasible schedules at each stage, it is not possible to include them all in the model. Therefore,
column generation approach is used to solve LP relaxation of MP by adding new schedules
with negative reduced costs to the model as needed. The linear programming master problem,
which includes only a subset of all possible schedules, is called the restricted linear master
problem (RLMP) and can be written as below:

RLMP Model:

min Z =
Km∑

k=1

N∑

g=1

ng∑

j=1

λk
mCk

gjm (12)

s.t.

Ki∑

k=1

λk
i Ck

g ji −
K(i−1)∑

k=1

λk
(i−1)C

k
gj(i−1) ≥ pgji

i = 2, . . . , m;
g = 1, . . . , N ;
j = 1, . . . , ng

(
ωg ji

)
(13)

Ki∑

k=1

λk
i = 1 i = 1, . . . , m (αi ) (14)

λk
i ≥ 0

i = 1, . . . , m;
k = 1, . . . , Ki

(15)

The objective is to minimize the total completion time as presented by equation (12). Con-
straint set (13) ensures that the completion time of a job at a stage (say stage i) is greater
than or equal to the completion time of the job at the preceding stage (stage i − 1) plus the
process time of the job at that stage. This constraint set deals with the completion time of jobs
at more than one stage. Thus, this constraint set is considered as the linking (complicating)
constraint in the model. Constraint set (14) is the convexity constraint and ensure that only
one schedule is selected at each stage. Variables λk

i are originally binary that are relaxed to
continuous decision variables in the RLMP.

ωg ji and αi denote the dual variables corresponding to constraint sets (13) and (14),
respectively. The dual problem of RLMP is presented to facilitate the presentation of the
sub-problems. Sub-problems are used to identify if there is any column to add to RLMP to
improve the objective function value. The dual of RLMP is generated as the following:

The Dual of RLMP Model:

max Z D =
m∑

i=2

N∑

g=1

ng∑

j=1

pgjiωg ji +
m∑

i=1

αi (16)
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s.t.

−
N∑

g=1

ng∑

j=1

ωg j2Ck
gj1 + α1 ≤ 0 k = 1, . . . K1 (17)

N∑

g=1

ng∑

j=1

ωg ji C
k
g ji −

N∑

g=1

ng∑

j=1

ωg j (i+1)C
k
gji + αi ≤ 0 i = 2, . . . , m − 1; k = 1, . . . , Ki

(18)
N∑

g=1

ng∑

j=1

(ωg jm − 1)Ck
gjm + αm ≤ 0 k = 1, . . . , Km (19)

ωg ji ≥ 0 i = 2, . . . , m; g = 1, . . . , N ; j = 1, . . . , ng (20)

αi Unrestricted i = 1, . . . , m (21)

Define ωg j1 = 0 and ωg j(m+1) = 1 for g = 1, . . . , N and j = 1, . . . , ng . Then, in order
to find the schedule with the smallest reduced cost at the i th stage, it is needed to solve the
following sub-problem (SPi):

SPi Model (i = 1, . . . , m):

min Z S Pi =
N∑

g=1

ng∑

j=1

(
ωg j (i+1) − ωg ji

)
Cgji − αi (22)

s.t.
capacity constraint sets for nmi parallel machines at stage i (i.e., constraints (2)–(10) of

the original model for a specific i)
The last terms in (22) i.e., αi , is constant. Thus, solving each sub-problem is equiv-

alent to solving a parallel machine sequence-dependent group scheduling problem with
total weighted completion time as objective function i.e., Pm| f mls, shgi | ∑w j C j . Kan
(1976) shows that 1| f mls, shgi | ∑ w j C j is strongly NP-hard. So it can be concluded that
Pm| f mls, shgi | ∑w j C j is also strongly NP-hard.

Thus, all sub-problems have similar structure and are strongly NP-hard. If the optimal
values of at least one of the sub-problems are negative, there are column(s) that can be added
to the master problem and improve the objective function value. The process of solving sub-
problems and adding new columns to RLMP continues until all sub-problems have positive
optimal objective function values.

In SP2 through m, the objective function coefficient of Cgji i.e.,
(
ωg j (i+1) − ωg ji

)
can

be negative. In this case, the sub-problem would be unbounded. This causes the column
generation converges to optimal solution very slowly. In order to resolve this issue, a constraint
set is incorporated into the dual of the RLMP model to enforce all coefficients to be positive.
The following constraints are incorporated into the dual of RLMP:

(ωg j (i+1) − ωg ji ) ≥ 0 i = 2, . . . , m; g = 1, . . . , N ; j = 1, . . . , ng (23)

To achieve this purpose, artificial variables Rgji are added to the RLMP. Then, the RLMP
model with artificial variables (RLMP-A) would be as follows:

RLMP-A Model:

min Z =
Km∑

k=1

N∑

g=1

ng∑

j=1

λk
mCk

gjm +
N∑

g=1

ng∑

j=1

Rgjm (24)
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s.t.

K2∑

k=1

λk
2Ck

gj2 −
K1∑

k=1

λk
1Ck

gj1 + Rgj2 ≥ pgj2 g = 1, . . . , N ; j = 1, . . . , ng (25)

Ki∑

k=1

λk
i Ck

g ji −
K(i−1)∑

k=1

λk
(i−1)C

k
gj(i−1) + Rgji − Rgj (i−1) ≥ pgji

i = 3, . . . , m; g = 1, . . . , N ; j = 1, . . . , ng (26)
Ki∑

k=1

λk
i = 1 i = 1, . . . , m (27)

λk
i ≥ 0 i = 1, . . . , m; k = 1, . . . , Ki (28)

Rgji ≥ 0 i = 2, . . . , m; g = 1, . . . , N ; j = 1, . . . , ng (29)

Since a few constraints are incorporated into the dual model, the primal model provides a
lower bound for the LP relaxation of MP.

5.2 Solving sub-problems

During column generation approach, sub-problems should be solved so many times. Solving
sub-problems using integer programming model has shown a very poor performance in
Salmasi et al. (2010) for a similar problem. For this reason, in this research two efficient
algorithms are developed for solving the sub-problems heuristically and optimally.

It is not necessary that the sub-problems be solved optimally during the intermediate iter-
ations of column generation approach and finding an improving column is adequate. Thus, a
metaheuristic is used to solve sub-problems during early iterations. When the metaheuristic is
unable to find a suitable column for all sub-problems, the sub-problems are solved optimally.
At the end of the column generation approach, all sub-problems must be solved optimally
to make sure that the optimal solution of the node is found. In this research, MA is used for
solving sub-problems heuristically. After solving the sub-problems using the metaheuristic,
if at least one of the sub-problems have a negative objective function, new columns are added
to the RLMP-A. By solving updated RLMP-A, new dual values are obtained to update sub-
problem objective functions. Adding new columns by solving sub-problems heuristically is
continued until all sub-problems are unable to provide a column that improves the objective
function value of RLMP-A.

To ensure the optimality of RLMP-A solution, the sub-problems should be solved by an
optimal algorithm. A branch and bound (B&B) algorithm is developed to solve the sub-
problems optimally. If the optimal solution of one of the sub-problems becomes negative,
the new generated column is added to RLMP-A. By solving updated RLMP-A, we obtain
new dual values and update sub-problems objective functions. Again the MA is used for
solving sub-problems. Finally, the column generation approach stops when the MA cannot
find new columns and the optimal solution of all sub-problems (based on the B&B algorithm)
are positive. In this case the optimality of the LP relaxation of master problem is proved.
After solving RLMP-A, if the values of λk

i do not satisfy the integrality condition, branching
is occurring. The flowchart of column generation procedure is presented in Appendix 1 as
Fig. 3.
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5.2.1 Job sequence in sub-problem optimal solution

For each assignment of groups to parallel machines at a stage, the optimal sequence of jobs
within each group can be found by using a sorting rule. For a group that assigned to a machine
finding its optimal job sequence is equivalent to finding the optimal solution of a 1|| ∑w j C j

problem (Pinedo 2012). So in each sub-problem, jobs should be sorted based on the weighted
shortest processing time (WSPT) rule. The WSPT rule for each SPi (i = 1 through m) can
be defined as follows:

WSPT rule for SPi ( i = 1 through m):
Sort jobs within each group in decrease order based on the value of (ωg j (i+1) − ωg ji )/pgji

This rule is used in both MA and B&B algorithms for finding the optimal job sequences
within each group.

5.2.2 The Branch and Bound algorithm for solving sub-problems

All sub-problems are Pm| f mls, shgi | ∑ w j C j and the job sequence within each group can
be determined using the WSPT rule. In order to find the optimal sequence of groups, each
group is considered as an aggregated job. The process time of this aggregated job is equal to
the sum of the process times of the jobs belonging to that group. Assume j(1), j(2), . . . , j(ng)

is the optimal job sequence of group g, g = 1, . . . , N . Assume Ctg as the completion time
of group g. The completion time of each job can be represented as:

Cgj(r)i = Ctg −
ng∑

t=r+1

pgj(t)i r = 1, . . . , ng (30)

The objective function of the SPi, i = 1, . . . , m can be written as the following:

Z S Pi =
N∑

g=1

ng∑

j=1

(
ωg j (i+1) − ωg ji

)
Cgji − αi =

N∑

g=1

ng∑

r=1

(
ωg j(r)(i+1) − ωg j(r)i

)
Cgj(r)i − αi

=
N∑

g=1

ng∑

r=1

(
ωg j(r)(i+1) − ωg j(r)i

)
(

Ctg −
ng∑

t=r+1

pgj(t)i

)

− αi

=
N∑

g=1

ng∑

r=1

(
ωg j(r)(i+1) − ωg j(r)i

)
Ctg −

N∑

g=1

ng∑

r=1

ng∑

t=r+1

(
ωg j(r)(i+1) − ωg j(r)i

)
pgj(t)i − αi

=
N∑

g=1

ng∑

r=1

(
ωg j(r)(i+1) − ωg j(r)i

)
Ctg − constanti

=
N∑

g=1

⎛

⎝
ng∑

j=1

(
ωg j(i+1) − ωg ji

)
⎞

⎠ Ctg − constanti (31)

Thus, the SP1 through m can be considered as Pm|shg| ∑w j C j problems with N aggregated

jobs and the weight of each aggregated job g is
(∑ng

j=1

(
ωg j(i+1) − ωg ji

))
.

A B&B algorithm is developed to solve the Pm|shg| ∑w j C j problem to find the optimal
group sequence for every Pm| f mls, shgi | ∑ w j C j problem. The B&B algorithm can also
be used to get a valid lower bound for each sub-problem. Every B&B algorithm consists of
three main procedures: initialization, branching and bounding. The solution of MA is used as
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an initial upper bound for the B&B tree (initialization). Each node of the B&B tree consists
of a partial solution. Let S be the set of scheduled groups and S ′ be the complementary set
of S or the set of unscheduled groups. At each level of B&B tree, one of the unscheduled
groups is added to the scheduled groups set (Branching). It is clear that each parent node at
level l generates(N − l) new nodes at level (l + 1). At level 0 of B&B tree, S = ∅ and at
each node of level l = 1, . . . , N −2, S contains l groups. There are P (N , l) = N !/(N − l)!
nodes at level l. S is a priority list and scheduled groups are assigned to machines based on
this priority list. Each group is assigned to a machine with the earliest possible starting time
(See Sect. 4.10 for more details about assigning groups to machines).

At each node, the total weighted completion time of scheduled groups (S) and the lower
bound of total weighted completion time of unscheduled groups (S ′) are calculated (Bound-
ing). The summation of these two values provides the lower bound value associated with
that node. For S = {

g(1), g(2), . . . , g(l)
}
, the total weighted completion time of scheduled

groups (ZS) for each SPi (i = 1 through m) is represented as formula (35):

ZS =
l∑

t=1

⎛

⎝

ng(t)∑

j=1

(
ωg(t) j(i+1) − ωg(t) j i

)
⎞

⎠ Ctg(t) (32)

where Ctg(t) , t = 1, . . . , l is calculated based on the assignment of groups to nmi parallel
machines at stage i .

For calculating the lower bound of the total weighted completion time of unscheduled
groups(S ′), each unscheduled group such as group g is considered as a job with process time
equal to: ⎛

⎝min
h

{
shgi

} +
ng∑

j=1

pgji

⎞

⎠
/

nmi (33)

In other words, the minimum possible setup time for processing group g is added to the
processing time of this group and then the result is divided by the number of parallel machines.
Then, the unscheduled groups are assigned to a single machine with ready time equal to the
minimum ready time of parallel machines after processing the scheduled groups. Ready time
of each machine is the completion time of the last group that is processed on that machine.
Let r as the minimum ready time. With this assumption, the problem of finding the sequence
of unscheduled groups reduces to 1|| ∑ w j C j . The optimal sequence for 1|| ∑w j C j can be
found by using the WSPT rule. Based on the WSPT rule, for each SPi (i = 1 through m),
the unscheduled groups should be sorted in decrease order based on the value of

(∑ng

j=1

(
ωg j(i+1) − ωg ji

))
/

⎛

⎝

⎛

⎝min
h

{
shgi

} +
ng∑

j=1

pgji

⎞

⎠
/

nmi

⎞

⎠.

Assume that after using the WSPT rule, the sorted unscheduled groups are g(l+1), g(l+2), . . . ,

g(N ). Then, the completion time of unscheduled groups can be calculated using the following
formulas:

Ctg(l+1)
= r +

(

min
h

{
shg(l�+1)i

} +
∑ng(l+1)

j=1
pg

(l+1) j i

)/

nmi (34)

Ctg(t) = Ctg(t−1)
+

(

min
h

{
shg(t)i

} +
∑ng

j=1
pg

(t) j i

)/

nmi , t = �l + 2, . . . , N (35)
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In this case, the lower bound of total weighted completion time of unscheduled groups (ZS ′
)

for each sub-problem can be calculated based on formula (39):

ZS ′ =
N∑

t=�l+1

⎛

⎝

ng(t)∑

j=1

(
ωg(t) j(i+1) − ωg

(t) j i

)
⎞

⎠ Ctg(t) (36)

Then, the lower bound of each SPi (i = 1 through m) associated with each node can be
calculated by adding ZS , ZS ′

, and the constant value related to each sub-problem. These
values are represented as formula (40):

ZS + ZS ′ − constanti =
l∑

t=1

(
ng(t)∑

j=1

(
ωg

(t) j (i+1)
− ωg

(t) j i

)
)

Ctg(t) +
N∑

t=�l+1

×
(

ng(t)∑

j=1

(
ωg

(t) j (i+1)
− ωg

(t) j i

)
)

Ctg(t) −
N∑

g=1

ng∑

r=1

ng∑

t=r+1

(
ωg j(r)(i+1) − ωg j(r)i

)
pgj(t)i − αi

(37)
A node is fathomed if its lower bound be greater than or equal to the current upper bound or
be at the level N −2 of the B&B tree (in this level the sequence of all groups are determined).
Whenever the algorithm reaches to a node at level N − 2 if its objective function value is
lower than the current upper bound, the upper bound is updated. The best first search policy
is used for traversing B&B tree.

In order to explain how the B&B algorithmis implemented, an example for P2|shg| ∑w j

C j with four jobs is presentedin Appendix 2.

5.3 Branching method for branch and price algorithm

After solving the RLMP-A optimally, it is not guaranteed that the values of λk
i be integer

(0 or 1). In this case the branching is occurred in order to enhance the value of the lower
bound. Applying a standard B&B procedure to the RLMP-A with its existing columns will
not guarantee an optimal (or even feasible) solution (Barnhart et al. 1998). Barnhart et al.
(1994) and Desrosiers et al. (1995) suggest to branch on the decision variables of the original
problem. The decision variables related to the sequence of groups or Xhgi are selected for
branching in this research. If Xhgi is selected for branching,in one of the generated nodes in
the next level of B&P tree, group h is processed exactly before group g (on one of the parallel
machines at stage i) and in the other node, group g is not processed exactly after group h
(the two groups are processed on different machines or on the same machine but groupgis
not processed exactly after group h).

To find the best decision variable for branching, for each two groups h and g and each
stage i , a branching index is calculated. The index is equal to the sum of λk

i which in its
corresponding schedule, group h is processed exactly before group g. This index may vary
from 0 to 1. If this index is close to 0, then it means that in most schedules of stage i , group h
is not processed exactly before group g. If this index is close to 1, then it means that in most
schedules of stage i , group h is processed exactly before group g. So, the decision variable
with closer branching index to 0.5 is selected for branching.

5.4 Branch and price algorithm stopping criteria

The branching process is continued until all nodes provide an integer solution, be infeasible,
or are fathomed. Since this process requires a considerable amount of time, especially for
large size problems, a time limitation criterion is applied. The B&P algorithm terminates after
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15 minutes runtime. The B&P algorithm terminates when the algorithm solves the problem
or the time limitation reached. If the B&P algorithm solves the problem, it provides a lower
bound for the original problem. If in a problem, all nodes are not solved because of time
limitation, the lower bound of the original problem is the minimum value of the nodes which
are solved optimally, but their branches are not solved optimally yet. In other words the B&P
tree is traversed based on breadth first search order and the minimum value of the nodes
which are solved optimally, but their branches are not solved optimally is reported as the
lower bound for the original problem. A simple flowchart of B&P algorithm is presented in
Appendix 1 as Fig. 4.

6 Computational Results

Salmasi et al. (2010) generate a set of test problems for the Fm| f mls, shgi , prmu| ∑ C j

problem with two, three, and six-stage problems, separately. These test problems are general-
ized for this research problem. To use these test problems for the FFSDGSP, motivated from
Logendran et al. (2006a), the number of machines at each stage are considered randomly
between one to three machines. The specifications of the test problems are as follows:

• The number of groups is between two to 16 in three different categories: small (problems
with 2–5 groups), medium (problems with six to 10 groups), and large (problems with
11 to 16 groups).

• The number of jobs in each group is between two to 10.
• The ratio of setup times of processing groups on machines in consecutive stages is defined

by three levels. The setup time of processing a group at a stage can be less, equal, or
greater than the setup time of processing the group at the next stage.

These specifications are the ones used to generate a test problem. Then, each test problem is
solved by the three crossovers as an algorithm factor by applying one of the two local search
procedures. Based on this explanation, each experimental unit of the first three factors (which
generate a test problem) is split into six different parts to be solved by one of the combinations
of the crossovers and the local search procedures. Based on Salmasi and Logendran (2008),
the split plot design is the most appropriate model to compare the results. The model is a
mixed model since it includes fixed factors (groups, jobs, ratio of setup times, algorithms,
and local search procedures) as well as a random factor (problem instances). The model of
the experiment for a three stage problem can be represented as:

Yi jklmnr = μ + Gi + J j + R1k + R2l + Tt (i jkl) + αm + Ln+εi jklmnr (38)

where μ is the overall mean, Gi is the effect of group factor (i = 1, 2, 3), J j is the effect of
job factor ( j = 1, 2, 3), R1k is the ratio of set-up time of M1/M2 factor (k = 1, 2, 3), R2l is
the ratio of set-up time of M2/M3 factor (l = 1, 2, 3), Tt is the block factor (a random factor)
t=1, …, 162 (162 is the number of test problems), αm is the effect of algorithm factor (m =
1, 2, 3), Ln is the effect of local search procedures factor (n = 1, 2) and εi jklmnr is the error
term,

The goals of performing the experimental design are:

• Find the algorithm with the best performance.
• Identify if there is a statistically significant difference between the performances of local

search procedures.
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Table 1 The average of the objective function values for the test problems by using different local search
procedures

Local search procedures 2 Stage problems 3 Stage problems 6 Stage problems

SIM 11661.46 16467.85 39517.65

PR 11688.83 16489.05 39571.42

Table 2 The average of the
objective function values by
using different algorithms

Algorithms OX, SIM PMX, SIM SJOX, SIM

2-Stage problems 11658.35 11662.13 11663.93

3-Stage problems 16463.18 16469.58 16470.79

6-Stage problems 39517.56 39515.5 39519.91

Average 22546.36 22549.07 22551.54

The hypothesis tests to investigate for these goals are:

{
H0 : α1 = α2 = α3

H1 : if any of the α′s is different from the others{
H0 : L1 = L2

H1 : L1 �= L2

The Microsoft visual C++ 2008 is used to code the different versions of the MA. The proposed
B&P algorithm is also coded with visual C++ 2008 using ILOG CPLEX (version 12.1) concert
technology. The test problems are run on a laptop with 2.1 GHz CPU and 2 GB RAM. The
experimental design is coded with Statistical Analysis System, SAS, Release 9.1, to find the
best proposed MA. A significance level of 5 % is used in this experiment. Each problem is
solved for 30 s by each algorithm.

The results of the experiment are presented in Appendix 3 for two, three, and six stage
problems, separately. The results show that there is not a significant difference among the
algorithms (the p-values of A (Algorithm) are equal to 0.9431, 0.9728, and 0.9422 for two,
three, and six stage problems, separately). But there is a significant difference between the
local search procedures (The p-values of L (local search procedures) are less than 0.0001
for two, three, and six stage problems in Tables 15, 16 and 17). Thus, there is a significant
difference between using the local search procedures. The average of the objective function
values for the test problems by using the SIM and PR local search procedures are presented
in Table 1.

Since the SIM local search algorithm provides solutions with the lower average, it can
be considered as the better one. Since there is not any significant difference among the
performance of the algorithms, the average of the objective function values of the algorithms
by considering SIM as the local search algorithm procedure is calculated as presented in
Table 2.

In order to compare the performance of the algorithms based on the required time to reach
to the best solution in test problems, the time spent to find the best solution in the test problems
by using SIM as the local search algorithm procedure is reported in Table 3 and Fig.1. As
it is shown in Table 3, the average time of finding the best solution by OX crossover with
SIM local search is lower than the other ones. The details of this comparison are presented
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Table 3 The average time of
finding the best solution by using
different algorithms

Algorithms OX, SIM PMX, SIM SJOX, SIM

2-Stage problems 10.75 9.55 14.96

3-Stage problems 14.34 16.3 22.77

6-Stage problems 13.21 14.01 18.11
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Fig. 1 Runtime percentage histogram

Table 4 The average percentage
gap for the MA from the lower
bound

Problem Number of test problems Average percentage gap

2-Stage 54 5.16

3-Stage 162 5.53

6-Stage 54 8.91

Total 270 6.03

in Fig.1 by presenting the distribution of the time required to find the best solution in the 30
seconds time interval applied to solve each problem.

In order to evaluate the performance of the lower bounding method as well as the pro-
posed MA (MA with OX crossover and SIM local search), all test problems are solved by
these algorithms. The percentage gap of the MA is calculated based on this formula for test
problems:

(The MA solution − The lower bound solution)/(The lower bound solution)

The average percentage gap of the MA is presented in Table 4. The average percentage gap
for all test problems is 6.03 %. It shows that both upper and lower bounding methods are
efficient. The average percentage gap of the MA based on group size for two, three, and
six-stage problems, separately are presented in Tables 5, 6 and 7.

The distribution of percentage gap for two, three, and six-stage problems separately are
also presented in Tables 8, 9 and 10.

To speed up the column generation convergence, artificial variables are added to the
master problem. It restricts the dual space and lead to a lower bound for the LP relaxation.
The average percentage gap of the MA shows that the lower bounding method is efficient
and the effect of artificial variables is not considerable.
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Table 5 The average percentage
gap for 2-stage problems

Group size Number of test problems Average percentage gap

Small 18 3.46

Medium 18 6.26

Large 18 5.76

Total 54 5.16

Table 6 The average percentage
gap for 3-stage problems

Group size Number of test problems Average percentage gap

Small 54 4.78

Medium 54 5.73

Large 54 6.07

Total 162 5.53

Table 7 The average percentage
gap for 6-stage problems

Group size Number of test problems Average percentage gap

Small 18 6.82

Medium 18 10.95

Large 18 7.47

Total 54 8.91

Table 8 The distribution of percentage gap for 2-stage problems

Gap (%) [0–1] (1–5] (5–10] (10–15] (15–100]

Probability (%) 11.11 44.44 29.63 12.96 1.85

Cumulative Probability (%) 11.11 55.56 85.19 98.15 100.00

Table 9 The distribution of percentage gap for 3-stage problems

Gap (%) [0–1] (1–5] (5–10] (10–15] (15–100]

Probability (%) 9.88 41.98 31.49 14.20 2.47

Cumulative Probability (%) 9.88 51.85 83.33 97.53 100.00

Table 10 The distribution of percentage gap for 6-stage problems

Gap (%) [0–1] (1–5] (5–10] (10–15] (15–100]

Probability (%) 31.48 16.67 20.37 3.70 27.78

Cumulative Probability (%) 31.48 48.15 68.52 72.22 100.00
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Table 11 The comparison among the optimal solution, the memetic algorithm, and the lower bound for small
size problems

Problem No. solved
problems

Largest solved
problem

Average of
100(M A − Opt.)/Opt.

Average of
100(Opt. − L B)/Opt.

No. group No. job

2-Stage 9 5 16 0.00 2.46

3-Stage 22 5 17 0.00 4.54

6-Stage 7 4 21 0.06 2.05

Table 12 The comparison among the average percentage gap of B&P and CPLEX

Group size 2-stage 3-stage 6-stage

B&P
(15 min)

CPLEX
(60 min)

B&P
(15 min)

CPLEX
(60 min)

B&P
(15 min)

CPLEX
(60 min)

Small 3.69 11.27 5.95 20.67 10.03 2.37

Medium 6.45 19.28 7.08 47.09 15.90 62.27

Large 7.44 90.54 6.49 87.20 6.16 88.19

Total 5.94 36.95 6.55 47.73 10.71 45.79

The proposed mathematical model is used to solve small size problems optimally. The
number of small size problems that are solved optimally, the largest solved problem, the
average percentage error of the MA, and the average percentage error of the lower bounding
method using the B&P algorithm are presented in Table 11.

The quality of solutions provided by the proposed lower bound is compared with a
standard lower bound that is obtained by CPLEX. Totally 36 Random test problems (12
in each category of 2, 3 and 6-stage problems) are solved by CPLEX and the percent-
age gaps are reported after 1 hour. The average percentage gap of CPLEX is compared
with the average percentage gap of the proposed lower bounding method in Table 12. The
results show that the average percentage gap of the proposed B&P is significantly lower
than the lower bounds provided by the CPLEX and so the proposed method outperforms
CPLEX.

There is not any available research for the proposed research problem in the liter-
ature. Thus, the proposed methods cannot be compared with the result of any other
research. However, Salmasi et al. (2010) develop several upper bounding methods and a
lower bounding method based on the B&P algorithm for the Fm| f mls, shgi , prmu| ∑ C j

problem. Their problem is much easier than the research problem in this paper, since
the flexible flowshop problem is a generalization of the flowshop problem.Their algo-
rithms are run on a Power Edge 2650 with 2.4 GHz Xeon, and 4 GB RAM. They con-
sider 4 hours as their stopping criterion and only solved 43 out of 270 test problems.
The average percentage gap of their proposed algorithms (the ACO as the upper bound
and the B&P algorithm as the lower bound) for these 43 test problems is 14.76 %. How-
ever, all of these test problems are solved for the flexible flowshop problem using the
proposed methods in this research in 15 min time limit and the average percentage gap
6.03 % is reached. The superiority of the proposed algorithm in this research is mainly due
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to more efficient algorithms for solving sub-problems and the more balanced branching
rule.

7 Conclusions and suggestions for future research

In this research, a mathematical model, a metaheuristic algorithm and a lower bounding
method based on the B&P algorithm are proposed for the FFSDGSP. Some experiments
are performed based on test problems ranging in size from small, medium, to large for
two, three, and six-stage problems. The performance of the MA is compared with the result
of the lower bounding method. The average percentage gap of the MA is 6.03% for ran-
domly generated test problems. To reduce the search space and hence the run time of the
metaheuristic algorithm, it is assumed that the sequence of jobs within groups does not
change through successive stages in the MA. However, the results show this assumption can
speed up solving the problem by the algorithms without significant effect on the quality of
solution.

Recognizing the industrial relevance of FFSDGSP, further research can be performed by
considering other optimization criteria such as minimization of total tardiness and earliness.
Other exact, heuristic and lower bounding algorithms can be developed for the proposed
research problem.

Appendices

Appendix 1: Flow charts for the proposed algorithms

See Figs. 2, 3 and 4.
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Fig. 3 The flow chart of column generation procedure
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Fig. 4 The flow chart of Branch and Price algorithm

Appendix 2

Consider a P2|sgh | ∑w j C j problem with four jobs. The processing time, the weight of jobs,
and the sequence-dependent setup times between jobs are provided in Tables 13 and 14.

Table 13 The processing time
and the weight of jobs

Job ( j) 1 2 3 4

Process time (p j ) 10 15 12 20

weight (w j ) 1 2 5 3
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Table 14 The
sequence-dependent setup times
between jobs (si j )

Job (i) Job ( j)

1 2 3 4

0 10 14 7 5

1 – 18 25 22

2 19 – 2 8

3 12 7 – 8

4 24 8 12 –

The B&B tree is presented in Fig. 5. The Initial upper bound is U B = 311. This upper
bound is obtained by assigning J3 − J2 to machine 1 and J4 − J1 to machine 2.

At node 0 of B&B tree, S = ∅, S ′ = {1, 2, 3, 4} and r = 0. For calculating the lower
bound of this node, the process time of each job is calculated by using the following equations:

p′
1 =

(

min
h

{sh1} + p1

)/

nm = (s01 + p1)/2 = (10 + 10)/2 = 10

p′
2 =

(

min
h

{sh2} + p2

)/

nm = (s32 + p2)/2 = (7 + 15)/2 = 11

p′
3 =

(

min
h

{sh3} + p3

)/

nm = (s23 + p3)/2 = (2 + 12)/2 = 7

p′
4 =

(

min
h

{sh4} + p4

)/

nm = (s04 + p4)/2 = (5 + 20)/2 = 12.5

w1

p′
1

= 1

10
; w2

p′
2

= 2

11
; w3

p′
3

= 5

7
; w4

p′
4

= 3

12.5

Using the WSPT rule, the sequence of unscheduled jobs would be J3 − J4 − J2 − J1. So the
lower bound would be:

lb0 = 5 × 7 + 3 × (7 + 12.5) + 2 × (7 + 12.5 + 11) + 1

× (7 + 12.5 + 11 + 10) = 195

At node 1 of B&B tree, S = {1} , S ′ = {2, 3, 4}, and r = min {C1 = s01 + p1, 0} =
min {20, 0} = 0. Using the WSPT rule, the sequence of unscheduled jobs would be J3 −
J4 − J2and the lower bound would be:

lb1 = max {lb0, 1 × (C1) + 5 × (r + 7) + 3 × (r + 7 + 12.5)

+ 2 × (r + 7 + 12.5 + 11)} = 195

At node 2 of B&B tree, S = {2}, S ′ = {1, 3, 4}, and r = min {C2 = s02 + p2, 0} =
min {29, 0} = 0. Using the WSPT rule the sequence of unscheduled jobs would be J3−J4−J1

and the lower bound would be:

lb2 = max {lb0, 2 × (C2) + 5 × (r + 7) + 3 × (r + 7 + 12.5) + 1

× (r + 7 + 12.5 + 10)} = 195
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At node 3 of B&B tree, S = {3}, S ′ = {1, 2, 4}, and r = min {C3 = s03 + p3, 0} =
min {19, 0} = 0. Using the WSPT rule, the sequence of unscheduled jobs would be J4 −
J2 − J1and the lower bound would be:

lb3 = max {lb0, 5 × (C3) + 3 × (r + 12.5) + 2 × (r + 12.5 + 11) + 1

× (r + 12.5 + 11 + 10)} = 213

At node 4 of B&B tree, S = {4}, S ′ = {1, 2, 3}, and r = min {C4 = s04 + p4, 0} =
min {25, 0} = 0. Using the WSPT rule, the sequence of unscheduled jobs would be J3 −
J2 − J1and the lower bound would be:

lb4 =max {lb0, 3 × (C4)+5 × (r + 7)+2 × (r +7+11)+1 × (r +7+11+10)}=195

At node 5 of B&B tree, S = {3, 1}, S ′ = {2, 4}. First, J3 is assigned to machine 1 and
C3 = s03 + p3 = 19. Then, J1 is assigned to machine 2 (because s01 < C3 + s31) and
C1 = s01 + p1 = 20. So r = min {C3, C1} = 19. Using the WSPT rule, the sequence of
unscheduled jobs would be J4 − J2 and the lower bound would be:

lb5 = max {lb3, 5 × (C3) + 1 × (C1) + 3 × (r + 12.5) + 2 × (r + 12.5 + 11)} = 294.5

At node 6 of B&B tree, S = {3, 2}, S ′ = {1, 4}. First, J3 is assigned to machine 1 and
C3 = s03 + p3 = 19. Then J2 is assigned to machine 2 (because s02 < C3 + s32) and
C2 = s02 + p2 = 29. So r = min {C3, C2} = 19. Using the WSPT rule, the sequence of
unscheduled jobs would be J4 − J1 and the lower bound would be:

lb6 = max {lb3, 5 × (C3) + 2 × (C2) + 3 × (r + 12.5) + 1 × (r + 12.5 + 10)} = 289

At node 7 of B&B tree, S = {3, 4}, S ′ = {1, 2}. First, J3 is assigned to machine 1 and
C3 = s03 + p3 = 19. Then J4 is assigned to machine 2 (because s04 < C3 + s34) and
C4 = s04 + p4 = 25. So r = min {C3, C4} = 19. Using the WSPT rule, the sequence of
unscheduled jobs would be J2 − J1 and the lower bound would be:

lb7 = max {lb3, 5 × (C3) + 3 × (C4) + 2 × (r + 11) + 1 × (r + 11 + 10)} = 270

At node 8 of B&B tree, S = {3, 4, 1}, S ′ = {2}. First, J3 is assigned to machine 1 and
C3 = s03 + p3 = 19. Then, J4 is assigned to machine 2 (because s04 < C3 + s34) and
C4 = s04 + p4 = 25. Then, J1 is assigned to machine 1 (because C3 + s31 < C4 + s41) and
C1 = C3 + s31 + p1 = 41. J2 is assigned to machine 2 (because C4 + s42 < C1 + s12) and
C2 = C4 + s42 + p2 = 48. This node is at level 3, so the objective function of this node can
be calculated:

obj8 = 5 × 19 + 3 × 25 + 1 × 41 + 2 × 48 = 307

So the new upper bound would be U B = 307. This node is fathomed.
At node 9 of B&B tree, S = {3, 4, 2}, S ′ = {1}. First, J3 is assigned to machine 1 and

C3 = s03 + p3 = 19. Then, J4 is assigned to machine 2 (because s04 < C3 + s34) and
C4 = s04 + p4 = 25. Then, J2 is assigned to machine 1 (because C3 + s32 < C4 + s42) and
C2 = C3 + s32 + p2 = 41. J1 is assigned to machine 2 (because C4 + s41 < C2 + s21) and
C1 = C4 + s41 + p1 = 59. This node is at level 3, so this node is fathomed. The objective
function of this node can be calculated:

obj9 = 5 × 19 + 3 × 25 + 2 × 41 + 1 × 59 = 311

By traversing other nodes that are not fathomed, the optimal solution can be found.
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Table 15 ANOVA table for
two-stages

Type 3 tests of fixed effects for
two-stages

Num Effect Den DF DF F Value Pr>F

G 2 267 3.38E+06 <.0001

J 2 267 1025332 <.0001

R1 2 267 73664.2 <.0001

A 2 267 0.06 0.9431

L 1 267 16.95 <.0001

T(G*J*R1) 47 267 101549 <.0001

Table 16 ANOVA table for
three-stages. Type 3 tests of fixed
effects for three-stages

Num Effect Den DF DF F Value Pr>F

G 2 807 1.03E+07 <.0001

J 2 807 3016099 <.0001

R1 2 807 156115 <.0001

R2 2 807 316270 <.0001

T(G*J*R1*R2) 153 807 90127.2 <.0001

A 2 807 0.03 0.9728

L 1 807 16.41 <.0001

Table 17 ANOVA table for
six-stages. Type 3 tests of fixed
effects for six-stages

Num Effect Den DF DF F Value Pr>F

G 2 267 1.02E+07 <.0001

J 2 267 3119373 <.0001

R1 2 267 3952215 <.0001

A 2 267 0.06 0.9422

L 1 267 15.66 <.0001

T(G*J*R1) 47 267 416778 <.0001

Appendix 3: The ANOVA table for two, three, and six-stage problems
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