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Abstract Inmultiple attribute decision analysis, manymethods have been proposed to deter-
mine attribute weights. However, solution reliability is rarely considered in those methods.
This paper develops an objective method in the context of the evidential reasoning approach
to determine attribute weights which achieve high solution reliability. Firstly, the minimal
satisfaction indicator of each alternative on each attribute is constructed using the perfor-
mance data of each alternative. Secondly, the concept of superior intensity of an alternative
is introduced and constructed using the minimal satisfaction of each alternative. Thirdly, the
concept of solution reliability on each attribute is defined as the ordered weighted averag-
ing (OWA) of the superior intensity of each alternative. Fourthly, to calculate the solution
reliability on each attribute, the methods for determining the weights of the OWA operator
are developed based on the minimax disparity method. Then, each attribute weight is calcu-
lated by letting it be proportional to the solution reliability on that attribute. A problem of
selecting leading industries is investigated to demonstrate the applicability and validity of the
proposed method. Finally, the proposed method is compared with other four methods using
the problem, which demonstrates the high solution reliability of the proposed method.
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1 Introduction

Decision quality is a general concept that is usually characterized by professionalization,
correctness, reliability, robustness, and adaptability of decisions. There are two general ways
to assess the quality of decisions: (1) judging decisions based on outcomes; and (2) judging
decisions according to the process for making them (Davern et al. 2008). On the one hand,
the quality of judgments from a decision maker influences the quality of outcomes. The
confidence or satisfaction of the decision maker also contributes to the quality of outcomes
(Williams et al. 2007). On the other hand, providing diagnostic information and feedback to
decision makers can improve the quality of decision process (Davern et al. 2008).

In literature, research has examined various factors influencing decision quality, including
information quality (Raghunathan 1999; Gao et al. 2012), information quantity (Gao et al.
2012), thought mode (Gao et al. 2012), the quality of a decision maker (Raghunathan 1999;
Malhotra et al. 2007), and time pressure (Kocher and Sutter 2006). In view of the impact
of information technology on firm performance, Raghunathan presented that simultaneous
improvement in the quality of information and a decision maker resulted in the upgrade of
decision quality using theoretical and simulation models. Using online shopping as back-
ground, Gao et al. investigated the combinational effect of information quantity, information
quality, and thoughtmodes on decision quality by integrating unconscious thought theory and
information processing theory.Malhotra et al. investigated the influence of domain experts on
the quality of decisions and constructed rules to identify experts with high level of expertise
who could make high-quality decisions in the oil and gas industry. With a view to solving
decision problems in economics and finance, Kocher and Sutter examined the influence of
time pressure and time-dependent incentive schemes on decision quality using experiments.
The above research is clearly domain-relevant and focuses on different perspectives of quality
of decisions.

This paper focuses on a general aspect of decision quality, the reliability of decisions
in multiple attribute decision analysis (MADA). From the perspective of outcomes, i.e.,
solutions to MADA problems, large differences among the performances of alternatives on
some attributes mean high reliability of solutions or the ranking order of alternatives on the
attributes. If such attributes are given higher weights during attribute aggregation processes,
the aggregated ranking order will be more reliable. Therefore, attribute weights influence
solution reliability in MADA (Aouni et al. 2013; Miranda and Mota 2012; Socorro García-
Cascales et al. 2012; Wang 2012). If there is flexibility in attribute weight assignment, the
weights should be assigned with a view to achieving high reliability of solutions.

There have been many attempts to determine attribute weights using subjective judg-
ments of a decision maker, called subjective methods. The weights are elicited based on the
experience, knowledge, and perception of the decision maker about the decision problem
via different elicitation methods. Representative subjective methods comprise direct rating
(Bottomley and Doyle 2001), eigenvector method (Saaty 1977; Takeda et al. 1987), linear
programming of preference comparisons (Horsky and Rao 1984), linear programmingmodel
(Horowitz and Zappe 1995), and goal programming model based on pairwise comparison
ratings (Shirland et al. 2003). However, different attribute weights may be elicited from the
same decision maker using different subjective methods. There is no single method that can
guarantee a more accurate set of attribute weights than others (Deng et al. 2000; Diakoulaki
et al. 1995). Furthermore, solution reliability, as defined in Sect. 3.2, is rarely considered in
these subjective methods.

Different from the subjective methods, other methods have been proposed to determine
attribute weights using the performance information of alternatives assessed on each attribute
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rather than subjective judgments of a decision maker. These methods are called objective
methods, in which attribute weights reflect the amount of information or discriminating
power contained in attributes. Representative objective methods include entropy method
(Deng et al. 2000; Xu 2004; Chen and Li 2010, 2011), standard deviation (SD) method
(Deng et al. 2000), correlation coefficient and standard deviation integrated (CCSD) method
(Wang and Luo 2010), criteria importance through intercriteria correlation (CRITIC) method
(Diakoulaki et al. 1995), and deviation maximization method (Wang 1998). These objective
methods are particularly useful when reliable subjective judgments about attribute weights
cannot be obtained from a decision maker due to various reasons such as lack of experience
and partial knowledge about the decision problem under consideration. However, none of
those objective methods consider solution reliability as defined in Sect. 3.2.

In this paper, we investigate the determination of attribute weights to guarantee high reli-
ability of solutions to MADA problems with imprecise information on alternative ratings
(Wang 2012) due to lack of data and partial knowledge about the problems under considera-
tion. In traditional hard computing, such MADA problems cannot be dealt with. In contrast,
the problems canbe handled in soft computing,which is a collection ofmethodologies that can
tolerate imprecision, uncertainty, and approximate reasoning (Zadeh 1994a, b). Representa-
tive methodologies of soft computing include fuzzy logic, neurocomputing, and probabilistic
reasoning (Zadeh 1994a). As a soft computing methodology, the evidential reasoning (ER)
approach was proposed based on Dempster–Shafer theory (Dempster 1967; Shafer 1976)
and decision theory to model probability uncertainty and uncertainties caused by partial or
missing information (Yang 2001; Xu 2012) as described in Sect. 2.1. Other types of uncer-
tainties such as fuzziness, interval performance data, and interval belief degrees can also be
handled in the extensions of the ER approach (Wang et al. 2006b; Yang et al. 2006; Guo et al.
2007). The details about the development of the ER approach can be found in Xu (2012). On
the basis of the ER approach, an objective method is proposed to determine attribute weights
using the solution reliability on each attribute.

It is assumed that data quality is high, time is sufficient, a decision maker has high level
of expertise, and information load is appropriate, which indicates that the decision maker
can give reasonable assessments of each alternative on each attribute. On this assumption,
the decision process and subjective judgments are considered appropriate and the reliability
of a solution or a ranking order of alternatives depends more on data aggregation meth-
ods. To guarantee high reliability of solutions to MADA problems, solution reliability on
each attribute is defined, constructed, and then used to determine attribute weights in the
proposed method. The constructed solution reliability on one attribute is expressed as an
ordered weighted averaging (OWA) of superior intensity of each alternative on the attribute
(a concept defined in Sect. 3.2). Characteristic of solution reliability is analyzed to theoreti-
cally determine OWA operator weights based on the minimax disparity method (Wang and
Parkan 2005). In order to achieve high reliability of the solution to a MADA problem, the
attribute with higher solution reliability is assigned a larger weight than others. If subjective
judgments on attribute weights are available, an optimization model is constructed by incor-
porating the judgments as its constraints and minimizing the differences between the weights
which satisfy the constraints and those which can achieve high solution reliability.

The rest of the paper is organized as follows. Section 2 presents the preliminaries related
to the proposed method of determining attribute weights. Section 3 introduces the proposed
method. In Sect. 4, a problem of selecting leading industries is investigated to demonstrate
the applicability and validity of the proposed method. Section 5 compares the proposed
method with other objective methods of determining attribute weights. Finally, this paper is
concluded in Sect. 6.
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2 Preliminaries

2.1 ER distributed modeling framework for MADA problems

As the important foundations of the proposedmethod, theERdistributedmodeling framework
is described and the uncertainties handled in the framework are defined and illustrated by
examples in this section.

Suppose that a MADA problem has M alternatives al (l = 1, . . ., M) and L attributes
ei (i = 1, . . ., L). The relative weights of the L basic attributes are denoted by w =
(w1, w2, . . ., wL)T such that 0 ≤ wi ≤ 1 and

∑L
i=1 wi = 1 where the notation ‘T ’ denotes

‘transpose’. Assume that Ω = {H1, H2, . . ., HN } denotes a set of grades which is increas-
ingly ordered from worst to best. The M alternatives are assessed on the L attributes using
Hn (n = 1, . . ., N ). Let B(ei (al)) = (β1,i (al), . . ., βN ,i (al)) denote a distributed assess-
ment vector representing that the performance of alternative al on attribute ei is assessed to
grade Hn with a belief degree of βn,i (al), where 0 ≤ βn,i (al) ≤ 1,

∑N
n=1 βn,i (al) ≤ 1 and

∑N
n=1 βn,i (al) + βΩ,i (al) = 1. Here, βΩ,i (al) denotes the degree of global ignorance of

B(ei (al)). If βΩ,i (al) = 0, the assessment is said to be complete; otherwise, incomplete. In
the distributed framework, the uncertainties which will be handled in this paper are described
as follows.

Definition 1 Uncertainties in the distributed framework (Yang 2001; Xu 2012) mainly
include probability uncertainty, the uncertainty caused by absence of data, and the uncer-
tainty caused by partial or incomplete data.

Let us use examples to illustrate the uncertainties as defined inDefinition 1.Due to different
road and traffic conditions, and changes of weather, the fuel consumption of a car in mile per
gallon cannot be described by a precise number but by an objective probability distribution,
which is a distributed assessment in nature. Subjective judgments of an expert can also be
expressed as probability uncertainty. Suppose that the quietness of an engine is assessed using
Ω = {Hn, n = 1, . . ., 6} = {Worst, Poor, Average,Good, Excellent, Top}. When an
expert states that he is 50%sure the engine is good and 30%sure it is excellent, his assessment
can be expressed as {(H4, 0.5), (H5, 0.3)}, which describes subjective probability uncertainty.
The assessment is incomplete and the remaining belief 0.2 means that the expert is 20 %
uncertain about the engine; that is, the expert is not sure to which grade (or grades) the belief
degree 0.2 should be assigned in the assessment, which describes the uncertainty caused by
partial knowledge or partially available data. Because the belief degree 0.2 can be assigned
not only to one grade, but also to multiple grades, this type of uncertainty in the assessment
can be seen as an extension of traditional probability uncertainty. More specially, when there
is no knowledge or data available for the expert to give his assessment, he may only be able
to give {(Ω , 1)}; that is, he is 100 % unsure about the engine. Such a case represents the
uncertainty caused by absence of data. More examples with respect to uncertainties modeled
by the ER approach can be found in (Yang 2001; Xu 2012).

2.2 OWA operators

TheOWAoperatorwas proposed byYager (1988) to linearly aggregate a set of ordered values.
It will be used to create solution reliability on an attribute by aggregating superior intensity
of each alternative on the attribute, as presented in Sect. 3.2, and thus simply introduced as
follows.
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Definition 2 An OWA operator with p dimension is defined as a mapping F : �p → �.
This mapping is associated with a weight vector θ = (θ1, . . ., θp) such that 0 ≤ θ j ≤
1 ( j = 1, . . ., p),

∑p
j=1 θ j = 1, and F(x1, . . ., xp) = ∑p

j=1 θ j y j , where y j is the j th
largest element of x1, . . ., xp .

OWA operators provide a framework to uniformly consider different decision crite-
ria under uncertainty such as maximax (optimistic), maximin (pessimistic), equally likely
(Laplace), and Hurwicz criteria (Ahn and Choi 2012; Wang and Chin 2011). It is noticed
that the uncertainty in OWA operators is about the weights of values to be aggregated rather
than the values; that is, the uncertainty is different from those described by the distributed
assessments in Sect. 2.1. In the framework, different choice of θ depends on the orness degree
(Yager 1988), also called the attitudinal character, i.e.,

orness (θ) = 1

p − 1

p∑

j=1

(p − j)θ j . (1)

The orness degree is limited to [0, 1] and used to measure the optimism level of a decision
maker. The conditions of orness(θ) > 0.5, orness(θ) < 0.5, and orness(θ) = 0.5 mean
that the decision maker is optimistic, pessimistic, and neutral, respectively, which reflects
the uncertainty in decision making. Determination of θ is the prerequisite of applying OWA
operators in decision making. In the following, we present two representative models for
determining θ given the orness degree.

Model 1:

MaxDisp(θ) = −
p∑

j=1

θ j ln θ j (2)

s.t.orness (θ) = α = 1

p − 1

p∑

j=1

(p − j)θ j , 0 ≤ α ≤ 1, (3)

p∑

j=1

θ j = 1, (4)

θ j ≥ 0, j = 1, . . ., p. (5)

Model 2:

Min δ (6)

s.t.orness (θ) = α = 1

p − 1

p∑

j=1

(p − j)θ j , 0 ≤ α ≤ 1, (7)

p∑

j=1

θ j = 1, (8)

θ j − θ j+1 − δ ≤ 0, j = 1, . . ., p − 1, (9)

θ j − θ j+1 + δ ≥ 0, j = 1, . . ., p − 1, (10)

θ j ≥ 0, j = 1, . . ., p. (11)

Model 1, referred to as maximum entropy method, was suggested by O’Hagan (1988)
to maximize the entropy of weight distribution, while Model 2, called minimax disparity
method, was proposed by Wang and Parkan (2005) to minimize the maximum disparity
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between any two adjacent weights. The OWAoperator weights resulting from the twomodels
have the following characteristics (Wang and Chin 2011):

(a) The weights are in ascending or descending order. That is, θ1 ≥ θ2 ≥ · · · ≥ θp ≥ 0 if
orness degree α > 0.5 and 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θp if α ≤ 0.5.

(b) Theweights depend on the rank-order of y1, . . ., yp and the optimism level of the decision
maker (orness degree).

(c) The weights satisfy θ1 = 1 and θ j ( j �= 1) = 0 if α = 1, which means that the decision
maker is purely optimistic and considers only the largest value y1 in decision analysis.

(d) The weights satisfy θp = 1 and θ j ( j �= p) = 0 if α = 0, which means that the decision
maker is purely pessimistic and considers only the smallest value yp in decision analysis.

(e) The weights satisfy θ1 = θ2 = · · · = θp = 1/p if α = 0.5, which means that the
decision maker is neutral and treats y1, . . ., yp equally in decision analysis.

(f) The weights resulting fromModel 1 form a geometric progression, namely, θ j+1/θ j ≡ q
for j = 1, . . ., p, where q > 0. However, the weights resulting from Model 2 form an
arithmetical progression, namely, θ j+1 − θ j = d or θ j − θ j+1 = d for j = 1, . . ., p− 1,
where d > 0.

3 Determination of attribute weights by solution reliability

In this section, a new method of determining attribute weights to improve solution reliability
is proposed based on OWA operators.

3.1 Construction of minimal satisfaction of alternatives

The minimal satisfaction of alternative al (l = 1, . . ., M) is constructed as follows.
Suppose that the assessments B(ei (al)) (i = 1, . . ., L , l = 1, . . ., M) weighted by w are

combined using the analytical ER algorithm (Wang et al. 2006a) to generate the aggregated
assessment B(al) = (β1(al), . . ., βN (al)) (l = 1, . . ., M) such that

∑N
n=1 βn(al)+βΩ(al) =

1. Here, a belief degree of βn(al) is assigned to a grade Hn and the uncertainty of B(al) is
denoted by βΩ(al). This combination process is on the assumption of attribute independence,
similar to the combination of utility functions on attributes on the assumption of utility
independence in multi-attribute utility theory (MAUT) (Dyer and Jia 1998), which provides
a popular framework of analyzing realMADAproblems (Kainuma and Tawara 2006; Ananda
and Herath 2005; Butler et al. 2001; Brito and Almeida 2012). The B(al) is then combined
with the utilities of assessment grades u(Hn) (n = 1, . . ., N ) such that 0 = u(H1) <

u(H2) < · · · < u(HN ) = 1 to form the minimum and maximum expected utilities of
alternative al (l = 1, . . ., M), i.e.,

umin (al) =
N∑

n=2

βn(al)u(Hn) + (β1 (al) + β� (al)) u (H1) , (12)

and

umax (al) =
N−1∑

n=1

βn(al)u(Hn) + (βN (al) + β� (al)) u (HN ) . (13)

The indifference-based and choice-based methods (Daniels and Keller 1992), and the max-
imum entropy method based on an analogy between probability and utility (Abbas 2006)
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can be used to estimate utilities of assessment grades. In the indifference-based method, cer-
tainty and probability equivalents are usually employed to determine utilities of assessment
grades (Hershey and Schoemaker 1985). The determination of utilities of assessment grades
is similar to the determination of utility function on an attribute inMAUT (Keeney and Raiffa
1993).

To facilitate the comparison of alternatives, we define the minimal satisfaction of alterna-
tive al as

V (al) = umin(al) − maxm �=l{umax(am)} (l = 1, . . . , M) , (14)

which is limited to [−1, 1] as 0 ≤ umin(al) ≤ 1 and 0 ≤ umax(al) ≤ 1 (l = 1, . . ., M).
Minimal satisfaction measures the gain from selecting alternative al under the worst case
scenario when there is unknown in the performances of any alternatives. Alternatives with
larger minimal satisfaction are more preferred. In other words, if V (al) > V (am), alter-
native al is better than alternative am . V (al) is derived from the minimum and maximum
expected utilities of alternative al , while MAUT is consistent with expected utility theory
on the assumption of utility independence (Keeney and Raiffa 1993). Thus, there is an inner
similarity between V (al) and MAUT.

Definition 3 The minimal satisfaction of alternative al (l = 1, . . ., M) on attribute ei (i =
1, . . ., L) is similarly defined as

V (ei (al)) = umin(ei (al)) − maxm �=l{umax(ei (am))}, (15)

where

umin (ei (al)) =
N∑

n=2

βn,i (al)u(Hn) + (
β1,i (al) + β�,i (al)

)
u (H1) , and (16)

umax (ei (al)) =
N−1∑

n=1

βn,i (al)u(Hn) + (
βN ,i (al) + β�,i (al)

)
u (HN ) . (17)

Clearly, V (ei (al)) is also limited to [−1, 1]. More importantly, V (ei (al)) is defined using
the minimum and maximum expected utilities of alternative al on attribute ei and thus there
is also an inner similarity between V (ei (al)) and MAUT. On the other hand, if B(ei (al)) =
(β1,i (al), . . ., βN ,i (al)) (i = 1, . . ., L) and B(al) = (β1(al), . . ., βN (al)) are considered the
coefficients of u(Hn) (n = 1, . . ., N ) in V (ei (al)) (i = 1, . . ., L) and V (al), respectively, the
analytical ER algorithm is then used to combineV (ei (al)) (i = 1, . . ., L) to formV (al). From
this perspective, the formation principle of V (al) is also very similar to that of multi-attribute
utility function in MAUT.

3.2 Measurement of solution reliability

To achieve high reliability of the solution to a MADA problem, the attributes on which alter-
natives are performing significantly differently should be assigned larger weights. In other
words, assessments on those attributes should contribute more to the aggregated assessment
than assessments on other attributes. To formalize the idea, the following concepts are firstly
defined.

Definition 4 Suppose that V (ei (bl)) (i = 1, . . ., L , l = 1, . . ., M) represents the ordered
minimal satisfaction of alternatives on attribute ei such that V (ei (b1)) ≥ · · · ≥ V (ei (bM )).
That is, V (ei (bl)) is the lth largest of V (ei (a1)), …, V (ei (aM )). Then, superior intensity
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of alternative bl (l = 1, . . ., M − 1) on attribute ei and solution reliability on attribute ei
(i = 1, . . ., L) are defined respectively as

�V (ei (bl)) =
M∑

m=l+1

(V (ei (bl)) − V (ei (bm)))/2, l = 1, . . . , M − 1, (18)

and

Q (ei ) =
M−1∑

l=1

θl · �V (ei (bl)), i = 1, . . . , L , (19)

where θl (l = 1, . . ., M − 1) represents the weight of �V (ei (bl)) (i = 1, . . ., L , l =
1, . . ., M − 1) for Q(ei ) such that 0 ≤ θl ≤ 1 (l = 1, . . ., M − 1) and

∑M−1
l=1 θl = 1.

As V (ei (bM )) is the smallest, i.e., it has no superiority over others, its superior intensity
�V (ei (bM )) is assumed to be 0 and not included in Eq. (19). Because there is an inner
similarity between V (ei (bl)) and MAUT, Q(ei ) is closely related with MAUT.

To calculate Q(ei ) (i = 1, . . ., L), θl (l = 1, . . ., M − 1) in Eq. (19) is assumed to be
independent of attribute ei . That is, a set of θl (l = 1, . . ., M −1) is applied to the calculation
of Q(ei ) (i = 1, . . ., L). If it is not, the attribute weights calculated in Eq. (27) may be
affected unfairly. On the assumption that data quality is high, time is sufficient, a decision
maker has high level of expertise, and information load is appropriate, solution reliability on
attribute ei (i = 1, . . ., L) in Definition 4 is defined from the perspective of outcomes rather
than decision process. Because �V (ei (bl)) (i = 1, . . ., L , l = 1, . . ., M − 1) contributes to
Q(ei ) (i = 1, . . ., L), its property is described as follows.

Property 1 Given �V (ei (bl)) (i = 1, . . ., L , l = 1, . . ., M − 1) in Eq. (18), it is satisfied
that

�V (ei (b1)) ≥ · · · ≥ �V (ei (bM−1)), (20)

�V (ei (bx )) = · · · = �V (ei (by))

if V (ei (bx )) = · · · = V (ei (by)) for x < y and x, y ∈ {1, . . . , M − 1}, (21)

0 ≤ �V (ei (bl)) ≤ M − l, and (22)

0 ≤ Q (ei ) ≤ M − 1. (23)

Proof of Property 1 is presented in Appendix.
Large Q(ei ) means high reliability of solution on attribute ei . In contrast, small Q(ei )

means that the minimal satisfaction of alternatives on attribute ei is close to each other, so
solution reliability on attribute ei is low.The property of�V (ei (b1)) ≥ · · · ≥ �V (ei (bM−1))

(i = 1, . . ., L) in Eq. (20) means that�V (ei (bl)) (l = 1, . . ., M −1) can be combined using
OWAoperator to form Q(ei ). Thus, the determination of θl (l = 1, . . ., M−1) is transformed
to the determination of OWA operator weights for calculating Q(ei ).

3.3 Determination of θl (l = 1, . . ., M − 1) for calculating solution reliability on attributes

The definition of OWAoperator in Sect. 2.2 shows that Q(ei ) (i = 1, . . ., L) can be seen as an
OWA operator to combine �V (ei (bl)) (l = 1, . . ., M − 1) as we have �V (ei (b1)) ≥ · · · ≥
�V (ei (bM−1)) (i = 1, . . ., L) in Property 1. Both the maximum entropy method (O’Hagan
1988) and the minimax disparity method (Wang and Parkan 2005) can be used to generate
θl (l = 1, . . ., M − 1). As demonstrated in (Wang and Chin 2011), OWA operator weights
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resulting from the minimax disparity method form an arithmetical progression and are easier
to compute than those resulting from the maximum entropy method that form a geometric
progression. Therefore, the minimax disparity method is used in this paper to determine θl
(l = 1, . . ., M − 1) for calculating Q(ei ) (i = 1, . . ., L).

Before determining θl (l = 1, . . ., M − 1), we analyze the characteristic of Q(ei ) (i =
1, . . ., L). Suppose that alternatives bl (l = 1, . . ., M) are ordered, i.e., V (ei (b1)) ≥ · · · ≥
V (ei (bM )). When the ordered alternatives bl (l = 1, . . ., M) are considered on attribute ei
(i = 1, . . ., L), b1 is the best choice for the MADA problem. Alternative b2 becomes the
best choice when alternative b1 is unavailable, and so on. Therefore, θl (l = 1, . . ., M − 1)
in Eq. (19) should be decreasing to show the decreasing contribution of �V (ei (bl)) (l =
1, . . ., M−1) to Q(ei ) (i = 1, . . ., L), i.e., θ1 > · · · > θM−1. Further, to make sure that each
�V (ei (bl)) (l = 1, . . ., M −1) is contributing to Q(ei ) (i = 1, . . ., L), each θl should not be
zero, i.e., θ1 > · · · > θM−1 > 0. This requirement corresponds with the situation of orness
degreeα > 0.5with respect toOWAoperator. In theminimaxdisparitymethod, the difference
between θl and θl+1 (l = 1, . . ., M − 2) is assumed to be the same under the constraint of
θ1 > · · · > θM−1 > 0 (Wang andChin 2011). This approach does not emphasize the different
contribution of �V (ei (bl)) (l = 1, . . ., M − 1) to Q(ei ) (i = 1, . . ., L). If more weight is
given to �V (ei (bl)) than to �V (ei (bl+1)) (l = 1, . . ., M − 1), the solution reliability will
be increased. Therefore, we propose that θl (l = 1, . . ., M − 1) should satisfy the following
assumption.

Assumption 1 Suppose that θl (l = 1, . . ., M − 1) represents the weight of �V (ei (bl))
(i = 1, . . ., L , l = 1, . . ., M − 1) for Q(ei ) (i = 1, . . ., L) in Eq. (19). To emphasize the
decreasing contribution of �V (ei (bl)) (l = 1, . . ., M − 1) to Q(ei ), it is then needed that

θ1 > · · · > θM−1 > 0, (24)

(θl − θl+1) − (θl+1 − θl+2) = dl − dl+1 = �d > 0(l = 1, . . ., M − 3), (25)

and
M−1∑

l=1

θl = 1. (26)

Based on Assumption 1, two situations will be discussed to determine θl (l = 1, . . ., M −
1): (1) the largest weight θ1 is given; and (2) orness degree α is provided. The first situation
is handled in the following theorem.

Theorem 1 It is assumed that θl (l = 1, . . ., M − 1) represents the weight of �V (ei (bl))
(i = 1, . . ., L , l = 1, . . ., M − 1) for Q(ei ) in Eq. (19) and �d is defined in Eq. (25). Given
the largest weight θ1, θl (l = 2, . . ., M − 1) is determined by θ1 − (l − 1)d1 + (l−2)·(l−1)

2 �d
using the minimax disparity method based on Assumption 1, i.e., minimizing the maximum
disparity between θl and θl+1 (l = 1, . . ., M − 2), where d1 = 4(M−1)θ1−6

(M−2)(M−1) + ε, �d =
6(M−1)θ1−12

(M−3)(M−2)(M−1) + 3ε
M−3 , and ε is a small positive number close to zero.

Proof of Theorem 1 is presented in Appendix.
The parameter ε in Theorem 1 is used to minimize the maximum disparity between θl

and θl+1 (l = 1, . . ., M − 2), that is, to minimize d1. From the proof of Theorem 1, can
be inferred that d1 >

4(M−1)θ1−6
(M−2)(M−1) . Thus, ε > 0 is needed to minimize d1. In general, ε

should be significantly smaller than the value of 4(M−1)θ1−6
(M−2)(M−1) , such as ε <

4(M−1)θ1−6
10(M−2)(M−1) or

ε <
4(M−1)θ1−6

100(M−2)(M−1) . The proof of Theorem 1 shows that θM−1 = 6−4(M−1)θ1+(M−2)(M−1)d1
2(M−1) ,

which deduces from d1 = 4(M−1)θ1−6
(M−2)(M−1) +ε that θM−1 increases along with the increase of d1.

123



410 Ann Oper Res (2016) 245:401–426

Comparedwith the situation of ε = 4(M−1)θ1−6
110(M−2)(M−1) , the situation of ε = 4(M−1)θ1−6

15(M−2)(M−1) means
that superior intensity of bM−1, �V (ei (bM−1)), contributes more to Q(ei ) (i = 1, . . ., L)
(see Eqs. (18) and (19)). To guarantee that Theorem 1 is meaningful, the allowable ranges of
θ1 are determined by the following theorem.

Theorem 2 On the assumption that θl (l = 1, . . ., M − 1) represents the weight of
�V (ei (bl)) (i = 1, . . ., L , l = 1, . . ., M − 1) for Q(ei ) in Eq. (19), the determination of θl
(l = 2, . . ., M − 1) in Theorem 1 based on Assumption 1 requires that 4−(M−2)(M−1)ε

2(M−1) <

θ1 <
3−(M−2)(M−1)ε

M−1 where ε is a small positive number close to zero.

Proof of Theorem 2 is presented in Appendix.
When a value close to 3−(M−2)(M−1)ε

M−1 is given to θ1, �V (ei (b1)) contributes more to

Q(ei ) (i = 1, . . ., L). In contrast, if θ1 is close to 4−(M−2)(M−1)ε
2(M−1) , �V (ei (b1)) contributes

less to Q(ei ) (i = 1, . . ., L). It can be deduced from Theorem 2 that a large ε may lead to
too small or even negative allowable ranges of θ1. This further explains why ε should be
significantly smaller than the value of 4(M−1)θ1−6

(M−2)(M−1) . When orness degree α is provided, θl
(l = 1. . ., M − 1) is determined by the following theorem.

Theorem 3 Let θl (l = 1, . . ., M − 1) denote the weight of �V (ei (bl)) (i = 1, . . ., L , l =
1, . . ., M − 1) for Q(ei ) in Eq. (19). Given orness degree α such that 0.5 < α < 1, θ1 and
θl (l = 2, . . ., M − 1) can be determined by (24α−12)(M−2)+(M−2)(M−1)Mε

2(M−1)M and θ1 − (l −
1)d1+ (l−2)·(l−1)

2 �d (l = 2, . . ., M −1), respectively, where d1 = 2(24α−12)(M−2)−6M
(M−2)(M−1)M +3ε,

�d = 3(24α−12)(M−2)−12M
(M−3)(M−2)(M−1)M + 6ε

M−3 , and ε is a small positive number close to zero.

Proof of Theorem 3 is presented in Appendix.
The selection of ε in Theorem 3 is the same as that in Theorem 1. To guarantee that

Theorem 3 is meaningful, the allowable ranges of the orness degree α are determined by the
following theorem.

Theorem 4 On the assumption that θl (l = 1, . . ., M − 1) represents the weight of
�V (ei (bl)) (i = 1, . . ., L , l = 1, . . ., M − 1) for Q(ei ) in Eq. (19), the determi-
nation of θl (l = 2, . . ., M − 1) in Theorem 3 based on Assumption 1 requires that
8M−12−(M−2)(M−1)Mε

12M−24 < α <
6M−8−3(M−2)(M−1)Mε

8M−16 where α is the orness degree for Q(ei )
and ε is a small positive number close to zero.

Proof of Theorem 4 is presented in Appendix.
Theorem 3 shows that θ1 increases along with the increase of orness degree α. Thus, when

a value close to 6M−8−3(M−2)(M−1)Mε
8M−16 is given to orness degree α, �V (ei (b1)) contributes

more to Q(ei ) (i = 1, . . ., L). In contrast, if orness degreeα is close to 8M−12−(M−2)(M−1)Mε
12M−24 ,

�V (ei (b1)) contributes less to Q(ei ) (i = 1, . . ., L). Similar toTheorem2,Theorem4 further
explains why ε should be significantly smaller than the value of 4(M−1)θ1−6

(M−2)(M−1) .
Conclusions in Theorems 1–4 are clearly related to the number of alternatives, i.e., M .

When M > 3, the conclusions are meaningful. In the following, we analyze the situation
where 1 ≤ M ≤ 3 with respect to Theorems 1–4:

(1) when M = 1, Q(ei ) (i = 1, . . ., L) of Eq. (19) is unnecessary.
(2) when M = 2, Q(ei ) (i = 1, . . ., L) is equal to θ1 · �V (ei (b1)) = θ1 · (V (ei (b1)) −

V (ei (b2))) such that θ1 = 1. In this situation, Theorems 1–4 are unnecessary.
(3) when M = 3, Q(ei ) (i = 1, . . ., L) is equal to

∑2
l=1 θl · ∑3

m=1,m>l(V (ei (bl)) −
V (ei (bm)))/2 such that θ1 + θ2 = 1. If θ1 is given, θ2 is clearly known. When α is
provided, θ1 = α is obtained according to Eq. (1), which generates θ2 = 1 − α. Theo-
rems 1–4 are similarly unnecessary.
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3.4 Determination of attribute weights

On condition that Assumption 1 is satisfied, Q(ei ) (i = 1, . . ., L) can be determined using
Theorems 1–4 when a decision maker provides the largest weight θ1 or the orness degree α.
Following the principle of high reliability of the solution to a MADA problem, we use Q(ei )
(i = 1, . . ., L) to determine attribute weights.

On attribute ei (i = 1, . . ., L), as explained in Sect. 3.2, large Q(ei ) means high reliabil-
ity of solution. In other words, attribute e∗

i with larger Q(e∗
i ) contributes more to solution

reliability for the MADA problem than others from Eq. (19), and vice versa. In particular,
if the performances of alternatives on attribute eoi are the same, Q(eoi ) is equal to 0 and the
decision maker can make a decision to theMADA problemwithout considering the attribute,
which is similar to the conclusion drawn by Deng et al. (2000). Thus, attribute weights can
be determined by

wi = Q(ei )
∑L

i=1 Q(ei )
, i = 1, . . . , L . (27)

The determination of attribute weights in Eq. (27) is closely related with MAUT, which is
due to the tight relationship between Q(ei ) and MAUT, as presented in Sects. 3.1 and 3.2.
Overall there is an inner relationship between the proposed method and MAUT.

When a decision maker can provide subjective preferences about attribute weights, we
assume that the preferences are expressed as linear inequality constraints, following Wang
(2012). Representative constraints include bounded constraints of weights (e.g., LBi ≤ wi ≤
UBi (i ∈ {1, . . ., L})), bounded preference ratio of weights (e.g., LBi ≤ wi/w j ≤ UBi
(i, j ∈ {1, . . ., L})), and bounded preference difference of weights (e.g., LBi ≤ wi – w j ≤
UBi (i, j ∈ {1, . . ., L})). Under such conditions, Eq. (27) can be extended to the following
optimization model to determine attribute weights:

MIN
L∑

i=1

(

wi − Q(ei )
∑L

j=1 Q(e j )

)2

(28)

s.t.
L∑

i=1

wi = 1, (29)

C (w) , (30)

wi ≥ 0, i = 1, . . . , L . (31)

Here, C(w) = {w|A ·w ≤ c} denotes the subjective preferences of the decision maker about
w, i.e., the set of all feasible weight vectors, where A is a R × L matrix of coefficients, c is a
column vector with R elements, and R is the number of constraints. Let us use an example
to illustrate C(w). Suppose that for five attributes the decision maker gives C(w) = {0.2 ≤
w1 ≤ 0.3, 0.4 ≤ w2/w3 ≤ 0.6, 0.2 ≤ w4 − w5 ≤ 0.4}, i.e.,

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 0 0 0 0

1 0 0 0 0

0 −1 0.4 0 0

0 1 −0.6 0 0

0 0 0 −1 1

0 0 0 1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and c = (−0.2, 0.3, 0, 0,−0.2, 0.4)T .
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Equation (27) can be seen as a special case of the model in Eqs. (28)–(31) with the optimal
objective value 0. The model can be solved by using Matlab. Resulting attribute weights
are then used to calculate V (al) (l = 1, . . ., M) and generate a rank-order of alternatives
as a solution with high reliability to the MADA problem. In brief, the whole procedure
of determining attribute weights by solution reliability on each attribute with the possible
subjective preferences of the decision maker considered and generating a solution with high
reliability to a MADA problem is presented as follows:

Step 1. Calculate V (ei (al)) (i = 1, . . ., L , l = 1, . . ., M) using B(ei (al)) and u(Hn)

(n = 1, . . ., N ) as detailed in Eqs. (15)–(17).
Step 2. Determine θl (l = 2, . . ., M − 1) in Definition 4 using Theorem 1 if the largest
weight θ1 satisfying Theorem 2 is given; or else, determine θl (l = 1, . . ., M − 1) in
Definition 4 using Theorem 3 when orness degree α satisfying Theorem 4 is provided.
In particular, when M = 2 or M = 3, θl (l = 1, . . ., M − 1) can be directly determined
without using Theorems 1 and 3 no matter whether the largest weight θ1 or the orness
degree α is provided, as discussed in Sect. 3.3.
Step 3. Calculate Q(ei ) (i = 1, . . ., L) using θl (l = 1, . . ., M − 1) and Eqs. (18) and
(19).
Step 4.Determinewi (i = 1, . . ., L) using Q(ei ) and Eq. (27) if no subjective preference
about w is provided; otherwise, incorporate the subjective preference using Eq. (30) and
solve the model in Eqs. (28)–(31) to obtain wi (i = 1, . . ., L).
Step 5.Calculate V (al) (l = 1, . . ., M) usingwi (i = 1, . . ., L), B(ei (al)) (i = 1, . . ., L ,
l = 1, . . ., M), the analytical ER algorithm (Wang et al. 2006a), and Eq. (14) to generate
a rank-order of alternatives as the solution with high reliability to the MADA problem.

4 Illustrative example

In this section, a problem of selecting leading industries in Anhui province of China is
analyzed to demonstrate the applicability and validity of the proposed method.

4.1 Description of the problem of selecting leading industries

The choice of leading industries to preferentially develop significantly influences the eco-
nomic structure and the development of a region. Scientific selection of such industries can
facilitate sound and rapid development of the economy in the region. Leading industries are
generally characterized by their high contributions to the society, strong correlation between
their development and regional economical development, and large market potential.

In this paper,we investigate the selection of leading industries in the industry-cluster region
in the north of the Yangtze River. This region is located in megalopolis along the Yangtze
River in Anhui province closed to Wuhu, a city in Anhui province. Thus, the region is man-
aged by the government of Wuhu. By considering major national strategic needs, domestic
and international industrial development trend, basic orientation of national industrial lay-
out, and industrial foundation and advantages of the region, the development and reform
commission of Wuhu initially identified twelve industries as candidates. These industries
comprise modern logistics, electronic information, agricultural products processing, new
material, medical equipment, biomedicine, organic chemical, naval architecture and ocean
engineering equipment, car manufacturing, numerical control machine, mechanical compo-
nent, and engineering machinery industries. An official from the development and reform
commission of Wuhu acted as a decision maker to choose five excellent industries as lead-
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ing industries with the help of ten experts from the development and reform commission of
Wuhu, relevant departments of Wuhu government, relevant industries, and a collaborating
university. Seven attributes were used to evaluate the twelve industries, comprising expand-
ability, pioneer, adaptability, competitiveness, environmental protection, difficulty, and risk.
The twelve industries, denoted by Il (l = 1, . . ., 12), are assessed on seven attributes using
the following set of assessment grades, as presented in Table 1:

Worst (W ), Poor (P), Average (A), Good(G), and Excellent (E), say

Ω = {Hn, n = 1, . . ., 5} = {Worst, Poor, Average, Good, Excellent}
= {W, P, A,G, E}.

The decision maker gives u(Hn) (n= 1, …, 5) = (0, 0.25, 0.5, 0.75, 1) using a probability
assignment approach (Farquhar 1984;Winston 2011). In the problem, the data are fromWuhu
government and their quality is considered high; the decision maker has sufficient time to
make the decision; the decision maker is highly specialized with the help of ten experts, and
information load is appropriate for the decision maker and the ten experts. Therefore, the
assessment process is considered appropriate and reliable. Due to the nature of the problem of
selecting leading industries, there is no information available for assigning attribute weights
using subjective methods. With a view to increasing solution reliability, the proposed method
is employed to determine attribute weights and generate the corresponding solution.

4.2 Solution to the problem of selecting leading industries

Following the five steps outlined in Sect. 3.4, the minimal satisfaction of each industry on
each attribute is calculated firstly using the assessment data in Table 1, as presented in Table 2.

In the following, we consider two situations for calculating Q(ei ) (i = 1, . . ., 7) and
generating two solutions. One is when the largest weight θ1 is provided and the other when
orness degree α is provided.

(1) θ1 is provided
Suppose that ε approaches to 0, then it can be known from Theorem 2 that 2/(12−1)

< θ1 < 3/(12−1). The decision maker expects more contribution of �V (ei (b1)) to
Q(ei ) (i = 1, . . ., 7), so he specifies θ1 = 2.8/(12−1) = 0.2545. Then, 4(M−1)θ1−6

(M−2)(M−1) =
4∗(12−1)∗0.2545−6

(12−2)∗(12−1) = 0.0473 is obtained. Due to the fact that less contribution of
�V (ei (bM−1)) to Q(ei ) (i = 1, . . ., 7) is expected by the decision maker, ε = 0.0001 <

0.0473 / 100 is given.
Using Theorem 1, we obtain d1 = 4(M−1)θ1−6

(M−2)(M−1) +ε = 0.0474,�d = 6(M−1)θ1−M
(M−3)(M−2)(M−1) +

3ε
M−3 = 0.0049, and (θ2, . . ., θ11) = (0.2072, 0.1647, 0.1271, 0.0943, 0.0665, 0.0435, 0.0255,
0.0123, 0.0039, 0.0005). After obtaining θl (l = 1, . . ., 11) and the minimal satisfaction of
each industry on each attribute as shown in Table 2, solution reliability on each attribute is
then calculated using Eqs. (18) and (19):

Q(ei )(i = 1, . . ., 7) = (0.2369, 0.8003, 0.928, 1.898, 0.6428, 1.8465, 1.7088).

Thus,wi (i = 1, . . ., 7) = (0.0294, 0.0993, 0.1151, 0.2354, 0.0797, 0.2291, 0.212) is obtained
by using Eq. (27). The minimal satisfaction of each industry is correspondingly calculated
using Eq. (14) as V (Il) (l = 1, . . ., 12) = (−0.4401, −0.2413, −0.254, −0.3316, −0.0157,
−0.2262,−0.3791,−0.384, 0.0157,−0.3382,−0.3535,−0.4134),which generates the rank-
order of industries, i.e., I9 
 I5 
 I6 
 I2 
 I3 
 I4 
 I10 
 I11 
 I7 
 I8 
 I12 
 I1.
The five excellent industries selected as leading industries are car manufacturing, med-
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Table 1 Assessments of the twelve industries in the problem of selecting leading industries

Attributes I1 I2 I3 I4 I5 I6

e1 {(G, 0.1),
(E , 0.9)}

{(G, 0.1),
(E , 0.9)}

{(A, 0.1),
(G, 0.5),
(E , 0.4)}

{(G, 0.1),
(E , 0. 9)}

{(G, 0.3),
(E , 0.7)}

{(G, 0.2),
(E , 0.8)}

e2 {(E , 1)} {(A, 0.2),
(G, 0.5),
(E , 0.3)}

{(P , 0.2),
(A, 0.3),
(G, 0.4),
(E , 0.1)}

{(A, 0.2),
(G, 0.4),
(E , 0.4)}

{(A, 0.4),
(G, 0.4),
(E , 0.2)}

{(A, 0.6),
(G, 0.1),
(E , 0.3}

e3 {(E , 1)} {(A, 0.1),
(G, 0.7),
(E , 0.2)}

{(A, 0.1),
(G, 0.2),
(E , 0.7)}

{(G, 0.7),
(E , 0.3)}

{(A, 0.1),
(G, 0.8),
(E , 0.1)}

{(A, 0.2),
(G, 0.5),
(E , 0.3)}

e4 {(W , 0.2),
(P , 0.8)}

{(P , 0.2),
(A, 0.4),
(G, 0.3),
(E , 0.1)}

{(P , 0.1),
(A, 0.3),
(G, 0.4),
(E , 0.2)}

{(W , 0.3),
(P , 0.5),
(A, 0.2)}

{(A, 0.1),
(G, 0.8),
(E , 0.1)}

{(A, 0.6),
(G, 0.3),
(E , 0.1)}

e5 {(G, 0.4),
(E , 0.6)}

{(A, 0.1),
(G, 0.3),
(E , 0.6)}

{(A, 0.2),
(G, 0.4),
(E , 0.4)}

{(G, 0.1),
(E , 0.9)}

{(G, 0.6),
(E , 0.4)}

{(G, 0.2),
(E , 0.8)}

e6 {(W , 0.8),
(P , 0.2)}

{(W , 0.3),
(P , 0.4),
(A, 0.3)}

{(P , 0.3),
(A, 0.5),
(G, 0.1),
(E , 0.1)}

{(W , 0.4),
(P , 0.5),
(A, 0.1)}

{(A, 0.2),
(G, 0.2),
(E , 0.6)}

{(W , 0.3),
(P , 0.6),
(A, 0.1)}

e7 {(W , 0.6),
(P , 0.3),
(A, 0.1)}

{(P , 0.3),
(A, 0.1),
(G, 0.4),
(E , 0.2)}

{(W , 0.5),
(P , 0.4),
(A, 0.1)}

{(P , 0.3),
(A, 0.3),
(G, 0.2),
(E , 0.2)}

{(A, 0.1),
(G, 0.6),
(E , 0.3)}

{(P , 0.3),
(A, 0.1),
(G, 0.4),
(E , 0.2)}

Attributes I7 I8 I9 I10 I11 I12

e1 {(G, 0.5),
(E , 0.5)}

{(G, 0.3),
(E , 0.7)}

{(G, 0.3),
(E , 0.7)}

{(A, 0.1),
(G, 0.1),
(E , 0.8)}

{(G, 0.1),
(E , 0.9)}

{(A, 0.1),
(G, 0.2),
(E , 0.7)}

e2 {(G, 0.5),
(E , 0.5)}

{(G, 0.2),
(E , 0.8)}

{(G, 0.3),
(E , 0.7)}

{(G, 0.5),
(E , 0.5)}

{(G, 0.3),
(E , 0.7)}

{(A, 0.2),
(G, 0.6),
(E , 0.2)}

e3 {(A, 0.1),
(G, 0.5),
(E , 0.4)}

{(G, 0.9),
(E , 0.1)}

{(W , 0.4),
(P , 0.6)}

{(A, 0.1),
(G, 0.5),
(E , 0.4)}

{(G, 0.6),
(E , 0.4)}

{(A, 0.2),
(G, 0.5),
(E , 0.3)}

e4 {(W , 0.2),
(P , 0.5),
(A, 0.3)}

{(W , 0.3),
(P , 0.5),
(A, 0.2)}

{(G, 0.3),
(E , 0.7)}

{(W , 0.3),
(P , 0.5),
(A, 0.2)}

{(P , 0.1),
(A, 0.5),
(G, 0.3),
(E , 0.1)}

{(W , 0.2),
(P , 0.6),
(A, 0.2)}

e5 {(A, 0.8),
(G, 0.1),
(E , 0.1)}

{(A, 0.1),
(G, 0.3),
(E , 0.6)}

{(G, 0.4),
(E , 0.6)}

{(G, 0.3),
(E , 0.7)}

{(A, 0.1),
(G, 0.7),
(E , 0.2)}

{(G, 0.5),
(E , 0.5)}

e6 {(W , 0.5),
(P , 0.4),
(A, 0.1)}

{(W , 0.1),
(P , 0.7),
(A, 0.2)}

{(G, 0.6),
(E , 0.4)}

{(P , 0.4),
(A, 0.3),
(G, 0.2),
(E , 0.1)}

{(W , 0.6),
(P , 0.3),
(A, 0.1)}

{(W , 0.5),
(P , 0.2),
(A, 0.3)}

e7 {(P , 0.5),
(A, 0.3),
(G, 0.1),
(E , 0.1)}

{(W , 0.4),
(P , 0.2),
(A, 0.4)}

{(A, 0.2),
(G, 0.5),
(E , 0.3}

{(W , 0.5),
(P , 0.3),
(A, 0.2)}

{(W , 0.6),
(P , 0.4)}

{(W , 0.3),
(P , 0.4),
(A, 0.3)}
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Table 2 Minimal satisfaction of each industry on each attribute in the problem of selecting leading industries

Attributes I1 I2 I3 I4 I5 I6

e1 0 0 −0.15 0 −0.05 −0.025

e2 0.05 −0.225 −0.4 −0.2 −0.3 −0.325

e3 0.1 −0.225 −0.1 −0.175 −0.25 −0.225

e4 −0.725 −0.35 −0.25 −0.7 −0.175 −0.3

e5 −0.075 −0.35 −0.175 0.025 −0.125 −0.025

e6 −0.8 −0.6 −0.35 −0.675 0 −0.65

e7 −0.675 −0.175 −0.65 −0.225 0.025 −0.175

Attributes I7 I8 I9 I10 I11 I12

e1 −0.1 −0.05 −0.05 −0.05 0 −0.075

e2 −0.125 −0.05 −0.075 −0.125 −0.075 −0.25

e3 −0.175 −0.225 −0.85 −0.175 −0.15 −0.225

e4 −0.65 −0.7 0.175 −0.7 −0.325 −0.675

e5 −0.4 −0.1 −0.075 −0.05 −0.2 −0.1

e6 −0.7 −0.575 0 −0.35 −0.725 −0.65

e7 −0.35 −0.55 −0.025 −0.625 −0.7 −0.55

ical equipment, biomedicine, electronic information, and agricultural products processing
in descending order.

(2) Orness degree α is provided
On condition that ε = 0.0001, orness degree α is limited to ( 8M−12−(M−2)(M−1)Mε

12M−24 ,
6M−8−3(M−2)(M−1)Mε

8M−16 ) = (0.6989, 0.7951) using Theorem 4.
Similar to Situation (1), the decision maker expects more contribution of �V (ei (b1)) to

Q(ei ) (i = 1, . . ., 7), so he specifies α = 0.75 for calculating θl (l = 1, . . ., 11). Using The-
orem 3, we obtain d1 = 2(24α−12)(M−2)−6M

(M−2)(M−1)M + 3ε = 0.0367, �d = 3(24α−12)(M−2)−12M
(M−3)(M−2)(M−1)M +

6ε
M−3 = 0.0031, and (θ1, . . ., θ11) = (0.2278, 0.1911, 0.1575, 0.1271, 0.0997, 0.0754, 0.0542,
0.0362, 0.0212, 0.0093, 0.0005). Based on the resulting θl (l = 1, . . ., 11) and the minimal
satisfaction of each industry on each attribute given in Table 2, solution reliability on each
attribute can be calculated by using Eqs. (18) and (19) as

Q(ei )(i = 1, . . ., 7) = (0.2277, 0.7595, 0.8769, 1.7759, 0.6174, 1.7163, 1.616).

Thus,wi (i = 1, . . ., 7) = (0.03, 0.1001, 0.1155, 0.234, 0.0813, 0.2261, 0.2129) is obtained
by using Eq. (27). The minimal satisfaction of each industry is correspondingly calculated
using Eq. (14) as V (Il) (l = 1, . . ., 12) = (−0.4362, −0.239, −0.2534, −0.3277, −0.0154,
−0.2234, −0.3762, −0.3812, 0.0154, −0.3363, −0.351, −0.4106), which generates the
following rank-order of industries,

I9 
 I5 
 I6 
 I2 
 I3 
 I4 
 I10 
 I11 
 I7 
 I8 
 I12 
 I1.

The top five industries are still car manufacturing, medical equipment, biomedicine, elec-
tronic information, and agricultural products processing in descending order.

It can be observed that the same rank-order of industries is obtained in both situations.
The resulting attributes weights wi (i = 1, . . ., 7) in both situations are very similar. This
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is due to the fact that the largest weight θ1 and orness degree α are related and one can be
calculated from the other through Eq. (1), and Theorems 1 and 3.

When the subjective preference of the decision maker about w is available, we may
obtain different w and different rank-order of industries. Suppose that the decision maker
provides subjective constraints on w, i.e., C(w) = {0.1 ≤ w2 ≤ 0.2, w7 ≥ w6, 2.5 ≤ w4 /
w3 ≤ 3, 0.2 ≤ w7 − w2 ≤ 0.3, w4 + w5 ≥ 3w3}. Solving the model in Eqs. (28)–(31) then
generates w = (0.0128, 0.1, 0.0891, 0.2227, 0.0631, 0.2123, 0.3) and V (Il) (l = 1, . . ., 12)
= (−0.504, −0.245, −0.3267, −0.3383, −0.0221, −0.2356, −0.3924, −0.4277, 0.0221,
−0.401, −0.4246, −0.455). Thus, the rank-order of industries is I9 
 I5 
 I6 
 I2 

I3 
 I4 
 I7 
 I10 
 I11 
 I8 
 I12 
 I1. The resulting w and V (Il) (l = 1, . . ., 12)
are significantly different from those in the above two situations where the largest weight θ1
and orness degree α are respectively provided. With respect to the rank-order of industries,
although the resulting top five industries and their rank-order are the same as those in the
above two situations, the resulting rank-order of I7, I10, and I11 is changed.

5 Discussions

In this section, we compare the proposed method with other objective methods from the
perspective of solution reliability. The methods to be compared comprise the entropy method
(Deng et al. 2000), the SD method (Diakoulaki et al. 1995), the CRITIC method (Diakoulaki
et al. 1995), and the CCSD method (Wang and Luo 2010). To facilitate the comparison,
the CRITIC and CCSD methods are extended to handle distributed assessments in the ER
context.

(1) Entropy method
Theminimal satisfaction of each alternative is used to generate a rank-order of alternatives

in the ER approach, so the entropy of minimal satisfaction of each alternative on one attribute
can be used to measure the contrast intensity of the attribute. Because an attribute with higher
contrast intensity can contribute more to solution stability than others, the attribute should be
assigned a larger weight. In other words, attribute weights can be determined by the entropy
of minimal satisfaction of each alternative on attributes.

After V (ei (al)) (i = 1, . . ., L , l = 1, . . ., M) is calculated, as presented in Sect. 3.1, the
normalized entropy of V (ei (al)) on attribute ei (i = 1, . . ., L) is measured by

NEi = −
∑M

l=1 Ṽ (ei (al)) ln Ṽ (ei (al))

lnM
, (32)

where Ṽ (ei (al)) = V̄ (ei (al ))∑M
m=1 V̄ (ei (am ))

and V̄ (ei (al)) = (V (ei (al)) − (−1))/2. Here, Ṽ (ei (al))

and V̄ (ei (al)) are normalized due to the fact that V (ei (al)) ∈ [−1, 1]. The denominator lnM
is used to limitNEi to [0,1]. The contrast intensity of attribute ei (i = 1, . . ., L) in the entropy
method is then calculated as

C Ii = 1 − NEi . (33)

Thus, the weight of attribute ei (i = 1, . . ., L) is determined by

wi = C Ii
∑L

k=1 C Ik
, i = 1, . . ., L . (34)
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(2) SD method
Similar to the entropy method, the standard deviation of minimal satisfaction of alterna-

tives on attributes can be used to measure the contrast intensity of attributes, and thus to
determine attribute weights.

Again using V (ei (al)) (i = 1, . . ., L , l = 1, . . ., M) discussed in Definition 3, the SD of
V (ei (al)) (l = 1, . . ., M) on attribute ei (i = 1, . . ., L) can be calculated by

σi =
√
√
√
√ 1

M

∑M

l=1

(

V̄ (ei (al)) −
∑M

m=1 V̄ (ei (am))

M

)2

, (35)

where V̄ (ei (al)) = (V (ei (al))−(−1))/2. Here, V̄ (ei (al)) is a normalization of V (ei (al))
due to the fact that V (ei (al)) ∈[−1, 1]. Thus, the weight of attribute ei (i = 1, . . ., L) is
determined by

wi = σi
∑L

k=1 σk
, i = 1, . . ., L . (36)

(3) CRITIC method
In the CRITIC method, the covariance between the performance distributions of alterna-

tives on two different attributes is used to calculate the correlation coefficient between the
two attributes. The coefficient is then combined with the SD of the performance distributions
of alternatives on attributes to determine attribute weights.

To determine attribute weights using the CRITIC method, a correlation coefficient matrix
among attributes is constructed based on the correlation coefficient of interval-valued intu-
itionistic fuzzy sets (Park et al. 2009) as

ri j = C(B(ei (·)), B(e j (·)))
√
E(B(ei (·))) · E(B(e j (·)))

, i, j = 1, . . ., L , (37)

where

C(B(ei (·)), B(e j (·))) = 1

2

M∑

l=1

(
N∑

n=1

βn,i (al) · βn, j (al) + βΩ,i (al) · β�, j (al)

)

,

E(B(ei (·))) = 1

2

M∑

l=1

(
N∑

n=1

βn,i (al)
2 + β�,i (al)

2

)

,

E(B(e j (·))) = 1

2

M∑

l=1

(
N∑

n=1

βn,i (al)
2 + β�, j (al)

2

)

,

and B(ei (·)) denotes the set of B(ei (al)) (l = 1, . . ., M).
By using Cauchy–Schwarz inequality, we have

∑M
l=1

∑N
n=1 βn,i (al) · βn, j (al) ≤ ∑M

l=1√
(
∑N

n=1βn,i (al)2)·(∑N
n=1βn, j (al)2) ≤

√
(
∑M

l=1
∑N

n=1βn,i (al)2)·(∑M
l=1

∑N
n=1βn, j (al)2),

∑M
l=1 β�,i (al) · β�, j (al) ≤

√
(
∑M

l=1 β�,i (al)2) · (
∑M

l=1 β�, j (al)2), and further
√

(
∑M

l=1
∑N

n=1 βn,i (al)2)·(∑M
l=1

∑N
n=1 βn, j (al)2)+

√
(
∑M

l=1 β�,i (al)2)·(∑M
l=1 β�, j (al)2)

≤
√

(
∑M

l=1 (
∑N

n=1 βn,i (al)2 + β�,i (al)2)) · (
∑M

l=1 (
∑N

n=1 βn, j (al)2 + β�, j (al)2)), which
deduces that 0 ≤ ri j ≤ 1. Using ri j of Eq. (37) and σi of Eq. (35) (i, j = 1, . . ., L), the
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weight of attribute ei (i = 1, . . ., L) is determined by

wi = σi
∑L

j=1 (1 − ri j )
∑L

k=1 σk
∑L

j=1 (1 − rk j )
, i = 1, . . ., L . (38)

(4) CCSD method
In the CCSD method, the aggregated assessment of alternative al (l = 1, . . ., M) on all

attributes except the i th one, ei (i ∈ {1, …, L}), is firstly calculated as

Bi−(al) = (β i−
1 (al), . . . , β

i−
N (al)) (l = 1, . . ., M) , (39)

using the analytical ER algorithm (Wang et al. 2006a), B(e j (al)) ( j = 1, . . ., L , j �= i), and
weight vector wi−

j = w j
∑L

k=1,k �=i wk
( j = 1, . . ., L , j �= i). The constraint

∑L
j=1, j �=i w

i−
j =1 is

clearly satisfied. The uncertainty of Bi−(al) is denoted by β i−
� (al) to satisfy

∑N
n=1 β i−

n (al)+
β i−

� (al) = 1.
By referring to the correlation coefficient of interval-valued intuitionistic fuzzy sets (Park

et al. 2009), the correlation coefficient between B(ei (·)) and Bi−(·), where Bi−(·) denotes
the set of Bi−(al) (l = 1, . . ., M), is calculated as

Ri = C(B(ei (·)), Bi−(·))
√
E(B(ei (·))) · E(Bi−(·)) , i = 1, . . ., L , (40)

where

C(B(ei (·)), Bi−(·)) = 1

2

M∑

l=1

( N∑

n=1

βn,i (al) · β i−
n (al) + β�,i (al) · β i−

� (al)
)
,

E(B(ei (·))) = 1

2

M∑

l=1

( N∑

n=1

βn,i (al)
2 + β�,i (al)

2),

and E(Bi−(·)) = 1

2

M∑

l=1

( N∑

n=1

β i−
n (al)

2 + β i−
� (al)

2).

Similar to 0 ≤ ri j ≤ 1 in the CRITIC method, Ri is also limited to [0, 1]. Using Ri of Eq.
(40) and σi of Eq. (35) (i = 1, . . ., L), the weight of attribute ei (i = 1, . . ., L) is determined
by solving the following optimization model:

Min J =
L∑

i=1

(

wi − σi
√
1 − Ri

∑L
k=1 σk

√
1 − Rk

)2

(41)

s.t.
L∑

i=1

wi = 1, (42)

wi ≥ 0, i = 1, . . ., L . (43)

To compare the above four methods with the proposed method from the perspective
of solution reliability, similar to the definition of solution reliability on an attribute, the
reliability of the aggregated solution is defined as Q = ∑M−1

l=1 θl · �V (bl), where�V (bl) =
∑M

m=l+1 (V (bl) − V (bm))/2 (l = 1, . . ., M − 1) such that V (b1) ≥ … ≥ V (bM ).
For the sake of simplicity, we set (θ1, …, θ11) = (0.2545, 0.2072, 0.1647, 0.1271, 0.0943,

0.0665, 0.0435, 0.0255, 0.0123, 0.0039, 0.0005), the same as the first situation in Sect. 4.2
where the largest weight θ1 is provided.
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Table 3 Comparison of attribute weights and reliability of the aggregated solutions generated by the five
methods

Methods wi (i = 1, . . ., 7) Q

Entropy (0.0027, 0.0289, 0.121, 0.2921, 0.0258, 0.3136, 0.2159) 1.241

SD (0.0343, 0.0972, 0.1621, 0.2131, 0.094, 0.202, 0.1972) 0.8334

CRITIC (0.0319, 0.0816, 0.1592, 0.2131, 0.0801, 0.2342, 0.2) 0.909

CCSD (0.0353, 0.0929, 0.1898, 0.193, 0.0904, 0.2234, 0.1751) 0.8063

Proposed (0.0294, 0.0993, 0.1151, 0.2354, 0.0797, 0.2291, 0.212) 0.9962

Table 4 Comparison of minimal satisfaction and rank-order of the twelve industries generated by the five
methods

Methods V (Il ) (l = 1, . . ., 12) Rank-order

Entropy (−0.5679, −0.2974, −0.2677, −0.4386,
−0.0083, −0.2931, −0.4622, −0.4755,
0.0083, −0.4079, −0.4362, −0.4966)

I9 
 I5 
 I3 
 I6 
 I2 
 I10 

I11 
 I4 
 I7 
 I8 
 I12 
 I1

SD (−0.3526, −0.1997, −0.2067, −0.2674, 0.0162,
−0.1794, −0.3219, −0.3238, −0.0162,
−0.2795, −0.2916, −0.3515)

I5 
 I9 
 I6 
 I2 
 I3 
 I4 
 I10 

I11 
 I7 
 I8 
 I12 
 I1

CRITIC (−0.3957, −0.2221, −0.2201, −0.2996, 0.0188,
−0.207, −0.3491, −0.3523, −0.0188,
−0.2988, −0.327, −0.3794)

I5 
 I9 
 I6 
 I3 
 I2 
 I10 
 I4 

I11 
 I7 
 I8 
 I12 
 I1

CCSD (−0.3327, −0.2053, −0.1911, −0.2642, 0.0398,
−0.1884, −0.3158, −0.3106, −0.0398,
−0.2553, −0.2853, −0.3399)

I5 
 I9 
 I6 
 I3 
 I2 
 I10 
 I4 

I11 
 I8 
 I7 
 I1 
 I12

Proposed (−0.4401, −0.2413, −0.254, −0.3316,
−0.0157, −0.2262, −0.3791, −0.384, 0.0157,
−0.3382, −0.3535, −0.4134)

I9 
 I5 
 I6 
 I2 
 I3 
 I4 
 I10 

I11 
 I7 
 I8 
 I12 
 I1

In the following, the above four methods are used to determine attribute weights and
generate four solutions to the problem of selecting leading industries. The resulting attribute
weights and the reliability of the aggregated solutions are compared with those in the first
situation using the proposed method, as presented in Table 3. The solutions generated by the
five methods are compared in Table 4.

Table 3 shows that the weights wi (i = 1, . . ., 7) generated by the entropy method are
clearly different from those generated by the other fourmethods. In particular, comparedwith
the weights generated by the other four methods, the weightsw1,w2, andw5 generated by the
entropymethod are highly underestimated, which results in the overestimation of the weights
w4 and w6 generated by the method and the highest reliability of the aggregated solution
in the five methods. Although high reliability of the aggregated solution is preferred, well-
balanced attribute weights should also be considered. Among the four methods, the proposed
method generates the lowest w3 which is the main contributor to the highest reliability of
the aggregated solution, but the differences among the weights w3 generated by all the four
methods are not significant. In fact, there are no significant differences among all weights wi

(i = 1, . . ., 7) generated by SD, CRITIC, CCSD, and the proposed methods. This means that
the high reliability of the aggregated solution from the proposed method is achieved through
assigning more balanced weights than those assigned by the entropy method. Thus, among
the five methods compared, only the proposed method has achieved high solution reliability
with a set of well-balanced attribute weights.

It is shown from Table 4 that the minimal satisfaction of the twelve industries generated
by the five methods is different. Different attribute weights produced by the five methods
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contribute to different minimal satisfaction of the industries. The rank-order of the industries
generated by the five methods is correspondingly different although the top five industries
obtained by the five methods are the same. In particular, in terms of the minimal satisfaction
produced, the second and the third industries are very close if using SD, CRITIC, CCSD,
and the proposed methods, while using the entropy method, it is the second and the sixth that
are very close. This results in a clear difference between the rank-order of the second, the
third, and the sixth industries generated by the entropy method and those by the other four
methods. The difference reflects the imbalanced attribute weights generated by the entropy
method, which are different from those generated by the other four methods, as presented in
Table 3. The rank-order of the other seven industries is not discussed as it is of no interest to
the decision maker.

In brief, the proposed method can generate a reasonable set of attribute weights by using
solution reliability on each attribute and uses the attribute weights to guarantee high relia-
bility of the aggregated solution. In particular, the proposed method can also consider the
subjective preference of a decision maker about attribute weights by extending Eq. (27) to
the optimization model in Eqs. (28)–(31). In the above four methods considered, this feature
is only found in the CCSD method.

6 Conclusions

Focusing on high solution reliability, we propose in this paper a method of determining
attribute weights by using the definition of solution reliability on an attribute in the context
of the ER approach. This is an objective method in its original form, but can be extended
to handle the subjective preference of a decision maker about attribute weights. It uses the
assessments of alternatives on each attribute to construct solution reliability on each attribute
with the help of OWA operator and then determine attribute weights by using the constructed
solution reliability.

The characteristic of solution reliability on an attribute is analyzed and used to theoretically
determine OWA operator weights depending on whether the largest weight or the orness
degree of OWA operator is given. A problem of selecting leading industries for preferential
development is investigated to demonstrate the validity and applicability of the proposed
method. To compare the proposed method with existing objective methods, four methods
including the entropy method (Deng et al. 2000), the SD method (Diakoulaki et al. 1995),
the CRITIC method (Diakoulaki et al. 1995), and the CCSD method (Wang and Luo 2010),
are extended to the context of the ER approach, and then used to determine attribute weights
and generate four solutions to the problem. The comparison reveals that the attribute weights
and the rank-order of industries generated by the proposed method can guarantee the highest
reliability of solution while maintaining a reasonable balance among attribute weights.
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Appendix: Proof of Property 1 and Theorems 1–4

Proof of Property 1

Property 1 Given �V (ei (bl)) (i = 1, . . ., L , l = 1, . . ., M − 1) in Eq. (18), it is satisfied
that

�V (ei (b1)) ≥ · · · ≥ �V (ei (bM−1)), (20)

�V (ei (bx )) = · · · = �V (ei (by))

if V (ei (bx )) = · · · = V (ei (by)) for x < y and x, y ∈ {1, . . . , M − 1}, (21)

0 ≤ �V (ei (bl)) ≤ M − l, and (22)

0 ≤ Q (ei ) ≤ M − 1. (23)

Proof From the condition of V (ei (b1)) ≥ · · · ≥ V (ei (bM )) specified in Definition 4,
we can deduce that (V (ei (bl)) − V (ei (bm)))/2 ≥ 0 for m = l + 1, …, M . Using
Eq. (18), we can further reason that �V (ei (b1)) = (V (ei (b1)) − V (ei (b2)))/2 +∑M

m=3 (V (ei (b1)) − V (ei (bm)))/2 = (V (ei (b1)) − V (ei (b2)))/2 + �V (ei (b2)) ≥
�V (ei (b2)). Similarly, �V (ei (b2)) ≥ … ≥ �V (ei (bM−1)) can be inferred. Therefore,
Eq. (20) holds.

Given x and y such that x < y and x , y ∈ {1, …, M − 1}, because V (ei (bx )) =
V (ei (bx+1)), we can deduce from Eq. (18) that �V (ei (bx )) = (V (ei (bx )) − V (ei (bx+1)))/

2 + ∑M
m=x+2 (V (ei (bx )) − V (ei (bm)))/2 = ∑M

m=x+2 (V (ei (bx+1)) − V (ei (bm)))/2 =
�V (ei (bx+1)). Similarly, we can infer from V (ei (bx )) = . . . = V (ei (by)) that
�V (ei (bx )) = . . . = �V (ei (by)), which verifies Eq. (21).

Because V (ei (bl)) ∈ [−1, 1] (i = 1, . . ., L , l = 1, . . ., M − 1), as presented in Sect. 3.1,
(V (ei (bl)) − V (ei (bm)))/2 for m = l + 1, . . ., M is limited to [0, 1]. This can deduce from
Eq. (18) that �V (ei (bl)) (l = 1, . . ., M − 1) is limited to [0, M − l] (l = 1, . . ., M − 1). As
a result, Eq. (22) holds.

Equations (20) and (22) show that M − 1 ≥ �V (ei (b1)) ≥ … ≥ �V (ei (bM−1)) ≥ 0. In
this situation, it can be derived that

∑M−1
l=1 θl · �V (ei (bl)) ≥ 0 and

∑M−1
l=1 θl · �V (ei (bl)) ≤

∑M−1
l=1 θl · �V (ei (b1)) = �V (ei (b1)) ≤ M − 1 on the condition that 0 ≤ θl ≤ 1 (l =

1, . . ., M − 1) and
∑M−1

l=1 θl=1, as specified in Definition 4. Therefore, Eq. (23) holds. �

Proof of Theorem 1

Theorem 1 It is assumed that θl (l = 1, . . ., M − 1) represents the weight of �V (ei (bl))
(i = 1, . . ., L , l = 1, . . ., M − 1) for calculating Q(ei ) in Eq. (19) and �d is defined in Eq.
(25). Given the largest weight θ1, θl (l = 2, . . ., M − 1) is determined by θ1 − (l − 1)d1 +
(l−2)·(l−1)

2 �d using the minimax disparity method based on Assumption 1, i.e., minimizing

the maximum disparity between θl and θl+1 (l = 1, . . ., M−2), where d1 = 4(M−1)θ1−6
(M−2)(M−1) +ε,

�d = 6(M−1)θ1−12
(M−3)(M−2)(M−1) + 3ε

M−3 , and ε is a small positive number close to zero.

Proof The requirement of (θl − θl+1) − (θl+1 − θl+2) = dl − dl+1 = �d > 0 (l =
1, . . ., M−3) in Assumption 1 can deduce that θl = θ1−(l−1)d1+(1+ . . .+(l−2))�d =
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θ1 − (l − 1)d1 + (l−2)·(l−1)
2 �d (l = 2, . . ., M − 1). Then, we have

M−1∑

l=1

θl = (M − 1)θ1 − (1 + . . . + (M − 1 − 1))d1 +
M−1∑

l=3

(l − 2) · (l − 1)

2
�d

= (M − 1)θ1 − (M − 2) · (M − 1)

2
d1 + 1

2

M−1∑

l=3

(l2 − 3l + 2)�d

= (M − 1)θ1 − (M − 2) · (M − 1)

2
d1

+ 1

2

(
1

6
(M − 1)(M − 1 + 1)(2(M − 1) + 1) − (12 + 22)

− 3

(
1

2
(M − 1)M − (1 + 2)

)

+ 2(M − 1 − 3 + 1)

)

�d

= (M − 1)θ1 − (M − 2)(M − 1)

2
d1 + (M − 3)(M − 2)(M − 1)

6
�d

= 1,

which can further reason that �d = 6−6(M−1)θ1+3(M−2)(M−1)d1
(M−3)(M−2)(M−1) .

The constraint of θ1 > … > θM−1 > 0 in Assumption 1 needs that θM−1 = θ1 − (M −
2)d1 + (M−3)·(M−2)

2 �d > 0, which is combined with �d = 6−6(M−1)θ1+3(M−2)(M−1)d1
(M−3)(M−2)(M−1) to

deduce that 6-6(M−1)θ1+3(M−2)(M−1)d1 > 2(M−2)(M−1)d1-2(M−1)θ1, i.e., d1 >
4(M−1)θ1−6
(M−2)(M−1) . Following the principle of the minimax disparity method, dl (l = 1, . . ., M−2)
should be minimized. Due to the requirement of dl − dl+1 = �d > 0 (l = 1, . . ., M − 3)
in Assumption 1, the minimum d1 results in the minimum dl (l = 2, . . ., M − 2). Therefore,
we obtain the minimal d1 = 4(M−1)θ1−6

(M−2)(M−1) + ε with the help of a small positive number ε

close to zero. In this situation, it can be derived from �d = 6−6(M−1)θ1+3(M−2)(M−1)d1
(M−3)(M−2)(M−1) that

�d = 6(M−1)θ1−12
(M−3)(M−2)(M−1) + 3ε

M−3 . �

Proof of Theorem 2

Theorem 2 On the assumption that θl (l = 1, . . ., M − 1) represents the weight of
�V (ei (bl)) (i = 1, . . ., L , l = 1, . . ., M − 1) for calculating Q(ei ) in Eq. (19), the deter-
mination of θl (l = 2, . . ., M − 1) in Theorem 1 based on Assumption 1 requires that
4−(M−2)(M−1)ε

2(M−1) < θ1 <
3−(M−2)(M−1)ε

M−1 where ε is a small positive number close to zero.

Proof The determination of θl (l = 1, . . ., M − 1) by Theorem 1 depends on Assumption 1,
so the constraints in Eqs. (24)–(26) are satisfied when θ1 is given.

By using Theorem 1, we can know that d1 = 4(M−1)θ1−6
(M−2)(M−1) + ε and �d =

6(M−1)θ1−12
(M−3)(M−2)(M−1) + 3ε

M−3 where ε is a small positive number close to zero. The requirements
of d1 > 0 and�d > 0 in Eqs. (24)–(26) deduce that 4(M−1)θ1-6+(M−2)(M−1)ε > 0 and
6(M −1)θ1-12+3(M −2)(M −1)ε > 0, i.e., θ1 >

6−(M−2)(M−1)ε
4(M−1) and θ1 >

4−(M−2)(M−1)ε
2(M−1) .

As 6−(M−2)(M−1)ε
4(M−1) <

4−(M−2)(M−1)ε
2(M−1) when ε is sufficiently close to zero, we can obtain

that θ1 >
4−(M−2)(M−1)ε

2(M−1) . On the other hand, it can be derived from dl − dl+1 = �d >

0 (l = 2, . . ., M − 3) in Eq. (25) that dl = d1 − (l − 1)�d > 0 (l = 2, . . ., M − 2),
i.e., d1 > (l − 1)�d (l = 2, . . ., M − 2). When dM−2 = d1 − (M − 3)�d > 0,
d1 > (l − 1)�d (l = 2, . . ., M − 2) is clearly satisfied. From dM−2 > 0, we can
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obtain that d1 = 4(M−1)θ1−6
(M−2)(M−1) + ε > (M − 3)�d = 6(M−1)θ1−12+3(M−2)(M−1)ε

(M−2)(M−1) , i.e.,

θ1 <
3−(M−2)(M−1)ε

M−1 . Therefore, θ1 is limited to ( 4−(M−2)(M−1)ε
2(M−1) , 3−(M−2)(M−1)ε

M−1 ). �
Proof of Theorem 3

Theorem 3 Let θl (l = 1, . . ., M − 1) denote the weight of �V (ei (bl)) (i = 1, . . ., L , l =
1, . . ., M − 1) for Q(ei ) in Eq. (19). Given orness degree α such that 0.5 < α < 1, θ1 and
θl (l = 2, . . ., M − 1) can be determined by (24α−12)(M−2)+(M−2)(M−1)Mε

2(M−1)M and θ1 − (l −
1)d1 + (l−2)·(l−1)

2 �d (l = 2, . . ., M − 1), where d1 = 2(24α−12)(M−2)−6M
(M−2)(M−1)M + 3ε, �d =

3(24α−12)(M−2)−12M
(M−3)(M−2)(M−1)M + 6ε

M−3 , and ε is a small positive number close to zero.

Proof According to Eq. (1), the orness degree for Q(ei ) in Eq. (19) is calculated as

α = 1

(M − 1) − 1

M−1∑

l=1

(M − 1 − l)θl

= 1

M − 2
((M − 2)θ1 + (M − 3)(θ1 − d1) +

M−1∑

l=3

(M − 1 − l)θl).

Theorem 1 indicates that θl = θ1− (l−1)d1+ (l−2)·(l−1)
2 �d (l = 2, . . ., M −1), with which

we can obtain that

α = 1

M − 2
((M − 2)θ1 + (M − 3)(θ1 − d1) + (M − 3)(M − 1)θ1−

(
(M−1)M

2
− 3

)

θ1

+
(
1

6
(M − 1)M(2M − 1) − 5 − M

(
(M − 1)M

2
− 3

)

+ (M − 3)(M − 1)

)

d1

+
M−1∑

l=3

1

2
(M − 1 − l)(l − 2)(l − 1)�d).

Suppose that α1 = ( 16 (M − 1)M(2M − 1) − 5− M(
(M−1)M

2 − 3) + (M − 3)(M − 1))d1
and α2 = ∑M−1

l=3
1
2 (M − 1 − l)(l − 2)(l − 1)�d , then it is derived that

α1 =
(
1

6
(M − 1)M(2M − 1) − 1

2
(M − 1)M2 + (M − 3)(M − 1) + 3M − 5

)

d1

=
(
1

3
M3 − 1

6
M2 − 1

3
M2 + 1

6
M − 1

2
M3 + 3

2
M2 − M − 2

)

d1

= −1

6
(M3 − 6M2 + 5M + 12)d1

= −1

6
(M(M − 3)2 − 4(M − 3))d1

= −1

6
(M − 3)(M2 − 3M − 4)d1

= −1

6
(M − 3)(M − 4)(M + 1)d1
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and

α2 = �d

2

M−1∑

l=3

(M − 1 − l)(l2 − 3l + 2)

= �d

2

M−1∑

l=3

((M − 1)l2 − 3l(M − 1) + 2(M − 1) − l3 + 3l2 − 2l)

= �d

2

M−1∑

l=3

(−l3 + (M + 2)l2 + (1 − 3M)l + 2(M − 1))

= �d

2

(

−
(

(M − 1)2M2

4
− 1 − 23

)

+ (M − 2)

(
(M − 1)M(2M − 1)

6
− 1 − 22

)

+(1 − 3M)

(
1

2
(M − 1)M − 1 − 2

)

+ 2(M − 1)(M − 1 − 3 + 1)

)

= �d

2

(

− (M − 1)2M2

4
+ (M + 2)(M − 1)M(2M − 1)

6
+ (1 − 3M)(M − 1)M

2

+ 2(M − 1)(M − 3) + (4M − 4)

)

= �d

2
(M − 1)

(

− (M − 1)M2

4
+ (M + 2)M(2M − 1)

6
+ (1 − 3M)M

2
+ 2M − 2

)

= �d

2
(M − 1)

(
(M − 1)

4
(8 − M2) + M

6
((M + 2)(2M − 1) + 3(1 − 3M))

)

= �d

24
(M − 1)(3(M − 1)(8 − M2) + 2M(2M2 − 6M + 1))

= �d

24
(M − 1)(M3 − 9M2 + 26M − 24)

= �d

24
(M − 4)(M − 3)(M − 2)(M − 1).

Thus, we have α = f (α1, α2) = 1
M−2 ((M − 2)θ1 + (M − 3)(θ1 − d1) + (M − 3)(M −

1)θ1 − (
(M−1)M

2 − 3)θ1 +α1 +α2) = 1
M−2 (

1
2 (M − 2)(M − 1)θ1 − 1

6 (M − 3)(M − 2)(M −
1)d1 + 1

24 (M − 4)(M − 3)(M − 2)(M − 1)�d), which can deduce that

θ1 = 24α + 4(M − 3)(M − 1)d1 − (M − 4)(M − 3)(M − 1)�d

12(M − 1)
.

From Theorem 1, we can know that d1 = 4(M−1)θ1−6
(M−2)(M−1) +ε and�d = 6(M−1)θ1−12

(M−3)(M−2)(M−1) +
3ε

M−3 . Then, θ1 is calculated as
(24α−12)(M−2)+(M−2)(M−1)Mε

2(M−1)M , which is used to determine d1

and �d with d1 = 2(24α−12)(M−2)−6M
(M−2)(M−1)M + 3ε and �d = 3(24α−12)(M−2)−12M

(M−3)(M−2)(M−1)M + 6ε
M−3 . �

Proof of Theorem 4

Theorem 4 On the assumption that θl (l = 1, . . ., M − 1) represents the weight of
�V (ei (bl)) (i = 1, . . ., L , l = 1, . . ., M − 1) for calculating Q(ei ) in Eq. (19), the deter-
mination of θl (l = 2, . . ., M − 1) in Theorem 3 based on Assumption 1 requires that
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8M−12−(M−2)(M−1)Mε
12M−24 < α <

6M−8−3(M−2)(M−1)Mε
8M−16 where α is the orness degree for Q(ei )

and ε is a small positive number close to zero.

Proof Theorems 2 and 3 show that 4−(M−2)(M−1)ε
2(M−1) < θ1 <

3−(M−2)(M−1)ε
M−1 and θ1 =

(24α−12)(M−2)+(M−2)(M−1)Mε
2(M−1)M .

The inequality 4−(M−2)(M−1)ε
2(M−1) <θ1 candeduce that 24(M−2)α - 12(M−2)+ (M−2)(M−

1)Mε > 4M − (M − 2)(M − 1)Mε, i.e., α >
8M−12−(M−2)(M−1)Mε

12M−24 . Similarly, from θ1 =
(24α−12)(M−2)+(M−2)(M−1)Mε

2(M−1)M <
3−(M−2)(M−1)ε

M−1 it can be derived that 24(M−2)α - 12(M−
2) + (M − 2)(M − 1)Mε < 6M - 2(M − 2)(M − 1)Mε, i.e., α <

6M−8−3(M−2)(M−1)Mε
8M−16 .

In addition, we clearly have 8M−12−(M−2)(M−1)Mε
12M−24 > 0.5 and 6M−8−3(M−2)(M−1)Mε

8M−16 < 1.

Therefore, α is limited to ( 8M−12−(M−2)(M−1)Mε
12M−24 , 6M−8−3(M−2)(M−1)Mε

8M−16 ). �
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