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Abstract We define a subgradient algorithm to compute the maxmin value of a completely
divisible good in both competitive and cooperative strategic contexts. The algorithm relies
on the construction of upper and lower bounds for the optimal value which are based on the
convexity properties of the range of utility vectors associated to all possible divisions of the
good. The upper bound always converges to the optimal value. Moreover, if two additional
hypotheses hold: that the preferences of the players are mutually absolutely continuous, and
that there always exists relative disagreement among the players, then also the lower bound
converges, and the algorithm finds an approximately optimal allocation.

Keywords Fair division theory · Cooperative game theory · Convex optimization ·
Subgradient algorithms

1 Introduction

The notion of what is fair in the allocation of one or more infinitely divisible goods to a finite
number of agents with their own preferences has long been debated. Predictably, no agreement
has been reached on the subject. The situation is often exemplified with children (players) at
a birthday party who are around a table waiting for their slice of the cake to be served, with
the help of some parent (an impartial referee). If we think about a special class of resolute
children who are able to specify their preferences in terms of utility set functions, the parent in
charge of the division could ease his task by using a social welfare function to summarize the
children’s utility values. Among the many proposals, the maxmin—or Rawlsian—division
was extensively studied in the seminal work of Dubins and Spanier (1961), who showed the
existence of maxmin optimal partitions of the cake for any completely divisible cake and
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their main properties. They also showed that when a condition of mutual appreciation holds
(assumption MAC below) any optimal partition is also equitable, i.e., it assigns the same level
of utility for each child.

The study of the maxmin optimal partitions and their properties has continued in more
recent years. In particular, its relationship with other important notions such as efficiency
(or Pareto optimality) and, above all, envy-freeness has been investigated with alternating
success: each maxmin partition is efficient, but while for the two children case (Brams and
Taylor 1996) showed that it is also envy-free, the same may not hold when three or more
children are to be served, as shown in Dall’Aglio and Hill (2003).

It is worth pointing out the relationship with n player bargaining solutions. If we think about
the division as deriving from a bargaining procedure among children, it is straightforward to
show that the bargaining solution proposed by Kalai (1977), in the case where all the players’
utilities are normalized to 1, coincides with the equitable maxmin division. Therefore, if the
conditions proposed by Dubins and Spanier hold, the two solutions actually coincide.

Little attention has been devoted, however, to finding optimal maxmin partitions with one
notable exceptions: the case of two players with additive and linear utility over several goods
has been considered by Brams and Taylor (1996), with the Adjusted Winner procedure.

For the case of general preferences (expressed as probability measures, i.e. nonnegative
and countably additive set functions normalized to 1) and arbitrary number of players, (Legut
and Wilczynski 1988) gave a characterization of the optimal maxmin allocation in terms of
weighted density functions. Moreover, Elton et al. (1986) and Legut (1988) provided lower
bounds on the maxmin value. The optimization problem was later analysed by Dall’Aglio
(2001). The general problem was reformulated as the minimization of a convex function
with a particular attention to the case where the maxmin allocation is not equitable and the
allocation of the cake occurs in stages to subsets of players. No detail, however, was given
on how to proceed with the minimization.

In most of the fair division literature, little is assumed about the strategic behaviour of the
children. Brams and Taylor (1996) discuss the issue of the manipulability of the preferences:
in most cases children may benefit from declaring false preferences. A different approach
takes into account the possibility for the children to form coalitions after (Legut 1990 and
Legut et al. 1994) or before (Dall’Aglio et al. 2009) the division of the cake. In both cases
coalitional games are defined and analysed. In the case of early cooperation among children,
the game is based on a maxmin allocation problem among coalitions, each one having a
joint utility function and a weight. The first properties of the game are studied in Dall’Aglio
et al. (2009). It turns out that the analysis of the game is made harder by the difficulties in
computing the characteristic function, i.e., the value associated to each coalition. The tools
we introduce, therefore, become essential in computing such values, as well as any synthetic
value, such as the Shapley value, associated to the game.

The coalitional maxmin problem is indeed a generalization of the classical maxmin prob-
lem introduced by Dubins and Spanier. Therefore, we consider a common approach to set
up an algorithm which, at each step, will compute an approximating allocation, together
with lower and upper bounds for the maxmin value. The algorithm is based on a subgradient
method proposed by Shor (1985) and it yields an approximation of the optimal allocation
with any fixed degree of precision.

In Sect. 2 we describe the maxmin fair division problem with coalitions through the
strategic model of interaction among players in Dall’Aglio et al. (2009) and the geometrical
setting employed in Barbanel (1999, 2005) and Dall’Aglio (2001). In Sect. 3 we present
the upper and the lower bounds for the objective value. In Sect. 4 we fit the Subgradient
Method to our problem and we derive a procedure where the optimal value and the optimal
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partition are computed up to a desired precision and we provide a numerical example where
we describe two fair division games and we compute the corresponding shapley values. Some
final considerations are given in Sect. 5.

2 The model and the maxmin fair division problem with coalitions

We represent our completely divisible good as the set C, a Borel subset of a finite dimensional
Euclidean space, and we denote as B(C) the Borel σ−algebra of subsets of C . Let N =
{1, . . . , n} be the set of players, whose preferences on the good are μ1, . . . , μn, where each
μi , i ∈ N , is a probability measures on (C, B(C)). By the Radon-Nikodym theorem, if μ is
a non-negative finite-valued measure with respect to which each μi is absolutely continuous
(for instance we may consider μ = ∑

i∈N μi ), then, for each A ∈ B(C),

μi (A) =
∫

A

fi (x)dμ(x) ∀ i ∈ N ,

where fi is the Radon-Nikodym derivative of μi with respect to μ.
We will consider the following assumptions:

(CD) complete divisibility of the good: For each i ∈ N and each A ∈ B(C) such that
μi (A) > 0, there exists a measurable set B ⊂ A such that μi (A ∩ B) > 0 and
μi (A ∩ Bc) > 0.

(MAC) mutual absolutely continuity: If there exists i ∈ N and A ∈ B(C) such that
μi (A) > 0, then μ j (A) > 0, for each j �= i .

(RD) relative disagreement: For each pair i, j ∈ N and each A ∈ B(C) such that
μi (A) > 0 and μ j (A) > 0, there exists a measurable set B ⊂ A such that
μi (B)
μi (A)

�= μ j (B)

μ j (A)
.

Condition RD is equivalent to the following: for each i, j, h ∈ N and each c ∈ R

μh
{

x ∈ C : fi (x) = c f j (x)
} = 0 .

Throughout the rest of the work we will assume that CD always holds, while MAC and RD
are useful, though restrictive, assumptions that we will employ only when strictly needed.

For any k ∈ N, let (A1, . . . , Ak) be a k-partition, i.e., a partition of the good C into k
measurable sets. Let �k be the class of all k-partitions. How do players behave in the division
procedure? In the simplest case, each player competes with the others to get a part of the
cake with no strategic interaction with other players. Each (A1, . . . , An) ∈ �n determines
a division of the good in which player i ∈ N gets the share Ai with value μi (Ai ). Here,
individual players seek an allocation with values as high as possible. A fair compromise
between the conflicting interests is given by maxmin allocation (A∗

1, . . . , A∗
n) ∈ �n that

achieves

vm := max
(A1,...,An)∈�n

{

min
i∈N

μi (Ai )

}

. (1)

Here vm denotes the maxmin value in the classical fair division problem. With a completely
divisible good, the allocation (A∗

1, . . . , A∗
n) is fair (or proportional), i.e. μi (A∗

i ) ≥ 1
n for

all i ∈ N . Moreover, if MAC holds, it must also be egalitarian, i.e. μi (A∗
i ) = μ j (A∗

j ) for
all i, j ∈ N (see Dubins and Spanier 1961). Therefore, under this assumption, an optimal
allocation is also the bargaining solution proposed by Kalai and Smorodinsky (1975) (see
also Kalai 1977).
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Dall’Aglio et al. (2009) proposed a strategic model of interaction, where players, before the
division takes place, gather into mutually disjoint coalitions. Within each coalition, players
pursue an efficient allocation of their collective share of the cake.

Let G be the family of all partitions of N and, for each � ∈ G, let |�| = m, m ≤ n, and let
M = {1, . . . , m} be the coalitions’ indexes set. Thus, players cluster into coalitions specified
by the partition � = {S1, . . . , Sm}. For each coalition S j , j ∈ M , players state their joint
preferences as follows

μS j (B) = max{Di }i∈S j partition of B

∑

i∈S j

μi (Di ) =
∫

B

fS j (x)dμ(x) , (2)

with fS j (x) = maxi∈S j fi (x), B ∈ B(C) and {Di }i∈S j ⊂ B(C). The utility μS j (B) of
coalition S j will be divided among its members in a way that prevents any of them to break
the coalition in search of a better deal. Once the global coalition structure is known, a fair
allocation of the cake among the competing coalitions is sought. In this context, assigning the
same value to all coalitions could yield an unfair outcome. Fairness here must consider the
different importance that coalitions may assume and this is taken into account by a weight
function w : 2N → R+.

In this framework, each coalition takes the role of a single player in Eq. (1). Following
Kalai (1977), when coalitions in � are formed and the weight function w is considered,
players should agree on a division of the cake which achieves the following value

v(�,w) = max
(B1,...,Bm )∈�m

{

min
j∈M

μS j (B j )

w(S j )

}

. (3)

Each coalition can evaluate its performance in the division by considering the following
coalitional game

η(S, w) = w(S)v(�S, w) S ⊆ N (4)

where �S = {S, { j} j /∈S}. The value η(S, w) can be interpreted as the minimal utility that
coalition S is going to receive in the division when the system of weight w is enforced,
independently of the behaviour of the other players.

A crucial question lies in the definition of the weight system. We consider two proposals:

• wcard = |S|, S ⊂ N . This is certainly the most intuitive setting. Although very natural, this
proposal suffers from a serious drawback, since players participating in the game η(·, w)

may be better off waiting to seek for cooperation well after the cake has been divided (see
Dall’Aglio et al. 2009);

• wpre = μS
(∪i∈S A∗

i

)
, S ⊂ N , where (A∗

1, A∗
2, . . . , A∗

n) is the partition maximizing (1).
By seeking early agreements among them, players will be better off than postponing such
agreements until the cake is cut. The above mentioned problem is overcome at the cost of
a less intuitive (and more computationally challenging) formulation (see Dall’Aglio et al.
2009). It is interesting to note that to find these weights we need to solve (1).

It is easy to verify that, for each S ⊆ N ,

η(S, wcard) ≤ η(S, wpre)

with equality if S = N or S = {i} where i ∈ N .
The optimization problem (3) can be seen as an infinite dimensional assignment problem.

In principle we could attribute any piece of the cake C to any of the participating players
(provided certain measurability assumptions are met). For very special instances this becomes
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a linear program: when the preferences have piecewise constant densities, or when the cake
is made of a finite number of completely divisible and homogeneous parts.

The fully competitive value vm is a special instance of the cooperative case, since vm =
v(�1, w1), with �1 = {{1}, . . . , {n}} and w1({i}) = 1 for each i ∈ N . Therefore, we focus
on the cooperative case alone.

2.1 A geometrical setting

We now describe a geometrical setting already employed in Barbanel (1999, 2005);
Dall’Aglio (2001) and Legut (1988) to explore fair division problems. In what follows we
consider the weighted preferences and densities, μw

j and f w
j , given respectively by

μw
j = μS j

w(S j )
f w

j = fS j

w(S j )
.

The partition range, also known as individual pieces set (IPS) (see Barbanel 2005) is defined
as

P := {(μw
1 (B1), . . . , μ

w
m(Bm)) : (B1, . . . , Bm) ∈ �m} ⊂ R

m+.

Let us consider some of its features. Each point p ∈ P is the image, under (μw
1 , . . . , μw

m),
of an m-partition of C . Moreover, P is compact and, if CD holds, P is also convex (see
Dvoretzky et al. 1951). Therefore, v(�,w) = max {x > 0 : (x, x, . . . , x) ∩ P �= ∅}. So, the
point (v(�,w), . . . , v(�,w)) is the intersection of the Pareto frontier of P and the egalitarian
line

� = {x ∈ R
m : x1 = x2 = . . . = xm}. (5)

In case M AC holds, this is the only point corresponding to optimal allocations in (3).

3 Upper and lower bounds for the maxmin value

We turn our attention to a simpler optimization problem that may have an unfair solution,
but it provides easy-to-compute upper and lower bounds for the original problem. These
bounds depend on a weighted maxsum partition, which we can derive through a straight-
forward extension of a result by Dubins and Spanier (1961). Let �m−1 denote the unit
(m − 1)−simplex.

Proposition 3.1 (see Dubins and Spanier 1961, Theorem 2, Dall’Aglio 2001, Proposition
4.3) Let α ∈ �m−1 and let Bα = (Bα

1 , . . . , Bα
m) be an m−partition of C. If

αk f w
k (x) ≥ αh f w

h (x) for all h, k ∈ M and for all x ∈ Bα
k , (6)

then
(Bα

1 , . . . , Bα
m) ∈ argmax

(B1,...,Bm )∈�m

∑

j∈M

α jμ
w
j (B j ). (7)

The value of this maxsum problem is itself an upper bound for problem (3). For each
choice of α ∈ �m−1, we have a maxsum partition Bα = (Bα

1 , . . . , Bα
m) corresponding to α.

Definition 3.2 The partition value vector (PVV) uα = (uα
1 , . . . , uα

m) is defined by

uα
j = μw

j (Bα
j ), for each j = 1, . . . , m.
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The PVV uα is a point where the hyperplane
∑

j∈M α j x j = k touches the partition range
P, so uα lies on the Pareto border of P . Moreover, for any α ∈ �m−1 there exists at least
one PVV (see Barbanel 2005). We are ready to state the first approximation result.

Proposition 3.3 Let g : �m−1 → R
+ be as follows:

g(α) :=
∫

C

max
j∈M

{α j f w
j (x)}dμ(x).

Then,

v(�,w) ≤ g(α) ≤ max
j∈M

uα
j .

Proof Following (Dall’Aglio 2001, Proposition 4.3) we know that the hyperplane that
touches P at the point uα is defined by the equation

∑

i∈M

αi xi = g(α) .

Since α ∈ �m−1, this hyperplane intersects the egalitarian line � defined in (5) at the point
(g(α), . . . , g(α)). Since the hyperplane is located above P , this point lies above the maxmin
point with coordinates (v(�,w), . . . , v(�,w)). Therefore,

g(α) ≥ v(�,w) .

Finally, since g(α) is a weighted average of the values (uα
1 , . . . , uα

m), it follows that
g(α) ≤ max j∈M uα

j . ��
The function g was already considered in Dall’Aglio (2001), where it was shown that g

is convex on �m−1, and v(�,w) = minα∈�m−1 g(α).
We now turn our attention to a lower bound for v(�,w). The following result generalizes

Theorem 3 in Legut (1988) and Theorem 1.1 in Elton et al. (1986).

Proposition 3.4 Let u = (u1, . . . , um) be a partition value vector such that

uh = max
j=1,...,m

u j . (8)

Then,

v(�,w) ≥ v(u) := uh

1 + ∑
j �=h

uh−u j
μw

j (C)

≥ min
j∈M

u j . (9)

Proof Let us consider the following vectors

eq = (0, . . . , 0, μw
q (C), 0, . . . , 0) q ∈ M q �= h, (10)

where μw
q (C) is the weighted joint utility of the whole cake by coalition Sq . Now, consider

the convex hull of the PVV u and the m − 1 points eq , q �= h,

V :=
⎧
⎨

⎩
thu +

∑

q �=h

tqeq : (th, . . . , tm) ∈ �m−1

⎫
⎬

⎭
.

The lower bound we are looking for is the intersection point between V and the egalitarian line
� from (5) (see Fig. 1). Let us denote this point as (xw, . . . , xw). Without loss of generality,
let us suppose h = 1. Then, we obtain (xw, . . . , xw) as follows:

123



Ann Oper Res (2014) 223:121–136 127

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t1u1 + 0 + · · · + 0 = xw

t1u2 + t2μw
2 (C) + · · · + 0 = xw

...

t1um + 0 + · · · + tmμw
m(C) = xw

t1 + t2 + · · · + tm = 1

We are dealing with a linear system with m + 1 unknown quantities, t1, t2, . . . , tm, xw.,
m + 1 equations and full rank.

Thus, by Cramer’s rule, we get xw as

xw =

det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

u1 0 . . . 0 0
u2 μw

2 (C) . . . 0 0
...

...
...

...
...

um 0 . . . μw
m(C) 0

1 1 . . . 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

u1 0 . . . 0 −1
u2 μw

2 (C) . . . 0 −1
...

...
...

...
...

um 0 . . . μw
m(C) −1

1 1 . . . 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= u1
∏

q �=1 μw
q (C)

det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 . . . 1
−1 u1 0 . . . 0
−1 u2 μw

2 (C) . . . 0
...

...
...

...
...

−1 um 0 . . . μw
m(C)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= u1
∏

q �=1 μw
q (C)

∏
q �=1 μw

q (C) + ∑
q �=1

∏
i �=q,1 μw

i (C)(u1 − uq)

= u1
∏

q �=1 μw
q (C)

∏
q �=1 μw

q (C)
[
1 + ∑

q �=1
(u1−uq )

μw
q (C)

] = u1

1 + ∑
q �=1

(u1−uq )

μw
q (C)

,

where the second equality derives by suitable exchanges of rows and columns in the denom-
inator matrix. In fact, we get the second one after an even number of exchanges on the first:
m successive exchanges of the last row until it reach the first position, and m successive
exchanges of the last column until it reach the first position. So the two matrices in the
denominator have the same determinant. It is easy to verify that ti > 0, for every i ∈ N .

Finally, since the lower bound belongs to the convex hull of the PVV u and the m − 1
vectors eq , q �= h, it is not less than the minimum component of each vector, in particular
v(u) ≥ min j∈M u j . ��

An illustration of the position of the bounds with respect to the partition range in the case
of two coalitions is shown in Fig. 1.

4 The subgradient method

In the previous section we have seen that for each choice of the coefficients vector α we can
derive upper and lower bounds for v(�,w). We describe a way of improving the coefficients
α so that eventually the bounds will shrink to the optimal value.

Since in general g is a non-differentiable convex function, we can rely on a simple minimiz-
ing algorithm developed by Shor (1985), the subgradient method. For more recent overviews
of the method we refer to Bertsekas (1999) and Boyd and Vanderberghe (2003). Let us start
by describing the method through some basic definitions and the essential convergence result.

123



128 Ann Oper Res (2014) 223:121–136

Fig. 1 Upper and lower bounds for the two-coalition case

Definition 4.1 Let f be a convex function with domain E , finite dimensional Euclidean
space, and x0 ∈ E . A vector γ (x0) in R

n is called a subgradient or a generalized gradient of
f at x0 if it satisfies

f (x) − f (x0) ≥ 〈γ (x0), x − x0〉 for all x ∈ E . (11)

We denote as ∂x f (x) the set of subgradients of a convex function f at any point x of E .

Definition 4.2 A sequence {hk}∞k=0 of positive numbers is called diminishing step size rule
if it satisfies the conditions:

lim
k→∞ hk = 0, (12)

∞∑

k=0

hk = +∞. (13)

The subgradient method minimizes a convex function (possibly non-differentiable) which
has a bounded set of minimum points. This is obtained by moving a point in the domain in
the opposite direction of a subgradient at that point by a step defined by a diminishing step
size rule. We recall the general result

Theorem 4.3 (Theorem 2.3 in Shor 1985) Let f be a convex function defined on E, with a
bounded set of minimum points E∗.

Suppose that a sequence {xk}∞k=0 is generated according to the formula

xk+1 = xk − hk+1γ (xk), k = 1, 2, . . . (14)

where γ (xk) ∈ ∂x f (xk), x0 is an arbitrary starting point and {hk}∞k=0 is a diminishing step
size rule. Then, if the sequence {γ (xk)}∞k=0 is bounded, the algorithm converges, in the sense
that

lim
k→∞ min

x∈E∗ ||xk − x || = 0 and lim
k→∞ f (xk) = min

x∈E
f (x) ,

where || · || is the Euclidean norm.
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It should be noted that f (xk) is not decreasing in k, therefore this is not a pure descent method.
We get a better approximation to minx∈E f (x) if we replace f (xk) with min j≤k f (x j ) for
every k = 0, 1, 2, . . ..

We now consider an extension of the function g into the affine (m − 1)-dimensional
subspace

D =
{

α ∈ R
m :

∑

i∈M

αi = 1

}

.

Let M−(α) = {i ∈ M : αi < 0}, M+(α) = {i ∈ M : αi ≥ 0} and s+(α) = ∑
i∈M+(α) αi .

Define α̂ ∈ �m−1 as

α̂i =
{

0 if i ∈ M−(α)
αi

s+(α)
if i ∈ M+(α)

Clearly α̂ = α, if α ∈ �m−1. For any α ∈ D define

g(α) =
∫

C

max
i∈M

{αi f w
i (x)} dμ(x) = s+(α)

∫

C

max
i∈M+(α)

{α̂i f w
i (x)} dμ(x)

= s+(α)
∑

i∈M+(α)

α̂i u
α̂
i =

∑

i∈M

αi u
α̂
i ,

the last equality deriving from the fact that uα
i = 0 whenever αi < 0. We now establish

several properties of g on D.

Proposition 4.4 (i) g is a convex function on D.
(ii) Suppose α ∈ D\�m−1. Then there exists α̂ ∈ �m−1 such that g(α̂) < g(α).

(iii) For any α, α0 ∈ D

g(α) ≥
∑

i∈M

αi u
α̂0

i .

Proof To prove (i), pick any α, β ∈ D and γ ∈ [0, 1]. Then

max
i∈M

{[γαi + (1 − γ )βi ] fi (x)} ≤ γ max
i∈M

{αi fi (x)} + (1 − γ ) max
i∈M

{βi fi (x)} .

Integrating over C we get

g(γ α + (1 − γ )β) ≤ γ g(α) + (1 − γ )g(β) .

To prove (i i) pick α ∈ D\�m−1 and consider

g(α) = s+(α)
∑

i∈M+(α)

α̂i u
α̂
i > g(α̂) ,

since s+(α) > 1.
Moving to (i i i), first of all, we prove that the inequality holds for any α, α0 ∈ �m−1

g(α) =
∑

i∈M

αi u
α
i = max

B∈�m

∑

i∈M

αiμ
w
i (Bi ) ≥

∑

i∈M

αiμ
w
i (Bα0

i ) =
∑

i∈M

αi u
α0

i . (15)

Now take α /∈ �m−1 and α0 ∈ D to get

g(α) = s+(α)
∑

i∈M+(α)

α̂i u
α̂
i ≥ s+(α)

∑

i∈M+(α)

α̂i u
α̂0

i ≥
∑

i∈M

αi u
α̂0

i ,
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the first inequality deriving from (15), the second one from the fact that, in case αi < 0 and
α0

i > 0, the corresponding term in the sum is negative. ��
According to statement (i i) in the last proposition,

min
α∈D

g(α) = min
α∈�m−1

g(α)

and the two problems have the same set of minimizers. We now apply the subgradient method
to find a minimizing sequence, formulating the problem as an unconstrained one on R

m−1.

Proposition 4.5 Suppose C D holds. Let A∗ be the set of minimzers of g(α) in �m−1 and let
{hk}∞k=0 be a diminishing step size rule. Then, for any α0 ∈ �m−1 and the update rule

uk = PV V (α̂k) (16)

αk+1−m = αk−m − hk+1

[
uk−m − uk

m1m−1

]
(17)

αk+1
m = 1 − 〈αk+1−m , 1m−1〉 , (18)

where 1m−1 = (1, . . . , 1) ∈ R
m−1, uk−m = (uk

1, . . . , uk
m−1) and αk−m = (αk

1, . . . , αk
m−1), we

have

lim
k→∞ min

α∈A∗ ||αk − α|| = 0 and lim
k→∞ g(αk) = lim

k→∞ min
j≤k

g(α j ) = min
α∈�m−1

g(α). (19)

Proof Consider x = (x1, x2, . . . , xm−1) ∈ R
m−1. Denote αx = (x1, x2, . . . , xm−1, 1 −∑

i �=m xi ), A∗
x = {x ∈ R

m−1 : αx ∈ A∗}, and

g−1(x) = g(αx ) .

A subgradient for the function g−1 of m − 1 free variables at x0 ∈ R
m−1 is given by

u0−m − u0
m1m−1 ,

where α0 = αx0
, u0−m = (uα̂0

1 , uα̂0

2 , . . . , uα̂0

m−1) and u0
m = uα̂0

m . In fact, for any x, x0 ∈ R
m−1,

we have

g−1(x) − g−1(x0) = g(αx ) − g(α0) ≥
∑

i∈M

αx
i u0

i −
∑

i∈M

α0
i u0

i

=
∑

i �=m

u0
i (xi − x0

i ) + u0
m

∑

i �=m

(x0
i − xi )

=
∑

i �=m

(u0
i − u0

m)(xi − x0
i ) = 〈u0−m − u0

m1m−1, x − x0〉 ,

the inequality deriving from (i i i) in Proposition 4.4.
Since u0−m − u0

m1m−1 ∈ [−1, 1]m−1, the subgradient is bounded for all possible choices
of x0. Now consider the update rule

xk+1 = xk − hk+1

[
ux̂k

−m − ux̂k

m 1m−1

]
.

Theorem 4.3 guarantees that

lim
k→∞ min

x∈A∗
x

||xk − x || = lim
k→∞ min

α∈A∗ ||αxk − α|| = 0 and

min
x∈Rm−1

g−1(x) = lim
k→∞ g−1(xk) = lim

k→∞ g(αxk
) = min

α∈�m−1
g(α) .

��
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The rules (16), (17) and (18) update αk , by considering player m as a reference player, and by
adjusting the other players’ utilities to equalize with that of the reference. The convergence
process will then make all utilities converge to an equal value, which will be independent
of the chosen reference. In fact, any player can play that role and, furthermore, we could
consider a procedure where all players’ utilities are compared to a symmetric value such
as the utilities’ mean. This time we will consider an unconstrained problem in R

m . Notice,
however, that if we pick any point of D as the origin of the sequence, then the whole sequence
of updated vectors will stay in D.

Proposition 4.6 In Proposition 4.5, we could replace the update rules (16), (17) and (18)
with

uk = PV V (α̂k) (20)

αk+1 = αk − hk+1

[
uk − ūk

]
, (21)

where ūk = ∑
j∈M uk

j/m, obtaining the same convergence results.

Proof For any y = (y1, . . . , ym) ∈ R
m and i ∈ M let

αy,i =
⎛

⎝y1, . . . , yi−1, 1 −
∑

j �=i

y j , yi+1, . . . , ym

⎞

⎠

and gi (y) = g(αy,i ). Now consider

g̃(y) = 1

m

∑

i∈M

gi (y) .

Now g̃ is a convex function of y ∈ R
m , which coincides with g on D. Moreover,

min
y∈Rm

g̃(y) = min
α∈D

g(α) .

The minimizing points include those in �m−1 which minimize g and, in case any other
y∗ /∈ D minimizes g̃, then αy,1, αy,2, . . . , αy,m all minimize g in �m−1 (and therefore any
of their convex combinations). The i-th component of a subgradient of g̃ at y is

1

m

∑

j �=i

(
uα̂y, j

i − uα̂y, j

j

)
. (22)

Notice, however, that if we choose y ∈ D, then α̂y,1 = · · · = α̂y,m = ŷ, and (22) simplifies
to

1

m

∑

j∈M

(
u ŷ

i − u ŷ
j

)
= u ŷ

i − ū ŷ .

If we now consider the update rule with step hy , we have

ynew = y − hy

[
u ŷ − ū ŷ

]
∈ D .

Therefore, if we start with a vector in D (and a fortiori, with a vector in �m−1), the whole
sequence of updated values of y will stay in D, where g̃ and g coincide, and will converge
to the set of minimizers of g. Denoting any element in the sequence in D as αk , instead of
yk , we get the desired convergence results (19). ��
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We next consider an instance where also the convergence of the lower bound towards the
optimal value v(�,w) is established. Suppose that M AC and RD hold. Then, for any point
on the Pareto border P there exists one and only one hyperplane touching P (See Sect. 12.C
and 12.D in Barbanel 2005). Consequently, there exists a unique α∗ minimizing g, and there
exists a unique equitable u∗ = PV V (α∗). Therefore, we have the following.

Proposition 4.7 Suppose C D. M AC and RD hold. Then, for any α0 ∈ �m−1 updated by
the rules (16), (17) and (18), or by the rules (20) and (21), we have

lim
k→∞ αk = α∗, lim

k→∞ g(αk) = g(α∗) = v(�,w) and (23)

lim
k→∞ uk = u∗, lim

k→∞ v(uk) = v(u∗) = v(�,w) . (24)

Proof Convergences in (23) are guaranteed by Propositions 4.5, 4.6 and by the uniqueness
of the minimizing argument for g.

To prove (24), suppose on the contrary that αk → α∗ while uk
� u∗. Since the sequence

{uk} lies in a compact set, there must be a convergent subsequence uk′ → ũ �= u∗. The vector
ũ is a second PVV associated to α∗, but this is ruled out by RD. Thus, limk→+∞ uk = u∗,
and, by continuity, limk→+∞ v(uk) = v(u∗) = v(�,w). ��
The results in this section describe procedures that make an arbitrary initial allocation con-
verge to the optimal value and allocation through an iterative adaptive process that reduces
the weight for those players who are receiving more utility than a certain reference value,
and increases it for those who are receiving too little. These iterative procedures towards an
equilibrium have a long history in economic theory that can be traced back to Walras and his
theory of tatonnement (See Walras 1889).

4.1 The algorithm

We now present two versions of an algorithm for the maxmin division problem in case C D,
M AC and R D hold. The common initializing elements for both versions are listed in Table 1.
The first version computes upper and lower bounds for v(�,w) and updates the coefficient
vector α through the subgradient rules (20) and (21). Both bounds are nonmonotonic at every
step. Therefore, they are updated by means of a simple comparison with the old ones. The
generic step is described in Table 2. A simpler but slower version, described in Table 3,
computes the approximating optimal partition as well as the value. The finiteness of both
algorithms is guaranteed by Proposition 4.7.

Particular care is needed in choosing the diminishing step size rule. A sequence converging
too fast to 0 may lead to an increase in the number of steps needed, since the step may soon
become too small to reach the optimum. Similarly a sequence converging too slowly may

Table 1 Description and
initialization algorithms elements

Elements Description Initialization

α Supporting hyperplane
coefficients vector

α0
j = 1/m, j ∈ M

u PVV vector associated to α̂ u0 = uα0

ub Upper bound g(α0)

lb Lower bound v(u0)

hk Diminishing step size rule Several proposals
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Table 2 Generic step k for
algorithm returning v(�, w)

Step k Computation

Update u uk = PV V (α̂k )

Update α αk+1 = αk − hk+1(uk − ūk )

Update ub if g(αk+1) < ub, then ub = g(αk+1)

Update lb if v(uk ) > lb, then lb = v(uk )

End condition if ub − lb < ε, then STOP. Else, repeat the step.

Table 3 Generic step k for
algorithm returning u∗ Step k Computation

Update u uk = PV V (α̂k )

End condition if max j∈M uk
j − min j∈M uk

j < ε, then STOP.

Update α αk+1 = αk − hk+1(uk − ūk ). Repeat the step.

result in values of α jumping in and out of the unit simplex. This, again, will slow the
convergence process.

4.2 A five players example

Let us consider the coalitional game defined in (4), with five players and players’ preferences
listed as probability distributions on C = [0, 1] in Table 4.

In Fig. 2, we represent the initial densities (a) and then the maxmin partition for the fully
competitive context (b), where � = {{i}i∈N } and w({i}) = 1, for all i ∈ N .

Table 4 Players preferences Player {i} μi

1 Beta (2, 5)

2 Beta (3, 8)

3 Beta (7, 2)

4 Beta (10, 10)

5 Uniform [0, 1]

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(a) .
0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

(b) .

Fig. 2 Densities of players preferences and maxmin partition in competitive context (red for player 1, green
for player 2, blue for player 3, brown for player 4, purple for player 5)
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Table 5 Comparison between
the coalitional game values

Coalition S η(S, wcard ) η(S, wpre)

{i}, i = 1, 2, 3, 4, 5 0.404 0.404

{1, 2} 0.822 0.842

{1, 3} 0.835 0.836

{1, 4} 0.844 0.861

{1, 5} 0.819 0.827

{2, 3} 0.820 0.820

{2, 4} 0.826 0.826

{2, 5} 0.828 0.833

{3, 4} 0.808 0.808

{3, 5} 0.926 1.040

{4, 5} 0.886 1.004

{1, 2, 3} 1.262 1.280

{1, 2, 4} 1.273 1.302

{1, 2, 5} 1.256 1.265

{1, 3, 4} 1.275 1.289

{1, 3, 5} 1.392 1.465

{1, 4, 5} 1.366 1.427

{2, 3, 4} 1.242 1.241

{2, 3, 5} 1.389 1.474

{2, 4, 5} 1.349 1.414

{3, 4, 5} 1.403 1.625

{1, 2, 3, 4} 1.706 1.727

{1, 2, 3, 5} 1.877 1.903

{1, 2, 4, 5} 1.841 1.862

{1, 3, 4, 5} 1.968 2.044

{2, 3, 4, 5} 1.940 2.032

{1, 2, 3, 4, 5} 2.477 2.477

Table 6 Comparison between
the Shapley values

Player {i} S.V. in η(S, wcard ) S.V. in η(S, wpre)

1 0.465 0.436

2 0.451 0.425

3 0.507 0.519

4 0.491 0.502

5 0.563 0.594

For any S ⊆ N , we run our algorithm enforcing the two weight systems wcard and
wpre, with a tolerance of 10−3 and we compute the corresponding game values (Table 5).
Consequently, in Table 6, we compute the Shapley value for each game.

The two games share the same ranking for the Shapley values

Pl.5 � Pl.3 � Pl.4 � Pl.1 � Pl.2 ,

which therefore seems to be robust enough to the choice of system weights.

123



Ann Oper Res (2014) 223:121–136 135

Also, the weight system wpre amplifies the difference in the Shapley values obtained with
wcard , yielding a higher variance for the values’ distributions.

5 Concluding remarks

In the previous section we described a couple of algorithms that return maxmin values and
partitions in both competitive and cooperative settings. It is important to note that we could
think of the same procedures as interactively implemented between (coalitions of) players
and an impartial referee. At first the referee proposes a division of the cake based on the
maxsum division of the cake with equal weights for all players. The players now report their
utilities and the referee corrects the inequalities in the division by proposing a new maxsum
division with modified weights: Players who were better off will be given a smaller weight
and those who were worst off will see their weight increase. Of course, one cannot hope to
achieve the same degree of precision, since the algorithm performs that step dozens of times,
but the bounds described in Sect. 3 give a precise idea on how far the proposed division is
from the desired one.

Many issues remain open. We hint at two of them.

• In the numerical example it would be interesting to link the Shapley value rankings to the
original system of preferences. What makes Players 5 and 3 the most powerful players in the
cooperative division process? Apparently the two utility functions have different features:
Player 5’s distribution is uniform over the unit interval and his density is maximal only at
the very ends of the interval. On the other hand, Player 3’s preferences are concentrated
at the second half of the interval—where he has no competitors, except player 5 (who,
however, has a smaller density). No simple explanation could be provided so far.

• Beyond the convergence of the algorithms, which end in a finite number of steps, returning
the approximate solution up to a specified degree of precision, it would be interesting to
investigate about the computational efficiency of the same algorithms
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