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Abstract It is well-known that reinsurance can be an effective risk management solution
for financial institutions such as the insurance companies. The optimal reinsurance solution
depends on a number of factors including the criterion of optimization and the premium
principle adopted by the reinsurer. In this paper, we analyze the Value-at-Risk based opti-
mal risk management solution using reinsurance under a class of premium principles that
is monotonic and piecewise. The monotonic piecewise premium principles include not only
those which preserve stop-loss ordering, but also the piecewise premium principles which
are monotonic and constructed by concatenating a series of premium principles. By adopting
the monotonic piecewise premium principle, our proposed optimal reinsurance model has a
number of advantages. In particular, our model has the flexibility of allowing the reinsurer
to use different risk loading factors for a given premium principle or use entirely different
premium principles depending on the layers of risk. Our proposed model can also analyze
the optimal reinsurance strategy in the context of multiple reinsurers that may use different
premium principles (as attributed to the difference in risk attitude and/or imperfect infor-
mation). Furthermore, by artfully imposing certain constraints on the ceded loss functions,
the resulting model can be used to capture the reinsurer’s willingness and/or capacity to
accept risk or to control counterparty risk from the perspective of the insurer. Under some
technical assumptions, we derive explicitly the optimal form of the reinsurance strategies in
all the above cases. In particular, we show that a truncated stop-loss reinsurance treaty or a
limited stop-loss reinsurance treaty can be optimal depending on the constraint imposed on
the retained and/or ceded loss functions. Some numerical examples are provided to further
compare and contrast our proposed models to the existing models.
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1 Introduction

Reinsurance is one of the most traditional and long standing risk management solutions,
particularly from an insurer’s point of view. Its strategic use not only leads to an effective
risk mitigation, but it also enhances an insurer’s stability and profitability. Examples of the
reinsurance contracts (or treaties) for which an insurer can transfer its risk to a reinsurer
include quota-share reinsurance, stop-loss reinsurance, excess-of-loss reinsurance, surplus
reinsurance, and so on. Because of the variety of these reinsurance treaties that exist in
the marketplace, the insurers are therefore constantly seeking for better and more effective
reinsurance strategies.

The quest for optimal risk management solution using reinsurance is an active area of
research among academics, actuaries, and risk managers. In a typical formulation of an
optimal reinsurance model, it involves at least the following three components. First is the
criterion (i.e. objective) that determines the optimality of the reinsurance contracts. Second is
the premium principle that specifies how the reinsurance premium is calculated. The third is
the constraints, if any, that are imposed on the model. Examples of some typical constraints
include the restriction on the structure of the reinsurance contracts and the reinsurance pre-
mium budget that an insurer could spend on reinsuring his risk via reinsurance. In this paper,
we will also demonstrate that an ingenious specification of constraints could lead to an opti-
mal reinsurance model with some desirable features, including controlling the credit risk of
the reinsurer and the counterparty risk of the insurer. The pioneering work on optimal reinsur-
ance is attributed to Borch (1960), Kahn (1961) andArrow (1963). In particular, Borch (1960)
showed that the stop-loss reinsurance is optimal in the sense of minimizing the variance of
the insurer’s retained loss under the assumption of expected reinsurance premium principle.
Confining to the expected reinsurance premium principle and the criterion of maximizing
the expected utility of a risk-averse insurer’s terminal wealth, Arrow (1963) also established
that stop-loss reinsurance is optimal.

The classical optimal reinsurancemodels have been generalized in a number of interesting
directions, with particular emphasis on the three aspects of the optimal reinsurance models
discussed above, i.e. more sophisticated criterion, more complex premium principles, and
more involved constraints. Just to name a few, Young (1999), Kaluszka (2001, 2005) and
Kaluszka and Okolewski (2008) addressed the optimal reinsurance strategy by considering
other premium principles such asWang’s premium principle, mean-variance premium princi-
ples, maximal possible claims principle, convex premium principles, etc. Cai and Tan (2007),
Cai et al. (2008), Balbás et al. (2009), Chi and Tan (2011) and Tan et al. (2011) demonstrated
that modern riskmeasures such as the Value-at-Risk (VaR) and the Conditional Value-at-Risk
(CVaR) can be exploited in a reinsurance model for a viable risk management solution. More
recently, Chi and Tan (2013) broadened the optimal reinsurance model by investigating the
VaR and CVaR reinsurance models under a more general premium principle. They imposed
some constraints on the ceded loss functions and assumed that the premium principle sat-
isfies three basic axioms, namely distribution invariance, risk loading and stop-loss order
preserving. See also Cheung et al. (2013) and Chi and Weng (2013).

While the existing results have studied the optimal reinsurance solutions under a standard
premium or a particular class of premium principles, in this paper we propose a new class of
premium principle which we denote as themonotonic piecewise premium principle and show
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that the resulting optimal reinsurance model involving this new class of premium principle
is still tractable. By piecewise premium principle we mean a premium principle that can
be constructed by either concatenating a series of different premium principles or using the
same premium principle but with different parameter values.

There are many advantages to investigate the optimal reinsurance model under this new
class of premium principle. First and foremost is that the proposed monotonic piecewise
premium principle is able to capture the risk attitude of the reinsurer easily and intuitively.
If risk were segmented into different layers so that a higher layer of risk refers to a greater
risk exposure with a larger potential catastrophic loss, then a reinsurer typically has a dif-
ferent level of risk attitude on each of these layers. This implies that different layers of risk
may be priced differently. More specifically, a reinsurer, in general, demands a higher risk
premium (i.e. higher risk loading) on a risk in higher layers than a risk in lower layers. The
proposed monotonic piecewise premium principle provides an elegant way of addressing
the differentiate in risk attitude. For example, if a reinsurer prefers to consistently using an
expected premium principle to price all layers of risk, then the differentiate in risk attitude
can be reflected by attaching a higher risk loading parameter of the expected premium prin-
ciple when pricing a higher layer of risk. The piecewise nature of the premium principle also
provides a greater flexibility in modeling a reinsurer’s risk attitude by allowing the reinsurer
to adopt different premium principles depending on the layers. For instance, the reinsurer
may use the expected value premium principle when the claim is less than a certain threshold
level, and Wang’s premium principle when the claim exceeds that threshold. Similarly, if the
reinsurer uses principle of equivalent utility to price the contracts, the reinsurer may choose
different parameters or even different utility functions on different layers and this again leads
to premium principle that is piecewise.

A second advantage to investigate the optimal reinsurance under the proposed monotonic
piecewise premium principle is that it can be used to analyze the optimal reinsurance in
the context of multiple reinsurers. This is facilitated by the fact that the piecewise nature of
pricing layers of risk can be viewed as being reinsured by different reinsurers. Each reinsurer
is reinsuring one or more layers of risk using its premium principle.

A third advantage is that it is a much wider class of premium principles in that it encom-
passes the stop-loss preserving class of premium principle considered in Chi and Tan (2013).
The stop-loss preserving premium principle includes the following eight classical premium
principles: net, expected value, exponential, proportional hazard, principle of equivalent util-
ity,Wang’s, Swiss, andDutch.Moreover, the classwe consider here also includes the premium
principles which are monotonic and constructed by concatenating some combinations of the
above eight premium principle.

Another contribution of the paper is to demonstrate that by meticulously imposing an
appropriate constraint on an optimal reinsurance model, optimal reinsurance strategy with
a certain desirable property can be obtained analytically. More specifically, we propose
two variants of the optimal reinsurance models. The first model takes into consideration
the reinsurers’ willingness to reinsure when designing the reinsurance contract. Many of
the studies on optimal reinsurance implicitly assume that the reinsurers will accept any
reinsurance contracts proposed by the insurance companies. This, however, may not be the
case in practice. It is possible that the reinsurers are not willing to, or not allowed to due to
concern with credit risk or constraint on risk capital requirement. This issue can be addressed
by imposing a limit on the losses that can be ceded to the reinsurer.

The second model is motivated by the presence of the counterparty risk that the insurer is
concerned with. In an ideal arrangement, losses that are ceded to the reinsurer become the
obligation of the reinsurer and will be indemnified to the insurer. However there are situations
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where the reinsurer might be facing cash flow strained or financial distress that impact its
ability to meet its obligation.When this arises, the insurer is responsible for the losses that are
supposedly to have transferred to the reinsurer and hence ultimately bearing the counterparty
risk. This suggests that when designing an optimal reinsurance strategy, insurer needs to take
into consideration the counterparty risk. In this paper, we propose a new optimal reinsurance
model that reflects counterparty risk.

The basic setup of our optimal reinsurancemodel is to seek an optimal reinsurance strategy
that minimizes the VaR of the total exposed risk of an insurer given some budget constraint
and under the monotonic piecewise reinsurance premium principles. The model description,
including the definition of monotonic piecewise premium principle and the constraints on
the ceded loss functions are described in Sect. 2. The use of VaR as a relevant measure of
risk for the insurer is prompted by its popularity among banks and financial institutions for
quantifying risk. Analytical reinsurance strategies for the basic reinsurance model as well as
its variants are derived in Sect. 3. In particular, by requiring the retained loss function to be
nondecreasing, this section demonstrates that the ceded loss function of the following form

f (x) = (x − d)+1{x�v} (1)

where 0 � d � v, (x)+ = max{x, 0}, and 1D denotes the indicator function of an event
D, can be optimal. This ceded loss function is commonly known as the truncated stop-loss
reinsurance treaty. The same type of ceded loss function is also shown to be optimal in the
reinsurance models analyzed by Gajek and Zagrodny (2004), Kaluszka (2005), Kaluszka and
Okolewski (2008), Bernard and Tian (2009) and Chi and Tan (2011). The truncated stop-
loss reinsurance treaty has the peculiar property that once the loss amount exceeds a certain
threshold v, the reinsurer will have zero obligation to the insurer. In other words, there is no
indemnification from the reinsurer to the insurer for any loss exceeding v. From an insurer’s
point of view, this risk management strategy seems counterintuitive and not desirable since
there is no protection to the insurer when there is a catastrophic loss (or when loss exceeds
v). From the reinsurer’s point of view, ceded loss function of this kind is also not desirable
as it induces an insurer’s moral hazard. There is an incentive for the insurer to underreport
its loss when the actual loss exceeds v.

One simple solution of preventing the truncated stop-loss function being optimal is to
impose the constraint that the ceded loss function is also nondecreasing, in addition to non-
decreasing constraint on the retained loss function. This is exactly the motivation for Sect. 4
which demonstrates that with the added constraint, a limited stop-loss reinsurance treaty with
the following structure

f (x) = min{(x − a)+, b} (2)

for some a � 0, b > 0, can be optimal. Note that the limited stop-loss treaty is similar
to the standard stop-loss reinsurance except that it imposes an upper limit on the loss that
a reinsurer is liable. Risk management with this type of property is more reasonable as it
does not expose the reinsurer to unlimited risk exposure. There are other studies that have
similarly shown that the above ceded loss function can be optimal. These include the works
of Kaluszka and Okolewski (2008) and Gajek and Zagrodny (2004). Using the the criteria
of maximizing either the expected utility or the stability of the cedent, the former authors
established that (2) can be optimal for a fixed reinsurance premium calculated according to
the maximal possible claims principle. Similarly the latter authors considered more general
symmetric and even asymmetric risk measures and showed the optimality of (2).

By considering a particular form of a piecewise premium principle, Sect. 5 provides a
detailed illustration on how the optimal form of the reinsurance treaties can be evaluated.
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Numerical examples are further given to compare and contrast our proposed models to the
existing results. Sect. 6 concludes the paper.

2 Risk measure based reinsurance model

2.1 Model description

Let X be the claim random variable that an insurer is obligated to pay. Without any loss of
generality, we assume that X is a non-negative random variable with cumulative distribution
function (c.d.f.) FX (x) = P(X � x) and E(X) < ∞. In the absence of reinsurance the
insurer’s risk exposure is X . Let us now assume that the insurer is using reinsurance to cede
part of his risk to a reinsurer. In this case, the claim X is divided into two parts, i.e. the ceded
loss part, f (X), and the retained loss part, R f (X). This means that X = f (X)+ R f (X) and
that a reinsurance contract (or treaty) is uniquely determined by either the ceded loss function
f (·) or the retained risk function R f (·). Here we focus on the ceded loss function f (·) to
identify the reinsurance treaty. Under the reinsurance treaty f , the reinsurer is obligated to
pay f (X) to the insurer when a claim X arises. By transferring part of the risk to a reinsurer,
the insurer incurs an additional cost in the form of reinsurance premium Π( f (X)) that is
payable to the reinsurer. Note that the reinsurance premium is a function of the ceded loss
function f (·) and the adopted premium principle. In the presence of reinsurance, the total risk
exposure of the insurer is transformed from X to T f (X)where T f (X) = R f (X)+Π( f (X)).
The transformed random variable T f (X) captures the tradeoff between risk retaining and
risk transferring. If the insurer is conservative and wishes to transfer most of the risk to
a reinsurer, then the retained risk R f (X) can be made small but at the expense of higher
reinsurance premium Π( f (X)). On the other hand, if the insurer has a much higher risk
tolerance, then the cost of reinsurance Π( f (X)) will be small but at the expense of higher
retained risk R f (X). Consequently the idea underlying the optimal reinsurance is to seek
an optimal ceded function f (x) that balances the tradeoff between risk retaining and risk
transferring.

A plausible risk measure based optimal reinsurance model [see for example Cai and Tan
(2007) and Chi and Tan (2013)] can be formulated as{

min
f ∈L ρ(T f (X))

s.t. Π( f (X)) � π0,
(3)

where ρ(·) represents the risk measure that is adopted by the insurer, Π(·) is the reinsur-
ance premium principle, π0 is the maximum budget an insurer could spend on reinsurance
premium, and L is the admissible set of ceded loss functions. In this paper, we analyze the
optimal reinsurance model by setting the risk measure ρ to the VaR. Despite its shortcom-
ings such as lacking coherence property (see Artzner et al. (1999)), VaR remains prominent
among financial institutions for quantifying risk [see Jorion (2006)]. Formally, VaR is defined
as follows:

Definition 1 The VaR of a non-negative variable X at the confidence level (1 − α), where
0 < α < 1, is defined as

VaRα(X) = inf{x � 0 : P(X > x) � α}.
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The constant α, which is typically a small value such as 1 % or 5 %, reflects the the desired
confidence level of the insurer. The optimal reinsurance model (3) under VaR criterion sim-
plifies to {

min
f ∈L VaRα(T f (X))

s.t. Π( f (X)) � π0.
(4)

We now define the admissible set L. Here we consider the following two classes of L,
which are labeled as L1 and L2, respectively:

L1 = {0 � f (x) � x : R f (x) ≡ x − f (x) is a nondecreasing and
left continuous function}, (5)

L2 = {0 � f (x) � x : both R f (x) and f (x) are nondecreasing functions,
R f (x) is left continuous}. (6)

There are some common characteristics among the above admissible sets L1 and L2. First,
the loss that is ceded to a reinsurer is nonnegative and uniformly bounded by the risk itself.
The latter restriction ensures that the claim amount paid by the reinsurer does not exceed
the original claim. Second, the retained loss function is at least a nondecreasing function so
that the insurer needs to bear a correspondingly higher claim for larger claim. Third, without
loss of too much generality, for any reinsurance treaty f , we assume that the retained loss
function R f (x) is a left continuous function with respect to x . Fourth, the admissible set
L1 encompasses L2; i.e. L2 � L1. Some argue that the ceded loss function should be
nondecreasing, similar to the retained loss function. Ensuring both ceded loss function and
the retained loss function to be nondecreasing has the advantage of reducing the insurer’s
moral hazard. It is for this reason that we also investigate the optimal reinsurance under the
admissible class L2. Chi and Tan (2013) similarly analyzed the optimal reinsurance under
L2 and stop-loss preserving class of premium principle. The above two admissible sets L1

and L2 represent the two basic constraints we impose on the ceded loss functions and the
retained loss functions, as we will discuss in Sect. 3 and 4.

2.2 Piecewise premium principle

This subsection begins by first describing thewell-known stop-loss order preserving premium
principle. Thenwe formally define the proposed class of premium principle that is monotonic
and piecewise. We conclude the subsection by presenting an example in order to contrast the
difference between the proposed class of premium principle and the class of stop-loss order
preserving premium principle.

In order to understand what we meant by a class of premium principle that is stop-loss
order preserving, it is essential to first introduce the definition of stop-loss order between
two risks. While there are several different but equivalent definitions of stop-loss order
[see Hurlimann (1998)], here we just state the one which is based on Theorem 3.2.2 in
Rolski et al. (1999).

Definition 2 Suppose X1 and X2 are two random variables with finite means. If

E
[
(X1 − d)+

]
� E

[
(X2 − d)+

]
, ∀ d ∈ R,

then we say that the random variable X1 is smaller than the random variable X2 in stop-loss
order and we use the notation X1 �sl X2 to denote such ordering.
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Using the above definition, the stop-loss order preserving property of the insurance premium
principle is defined as follows:

Definition 3 Suppose Π(·) is an insurance premium principle. If Π(X1) � Π(X2) for any
random variables X1 and X2 as long as they satisfy X1 �sl X2, then we say that the insurance
premium principle Π(·) is stop-loss order preserving.

Now we introduce what we meant by a class of premium principle that is monotonic.

Definition 4 Given any two risks X and Y such that X (ω) � Y (ω) for all possible outcomes
ω, then Π(·) is said to be a premium principle preserving monotonicity if Π(X) � Π(Y ).

It should be emphasized that monotonicity is a mild condition on the premium principle.
In particular, the class of monotonic premium principles includes the premium principles
which preserve stop-loss ordering. The class of premium principles which preserves stop-
loss ordering includes the following eight classical premium principles: net, expected value,
exponential, proportional hazard, principle of equivalent utility, Wang’s, Swiss, and Dutch.
It is also worth mentioning that monotonicity allows a premium principle to have a very
flexible piecewise structure. The piecewise premium principle is defined as follows:

Definition 5 If there exist 0 = a0 < a1 < · · · < an−1 < an = ∞, ai ∈ R, i = 0, 1, . . . , n
such that for any random variable X , Π(X) = ∑n

i=1 Πi (X · 1X∈[ai−1,ai )), where 1 denotes
the indicator function and each Πi (·) is a specific premium principle, then we say that the
premium principle Π(·) is a piecewise premium principle. If additionally the piecewise
premium principle satisfies the monotonicity property, then the resulting premium principle
is both monotonic and piecewise.

Note that any arbitrary classical premium principle is a special case of the above piecewise
premium principle. This follows by setting n = 1 in the above definition. For this reason we
will mainly focus our analysis on the piecewise premium principle (i.e. n > 1) instead of
the ordinary premium principle. Furthermore, the monotonic piecewise premium principle
encompasses the stop-loss order preserving premium principle so that the former premium
principle is more general than the latter premium principle. In fact, the following example
confirms that a premium principle can be monotonic and piecewise and yet does not preserve
the stop-loss ordering.

Example 1 Using the notation in Definition 5, this example considers a monotonic piecewise
premium principle with n = 2, a1 = 10, andΠi , i = 1, 2 are expectation premium principles
with risk loading factors ρ1 = 0.1 and ρ2 = 0.5, respectively. This implies thatΠ1 applies to
the first layer of riskwith loss amount less than 10whileΠ2 applies to the remaining layerwith
loss amount exceeding or equal to 10. Hence the piecewise premium principle is constructed
by concatenating two expectation premium principles with the following representation:

Π(X) = 1.1 · E
[
X · 1X∈[0,10)

] + 1.5 · E
[
X · 1X∈[10,∞)

]
. (7)

Note that the expectation premium principle is monotonic and preserves stop-loss order and
that the premium principle (7) is a monotonic piecewise premium principle.

Let us now consider the following two loss random variables X1 and X2 such that X1

represents a deterministic loss of 10 in any scenario while X2 equals to 5 with probability
of 80 % and uniformly distributed between 5 and 55 with probability of 20 %. It is easy to
verify that both risks have the same expectations; i.e. E [X1] = E [X2] = 10. Furthermore,
the following analysis confirms that X1 �sl X2.
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(i) If d � 5, we have

E
[
(X1 − d)+

] = E [X1] − d = E [X2] − d = E
[
(X2 − d)+

]
.

(ii) If 5 < d � 10, we have

E
[
(X2 − d)+

] − E
[
(X1 − d)+

] =d + 55

2
∗ 55 − d

50
∗ 0.2 − (10 − d)

= − d2

500
+ d − 3.95,

which is increasing with respect to d when 5 < d � 10. Therefore, it achieves its minimum
when d = 5, i.e.,

E
[
(X2 − d)+

] − E
[
(X1 − d)+

]
� 1 > 0.

(iii) If d � 10, it is clear that

E
[
(X1 − d)+

] = 0 � E
[
(X2 − d)+

]
.

Hence according to Definition 2, we have X1 �sl X2. On the other hand, the premium
principle (7) is not stop-loss order preserving premium principle though it is a monotonic
piecewise premium principle since Π(X1) = 15 and Π(X2) = 13.34.

3 Optimality of truncated stop-loss reinsurance treaties

By assuming the premium principle is monotonic (see Definition 4) and the ceded loss
functions need not be non-decreasing [i.e. the admissible set of ceded loss functions is given
by L1 as defined in (5)], Sect. 3.1 shows that the truncated stop-loss reinsurance treaty (1)
is optimal to the reinsurance model (4). The same subsection also demonstrates that the
basic reinsurance model can be extended to analyzing the optimal reinsurance treaties under
the multiple reinsurers when the premium principle is of the form piecewise as defined in
Definition 5. Two interesting extensions of the optimal reinsurance models are discussed
in Sect. 3.2 and 3.3. In particular, Sect. 3.2 investigates the reinsurance model (4) under
the additional constraint that a limit is imposed on the reinsurance treaty while Sect. 3.3
examines a generalization of the reinsurance model (4) that incorporates counterparty risk.
Interestingly, both variants of the optimal reinsurance models still confirm the optimality of
the truncated stop-loss reinsurance treaties.

3.1 Without nondecreasing assumption on the ceded loss functions

In this subsection, we show that for the reinsurance model (4), the truncated stop-loss rein-
surance strategy is optimal among all the strategies in L1. To proceed, for any ceded loss
function f from the set L1, it is useful to consider the following function:

g f (x) =
{

[x + f (v) − v]+ , if 0 � x � v,

0, if x > v,
(8)

where v = VaRα(X). Note that by construction, g f is also an element in L1. Clearly, if the
ceded loss function of a reinsurance treaty takes the form g f , then the reinsurance treaty is a
truncated stop-loss reinsurance treaty. The following theorem shows that if the reinsurance
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premium is monotonic, the truncated stop-loss reinsurance treaty is the optimal form among
all the admissible treaties in L1.

Theorem 1 Consider the reinsurance model (4) with admissible ceded loss functions L1.
Assume further that the reinsurance premium principle Π(·) is a monotonic piecewise pre-
mium principle. Then, for any ceded loss function f ∈ L1, we can construct the ceded loss
function g f ∈ L1 using (8) such that g f satisfies the following properties:

(a) Π( f (X)) � π0 implies Π(g f (X)) � π0. Equivalently, if the ceded loss function f
satisfies the budget constraint, then the ceded loss function g f will also satisfy the budget
constraint;

(b) VaRα(Tg f (X)) � VaRα(T f (X)).

Proof (a) We first claim that g f (x) � f (x) for all x � 0. In fact, for 0 � x � v, since
f ∈ L1, the retained loss function corresponding to f is nondecreasing, which implies that

v − f (v) � x − f (x).

Therefore,

g f (x) = [x + f (v) − v]+ � f (x),

and

g f (x) = 0 � f (x), ∀ x > v.

Thus, g f (x) � f (x),∀ x � 0.
As a result, the monotonicity of the premium principle Πi (·) immediately implies that

Π(g f (X)) � Π( f (X)), which is the desired result.
(b) The translation invariance property of VaR yields

VaRα(T f (X)) = VaRα(R f (X)) + Π( f (X))

= R f (VaRα(X)) + Π( f (X))

= VaRα(X) − f (VaRα(X)) + Π( f (X))

� VaRα(X) − g f (VaRα(X)) + Π(g f (X))

= VaRα(Tg f (X)),

where the second equality is due to an application of Theorem 1 in Dhaene et al. (2002) along
with the left continuity and nondecreasing properties of R f (x). This completes the proof.

��

Remark 1 (a) The above theorem indicates that the optimality of the truncated stop-loss
reinsurance strategy is independent of the reinsurance premium principle. The truncated
stop-loss reinsurance strategy is optimal among all the strategies in L1 as long as the
premium principle is monotonic. The actual specification of the parameter values of the
optimal ceded loss function then depends on the premium principle.

(b) If we denote d = v − f (v), then the truncated stop-loss function g f defined in (8) can
be succinctly represented as

g f (x) = (x − d)+1{x�v}.
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Furthermore, it follows fromTheorem 1 that the VaR-based optimal reinsurance problem
(4), with admissible set of ceded loss functions L1, can equivalently be rewritten as⎧⎪⎨

⎪⎩
min

0�d�v
VaRα

(
X − (X − d)+1{X�v} + Π

[
g f (X)

])

s.t. Π[g f (X)] ≡ Π
[
(X − d)+1{X�v}

]
� π0.

The above optimization problem reduces to⎧⎪⎨
⎪⎩

min
0�d�v

d + Π
[
g f (X)

]

s.t. Π[g f (X)] ≡ Π
[
(X − d)+1{X�v}

]
� π0,

(9)

which is simply an optimization problem involving only one variable. Hence once the
reinsurance premium principle is given, it is technically much easier to solve, as shown
in the numerical examples in Sect. 5.

If there exist several reinsurers which adopt different premium principle in the market,
then the insurance company will naturally take advantage of this when ceding its risk to the
reinsurers. When determining the optimal reinsurance strategy, the insurance company will
consider the existence of multiple reinsurers, and the premium principle is not so explicit as
that in the case of single reinsurer. The following theorem deals with the case of multiple
reinsurers.

Theorem 2 Assume that there are n reinsurers in the market and that reinsurer i adopts
premium principle, Πi (·), for i = 1, 2, . . . , n. Each premium principle Πi (·) is a monotonic
piecewise premium principle.We further assume that the insurance company will always seek
the optimal way to cede his risk to the reinsurers in order to minimize the cost of reinsurance.
Under the above assumptions, the premium that the insurance company pays associated with
the ceded loss function f is given by

Π( f (X)) = min
{Ai }ni=1

n∑
i=1

Πi
(
f (X) · 1 f (X)∈Ai

)

=
n∑

i=1

Πi

(
f (X) · 1

f (X)∈A f
i

) (10)

where
⋃n

i=1 Ai = ⋃n
i=1 A

f
i = [0,+∞). And {A f

i }ni=1 is the optimal partition associated
with the ceded loss function f in the sense that it minimizes the premium paid by the insurance
company.

Then, for any ceded loss function f ∈ L1, we can construct the ceded loss function g f

according to (8), and g f satisfies the following properties:

(a) Π( f (X)) � π0 implies Π(g f (X)) � π0. Equivalently, if the ceded loss function f
satisfies the budget constraint, then the ceded loss function g f will also satisfy the budget
constraint;

(b) VaRα(Tg f (X)) � VaRα(T f (X)).

Proof (a) From the proof of Theorem 1, we know that g f (x) � f (x),∀ x � 0. Therefore,
for any set B, we have

g f (X · 1X∈B) � f (X · 1X∈B).
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The monotonicity of the premium principle Πi (·) immediately implies that

Πi (g f (X · 1X∈B)) � Πi ( f (X · 1X∈B)), i = 1, . . . , n.

We assume that {A f
i }ni=1 is the optimal partition associated with the ceded loss function

f in the sense that it minimizes the premium paid by the insurance company given a ceded
loss f . This means that the reinsurance premium is calculated by

Π( f (X)) =
n∑

i=1

Πi

(
f (X) · 1

f (X)∈A f
i

)
.

We further denote that B f
i = f −1(A f

i ) as the inverse image of A f
i under f , then the

premium associated with the ceded loss function f expressed in the above expression can be
rewritten as

Π( f (X)) =
n∑

i=1

Πi

(
f (X) · 1

f (X)∈A f
i

)

=
n∑

i=1

Πi

(
f (X · 1

X∈B f
i
)
)

.

Analogously we have B
g f
i = g−1

f (A
g f
i ), where {Ag f

i }ni=1 is the optimal partition associated

with the ceded loss function g f and B
g f
i is the inverse image of A

g f
i under g f . Then

Π(g f (X)) =
n∑

i=1

Πi

(
g f (X) · 1

g f (X)∈A
g f
i

)

=
n∑

i=1

Πi

(
g f (X · 1

X∈Bg f
i

)

)

�
n∑

i=1

Πi

(
g f (X · 1

X∈B f
i
)
)

�
n∑

i=1

Πi

(
f (X · 1

X∈B f
i
)
)

= Π( f (X)),

which is the required result.
The proof of part (b) is the same as that of Theorem 1 and hence is omitted. ��

Remark 2 (a) The above theorem identifies the optimal form of the ceded loss function
when there are multiple reinsurers in the market. The optimal form of the reinsurance
strategies is also a truncated stop-loss type contract.

(b) In this theorem, we do not need to assume that the premium principle Π(·) to be
monotonic, though it is a weak and reasonable assumption on the premium principle.
We just need to impose the monotonic assumption on each Πi (·), which is the premium
principle adopted by the i-th reinsurer.

(c) It is worth mentioning that the overall retained loss function is nondecreasing. Therefore,
the reinsurers will accept this treaty if they only require the retained loss functions to be
nondecreasing for the concern of moral hazard.
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(d) It is imperative to distinguish the works of Asimit and Badescu (2013) and Chi and
Meng (2012) from ours as they have similarly investigated the optimal reinsurance in
the context of multiple reinsurers. The key difference lies in how the ceded losses are
distributed to the reinsurers. Their formulations assume that the ceded losses are divisible
in such a way that any loss is shared among the reinsurers while in our setup, the ceded
losses are first divided into layers and then each reinsurer is responsible (entirely) for
each layer of risk. Because the potential claim is assumed to be segmentable, their
optimal reinsurance strategies and the corresponding minimal exposed risk may depend
on the number of reinsurance companies in the market. Even if all the reinsurers are
using the same premium principle, the number of reinsurers in the market may still
affect insurer’s optimal strategy and the corresponding optimal exposed risk level. This
phenomenon appears to be counterintuitive. In contrast, our proposed optimal strategy
and the corresponding minimal exposed risk only depend on the premium principles
adopted by the reinsurers and not on the number of reinsurers in the market.

(e) Remark 1 for Theorem 1 is similarly applied to Theorem 2.

3.2 Exerting limit on the reinsurance treaties

In general, reinsurers do not wish to reinsure catastrophic claims unless they are appropriately
compensated. Some reinsurers may raise the risk loading factor on higher layers of coverage,
which has been dealt with by considering the monotonic piecewise premium principles in
the last subsection. Some reinsurers may choose to impose a limit on the reinsurance treaties.
Another reason for reinsurer to impose a limit on the reinsurance treaties may be due to
regulatory constraint. In this subsection we will investigate an optimal reinsurance strategy
under this motivation.

We suppose that the reinsurers are only willing to accept the reinsurance treaties subject
to a limit. This implies that the maximal values of the ceded loss functions are bounded by
a specified constant c1. Hence the admissible set of the ceded loss functions is revised to

L′
1 = {0 � f (x) � min{x, c1} : R f (x) ≡ x − f (x) is a nondecreasing

and left continuous function}. (11)

Though the admissible set is different, we can still use the method similar to the last
subsection to derive the optimal reinsurance strategies. This is summarized in the following
corollary.

Corollary 1 Consider the reinsurance model (4) with admissible ceded loss functions L′
1

and monotonic piecewise reinsurance premium principle Π(·). Then, for any ceded loss
function f ∈ L′

1, we can construct the ceded loss function g f using (8) with g f satisfies the
following properties:

(a) g f ∈ L′
1.

(b) Π( f (X)) � π0 implies Π(g f (X)) � π0. Equivalently, if the ceded loss function f
satisfies the budget constraint, then the ceded loss function g f will also satisfy the budget
constraint;

(c) VaRα(Tg f (X)) � VaRα(T f (X)).

Proof From the proof of Theorem 1 (a), we know that g f (x) � f (x),∀ x � 0. Therefore,
f (x) � min{x, c1} implies that g f (x) � min{x, c1}. It is easy to verify that the retained loss
function Rg f , which is associated with the ceded loss function g f , is nondecreasing and left
continuous. Accordingly, we can conclude that g f ∈ L′

1.
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Since the construction of g f is the same as that in Theorem 1, the proof of part (b) and
(c) is exactly the same as that of Theorem 1 and hence is omitted. ��
Remark 3 (a) The above corollary identifies an optimal formof the ceded loss functionwhen

there is a limit imposed on the reinsurance treaties. The optimal form of the reinsurance
strategies is also a truncated stop-loss type contract.

(b) Using the notation from Remark 1, we can express the ceded loss function g f as follows

g f (x) = (x − d)+1{x�v}.

It is clear that max
x�0

{g f (x)} = v − d . Therefore, we need the condition d � v − c1 to

ensure that g f (x) is bounded by the constant c1. This implies that we can simplify the
optimization problem as follows⎧⎪⎨

⎪⎩
min

max{0,v−c1}�d�v
d + Π

[
g f (X)

]

s.t. Π[g f (X)] ≡ Π
[
(X − d)+1{X�v}

]
� π0.

(12)

3.3 In the presence of counterparty risk

In an ideal reinsurance arrangement, the reinsurer is liable for any claim as stipulated in the
reinsurance treaty and hence any claim that is ceded will be reimbursed by the reinsurer.
The insurer is only concerned with the residual part of the risk. While this is true in the-
ory, in practice the use of reinsurance exposes the insurer to another type of risk known as
the counterparty risk. The counterparty risk arises when the reinsurer is not able to meet
its obligation for reasons such as the company is having cash flow strained or facing insol-
vency/bankruptcy. When this occurs, the insurer is ultimately responsible for the part of the
risk that is supposedly ceded to the reinsurer. This suggests that in the design of optimal
reinsurance strategy, the creditworthiness of the reinsurer is one of the critical factors that
cannot be ignored. Yet the counterparty risk is often neglected in most formulations of the
optimal reinsurancemodels. The objective of this subsection is to demonstrate that by artfully
modifying some of the constraints of the reinsurance models, the counterparty risk could be
integrated to the optimal reinsurance models that we have discussed so far.

We first assume that the actual claim that is ceded to the reinsurer is so large that when
it exceeds a certain threshold, then the reinsurer is in financial stress and might not be able
to meet its contractual obligation. In this case, the loss that is supposedly indemnified to the
insurer will be defaulted. We propose to reduce the counterparty risk by ensuring that the
probability of the reinsurer not meeting its obligation does not exceed a certain acceptable
tolerance level of the insurer. If c̄1 represents the threshold of the above reinsurer and 0 �
β � 1 denotes the desired tolerance level of the insurer, then the above condition is translated
to the probabilistic constraint P( f (X) > c̄1) � β. The parameter β is predetermined by the
insurer and reflects the insurer’s risk tolerance towards counterparty risk. Clearly, the smaller
the β, the less exposure the insurer is to counterparty risk. In the extreme case where β = 0,
the counterparty risk is completely eliminated since the ceded claim can never exceed the
threshold c̄1 and hence the counterparty risk will never be triggered.

The optimal reinsurance model (4) can easily be modified to reflect the above approach
of controlling the counterparty risk. This is achieved by seeking an optimal reinsurance to
the reinsurance model (4) with the admissible set of the ceded loss function revises to
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L′′
1 ={0 � f (x) � x : P( f (X) > c̄1) � β, R f (x) ≡ x − f (x) is a nondecreasing and

left continuous function}.
(13)

As in the last subsection, we can still use the same technique to derive the optimal rein-
surance strategies even though the admissible set is different. The results are summarized in
the following corollary.

Corollary 2 Consider the reinsurance model (4) with admissible ceded loss functions L′′
1

and monotonic piecewise reinsurance premium principle Π(·). Then, for any ceded loss
function f ∈ L′′

1 , we can construct the ceded loss function g f using (8) and that g f has the
following properties:

(a) g f ∈ L′′
1 .

(b) Π( f (X)) � π0 implies Π(g f (X)) � π0. Equivalently, if the ceded loss function f
satisfies the budget constraint, then the ceded loss function g f will satisfy the budget
constraint as well;

(c) VaRα(Tg f (X)) � VaRα(T f (X)).

Proof From the proof of Theorem 1 (a), we know that g f (x) � f (x),∀ x � 0. Therefore,
P( f (X) > c̄1) � β implies that P(g f (X) > c̄1) � β. It is easy to verify that the retained
loss function Rg f , which is associated with the ceded loss function g f , is nondecreasing and
left continuous. Accordingly, we conclude that g f ∈ L′′

1.
Since the construction of g f is the same as that in Theorem 1, the proofs of part (b) and

(c) are exactly the same as that of Theorem 1, hence are omitted here. ��
Remark 4 (a) The above corollary identifies the optimal form of the ceded loss function

which takes into consideration counterparty risk. The optimal form of the reinsurance
strategies is also a truncated stop-loss type contract.

(b) Using the notation in Remark 1, we can express the ceded loss function g f as follows

g f (x) = (x − d)+1{x�v}.

Therefore, P(g f (X) > c̄1) � β is equivalent to d > Q1 − c̄1 where Q1 = inf{q � 0 :
P(q < X � v) � β}. This implies that we can simplify the optimization problem as
follows: ⎧⎪⎨

⎪⎩
min

max{0,Q1−c̄1}�d�v
d + Π

[
g f (X)

]

s.t. Π[g f (X)] ≡ Π
[
(X − d)+1{X�v}

]
� π0.

(14)

(c) Note that the model we considered in the last subsection is a special case of the model
in this subsection. This can be seen by setting c̄1 = c1 and β = 0. Therefore, the
optimal reinsurance model proposed in this subsection is more general and that it gives
the insurer the additional flexibility of specifying its attitude on courterparty risk. The
insurer’s attitude on counterparty risk is reflected by c̄1 and β. Note also that if we let
c̄1 = +∞ or β = 1, then the model in this subsection recovers the one in Sect. 3.1.

4 Optimality of limited stop-loss reinsurance treaties

In the last section, we study a few variations of the optimal reinsurance model (4). All
these variants share the same constraint that the ceded loss functions do not need to be

123



Ann Oper Res (2016) 237:177–202 191

nondecreasing and that the truncated stop-loss reinsurance treaties are optimal. These results
imply that the losses that are ceded to the reinsurer do not need to increase with losses. In
fact when the losses increase to a critical level, the losses ceded will reduce drastically to
zero and remain at zero thereafter. This raises a concern to the reinsurer as reinsurance treaty
of this type potentially triggers insurer’s moral hazard. On the other hand, the truncated loss
function is also not a desirable risk management strategy for the insurer since there is no
protection when the loss exceeds a certain threshold level. For these reasons, both insurers
and reinsurers often prefer reinsurance treaties with the property that the ceded losses are at
least non-decreasing with losses. As a result, the objective of this section is to investigate the
optimal ceded loss function f to the optimization problem (4) when the premium principle
is monotonic and there is a monotonic assumption imposed on the ceded loss functions. In
this case, the admissible set of the ceded loss function corresponds to L2. Similarly, we will
extend our results to the case of multiple reinsurers and investigate the optimal strategies
if there is a limit on the reinsurance treaties or there exists counterparty risk. Our analysis
reveals that the limited stop-loss treaty (2) can be optimal.

4.1 With nondecreasing assumption on the ceded loss functions

In this subsection, we assume the admissible set is L2 as defined in (6). We will show that
the so-called limited stop-loss reinsurance strategy (2) is optimal among all the strategies in
L2. We will employ the same technique used in the previous section to derive the optimal
solutions over L2. Analogously, for any ceded loss function f from set L2 we construct the
following function h f which is also an element in L2:

h f (x) = min
{
[x − (v − f (v))]+ , f (v)

}
, (15)

where as defined previously v = VaRα(X).
It follows from the above representation that the reinsurance treaty with the ceded loss

function h f (X) is commonly known as a limited stop-loss reinsurance treaty. The following
theorem shows that if the reinsurance premium principle is monotonic, then the limited
stop-loss reinsurance treaty is the optimal form among all the admissible treaties in L2.

Theorem 3 Consider the reinsurance model (4) with admissible ceded loss functions L2.
Assume the reinsurance premium principleΠ(·) is amonotonic piecewise premium principle.
Then, for any ceded loss function f ∈ L2, we can construct the ceded loss function h f ∈ L2

according to (15), and h f satisfies the following properties:

(a) Π( f (X)) � π0 implies Π(h f (X)) � π0. Equivalently, if the ceded loss function f
satisfies the budget constraint, then the ceded loss function h f also satisfies the budget
constraint;

(b) VaRα(Th f (X)) � VaRα(T f (X)).

Proof The proof is similar to that of Theorem 1.
(a). We first claim that g f (x) � f (x) for all x � 0. In fact, for 0 � x � v, since f ∈ L2,

the retained loss function corresponding to f is nondecreasing, which implies that

v − f (v) � x − f (x).

Therefore,

h f (x) = [x + f (v) − v]+ � f (x).
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Since f ∈ L2 is a nondecreasing function, we have

h f (x) = v � f (x),∀ x > v.

Thus, h f (x) � f (x),∀ x � 0.
As a result, the monotonicity of the premium principle Πi (·) immediately implies that

Π(h f (X)) � Π( f (X)), which is the required result.
(b). The proof is parallel to proving part (b) of Theorem 1 and hence is omitted. ��

Remark 5 All the comments in Remark 1 for Theorem 1 are analogously applicable to the
present case. In particular, we make the following remarks:

(a) The above theorem indicates that the optimality of the limited stop-loss reinsurance
strategy is independent of the reinsurance premium principle. The limited stop-loss rein-
surance strategy is optimal among all the strategies inL2 as long as the premiumprinciple
is monotonic.

(b) By denoting d = v − f (v), the function h f defined above can be rewritten as

h f (x) = (x − d)+ − (x − v)+.

Based on the results from Theorem 3, it is easy to see that the VaR-based reinsurance
model (4) can be equivalently cast as{

min
0�d�v

VaRα

{
X − (X − d)+ + (X − v)+ + Π

[
h f (X)

]}
s.t. Π

[
h f (X)

] ≡ Π
[
(X − d)+ − (X − v)+

]
� π0.

The above optimization problem can be simplified as follows{
min

0�d�v
d + Π

[
h f (X)

]
s.t. Π

[
h f (X)

] ≡ Π
[
(X − d)+ − (X − v)+

]
� π0.

(16)

The optimal reinsurance problem again reduces to an optimization problem of just a
single variable.

Similar to the discussion in the last section, if there exist several reinsurers which adopt
different premium principle in the market, then the insurance company will naturally take
advantage of this when ceding its risk to the reinsurers. The following theorem, as a coun-
terpart of Theorem 2, deals with the case of multiple reinsurance companies.

Theorem 4 Consider the reinsurance model (4) with admissible ceded loss functions L2.
Assume that there are n reinsurers in the market and each reinsurer i adopts premium
principles Πi (·) for i = 1, 2, . . . , n. Every premium principle is a monotonic piecewise
premium principle.We further assume that after the insurance company determined his ceded
part, he will seek the optimal way to cede his risk to the reinsurers in order to minimize the
cost of reinsurance. Under the above assumptions, the premium that the insurance company
pays associated with the ceded loss function f is given by (10).

Then, for any ceded loss function f ∈ L2, we can construct the ceded loss function h f

according to (15), and h f satisfies the following properties:

(a) Π( f (X)) � π0 implies Π(h f (X)) � π0. Equivalently, if the ceded loss function f
satisfies the budget constraint, then the ceded loss function g f will also satisfy the budget
constraint;

(b) VaRα(Th f (X)) � VaRα(T f (X)).
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Proof The proof is parallel to Theorem 2 and hence is omitted. ��
Remark 6 All the comments in Remark 2 for Theorem 2 are analogously applicable here.
We emphasize that the overall ceded loss function and retained loss function are both non-
decreasing, though the ceded loss function with respect to the i-th reinsurer might not be.
Therefore, the reinsurers will accept this treaty since there it reduces moral hazard.

4.2 Exerting limit on the reinsurance treaties

Similar to Sect. 3.2, herewe study the optimal reinsurance strategies if there is a limit imposed
on the reinsurance treaties. We suppose that the maximal values of the ceded loss functions
are bounded by a specified constant c2 so that the admissible set of the ceded loss functions
changes to

L′
2 ={0 � f (x) � min{x, c2} : both R f (x) and f (x) are nondecreasing functions,

R f (x) is left continuous}. (17)

Using the technique similar to the last section, we obtain the following corollary. The
proof is also similar and hence is omitted.

Corollary 3 Consider the reinsurance model (4) with admissible ceded loss functions L2

and monotonic piecewise reinsurance premium principle Π(·). Then, for any ceded loss
function f ∈ L′

2, we can construct the ceded loss function h f using (15) and h f satisfies the
following properties:

(a) h f ∈ L′
2.

(b) Π( f (X)) � π0 implies Π(h f (X)) � π0. Equivalently, if the ceded loss function f
satisfies the budget constraint, then the ceded loss function h f also satisfies the budget
constraint;

(c) VaRα(Th f (X)) � VaRα(T f (X)).

Remark 7 All the comments in Remark 3 of Corollary 1 are analogously applicable here. In
particular, using the notation in Remark 5, the ceded loss function h f can be expressed as

h f (x) = (x − d)+ − (x − v)+.

Since max
x�0

{h f (x)} = v −d , h f (x) is bounded by the constant c2 is equivalent to d � v − c2.

Therefore, the optimization problem can be reformulated as follows{
min

max{0,v−c2}�d�v
d + Π

[
h f (X)

]
s.t. Π

[
h f (X)

] = Π
[
(X − d)+ − (X − v)+

]
� π0.

(18)

4.3 In the presence of courterparty risk

As in Sect. 3.3, we model the counterpary risk by seeking an optimal ceded loss function
such that the probability that the ceded part exceeds the threshold c̄2, which is P( f (X) > c̄2),
is bounded by a predetermined parameter β. In this case, the admissible set of the ceded loss
function is given by

L′′
2 ={0 � f (x) � x : P( f (X) > c̄2) � β, both R f (x) and f (x) are

nondecreasing functions, R f (x) is left continuous}. (19)
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where 0 � β � 1 is a predetermined parameter chosen by the insurance company.
Using the same technique, the following corollary gives the optimal reinsurance strategy

that reflects the counterparty risk. The proof is again omitted due to the similarity.

Corollary 4 Consider the reinsurance model (4) with admissible ceded loss functions L2

and monotonic piecewise reinsurance premium principle Π(·). Then, for any ceded loss
function f ∈ L′′

2 , we can construct the ceded loss function h f according to (15), and h f

satisfies the following properties:

(a) h f ∈ L′′
2 .

(b) Π( f (X)) � π0 implies Π(h f (X)) � π0. Equivalently, if the ceded loss function f
satisfies the budget constraint, then the ceded loss function h f also satisfies the budget
constraint;

(c) VaRα(Th f (X)) � VaRα(T f (X)).

Remark 8 All the comments in Remark 4 for Corollary 2 are analogously applicable here.
In particular, using the notation in Remark 5, the ceded loss function h f can be expressed as

h f (x) = (x − d)+ − (x − v)+.

Therefore, P(h f (X) > c̄2) � β is equivalent to d > Q2 − c̄1 where Q2 = VaRmax{α,β}(X).
Hence we can simplify the optimization problem as follows{

min
max{0,Q2−c̄2}�d�v

d + Π
[
h f (X)

]
s.t. Π

[
h f (X)

] = Π
[
(X − d)+ − (X − v)+

]
� π0.

(20)

5 Illustrations

The objective of this section is to illustrate how the results obtained in the last two sections can
be used to determine the optimal ceded loss functions by assuming the monotonic piecewise
expected value premium principle with the following representation:

Π(X) = (1 + ρ1) · E(X · 1X∈[0,a)) + (1 + ρ2) · E(X · 1X∈[a,+∞)) (21)

where X is any random variable, a, ρ1 and ρ2 are fixed constants with ρ2 � ρ1. We note
that the expected value premium principle is the simplest premium principle and it has been
widely studied due to its tractability. The drawback of this premium principle is that the risk
attitude of the reinsurer is assumed to be invariant to risk. This is inconsistent with practice
since reinsurer often demands a higher level of compensation for larger risk. This issue is
alleviated by using an expected value premium principle that is monotonic and piecewise
since in this case, the higher layer of risk is penalized with a larger loading factor.

Using the monotonic piecewise expected value premium principle (21), Sect. 5.1 first
derives the general expressions of the optimal ceded loss functions in term of parameters
a, ρ1 and ρ2. By considering a specified set of numerical values, Sect. 5.2 then calculates
explicitly the optimal ceded loss function. The optimal ceded loss functions are compared
and contrast to some existing results.

We emphasize that while we have consistently used the piecewise expected value premium
principle in our illustrations, the optimal reinsurance strategies under other piecewise pre-
mium principles, such as principle of equivalent utility but with piecewise parameter values,
piecewise with expected premium principle and Wang’s premium principle, piecewise with
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Dutch premium principle and Wang’s premium principle, and so forth, can be calculated in
a similar fashion.

5.1 Piecewise expected value premium principle

The general optimal ceded loss functions, in term of parameters a, ρ1 and ρ2, are derived in
the following two subsections for the optimal reinsurance models that we have analyzed in
the last two sections. The first subsection assumes that the ceded loss functions need not be
nondecreasing while the second subsection imposes the monotonic constraint on the ceded
loss functions.

5.1.1 VaR-minimization among L1

According to Theorem 1, the optimal ceded loss function is of the following form

f1(x) = (x − d1)+1{x�v},

where 0 � d1 < v and d1 is yet to be determined. Recall that v = VaRα(X). It follows from
(9) that the VaR of the insurer’s total exposed risk corresponding to the ceded loss function
f1 can be expressed as

VaRα

(
T f1(X)

) = d1 + Π
[
(X − d1)+1{X�v}

]
.

Now we will determine the optimal retention level d1 under the assumed premium principle
(21). Since the calculation of the reinsurance premium depends on the relationship between
the ceded loss function and the constant a, we need to consider the following two different
cases:

Case (i): d1 > v − a
In this case, we have the inequality f1(x) � v − d1 < a. Accordingly, the reinsurance

premium can be calculated as

Π
[
(X − d1)+ · 1(X � v)

] = (1 + ρ1)

v∫
d1

(X − d1)dFX (x)

= (1 + ρ1)

v∫
d1

F̄X (x)dx − (1 + ρ1)(v − d1)F̄X (v),

where F̄X (x) = 1− FX (x) is the complementary cumulative distribution function, which is
also called survival function, of the random variable X . Therefore, the corresponding VaR
of the insurer’s total exposed risk is given by
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VaRα

(
T f1(X)

) = d1 + (1 + ρ1)

v∫
d1

F̄X (x)dx − (1 + ρ1)(v − d1)F̄X (v).

Taking derivatives of the above expression of VaR with respect to d1 yields

∂VaRα

(
T f1(X)

)
∂d1

= 1 + (1 + ρ1)F̄X (v) − (1 + ρ1)F̄X (d1).

If 1
1+ρ1

+ F̄X (v) < 1 and by denoting γ1 = F̄−1
X

(
1

1+ρ1
+ F̄X (v)

)
, then it is obvious that

γ1 < v and that

∂VaRα

(
T f1(X)

)
∂d1

⎧⎨
⎩

< 0 if d1 < γ1
= 0 if d1 = γ1
> 0 if d1 > γ1

.

If 1
1+ρ1

+ F̄X (v) � 1, we set γ1 = 0.

Clearly, the reinsurance premium Π
[
(X − d1)+1{X�v}

]
decreases with the retention

level d1. We introduce a constant γ̄1 to reflect the minimum admissible retention level
induced by the budget constraint. If Π

[
X1{X�v}

]
� π0, then we set γ̄1 = 0; otherwise

we assume that the constant γ̄1 solves the equation Π
[
(X − γ̄1)+1{X�v}

] = π0. Therefore,
Π

[
(X − d1)+1{X�v}

]
� π0 if and only if d1 � γ̄1. Now we can express the optimal ceded

loss function f1(x) explicitly as follows

f1(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(x − γ1)+1{x�v}, if γ1 > v − a and γ1 � γ̄1;
(x − γ̄1)+1{x�v}, if γ1 > v − a and γ1 < γ̄1;
(x − (v − a)+)+1{x�v}, if γ1 � v − a and (v − a) � γ̄1;
(x − γ̄1)+1{x�v}, if γ1 � v − a and (v − a) < γ̄1;

where (v −a)+ means the number which is larger than (v −a) but infinitely close to (v −a).
The corresponding minimum VaR of the insurer’s total exposed risk is

VaRα(T f1(X))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1 + (1 + ρ1)

[
v∫

γ1

F̄X (x)dx − (v − γ1)F̄X (v)

]
, if γ1 > v − a, γ1 � γ̄1;

γ̄1 + π0, if γ1 > v − a, γ1 < γ̄1;
(v − a) + (1 + ρ1)

[
v∫

(v−a)+
F̄X (x)dx − aF̄X (v)

]
, if γ1 � v − a, (v − a) � γ̄1;

γ̄1 + π0, if γ1 � v − a, (v − a) < γ̄1;

123



Ann Oper Res (2016) 237:177–202 197

Case (ii): d1 � v − a
In this case, the reinsurance premium is calculated by

Π
[
(X − d1)+1{X�v}

]

= (1 + ρ1)

(a+d1)−∫
d1

(X − d1)dFX (x) + (1 + ρ2)

v∫
a+d1

(X − d1)dFX (x)

= (1 + ρ1)

⎡
⎢⎣

(a+d1)−∫
d1

F̄X (x)dx − aF̄X ((a + d1)
−)

⎤
⎥⎦

+ (1 + ρ2)

⎡
⎢⎣

v∫
a+d1

F̄X (x)dx − (v − d1)F̄X (v) + aF̄X (a + d1)

⎤
⎥⎦

where (v − a)− means the number which is less than (v − a) but infinitely close to (v − a).
Obviously, if the function F̄X (x) is continuous at x = a + d1, then the above expression
can further be simplified. However, we allow the function F̄X (x) to be not continuous. The
corresponding VaR of the insurer’s total exposed risk is given by

VaRα

(
T f1(X)

) = d1 + (1 + ρ1)

⎡
⎢⎣

(a+d1)−∫
d1

F̄X (x)dx − aF̄X ((a + d1)
−)

⎤
⎥⎦

+ (1 + ρ2)

⎡
⎢⎣

v∫
a+d1

F̄X (x)dx − (v − d1)F̄X (v) + aF̄X (a + d1)

⎤
⎥⎦ .

Therefore, the optimization problem in this case can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
0�d1�v−a

{
d1 + (1 + ρ1)

[
(a+d1)−∫

d1

F̄X (x)dx − aF̄X ((a + d1)−)

]

+ (1 + ρ2)

[
v∫

a+d1

F̄X (x)dx − (v − d1)F̄X (v) + aF̄X (a + d1)

] }

s.t. (1 + ρ1)

[
(a+d1)−∫

d1

F̄X (x)dx − aF̄X ((a + d1)−)

]

+ (1 + ρ2)

[
v∫

a+d1

F̄X (x)dx − (v − d1)F̄X (v) + aF̄X (a + d1)

]
� π0.

Once the constants a, ρ1, ρ2 and the distribution of the claim X are given, it is relatively
easy to solve the above optimization problem. After solving the above optimization problem,
we just need to compare the corresponding minimal VaR of the insurer’s total exposed risk
from cases (i) and (ii) to finalize the optimal reinsurance strategy.

5.1.2 VaR-minimization among L2

According to Theorem 3, the optimal ceded loss function is of the following form

f2(x) = (x − d2)+ − (x − v)+,

123



198 Ann Oper Res (2016) 237:177–202

where 0 � d2 < v and d2 has yet to be determined. It follows from (16) that the VaR of the
insurer’s total exposed risk corresponding to the ceded loss function f2 can be expressed as

VaRα

(
T f2(X)

) = d1 + Π
[
min{(X − d2)+, v − d2}

]
.

Now we will determine the optimal retention level d2 under the assumed premium principle
(21). As before, we need to consider the following two cases:

Case (i): d2 > v − a
In this case, we have the inequality f2(x) � v − d2 < a. Accordingly, the premium paid

by the insurer can be calculated as

Π
[
min{(X − d2)+, v − d2}

] = (1 + ρ1)

v∫
d2

(X − d2)dFX (x) + (1 + ρ1)(v − d2)F̄X (v)

= (1 + ρ1)

v∫
d2

F̄X (x)dx .

Therefore, the corresponding VaR of the insurer’s total exposed risk can be expressed as

VaRα

(
T f1(X)

) = d2 + (1 + ρ1)

v∫
d2

F̄X (x)dx .

Taking derivatives of the above expression of VaR with respect to d2 yields

∂VaRα

(
T f2(X)

)
∂d2

= 1 − (1 + ρ1)F̄X (d2).

Let γ2 = F̄−1
X

(
1

1+ρ1

)
, then it is easy to verify that

∂VaRα

(
T f2(X)

)
∂d2

⎧⎨
⎩

< 0 if d2 < γ2
= 0 if d2 = γ2
> 0 if d2 > γ2.

Clearly, the reinsurance premium Π
[
min{(X − d2)+, v − d2}

]
is decreasing with respect to

the retention level d2. We introduce a constant γ̄2 to reflect the minimum admissible retention
level due to the budget constraint. If Π [min{X, v}] � π0, then we set γ̄2 = 0; otherwise
we assume that the constant γ̄2 solves the equation Π

[
min{(X − γ2)+, v − γ2}

] = π0.
Therefore, Π

[
min{(X − d2)+, v − d2}

]
� π0 if and only if d2 � γ̄2. Now we can express

the optimal ceded loss function f2(x) explicitly as follows

f2(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if γ2 � v;
(x − γ2)+ − (x − v)+, if v − a < γ2 < v and γ2 � γ̄2;
(x − γ̄2)+ − (x − v)+, if v − a < γ2 < v and γ2 < γ̄2;
(x − (v − a)+)+ − (x − v)+, if γ2 � v − a and (v − a) � γ̄2;
(x − γ̄2)+ − (x − v)+, if γ2 � v − a and (v − a) < γ̄2.
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The corresponding minimum VaR of the insurer’s total exposed risk is

VaRα(T f2(X)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v, if γ2 � v;
γ2 + (1 + ρ1)

∫ v

γ2
F̄X (x)dx, if γ2 > v − a, γ2 � γ̄2;

γ̄2 + π0, if γ2 > v − a, γ1 < γ̄2;
(v − a) + (1 + ρ1)

∫ v

(v−a)+ F̄X (x)dx, if γ2 � v − a, (v − a) � γ̄2;
γ̄2 + π0, if γ2 � v − a, (v − a) < γ̄2.

Case (ii): d2 � v − a
In this case, the reinsurance premium is calculated by

Π
[
min{(X − d2)+, v − d2}

]

= (1 + ρ1)

(a+d2)−∫
d2

(X − d2)dFX (x) + (1 + ρ2)

v∫
a+d2

(X − d2)dFX (x)

+ (1 + ρ2)(v − d2)F̄X (v)

= (1 + ρ1)

⎡
⎢⎣

(a+d2)−∫
d2

F̄X (x)dx − aF̄X ((a + d2)
−)

⎤
⎥⎦

+ (1 + ρ2)

⎡
⎢⎣

v∫
a+d2

F̄X (x)dx + aF̄X (a + d2)

⎤
⎥⎦ .

Similarly, we allow the function F̄X (x) to be not continuous. The corresponding VaR of the
insurer’s total exposed risk can be expressed as

VaRα

(
T f2(X)

) = d2 + (1 + ρ1)

⎡
⎢⎣

(a+d2)−∫
d2

F̄X (x)dx − aF̄X ((a + d2)
−)

⎤
⎥⎦

+(1 + ρ2)

⎡
⎢⎣

v∫
a+d2

F̄X (x)dx + aF̄X (a + d2)

⎤
⎥⎦ .

Therefore, the optimization problem becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
0�d2�v−a

{
d2 + (1 + ρ1)

[
(a+d2)−∫

d2

F̄X (x)dx − aF̄X ((a + d2)−)

]

+ (1 + ρ2)

[
v∫

a+d2

F̄X (x)dx + aF̄X (a + d2)

]}

s.t. (1 + ρ1)

[
(a+d2)−∫

d2

F̄X (x)dx − aF̄X ((a + d2)−)

]

+ (1 + ρ2)

[
v∫

a+d2

F̄X (x)dx + aF̄X (a + d2)

]
� π0.

As in the previous subsection, once the constants a, ρ1, ρ2 and the distribution of the claim X
are given, the above optimization problems can be solved explicitly. The optimal reinsurance
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strategy is then given by the one that has the lower minimal VaR of the insurer’s total exposed
risk.

Remark 9 (a) While we have derived the optimal ceded loss functions by concatenating two
expected value premium principles. If the piecewise premium principle is constructed
from n expected value premium principles, similar steps apply although the derivation
is more tedious and lengthy.

(b) In Chi and Tan (2011), they obtained the optimal reinsurance strategies among the admis-
sible set L1 and L2 with the assumptions that there is no budget constraint and the pre-
mium principle is expected value premium principle. In this subsection, we demonstrate
how to obtain the optimal reinsurance strategies among L1 and L2 when the premium
principle is piecewise expected value premium principle, which is more general than the
expected value premium principle. By setting a = ∞ (or equivalently ρ1 = ρ2) and
removing the budget constraint, then our results collapse to Chi and Tan (2011).

(c) For the cases of exerting limit on the ceded loss functions and imposing the courterparty
risk constraint, the optimal reinsurance strategies can be calculated similarly. Therefore,
we will not discuss these cases in the example in details. However, we will present the
numerical results for these cases in the following subsection.

5.2 Numerical examples

In this subsection, we calculate explicitly the optimal ceded loss functions by considering
a specified example. In particular, we assume the insurer faces a potential risk that follows
the exponential distribution with mean 10 and the insurer is seeking reinsurance to reinsurer
its risk. We further assume the reinsurance budget is 5, the confidence levels of the VaR is
95 %, and the reinsurance premium principle is the piecewise premium principle (21) with
parameter values a = 10, ρ1 = 0.1 and ρ2 = 0.5. This implies that when the claim is less
than 10, the risk loading factor is 10 %. When the claim is larger than 10, the risk loading
increases to 50 %.

With the above setup, we now utilize the analysis in the last subsection to calculate the
optimal reinsurance strategies for the VaRwhen the admissible set of the ceded loss functions
are given by L1 and L2 respectively. We will also calculate the optimal reinsurance strategies
when there is a limit imposed on the ceded loss andwhen there exists counterparty risk. These
results are compared and contrast to the existing results when there is no budget constraint.

(a) VaR minimization among L1:

Using the given parameter values, the optimal ceded loss function in case (i) is found to
be (X −19.9573)+1{X�29.9573} with a non-binding budget constraint. Similarly, the optimal
ceded loss function in case (ii) is (X − 6.1539)+1{X�29.9573} and the budget constraint is
binding. By comparing the VaR of these two cases, we conclude that the optimal ceded loss
function is given by (X − 6.1539)+1{X�29.9573} with the corresponding VaR value 11.1539.

When there is no budget constraint, the optimal ceded loss function is determined to be
(X − 2.6007)+1{X�29.9573} with the corresponding VaR value 10.5490.

Following the same procedure, we also calculate the optimal ceded loss function when
there is a limit on the ceded loss functions or there is a counterparty risk constraint.

– When there is a limit constraint, say 20, on the ceded loss functions, the optimal ceded
loss function is (X −9.9573)+1{X�29.9573}, and the corresponding VaR value is 12.8586.

– When there is counterparty risk constraint, i.e. P( f (X) > 10) � 10%, the optimal ceded
loss function is (X − 8.9712)+1{X�29.9573} and the corresponding VaR value is 12.3324.
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Table 1 Optimal reinsurance strategies among L1

Constraint Premium principle Optimal reinsurance strategy VaR

Budget constraint Piecewise expected (X − 6.1539)+1{X�29.9573} 11.1539

No budget constraint Piecewise expected (X − 2.6007)+1{X�29.9573} 10.5490

Limit on reinsurance Piecewise expected (X − 9.9573)+1{X�29.9573} 12.8586

Counterparty risk constraint Piecewise expected (X − 8.9712)+1{X�29.9573} 12.3324

No budget constraint Expected (ρ = 0.1) (X − 0.4177)+1{X�29.9573}
No budget constraint Expected (ρ = 0.5) (X − 3.3314)+1{X�29.9573}

Table 2 Optimal reinsurance strategies among L2

Constraint Premium principle Optimal reinsurance strategy VaR

Budget constraint Piecewise expected (X − 8.8578)+ − (X − 29.9573)+ 13.8578

No budget constraint Piecewise expected (X − 3.3240)+ − (X − 29.9573)+ 12.5740

Limit on reinsurance Piecewise expected (X − 9.9573)+ − (X − 29.9573)+ 14.3586

Counterparty risk constraint Piecewise expected (X − 13.0259)+ − (X − 29.9573)+ 16.0660

No budget constraint Expected (ρ = 0.1) (X − 0.9531)+ − (X − 29.9573)+
No budget constraint Expected (ρ = 0.5) (X − 4.0547)+ − (X − 29.9573)+

If the premium principle is the classical expected premium principle with risk loading
factor ρ = 0.1 and there is no budget constraint, the optimal ceded loss function is easily
obtained to be (X − 0.4177)+1{X�29.9573}. If the risk loading factor changes ρ = 0.5, then
the optimal ceded loss function is (X − 3.3314)+1{X�29.9573}.

Table 1 summarizes the optimal reinsurance strategies in L1 for the various variants of
the optimal reinsurance models. Depending on the imposed constraints, the resulting optimal
value of VaR of the insurer will be affected accordingly.

(b) VaR minimization among L2:

Similar calculations can be repeated for the optimal reinsurance strategies among L2. The
results are depicted in Table 2.

6 Conclusion

In this paper, we investigate the VaR-based optimal reinsurance strategies under the
monotonic piecewise premium principle. We consider several different admissible sets of
the ceded loss functions. In the general model, we show that the truncated stop-loss or the
limited stop-loss reinsurance strategy is optimal depending on whether the ceded loss func-
tions are required to be nondecreasing. In both cases, we extend our results to the case of
multiple reinsurers. Moreover, we also consider the cases of exerting a limit on the rein-
surance treaties or existing courterparty risk constraint. We also use the piecewise expected
value premium principle as an example to demonstrate how to apply our results to solve the
optimal reinsurance problem. A numerical example is provided to highlight our results.

123



202 Ann Oper Res (2016) 237:177–202

Acknowledgments Cong thanks the funding support from the Waterloo Research institute in Insurance,
Securities and Quantitative finance (WatRISQ). Tan acknowledges research funding from the MOE Project
of Key Research Institute of Humanities and Social Sciences at Universities(No. 11JJD790004), the Natural
Sciences and Engineering Research Council of Canada and the Society of Actuaries Centers of Actuarial
Excellence Research Grant.

References

Arrow, K. J. (1963). Uncertainty and the welfare economics of medical care. American Economic Review,
53(5), 941–973.

Artzner, P., Delbaen, F., Eber, J., & Heath, D. (1999). Coherent measures of Risk. Mathematical Finance,
9(3), 203–228.

Asimit, V. A., & Badescu, A. (2013). Optimal risk transfer with multiple reinsurers. Insurance: Mathematics
and Economics, 53(1), 252–265.

Balbás, A., Balbás, B., & Heras, A. (2009). Optimal reinsurance with general risk measures. Insurance:
Mathematics and Economics, 44(3), 374–384.

Bernard, C., & Tian, W. (2009). Optimal reinsurance arrangements under tail risk measures. The Journal of
Risk and Insurance, 76(3), 709–725.

Borch, K. (1960). An attempt to determine the optimum amount of stop loss reinsurance. In Transactions of
the 16th International Congress of Actuaries, vol. I (pp. 597–610). Brussels.

Cai, J., & Tan, K. S. (2007). Optimal retention for a stop-Loss reinsurance under the VaR and CTE risk
measures. ASTIN Bulletin, 37(1), 93–112.

Cai, J., Tan, K. S., Weng, C., & Zhang, Y. (2008). Optimal reinsurance under VaR and CTE risk measures.
Insurance: Mathematics and Economics, 43, 185–196.

Cheung, K. C., Sung, K. C. J., & Yam, S. C. P. (2013). Risk-minimizing reinsurance protection for multivariate
risks. Journal of Risk and Insurance. doi:10.1111/j.1539-6975.2012.01501.x.

Chi, Y., &Meng, H. (2013). Optimal reinsurance arrangements in the presence of two reinsurers. Scandinavian
Actuarial Journal.

Chi, Y., & Tan, K. S. (2011). Optimal reinsurance under VaR and CVaR risk measures: a simplied approach.
ASTIN Bulletin, 41(2), 487–509.

Chi, Y., & Tan, K. S. (2013). Optimal reinsurance with general premium principles. Insurance:Mathematics
and Economics, 52(2), 180–189.

Chi, Y., & Weng, C. (2013). Optimal reinsurance subject to Vajda condition. Insurance:Mathematics and
Economics, 53(1), 179–189.

Dhaene, J., Denuit, M., Goovaerts, M. J., Kaas, R., & Vyncke, D. (2002). The concept of comonotonicity in
actuarial science and finance: theory. Insurance: Mathematics and Economics, 31(1), 3–33.

Gajek, L., & Zagrodny, D. (2004a). Optimal reinsurance under general risk measures. Insurance: Mathematics
and Economics, 34(2), 227–240.

Gajek, L., & Zagrodny, D. (2004b). Reinsurance arrangements maximizing insurer’s survival probability. The
Journal of Risk and Insurance, 71(3), 421–435.

Hurlimann,W. (1998). On stop-loss order and the distortion pricing principle.ASTIN Bulletin, 28(1), 119–134.
Jorion, P. (2006). Value at Risk: The New Benchmark for Managing Financial Risk (3rd ed.): McGraw-Hill.
Kahn, P. M. (1961). Some remarks on a recent paper by Borch. ASTIN Bulletin, 1(5), 265–272.
Kaluszka, M. (2001). Optimal reinsurance under mean-variance premium principles. Insurance: Mathematics

and Economics, 28(1), 61–67.
Kaluszka, M. (2005). Optimal reinsurance under convex principles of premium calculation. Insurance: Math-

ematics and Economics, 36(3), 375–398.
Kaluszka, M., & Okolewski, A. (2008). An extension of Arrow’s result on optimal reinsurance contract.

Journal of Risk and Insurance, 75(2), 275–288.
Rolski, T., Schmidli, H., Schmidt, V., & Teugels, J. (1999). Stochastic Processes for Insurance and Finance:

John Wiley and Sons.
Tan, K. S.,Weng, C., & Zhang, Y. (2011). Optimality of general reinsurance contracts under CTE riskmeasure.

Insurance: Mathematics and Economics, 49(2), 175–187.
Young, V. R. (1999). Optimal reinsurance under Wang’s premium principles. Insurance: Mathematics and

Economics, 25(2), 109–122.

123

http://dx.doi.org/10.1111/j.1539-6975.2012.01501.x

	Optimal VaR-based risk management with reinsurance
	Abstract
	1 Introduction
	2 Risk measure based reinsurance model
	2.1 Model description
	2.2 Piecewise premium principle

	3 Optimality of truncated stop-loss reinsurance treaties
	3.1 Without nondecreasing assumption on the ceded loss functions
	3.2 Exerting limit on the reinsurance treaties
	3.3 In the presence of counterparty risk

	4 Optimality of limited stop-loss reinsurance treaties
	4.1 With nondecreasing assumption on the ceded loss functions
	4.2 Exerting limit on the reinsurance treaties
	4.3 In the presence of courterparty risk

	5 Illustrations
	5.1 Piecewise expected value premium principle
	5.1.1 VaR-minimization among mathcalL1
	5.1.2 VaR-minimization among mathcalL2

	5.2 Numerical examples

	6 Conclusion
	Acknowledgments
	References




