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Abstract We analyze cooperative Cournot games with boundedly rational firms. Due to
cognitive constraints, the members of a coalition cannot accurately predict the coalitional
structure of the non-members. Thus, they compute their value using simple heuristics. In
particular, they assign various non-equilibrium probability distributions over the outsiders’
set of partitions. We construct the characteristic function of a coalition in such an environment
and we analyze the core of the corresponding games. We show that the core is non-empty
provided the number of firms in the market is sufficiently large. Moreover, we show that
if two distributions over the set of partitions are related via first-order dominance, then the
core of the game under the dominated distribution is a subset of the core under the dominant
distribution.
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1 Introduction

Collusion among firms in oligopolistic markets is a wide-spread phenomenon and constantly
attracts the interest of economists. By colluding, firms can restrict output and raise market
prices, thus extracting a higher surplus from consumers. From a methodological point of
view, economists analyze collusion using either non-cooperative games (when agreements
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among firms are non-enforceable by an outside entity) or cooperative games (whenever the
signing of enforceable agreements is possible). Under the latter approach, the focus usually is
on the core of an appropriately defined cooperative game. The core consists of all allocations
of total profits that cannot be blocked by any coalition of firms. Non-empty core means that
cooperation among all firms in the market is a priori feasible.

When a coalition of firms contemplate the blocking of an agreement, they have to calculate
their stand-alone payoff. In a market environment such a calculation is not a trivial task, as
the coalition’s worth depends on how the non-members act. In particular, it depends on the
partition (coalition structure) that the outsiders will form. This calls for the formation of
beliefs about the outsiders’ coalitional actions.

Different conjectures about the reaction of the outsiders lead to different coalitional worths
and thus to different notions of core. The α and β cores (Aumann 1959) are based on the
assumption of min-max behavior on behalf of the non-members; the γ -core (Chander and
Tulkens 1997) is based on the assumption that outsiders play individual best replies to the
deviant coalition; the δ-core scenario (Hart and Kurz 1983) assumes that outsiders form a
single coalition. Various authors applied these core notions to the study of Cournot markets.
Rajan (1989) used the concept of γ -core and showed that it is non-empty for a market with 4
firms. A more general result for any number of firms is provided by Chander (2010). Currarini
and Marini (2003) built a refinement of the γ -core by assuming that the deviant coalition acts
as a Stackelberg leader in the product market. Zhao (1999) showed that the α and β cores of
oligopolistic markets are non-empty.

The seminal work of Ray and Vohra (1999) goes one step further, as the worth of a
coalition is deduced via arguments that satisfy a consistency criterion: a deviant coalition
takes into account the fact that after its deviation, other deviations might follow, with the newly
deviant coalitions thinking in a similar forward way. For games where binding agreements
are feasible, Huang and Sjostrom (1998, 2003) and Koczy (2007) developed the recursive
core. The recursive core is constructed under the assumption that the members of a coalition
compute their value by looking recursively on the cores of the sub-games played among the
outsiders.

Predicting the equilibrium coalitional formation in a game with many players is computa-
tionally cumbersome. Sandholm et al. (1999) showed that for an n-player game the number
of different coalition structures is O(nn) and ω(n

n
2 ). Hence, deducing the coalition structure

that the outsiders form is a particularly difficult task (at least, for games with a large number
of players). For example, finding the coalition structure that maximizes the sum of all players’
payoffs is an NP-hard problem (Sandholm et al. 1999). Even finding sub-optimal solutions
requires the search of an exponential number of cases.

The last considerations give the motivation of the current paper. We analyze an n-firm
cooperative Cournot oligopoly assuming that no group of firms has the cognitive ability to
accurately deduce the partition that the outsiders will form. As a result, the members of a
coalition cannot compute their value with precision. Instead, they compute it by following
simple procedures or heuristics.

Clearly, the number of different heuristics one can adopt is very large. Computer scientists,
for example, model similar situations via search algorithms that give solutions within certain
bounds from the optimal coalition structure (Sandholm et al. 1999; Dang and Jennings 2004).
On the other hand, the economists’ toolbox of heuristics includes models with players of
various degrees of cognitive abilities (Stahl and Wilson 1994; Camerer 2003; Camerer et
al. 2004; Haruvy and Stahl 2007), models with probabilistic choice rules (McKelvey and
Palfrey 1995; Chen et al. 1997; Anderson et al. 2002), to name only a few.
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In our paper, the heuristics are based on the assignment of non-equilibrium probability
distributions over the set of the opponents’ coalition structures. I.e, when contemplating a
deviation from the grand coalition, the members of a coalition make the simplifying assump-
tion that the reactions of the outsiders are governed by various plausible -but not necessarily
optimal- probability distributions.

Our benchmark case assumes that the probability of a coalition structure is proportional
to the profitability that the structure induces for the outsiders. Namely, a deviant coalition
assumes it is more likely that its opponents will partition themselves according to the more
efficient structures. This approach is motivated by the logit quantal response model of McK-
elvey and Palfrey (1995) in non-cooperative games, where the probability of a player choosing
a certain strategy depends on its relative payoff, with the probability being positive even if the
strategy is inferior. We derive the characteristic function of a coalition under such a distribu-
tion -i.e, a logit type of distribution- and we examine the core of the corresponding game. We
show that if the number of firms in the market is sufficiently large then the core is non-empty.
Hence, bounded rationality supports cooperation among all firms in the market.

In the second part of the paper, we extend our analysis by considering more general
probability distributions. In particular we consider distributions which are related via first-
order stochastic dominance. If a certain distribution dominates another one, it gives relatively
higher weight to partitions consisting of many coalitions. Our analysis has two goals: first,
given that a relatively less concentrated partition hurts a deviant coalition, we present a novel
way of modeling pessimism in a cooperative game with externalities. Secondly, we utilize
this machinery to analyze the core in a Cournot market under a large number of distributions
(other than the logit).

We fix a pair of distributions satisfying the first-order dominance property. We show that the
core of the game under the dominated distribution is contained in the core of the game under
the dominant. In particular, this implies that the core under the logit distribution is contained
in the core under any distribution that first-order dominates it. Thus we indirectly show that
our Cournot game has a non-empty core for a large number of probability distributions.

In particular, the above inclusion holds for the case of γ -core. Namely, the core under
the logit distribution is contained in the core constructed under the assumption that outsiders
form singleton coalitions (in our terminology, the γ scenario corresponds to the degenerate
distribution that assigns probability one to the singletons partition). Hence our core refines
the γ -core.

In what follows, we present the basic model in Sect. 2. In Sects. 3 and 4 we present our
results. Section 5 concludes.

2 The model

We consider a market with the set N = {1, 2, ..., n} of firms. Firms produce a homoge-
neous product. Firm l produces quantity ql using the cost function C(ql) = cql , l ∈ N .
The market price p is determined via the inverse demand function p = p(Q), where
Q = q1 + q2 + · · · + qn is the total market quantity.

Assumptions

A1. ∃Q0 > 0 such that p(Q) > 0 for Q < Q0 and p(Q) = 0 for Q ≥ Q0

A2. p′(Q) < 0, whenever p(Q) > 0
A3. p′(Q)+ qi p′′(Q) < 0
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where p′(Q) and p′′(Q) denote the first and second derivatives of the inverse demand func-
tion. The above assumptions are standard and guarantee the existence and uniqueness of
Cournot equilibrium (see, for example, Vives 2001).

Let S ⊂ N denote a coalition of firms with |S| = s members and let N \ S denote the
complementary set of S, where |N \ S| = n − s. The worth or value of S is the sum of its
members’ profits. These profits depend on how the members of N \ S partition themselves
into coalitions. The set N \ S can be partitioned into disjoint subsets in Bn−s ways, where
Bn−s is Bell’s (n − s)th number (Bell 1934).

What matters for S is only the number of the opponent coalitions in the Cournot market.
Consider for example the case N = {1, 2, 3, 4, 5} and S = {1}. The set of outsiders is
N \ S = {2, 3, 4, 5}. Consider the partitions {{2, 3}, {4, 5}} and {{2, 3, 4}, {5}} of outsiders.
These partitions are equivalent for S (and so are all partitions with two coalitions) in the sense
that both induce the same profit for S (in both cases, S would compete in a triopoly market).
More generally, all partitions with j coalitions induce the same profit for S, irrespective of
how the outsiders are grouped among the j coalitions. We will call these partitions j-similar,
where j = 1, 2, ..., n − s.

Denote the number of j-similar partitions by Kn−s, j , where Kn−s, j gives the number of
ways to partition a set of n −s objects into j groups, or else the Stirling number of the second
kind. Then

Kn−s, j = 1

j !
j∑

i=0

(−1)i
(

j

i

)
( j − i)n−s (1)

The basic assumption that underlies this paper is that the members of S use simple probabilis-
tic models in order to predict the coalitional behavior of the non-members. As a benchmark
case, we assume that the probability of a partition is proportional to the profitability that the
partition induces for the outsiders. This approach is in line with the spirit of the logit quantal
response model (McKelvey and Palfrey 1995) in non-cooperative games, where the prob-
ability of choosing a strategy depends on its relative payoff, the probability being positive
even if the strategy is inferior.

Consider again a coalition S with s members and an outsiders’ partition with j coalitions.
Let � j denote the sum of the profits that the j coalitions earn under this partition (this sum
is constant over all j-similar partitions). Define

fn,s( j) = e� j Kn−s, j
n−s∑
m=1

e�m Kn−s,m

(2)

Notice that fn,s( j) ∈ (0, 1) and
n−s∑
j=1

fn,s( j) = 1. Then, fn,s( j) gives the total probability that

S assigns to all j-similar structures. Note in (2) that the profitability of a j-similar partition
is adjusted by the corresponding Stirling number. The results of the paper hold even if such
an adjustment does not take place.

2.1 An example

Let us illustrate the above by considering an example with five firms, N = {1, 2, 3, 4, 5}.
Assume that the inverse demand is p = 1 − Q and that c = 0. Consider again a coalition S
with s members. If the n − s outsiders form j coalitions then there are j + 1 active players
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in the market. By simple calculations, the total profits of the j outside coalitions then are

� j = j

( j + 2)2
, j = 1, 2, ..., n − s (3)

Consider a singleton coalition, say S = {1}. Then Bn−s = B4 = 15 and K4,1 = K4,4 =
1, K4,2 = 7, K4,3 = 6. Using (2) and (3) the probabilities that S assigns to outsiders’
partitions are

f5,1(1) = f5,1(4) = e1/9

Z1
, f5,1(2) = 7e1/8

Z1
, f5,1(3) = 6e3/25

Z1

where Z1 = 2e1/9 + 7e1/8 + 6e3/25. Consider next a coalition with two members, say
S = {1, 2}. Then Bn−s = B3 = 5 and K3,1 = K3,3 = 1, K3,2 = 3. We then have

f5,2(1) = e1/9

Z2
, f5,2(2) = 3e1/8

Z2
, f5,2(3) = e3/25

Z2

where Z2 = e1/9 + 3e1/8 + e3/25. Consider next a coalition with three members S =
{1, 2, 3}. In this case, Bn−s = B2 = 2 and K2,1 = K2,2 = 1. Hence we have

f5,3(1) = e1/9

Z3
, f5,3(2) = e1/8

Z3

where Z3 = e1/9 + e1/8. Finally, if a deviant coalition has four members, it faces one outsider
only and so there is no ambiguity.

2.2 The game (N , vn)

In this section we compute the characteristic function of a deviant coalition. We use the
j-similarity and focus for each j on one representative of the j-similar partitions. Let qs

denote the quantity of the deviant coalition S; and let q j
i denote the quantity of outside

coalition i , i = 1, 2, ..., j , under a partition with j members. The objective function that S
faces is given by

π f (S) =
n−s∑

j=1

fn,s( j)

⎛

⎝p

⎛

⎝qs +
j∑

i=1

q j
i

⎞

⎠ − c

⎞

⎠ qs (4)

The objective function of coalition i is

π
j

i =
⎛

⎝p

⎛

⎝qs +
j∑

r=1,r �=i

q j
r + q j

i

⎞

⎠ − c

⎞

⎠ q j
i , i = 1, 2, ..., j

Hence the maximization problems to solve for are

max
qs
π f (S) (5)

and for j = 1, 2, ..., n − s,

max
q j

i

π
j

i , i = 1, 2, ..., j (6)

123



260 Ann Oper Res (2014) 223:255–272

Let q̃s( f ) = argmax
qs
π f (S) denote the best reply function of S; and let q̃ j

i = argmax
q j

i

π
j

i

denote the best reply1 of coalition i , i = 1, 2, ..., j where j = 1, 2, ..., n − s. If we solve the
system of equations defined by the best replies we end up with the reduced-form solution in
quantities, which shall be denoted by qs( f ) and q j

i ( f ). By straightforward calculations, the
reduced-form solution is given implicitly by

qs( f ) =

n−s∑
j=1

fn,s( j)p(qs( f )+ jq j
i ( f ))− c

−
n−s∑
j=1

fn,s( j)p′(qs( f )+ jq j
i ( f ))

(7)

and for j = 1, 2, ..., n − s,

q j
i ( f ) = p(qs( f )+ jq j

i ( f ))− c

−p′(qs( f )+ jq j
i ( f ))

, i = 1, 2, ..., j (8)

where we used the fact that q j
1 ( f ) = q j

2 ( f ) = · · · = q j
j ( f ). Using (7) and (8) in (4), we

obtain the characteristic function of S. We denote this function by vn(S) or vn(s). Letting
Q j ( f ) = qs( f )+ jq j

i ( f ) we have

vn(S) =

(
n−s∑
j=1

fn,s( j)p(Q j ( f ))− c

)2

−
n−s∑
j=1

fn,s( j)p′(Q j ( f ))

(9)

Hence our game is the pair (N , vn)where vn is defined by (9). The value of the grand coalition
is denoted by vn(N ) or vn(n). This value is the monopoly profit (which is independent of n
but for notational uniformity we keep the superscript). Denote by QM the monopoly output.
Then it is easy to show that

vn(N ) =
(

p(QM )− c
)2

−p′(QM )

An allocation is a vector (x1, x2, ..., xn) such that
∑
i∈N

xi = vn(N ). The core C f of (N , vn)

is the set of all allocations that cannot be blocked by any coalition, given distribution fn,s .
I.e., the core is the set

C f =
{
(x1, ..., xn) :� ∃S wi th vn(S) >

∑

i∈S

xi

}

Given the above, in the next sections we examine the core for various demand and probability
functions.

1 Clearly the best replies depend on the quantities of the opponents but for notational simplicity we drop
writing them.
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3 Results

The first result in this section states the following useful property.

Lemma 1 For every positive integer k, the equality vn(s) = vn+k(s + k) holds.

Proof Consider two markets: in the first market there are n firms and the deviant coalition S
has s members and in the second there are n + k firms and S has s + k members. Consider
a number j of outside coalitions. Notice that in the first market, j runs from 1 up to n − s;
in the second market, j runs from 1 up to n + k − (s + k) = n − s again. The total profits
of j outside coalitions under the first market are equal to their total profits under the second
market. This is due to the constant returns to scale assumption. In both cases, these profits
are � j . Hence

fn,s( j) = e� j Kn−s, j
n−s∑
m=1

e�m Kn−s,m

= e� j Kn+k−(s+k), j

n+k−(s+k)∑
m=1

e�m Kn+k−(s+k),m

= fn+k,s+k( j) (10)

Moreover for each j , qs( f ) and q j
i ( f ) are constant under the two markets (again due to

constant returns to scale): namely, the quantity of S when it has s members and the market
has n firms is equal to its quantity when S has s + k members and the market has n + k firms;
the same holds for q j

i ( f ) and by consequence for Q j ( f ). Combining this fact with (10) and
(9) proves the result. �	

The intuition behind Lemma 1 is clear. If coalition S has s + k members in a market with
n + k firms, it faces n + k − (s + k) = n − s outsiders. This equals the number of outsiders
that S faces when it has s members in a market with n firms. Hence S faces the same set of
potential coalition structures.
An almost immediate implication of Lemma 1 is the monotonicity of vn(s) in s.

Lemma 2 For every n, vn(s) is strictly increasing in s.

Proof The proof will be based on induction. For the base case, n = 2, we have to prove that
v2(2) > v2(1) > v2(0). Recall that v2(2) is the monopoly profit and v2(1) is the profit of
a firm when two firms are in the market. Under assumptions A1-A3 we have that the former
profit is higher than the latter,2 i.e., v2(2) > v2(1). Moreover, v2(1) > 0 = v2(0) and so we
have the base case.

Assume for the induction hypothesis that in a game with n players and for an arbitrary s,
we have that vn(s) > vn(s − 1). We will prove that vn+1(s) > vn+1(s − 1). By Lemma 1
and the induction hypothesis we have that vn+1(s) = vn(s − 1) > vn(s − 2) = vn+1(s − 1).
Note also that vn+1(s + 1) > vn+1(s) (by Lemma 1) and that vn+1(1) > vn+1(0) = 0. This
completes the proof. �	

2 See Amir and Lambson (2000).
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Lemmas 1 and 2 hold under any demand function (that satisfies assumptions A1-A3). In what
follows, we use these Lemmas to derive conditions for core non-emptiness under certain
demand functions. In particular we will focus on the family of demand functions

Q = 1 − pb, b > 0

which we borrow from Anderson and Engers (1992). Note that if b > (<) 1, demand is
concave (convex); and if b = 1, demand is linear. In order to derive analytically the market
solution for an arbitrary b we need to set c = 0. The relevant calculations appear in Lemma 5
in the Appendix. The solution, i.e, the quantities and the characteristic function, is given by

qs( f ) =
n−s∑
j=1

fn,s ( j)ψ
1
b
j

n−s∑
j=1

fn,s ( j)ψ
1
b
j (1 + j + 1/b)

(11)

q j
i ( f ) = bψ j

n−s∑
j=1

fn,s ( j)ψ
1
b
j ( j + 1/b)

n−s∑
j=1

fn,s ( j)ψ
1
b
j (1 + j + 1/b)

, i = 1, 2, ..., j (12)

vn(S) =
n−s∑
j=1

fn,s( j)

⎛

⎜⎝

n−s∑
j=1

fn,s ( j)ψ
1
b
j ( j + 1/b)

(bj + 1)
n−s∑
j=1

fn,s ( j)ψ
1
b
j (1 + j + 1/b)

⎞

⎟⎠

1
b

qs( f ) (13)

where ψ j = 1

bj + 1
. Finally it is easy to see that the value of the grand coalition is

vn(N ) = b

(1 + b)
1
b +1

3.1 The case b = 1

As a benchmark case, we first present a result for the linear demand, i.e., b = 1. Afterwards,
we discuss the non-linear case.

Proposition 1 Assume the demand function is given by Q = 1 − p. If n is sufficiently large
then C f �= ∅.

Proof Since firms are identical, the core is non-empty if and only if for all s ≤ n,

vn(n)

n
≥ vn(s)

s
(14)

It is easy to verify that the above inequality does not hold for 3 ≤ n ≤ 11. So for these values
of n the core is empty.3 The inequality holds for n = 12 (Table 2 in the Appendix). We will
prove the rest of the proposition using induction on n, where n ≥ 12.
Base: Table 2 in the Appendix establishes the base case (n = 12).

Induction hypothesis: For all S : |S| = s ≤ n,
vn(n)

n
≥ vn(s)

s
.

3 For 3 ≤ n ≤ 11 it holds that vn(1) > vn (n)
n (see Table 3 in the Appendix). The relevant calculations were

made using the Maple program and they are available by the authors upon request.
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Induction step: We will show that for all S : |S| = s ≤ n + 1,

vn+1(n + 1)

n + 1
≥ vn+1(s)

s

By Lemma 1 we have that vn+1(s) = vn+1((s −1)+1) = vn(s −1) and also vn+1(n +1) =
vn(n). So we have to show that

vn(n)

n + 1
≥ vn(s − 1)

s
(15)

From the Induction hypothesis we have

vn(n) ≥ n

s − 1
vn(s − 1)

and thus

(s − 1)vn(n) ≥ nvn(s − 1) (16)

Using Lemma 2,

vn(n) > vn(s − 1) (17)

Adding (16) and (17) we have

svn(n) > (n + 1)vn(s − 1)

which implies that (15) holds. So we have the proof for n + 1 and thus the proposition is
proved. �	
The monopoly profit is independent of the number of firms n. On the other hand, vn(s)
decreases in n. As a result, for sufficiently large n the difference vn(n)/n −vn(s)/s becomes
positive for all s and the core is non-empty.

3.2 The case b �= 1

In this section we discuss the non-emptiness of the core for the non-linear demand case. To
this end, we will utilize the previous results, i.e., Lemmas 1 and 2, and Proposition 1. Recall
that Lemmas 1 and 2 hold for any demand function. Furthermore, among the three steps of
the induction proof of Proposition 1, i.e., base step, induction hypothesis and induction step,
essentially only the base step depends on the demand function used. The other two steps work
independently of the demand function (given of course the validity of the base step). Hence
when extending Proposition 1 to cases where b �= 1 we only need to ensure the validity of
the base step. Namely, for a certain value of b we need to find a specific number of firms
that provides the base step of the induction argument (we refer the reader to the proof of
Proposition 1).

Due to the complexity of the model, we do not address the above task for all values of
b. Nonetheless, Table 1 (next page) presents pairs of numbers (b∗, n(b∗)) that satisfy the
property discussed above: given a certain value b∗ (where b∗ �= 1), the table reports a value
n(b∗) which is the number of firms that establishes the base step of the induction process for
the demand function Q = 1 − pb∗

. In other words, given a specific value b∗, the game has
non-empty core for n ≥ n(b∗) and it has empty core for n < n(b∗). We note that Table 1
provides values b∗ for which the demand function can be either convex (b∗ < 1) or concave
(b∗ > 1).
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Table 1 b∗ and n(b∗) for base
step of induction

b∗ n(b∗)

0.5 3

0.6 5

0.7 6

0.8 7

0.9 9

1.1 15

1.2 19

1.3 24

1.4 32

1.5 42

1.6 57

1.7 78

1.8 107

1.9 147

2.0 205

In the Table we note that as b∗ increases, the core is non-empty less often (as b∗ increases,
the number n(b∗) increases). Moreover, if b∗ is sufficiently low, the core is non-empty for
all n ≥ 3.

4 First-order stochastic dominance

In this section we compare the cores of games that differ with respect to the probability
schemes assigned to outsiders’ partitions. In particular, we consider distributions that are
related via first-order stochastic dominance. We will show that if a certain distribution dom-
inates at first-order another one, then the core under the dominated distribution is a subset of
the core under the dominant distribution. An application of this result is that Proposition 1
holds under any distribution that dominates the distribution defined in (2).

Consider coalition S. Let zn,s and wn,s be two probability distributions over the set of the
outsiders’ partitions. Assume that zn,s dominates wn,s at first-order, i.e., for all j∗,

j∗∑

j=1

zn,s( j) ≤
j∗∑

j=1

wn,s( j)

Denote by Cw and Cz the cores under the two distributions and assume that Cz �= ∅.We have
the following result.

Proposition 2 Assume the inverse demand p(Q) is weakly concave. If zn,s stochastically
dominates wn,s at first-order then Cw ⊆ Cz .

Proof For j = 1, 2, ..., n − s, denote Q̃−s
j =

j∑
i=1

q̃ j
i , where q̃ j

i = arg max
q j

i

π
j

i (recall that π j
i

is the objective function of coalition i in a partition with j coalitions). Let πw(S) and πz(S)
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denote the objective functions of S under distributions wn,s and zn,s respectively. Let

q̃s(w) = arg max
qs
πw(S), q̃s(z) = arg max

qs
πz(S)

Denote by qs(w), q j
i (w) and Q−s

j (w) =
j∑

i=1
q j

i (w) the reduced-form solution of the system

of equations defined by the above best replies when the probability distribution is wn,s ;

and by qs(z), q j
i (z) and Q−s

j (z) =
j∑

i=1
q j

i (z) the reduced-form solution when the probability

distribution is zn,s . Finally, denote by vn
w(S) and vn

z (S) the characteristic functions of coalition
S under wn,s and zn,s respectively.

We first have that

Q̃−s
j+1 > Q̃−s

j , j = 1, 2, ..., n − s − 1

This follows by Amir & Lambson (2000, Theorem 2.2 (b)). Next define

π̃w(S) =
n−s∑

j=1

wn,s( j)
(

p
(

qs + Q̃−s
j

)
− c

)
qs ≡

n−s∑

j=1

wn,s( j)πs

(
qs, Q̃−s

j

)

and

π̃z(S) =
n−s∑

j=1

zn,s( j)
(

p
(

qs + Q̃−s
j

)
− c

)
qs ≡

n−s∑

j=1

zn,s( j)πs

(
qs, Q̃−s

j

)

where

πs

(
qs, Q̃−s

j

)
≡

(
p

(
qs + Q̃−s

j

)
− c

)
qs, j = 1, 2, ..., n − s

Notice that since Q̃−s
j+1 > Q̃−s

j , we have

πs

(
qs, Q̃−s

j

)
> πs

(
qs, Q̃−s

j+1

)
, j = 1, 2, ..., n − s − 1 (18)

where the last inequality is due to the fact that the profit of a firm in a Cournot market is
decreasing in the (individual or aggregate) quantities of the other firms. Notice next that

π̃w(S)− π̃z(S)=
⎛

⎜⎝wn,s(1)− zn,s(1)︸ ︷︷ ︸
≥0

⎞

⎟⎠πs(qs, Q̃−s
1 )+

n−s∑

j=2

(
wn,s( j)− zn,s( j)

)
πs(qs, Q̃−s

j )

>
(
wn,s(1)−zn,s(1)

)
πs(qs, Q̃−s

2 )+
n−s∑

j=2

(
wn,s( j)− zn,s( j)

)
πs(qs, Q̃−s

j )

=
⎛

⎜⎝wn,s(1)+ wn,s(2)− zn,s(1)− zn,s(2)︸ ︷︷ ︸
≥0

⎞

⎟⎠πs(qs, Q̃−s
2 )

+
n−s∑

j=3

(
wn,s( j)− zn,s( j)

)
πs(qs, Q̃−s

j )) (19)
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where the inequality is due to (18). Continuing the iterations on j , we eventually have that

π̃w(S)− π̃z(S) >

⎛

⎜⎜⎜⎜⎜⎝

n−s−1∑

j=1

wn,s( j)−
n−s−1∑

j=1

zn,s( j)

︸ ︷︷ ︸
≥0

⎞

⎟⎟⎟⎟⎟⎠
πs(qs, Q̃−s

n−s−1)

+ (
wn,s(n − s)− zn,s(n − s)

)
πs(qs, Q̃−s

n−s)

>

⎛

⎜⎜⎜⎜⎜⎝

n−s∑

j=1

wn,s( j)−
n−s∑

j=1

zn,s( j)

︸ ︷︷ ︸
=0

⎞

⎟⎟⎟⎟⎟⎠
πs(qs, Q̃−s

n−s) = 0 (20)

where we again used (18). We conclude that for all qs and the corresponding Q̃−s
j , we have

n−s∑

j=1

wn,s( j)πs(qs, Q̃−s
j ) >

n−s∑

j=1

zn,s( j)πs(qs, Q̃−s
j ) (21)

In the Appendix we show that if the inverse demand function p(Q) is weakly concave then
Q−s

j (w) < Q−s
j (z). Notice next that

vn
w(S) =

n−s∑

j=1

wn,s( j)πs(qs(w), Q−s
j (w))

≥
n−s∑

j=1

wn,s( j)πs(qs(z), Q−s
j (w))

≥
n−s∑

j=1

wn,s( j)πs(qs(z), Q−s
j (z))

>

n−s∑

j=1

zn,s( j)πs(qs(z), Q−s
j (z)) = vn

z (S) (22)

where the first inequality is due to the fact that qs(w) is the optimal choice of coalition S
against Q−s

j (w), j = 1, 2, ..., n −s; the second inequality holds because Q−s
j (w) < Q−s

j (z)
and because the Cournot profit of a firm decreases in the quantities of the other firms; and
the third inequality is due to (21). Since vn

w(S) > vn
z (S) we conclude that Cw ⊆ Cz . �	

As an application of Proposition 2, we note that Proposition 1 holds not only under fn,s but
also under any distribution that dominates fn,s at first order.

Corollary 1 Assume the demand function is given by Q = 1 − p. Consider any distribution
zn,s that dominates distribution (2) at first-order. Then Cz �= ∅ if n is sufficiently large.

Proof If demand is linear and n is large then C f �= ∅ (Proposition 1). Since zn,s dominates
distribution (2) at first-order then C f ⊆ Cz . Hence the latter core is non-empty. �	
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Compared to the cumulative distribution of fn,s , the cumulative distribution of zn,s assigns
higher probabilities to events that include partitions with many coalitions. Clearly, these
events are unfavorable for S, hence the use of zn,s indicates some sort of pessimism (relatively
to fn,s) on behalf of the members of S. This approach can be motivated by resorting to
the theory of risk measurement, which often measures risk by assigning relatively high
probabilities to unfavorable events (see e.g, Acerbi 2002).4 Our analysis provides a novel
way of tracing the impact of pessimism or risk in a cooperative game with externalities.

Finally we note that a particular distribution that dominates fn,s is the distribution defined
by ẑn,s( j) = 0, for j = 1, 2, ..., n −s −1 and ẑn,s(n −s) = 1. This distribution corresponds
to the γ -core scenario. It is known that the latter core is non-empty for general Cournot
oligopolies (Chander 2010). Letting Ĉz denote the γ -core, we have the following corollary.

Corollary 2 The inclusion C f ⊆ Ĉz holds.

The γ -core is based on the worst scenario for S: all n − s firms remain separate entities.
Under fn,s , the singleton coalitions structure is just one of the partitions that S takes into
account. Other, more favorable, partitions occur with positive probability. Hence, the value
of S under fn,s is higher than its value under ẑn,s .

Corollaries 1 and 2 are stated in terms of the linear demand function. We note that similar
statements hold for the non-linear demand case (we refer the reader to Sect. 3.2 that presents
cases of non-linear demand functions for which the core is non-empty).

5 Conclusions

This paper analyzed cooperative Cournot games. The analysis is based on the assertion that
when a coalition contemplates a deviation from the grand coalition, it assigns various non-
equilibrium distributions on the set of partitions that the outsiders can form. This assumption
is justified by imposing cognitive constraints on behalf of the firms in the market. Provided
that the number of firms is sufficiently high, the core is non-empty for a large number of
probability distributions and demand functions.

Let us mention a few extensions of the current work. The analysis of oligopolistic markets
with more general cost functions and/or other modes of competition (e.g., product differen-
tiation, price competition) are natural future directions. Furthermore, the application of the
current framework to other economic environments or to abstract cooperative games with
externalities is of interest.

4 We thank an anonymous referee for pointing out this connection.

123



268 Ann Oper Res (2014) 223:255–272

Appendix

Table 2 Values vn(s) and
vn(s)/s with n = 12

s vn(s) vn(s)/s

1 0.02047 0.02047

2 0.02273 0.01136

3 0.02544 0.00848

4 0.02876 0.00719

5 0.03289 0.00657

6 0.03815 0.00635

7 0.04503 0.00643

8 0.05443 0.00680

9 0.06795 0.00755

10 0.08736 0.00873

11 0.11111 0.01010

12 0.25000 0.02083

Table 3 Values vn(1) and
vn(n)/n, n ∈ {3, 4, ..., 11} n vn(1) vn(n)/n

3 0.08736 0.08333

4 0.06795 0.06250

5 0.05444 0.05000

6 0.04503 0.04166

7 0.03815 0.03571

8 0.03289 0.03125

9 0.02876 0.02777

10 0.02544 0.02500

11 0.02273 0.02272

Lemma A1 Assume the demand function is Q = 1 − pb. Then the characteristic function
is given by (13).

Proof The profit function of coalition i under a partition with j members is

π
j

i =
⎛

⎝1 − qs −
j∑

r=1,r �=i

q j
r − q j

i

⎞

⎠

1
b

q j
i , i = 1, 2, ..., j (23)

Note that

∂π
j

i

∂q j
i

= 0 ⇔ b

⎛

⎝1 − qs − q j
i −

j∑

r=1,r �=i

q j
r

⎞

⎠ = q j
i (24)
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By symmetry, all j outside coalitions produce the same. So let q j
r = q j

i , for all r . Therefore

by (24), b(1 − qs − jq j
i ) = q j

i and hence

q̃ j
i = b(1 − qs)

bj + 1
(25)

The objective function of the deviant coalition S is

π f (S) =
n−s∑

j=1

fn,s( j)

⎛

⎝1 − qs −
j∑

i=1

q j
i

⎞

⎠

1
b

qs (26)

Note that
∂π f (S)

∂qs
= 0 if

n−s∑

j=1

fn,s( j)

⎛

⎝1 − qs −
j∑

i=1

q j
i

⎞

⎠

1
b

= 1

b

n−s∑

j=1

fn,s( j)

⎛

⎝1 − qs −
j∑

i=1

q j
i

⎞

⎠

1
b −1

qs (27)

Using (25), (27) becomes

n−s∑

j=1

fn,s( j)

(
1 − qs

1 + bj

) 1
b = 1

b

n−s∑

j=1

fn,s( j)

(
1 − qs

1 + bj

) 1
b −1

qs

and hence

(1 − qs)
1
b

n−s∑

j=1

fn,s( j)

(
1

1 + bj

) 1
b = 1

b
(1 − qs)

1
b −1

n−s∑

j=1

fn,s( j)

(
1

1 + bj

) 1
b −1

qs

Define ψ j = 1

bj + 1
. Then rearranging the above relation gives

qs

⎛

⎝
n−s∑

j=1

fn,s( j)ψ
1
b
j + 1

b

n−s∑

j=1

fn,s( j)ψ
1
b −1
j

⎞

⎠ =
n−s∑

j=1

fn,s( j)ψ
1
b
j (28)

Notice that

n−s∑

j=1

fn,s( j)ψ
1
b
j + 1

b

n−s∑

j=1

fn,s( j)ψ
1
b −1
j =

n−s∑

j=1

fn,s( j)ψ
1
b
j

(
1 + 1

bψ j

)

=
n−s∑

j=1

fn,s( j)ψ
1
b
j (1 + (bj + 1)/b) =

n−s∑

j=1

fn,s( j)ψ
1
b
j (1 + j + 1/b) (29)

Using (28) and (29) we get

qs( f ) =

n−s∑
j=1

fn,s( j)ψ
1
b
j

n−s∑
j=1

fn,s( j)ψ
1
b
j (1 + j + 1/b)

(30)
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Using (30), (25) becomes

q j
i ( f ) = bψ j

n−s∑
j=1

ψ
1
b
j ( j + 1/b)

n−s∑
j=1

fn,s( j)ψ
1
b
j (1 + j + 1/b)

(31)

Plugging (30) and (31) in (26) gives us (13). �	
Lemma A2 Assume the inverse demand p(Q) is weakly concave. Then Q−s

j (w) < Q−s
j (z),

j = 1, 2, ..., n − s.

Proof Fix Q−s
j . For notational convenience, define F(qs) ≡

n−s∑
j=1

wn,s( j)πs(qs, Q−s
j ) and

H(qs) ≡
n−s∑
j=1

zn,s( j)πs(qs, Q−s
j ). Then q̃s(w) and q̃s(z) satisfy respectively the first-order

conditions
∂F(qs)

∂qs
= 0 and

∂H(qs)

∂qs
= 0 or equivalently

n−s∑

j=1

wn,s( j)p′ (qs + Q−s
j

)
qs +

n−s∑

j=1

wn,s( j)p
(

qs + Q−s
j

)
− c = 0 (32)

and
n−s∑

j=1

zn,s( j)p′ (qs + Q−s
j

)
qs +

n−s∑

j=1

zn,s( j)p
(

qs + Q−s
j

)
− c = 0 (33)

The function F(qs) is strictly concave in qs (by assumptions A1-A3). Hence q̃s(w) > q̃s(z)

if and only if
∂F(q̃s(z))

∂qs
> 0. By (32) we have that

∂F(q̃s(z))

∂qs
>0⇔

n−s∑

j=1

wn,s( j)p′ (q̃s(z)+Q−s
j

)
q̃s(z)+

n−s∑

j=1

wn,s( j)p
(

q̃s(z)+Q−s
j

)
−c>0

(34)

Solving for q̃s(z) by (33) and plugging in (34) we have that

∂F(q̃s(z))

∂qs
> 0 ⇔

n−s∑
j=1

wn,s( j)p′
(

q̃s(z)+ Q−s
j

)

−
n−s∑
j=1

zn,s( j)p′
(

q̃s(z)+ Q−s
j

)

⎛

⎝
n−s∑

j=1

zn,s( j)p
(

q̃s(z)+ Q−s
j

)
− c

⎞

⎠

+
n−s∑

j=1

wn,s( j)p
(

q̃s(z)+ Q−s
j

)
− c > 0 (35)

We now use the concavity assumption and claim that

n−s∑
j=1

wn,s( j)p′
(

q̃s(z)+ Q−s
j

)

−
n−s∑
j=1

zn,s( j)p′
(

q̃s(z)+ Q−s
j

) ≥ −1 (36)
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To show the above we can equivalently show

n−s∑

j=1

wn,s( j)p′ (q̃s(z)+ Q−s
j

)
−

n−s∑

j=1

zn,s( j)p′ (q̃s(z)+ Q−s
j

)
≥ 0 (37)

We have

n−s∑

j=1

wn,s( j)p′ (q̃s(z)+ Q−s
j

)
−

n−s∑

j=1

zn,s( j)p′ (q̃s(z)+ Q−s
j

)

= (
wn,s(1)− zn,s(1)

)
p′ (q̃s(z)+ Q−s

1

) +
n−s∑

j=2

(
wn,s( j)− zn,s( j)

)
p′ (q̃s(z)+ Q−s

j

)

≥ (
wn,s(1)− zn,s(1)

)
p′ (q̃s(z)+ Q−s

2

) +
n−s∑

j=2

(
wn,s( j)− zn,s( j)

)
p′ (q̃s(z)+ Q−s

j

)

where the inequality holds because wn,s(1) − zn,s(1) ≥ 0 and because the weak concavity
of price implies that p′ (q̃s(z)+ Q−s

1

) ≥ p′ (q̃s(z)+ Q−s
2

)
(recall that Q−s

1 < Q−s
2 ). If we

continue the process of iterating j , we end up with (37). Since the latter condition holds, we
have that

n−s∑
j=1

wn,s( j)p′
(

q̃s(z)+ Q−s
j

)

−
n−s∑
j=1

zn,s( j)p′
(

q̃s(z)+ Q−s
j

)

⎛

⎝
n−s∑

j=1

zn,s( j)p
(

q̃s(z)+ Q−s
j

)
− c

⎞

⎠

+
n−s∑

j=1

wn,s( j)p
(

q̃s(z)+ Q−s
j

)
− c

≥ −
⎛

⎝
n−s∑

j=1

zn,s( j)p
(

q̃s(z)+ Q−s
j

)
− c

⎞

⎠ +
n−s∑

j=1

wn,s( j)p
(

q̃s(z)+ Q−s
j

)
− c

=
n−s∑

j=1

wn,s( j)p
(

q̃s(z)+ Q−s
j

)
−

n−s∑

j=1

zn,s( j)p
(

q̃s(z)+ Q−s
j

)
(38)

But expression (38) can be written as

(
wn,s(1)− zn,s(1)

)
p

(
q̃s(z)+ Q−s

1

) +
n−s∑

j=2

(
wn,s( j)− zn,s( j)

)
p

(
q̃s(z)+ Q−s

j

)

>
(
wn,s(1)− zn,s(1)

)
p(q̃s(z)+ Q−s

2 )+
n−s∑

j=2

(
wn,s( j)− zn,s( j)

)
p

(
q̃s(z)+ Q−s

j

)

where the last inequality holds because Q−s
1 < Q−s

2 . Continuing the iterations on j , we end
up with

n−s∑

j=1

wn,s( j)p
(

q̃s(z)+ Q−s
j

)
−

n−s∑

j=1

zn,s( j)p
(

q̃s(z)+ Q−s
j

)
> 0 (39)
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Combining (35), (38) and (39) we conclude that
∂F(q̃s(z))

∂qs
> 0 and hence q̃s(w) > q̃s(z).

But then Q−s
j (w) < Q−s

j (z), since Q−s
j (w) and Q−s

j (z) emerge from Q̃−s
j for qs = q̃s(w)

and qs = q̃s(z) respectively and commodities in a Cournot market are substitutes. �	
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