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Abstract This paper considers a two-stage supply chain in which a supplier serves a set of
stores in a retail chain. We consider a two-stage Stackelberg game in which the supplier must
set price discounts for each period of a finite planning horizon under uncertainty in retail-
store demand. As a mechanism to stimulate sales, the supplier offers periodic off-invoice
price discounts to the retail chain. Based on the price discounts offered by the supplier, and
after store demand uncertainty is resolved, the retail chain determines individual store or-
der quantities in each period. Because the supplier offers store-specific prices, the retailer
may ship inventory between stores, a practice known as diverting. We demonstrate that, de-
spite the resulting bullwhip effect and associated costs, a carefully designed price promotion
scheme can improve the supplier’s profit when compared to the case of everyday low pricing
(EDLP). We model this problem as a stochastic bilevel optimization problem with a bilin-
ear objective at each level and with linear constraints. We provide an exact solution method
based on a Reformulation-Linearization Technique (RLT). In addition, we compare our so-
lution approach with a widely used heuristic and another exact solution method developed
by Al-Khayyal (Eur. J. Oper. Res. 60(3):306–314, 1992) in order to benchmark its quality.

Keywords Supply chain management · Price promotions · Stackelberg game · Bilinear
optimization

1 Introduction

Trade promotions, a common practice in consumer packaged goods sectors, involve suppli-
ers who offer temporary price cuts to retailers in the hope that retailers will in turn discount
or promote their product to consumers. Trade promotions have long played an important
role in U.S. retail supply chains. Use of trade promotions by suppliers of consumer pack-
aged goods to distributors rose from $8 billion in 1990 to approximately $80 billion in 2004
(Gómez et al. 2007). With the lion’s share (52 %) (Ailawadi et al. 1999) of the money spent
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on advertising and promotions going to trade rather than consumer promotions, 85 % of
suppliers believe that their trade promotion dollars are not being spent effectively (Knowl-
edge@Wharton 2001), and only 19 % think they get a good value for their money (Bell and
Drèze 2002).

Adoption of “off-invoice” deals is one of the major reasons for the poor performance
of trade promotions. In an “off-invoice” trade promotion, a supplier simply deducts some
percentage from the invoice price for purchases over a set of periods. Thus, suppliers have
no control over whether retailers will actually pass their promotional prices on to end con-
sumers. In fact, a survey shows that, on average, retailers only pass 60 % of trade funds
to consumers (Besanko et al. 2005). There are two retailer strategies that reduce the effec-
tiveness of trade promotions. First, retailers may respond to an off-invoice trade promotion
by engaging in forward-buying, i.e., the retailer takes advantage of the suppliers’s tempo-
rary discount by purchasing a quantity that far exceeds its current needs, and subsequently
only applies a discount to part of this order when selling to consumers. When the promo-
tion period expires, the retailer sells the remaining inventory that it purchased at a discount
to its consumers at the regular price. Second, retailers may take advantage of off-invoice
trade promotions by engaging in diverting, i.e., ordering from one store and redirecting the
shipment to another store.

Bronnenberg et al. (2007) show that geographic variation in brand shares for leading con-
sumer brands is both substantial and persistent. Consequently, the marginal effectiveness
of promotions and prices varies considerably among retail stores from around the coun-
try (Bronnenberg et al. 2005). To accommodate geographic differences in sales of similar
products, suppliers may offer certain off-invoice trade promotions only in certain regions of
the country. Large national retail chains may circumvent these restrictions by purchasing a
product at a lower wholesale price where the deal is offered, and subsequently shipping the
item to stores in other regions (where the deal is not offered) for sale at the regular price.
Conventional wisdom holds that 5 % to 10 % of grocery products on promotion are diverted
(Berry 1992).

These forward-buying and diverting strategies make the retailer’s store order pattern dif-
fer from the store’s consumer demand pattern, and consequently the variation in a retailer’s
order quantity may be much larger than the variation in end-consumer demand. This result-
ing phenomenon is known as the bullwhip effect, which is viewed in extremely negative
terms because of its negative impacts on supply chain operations costs. Moreover, Lee et al.
(1997) characterized price variations as one of the major causes of the bullwhip effect. Con-
sequently, in order to reduce the operations costs associated with the bullwhip effect, in
March 1997, Procter & Gamble announced plans to eliminate 20 % of its brands from trade
promotion contracts; other major suppliers also began to adopt corresponding management
practices (an EDLP strategy, for example) to stabilize prices. However, a recent survey con-
ducted by MEI Computer Technology Group Inc. showed that 42 % of the respondents,
consisting of consumer packaged goods (CPG) suppliers, said they would spend more on
trade promotions in 2010 than ever before (MEI 2010). These suppliers continue to offer
trade promotions for several reasons. First, a trend exists in the packaged goods industry
in which power is shifting towards retailers and away from suppliers, and this increasing
power shift has led retailers to pursue higher rewards. Second, two-thirds of all consumer
purchase decisions are made in retail stores (Murry and Heide 1998), and 40 % of con-
sumers look for deals at retail stores (Miller 1997). However, some retailers are reluctant
to offer sales promotions unless suppliers fund promotions, at least to some extent, because
the retailer’s promotion of one brand may cannibalize sales of a competing brand in the
same store, which may reduce the retailer’s total profit. As a result, systemic inefficiencies
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associated with trade promotions along with pressure applied by powerful retailers lead to a
substantial dilemma for suppliers.

In this study, we develop a decision model for designing a supplier’s trade promotion
scheme by taking the retailer’s anticipated reactions into consideration. Our model captures
a degree of information asymmetry between the supplier and retailers at a coarse level. In
particular, because retail stores are in local markets, this provides the retail chain with much
better information regarding future demand than is available to the supplier. In many cases
retail chains are reluctant to share past demand realizations and future demand forecasts
with suppliers in order to prevent this information from reaching competitors. As a result,
retailers often have access to much more precise demand information than suppliers (in
certain cases the retailer may even make-to-order, implying that its demand is known at
the time it places orders with the supplier). We model this asymmetry by assuming that
the retailer is able to precisely forecast future demands in the short run, while from the
supplier’s perspective, end-consumer demand in each period at every store is uncertain.
Thus, the supplier must create its plan for a stochastic demand sequence while the planning
problem from the retailer’s perspective is effectively deterministic.

The remainder of this paper is organized as follows. The next section summarizes the
related literature. Section 3 then describes our supply chain model. We present three ap-
proaches for solving the resulting problem in Sect. 4. We first transform our original model
to a generalized bilinear programming problem in Sects. 4.1 and 4.2. Section 4.3.1 presents
a widely used heuristic solution method previously developed for solving bilinear problems,
followed by Sects. 4.3.2 and 4.3.3, which present two exact solution methods. The first
of these is a modification of Al-Khayyal’s approach (Al-Khayyal 1992) for solving general-
ized bilinear programs and the second is a new approach we have developed for this problem
class. In Sect. 5, we discuss the results of a computational study used to validate our solution
method and compare it with the results of the heuristic method and Al-Khayyal’s approach.
We conclude in Sect. 6 with a discussion of the insights provided by our results.

2 Literature review

A study by Andersen Consulting (Drèze and Bell 2003) found that “trade promotion is the
biggest, most complex and controversial dilemma facing the retail industry today.” Despite
the many undesirable consequences discussed in the operations literature, there has been
no sign of decline in the use of trade promotions in industry. Ailawadi et al. (1999) used
a numerical example to demonstrate that a well-designed off-invoice trade promotion can
increase both the total supply chain system’s profits and the upstream player’s profits. Blat-
tberg et al. (1981) suggested that effective timing of off-invoice trade promotions can reduce
a supplier’s inventory cost. Drèze and Bell (2003) showed that scan-back trade promotions
may improve both the retailer’s and the supplier’s performance. Scan-back trade promotions
are so named because they are based on stores’ scanner data and, therefore, the amount sold
to end consumers from each store.

Studying the effects of trade promotions in a supply chain requires a model that simul-
taneously considers pricing and operations decisions. The integration of pricing with in-
ventory and distribution decisions over a finite planning horizon has been widely studied
in the literature for a single firm within a supply chain. Under the assumption of determin-
istic demand, Ardalan (1991, 1994) developed a model that determines both the retailer’s
optimal price and ordering policies in response to a one-time only price discount using a
general price-demand relationship. Arcelus and Srinivasan (1998) generalized this work by
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accounting for potential forward buying at the retailer. For the more general case in which
price discounts can be offered on more than one occasion, Sogomonian and Tang (1993)
developed a model that determines optimal promotion and production decisions for a single
profit-maximizing firm using mixed-integer programming. Based on the assumptions that
promotion levels belong to a finite set and the consumer response to promotions depends on
the time elapsed since the last promotion, they proposed an approach to solve the problem
globally by reformulating their problem as a “longest path” problem on a network. Su and
Geunes (2012) provided a deterministic two-echelon supply chain model in which the sup-
plier’s and retailer’s prices are periodically reduced in conjunction with a promotion. They
demonstrated that increased system profit can coexist with the bullwhip effect as a result of
trade promotions if the supplier judiciously applies a trade promotion strategy under cer-
tain conditions (e.g., a sufficient number of impulsive consumers and/or a low degree of
consumer forward buying).

Under the assumption of stochastic demand, Petruzzi and Dada (1999) considered a
price-setting firm that stocks a single product subject to random, price-dependent demand,
with the objective of determining stock levels over multiple periods. They developed a con-
dition under which the solution to this problem is stationary and myopic. One limitation
of their research is the imposition of a constant price assumption. For a joint pricing and
inventory management problem with stochastic demand (in which prices may change dy-
namically over time), Thowsen (1975) showed that the optimal pricing/inventory policy is a
base-stock list-price policy under the assumptions that: (i) the expected demand curve and
stockout costs are linear functions; (ii) holding costs are convex; and (iii) the density func-
tion of the random component of consumer demand is PF2 (a Pólya frequency function of
order 2). Cheng and Sethi (1999) used a Markov decision process (MDP) model for a joint
inventory and promotion decision problem in which the promotion has only two states (on
and off). Under certain conditions, they showed that the optimal promotion and ordering
policy is an (S0, S1,P ) policy. That is, if the initial inventory level is at least P , the product
is promoted; if the initial inventory is less than S1 and the product is promoted, an order is
placed to increase the inventory position to S1; if the initial inventory is less than S0 and if
the product is not promoted, an order is placed to increase the inventory position to S0. Ad-
ditional works that consider the use of pricing and promotions to manage demand in supply
chains include Desai (1992), who considers how channel structure affects pricing decisions,
Upasani and Uzsoy (2008), who provide a review of lead time and pricing decision models,
and Xiao et al. (2005), who consider promotions and supply chain contract parameters with
demand disruptions.

In this paper, we provide a mathematical model of a decentralized two-echelon supply
chain in which the supplier’s pricing decisions (trade promotion levels) and the retailer’s op-
erations decisions (order quantities, inventory levels, and transshipment quantities) are de-
termined simultaneously. To broaden the applicability of our model, we assume that the price
can be dynamically changed over time and that demand is stochastic and price-dependent.
To the best of our knowledge, no existing work considers an exact solution method for a joint
promotion and operations problem in a multi-echelon supply chain under uncertain demand,
as we do in this paper. Neslin et al. (1995) developed a multi-echelon model the considers
the actions of a supplier, retailer, and consumers from the point of view of the supplier who
attempts to maximize profit by targeting advertising to consumers and trade promotions to
retailers. However, they do not provide a procedure for obtaining a globally optimal so-
lution. Moreover, their modeling approach parameterized on all of the retailer’s decisions,
which effectively leads to a single-level model, whereas our model explicitly considers two
separate decision-making units, i.e., a supplier and a retailer. In the field of mathematical
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programming, this problem falls in the class of linearly constrained, bilevel, nonconvex op-
timization problems. Most of the available algorithms in the field of bilevel programming
apply to bilevel linear problems (where, for fixed values of one set of decision variables, the
remaining problem becomes a linear program). Ben-Ayed (1993) and Wen and Hsu (1991)
provided detailed reviews of bilevel linear programming problems. They presented a basic
model along with characterizations of optimal solution properties for the problem class and
some existing solution approaches. To solve linearly constrained bilevel convex quadratic
problems, Muu and Van Quy (2003) developed a branch-and-bound algorithm for finding a
global optimal solution. As we will see, none of the previously mentioned solution methods
for bilinear optimization problems can be directly applied to the model we develop, which
falls within a more general class of nonconvex bilevel optimization problems. These meth-
ods have, however, provided substantial guidance and inspiration for the solution procedure
we have developed for solving the problem we define.

As we later discuss, our model can be cast as a generalized bilinear program (GBP). Al-
Khayyal (1992) provided a generic approach for solving GBPs globally; this approach was
essentially an extension to the Al-Khayyal and Falk (1983) algorithm which was proposed
to solve jointly constrained bilinear programs. Al-Khayyal et al. (1995) further extended
the applicability of this method to nonconvex quadratically constrained quadratic programs.
Our solution approach adapts the branch-and-bound algorithm of Al-Khayyal (1992) and
also draws on previously developed Reformulation-Linearization (RLT) techniques. Sher-
ali and Alameddine (1992) developed a branch-and-bound algorithm based on an RLT for
jointly constrained bilinear programs. Although the linear relaxation obtained from the RLT
approach is theoretically tighter than that derived by AI-Khayyal’s method, this RLT branch-
and-bound approach cannot be applied to GBPs directly. In our study, we develop a method
which is able to solve our problem by integrating the RLT branch-and-bound algorithm
within a penalty-function-based approach, which penalizes violations of a relaxed constraint
set in the objective function.

3 Problem definition and formulation

To formalize our model, we define the following notation:

Inputs and parameters

i, j : retail store indices, i, j = 1, . . . , S.
l: period index, l = 1, . . . ,L.
LP : number of periods in the supplier’s promotion time window, 1 < LP < L.
cl
i : supplier’s initial unit wholesale price for store i in period l.

ml
i : supplier’s unit production and transportation cost for retail store i in period l.

hl
i : retailer’s unit inventory holding cost at store i in period l.

t lij : retailer’s unit transportation cost between stores i and j in period l, where i �= j .
dl

i : base value of deterministic component of consumer demand at store i in period l.
αl

i : retailer’s pass-through rate at store i in period l.
γ l

i : consumer promotional price elasticity at store i in period l.

Decision variables

zl
i : supplier’s price discount at store i in period l.

xl
i : retailer’s order quantity at store i in period l.
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I l
i : retailer’s inventory level at store i at the end of period l.

yl
ij : retailer’s transhipment quantity from store i to store j in period l.

We consider the following two-echelon system. A make-to-order supplier distributes a
single product to a set of retail stores who in turn sell the item to consumers over a finite
planning horizon of L periods. The retailer runs a chain of S stores, which serve geograph-
ically dispersed, heterogeneous markets, and face random, price-dependent demand at each
store.

The supplier and retailer act non-cooperatively and in a sequential manner. The supplier
(upper level) selects trade promotion level zl

i targeted at each retail store in each period
between period 1 and LP (≤ L) in order to maximize its expected profit.1 Given the sup-
plier’s price discounts, the retailer (lower level) optimizes its profit by choosing: (1) the
order quantity at store i in period l, denoted by xl

i ; (2) the inventory level at store i at the
end of period l, denoted by I l

i ; and (3) the diverting quantity from store i to store j in pe-
riod l, denoted by yl

ij , for all periods l = 1, . . . ,L and all stores i, j = 1, . . . , S, i �= j . The
supplier explicitly incorporates the anticipated reactions of the retailer in its optimization
process, and we assume full information is available to the supplier regarding the retailer’s
inventory and transportation costs. This fits the classical Stackelberg game paradigm, where
the leader, who is aware of the follower’s best response, chooses a move that maximizes its
own expected payoff.

We assume randomness in demand is price-independent and can be modeled in an addi-
tive fashion. Specifically, demand is defined as d̃ l

i (ω) = dl
i + αl

iγ
l
i z

l
i + εl

i(ω), where ω is an
outcome belonging to some space Ω , and ω influences all random variables εl

i . Note that
the quantity αl

iz
l
i is the price discount seen by consumers as it is the product of the retailer’s

discount pass-through rate and the supplier’s trade discount. Thus, the quantity αl
iγ

l
i z

l
i cor-

responds to the increase in demand at retail store i in period l as a result of the discount
passed through to consumers.

As noted in the introduction, we assume that the retailer makes its decisions (xl
i , IL

i ,
and yl

ij ) after demand uncertainty is resolved but before demand occurs. One interpretation
of this assumption is that, from a marketing perspective, retailers are, by definition, closer
to consumers than manufacturing companies, and so retailers can more easily engage in
personal contact with consumers, gather information on consumer behavior, and anticipate
consumer purchase patterns in the short run. And, because retailer resupply lead times are
often very short, the retailer has the luxury of placing orders immediately before demand
occurs (or even in response to demand in some cases, as in a make-to-order setting). More-
over, effective promotions are usually those offered only over a short time-span, because
frequent usage of promotions diminishes their effectiveness (Blattberg and Neslin 1989).
As a result, we can often assume that a retailer can accurately forecast consumer demand
during promotion periods in the near future. However, we assume that the retailer does not
share consumer information with the supplier in this decentralized supply chain. Because
the supplier does not possess the retailer’s specialized knowledge of local markets, the sup-
plier cannot accurately forecast consumer demand at the local level; as a result, the supplier

1We define LP as the number of periods within the supplier’s “promotion time window,” i.e., the number of

periods during which the supplier offers a discount. Because LP may equal L, the supplier may in principle
offer a discount in any period. However, as noted in Blattberg and Neslin (1989), price promotions that are
too frequent tend to lose their effectiveness. Thus, in practical contexts, supplier’s tend to engage in cyclical
planning, wherein they tend to offer promotions periodically. As a result, we envision our model as being
applied periodically, where, without loss of generality, we assume that promotions are implemented during
the first LP periods of the planning horizon.
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must determine its promotional discount levels (zl
i values) for the planning horizon in the

absence of precise local demand information. Thus, the asymmetry in the degree of demand
uncertainty between the supplier and retailer is attributable to the retailer’s ability to ob-
tain more precise local demand information. From the supplier’s perspective it is either too
costly to obtain this local information or the retailer is unwilling to share this information
for competitive reasons.

Our model captures the interaction between the supplier and retail chain. The purpose of
the model is to determine the optimal promotion plan for the supplier when anticipating the
retail chain’s usage of forward buying and diverting strategies. To simplify the exposition of
the model and for model tractability, we assume that: (1) replenishment delays are negligi-
ble; (2) fixed costs are zero (or constant); (3) transhipment between any two stores can be
done within one period; and (4) the retailer’s discount pass-through rates are fixed or pre-
determined.2 In our model, the supplier makes to order and wishes to maximize its expected
net profit. Because of assumption (2) above, the supplier’s expected net profit in any period
therefore equals its profit margin (determined by its wholesale price less its marginal cost
and discount level) multiplied by the expected demand in the period. The retail chain wishes
to meet all of its demand at minimum total cost over the planning horizon.

Based on the above notation and model description, the trade promotion problem can be
formulated as a stochastic bilevel program with bilinear objectives at both decision levels,
and with linear constraints. For a given realization ω, the order quantity xl

i (ω), forward
buying quantity I l

i (ω), and diverting quantity yl
ij (ω) correspond to an optimal solution to

the lower level linear program for given upper level trade promotion levels zl
i , the optimal

values of which are determined by maximizing the expected value of net supplier profit
across all possible realizations.

We can now formulate our stochastic multi-period, two-stage trade promotion problem
as:

(STP) max
z

Eξ

[
L∑

l=1

S∑
i=1

(
cl
i − ml

i − zl
i

)
xl

i (ω)

]
(1)

s.t. 0 ≤ zl
i ≤ cl

i − ml
i, ∀i = 1, . . . , S, l = 1, . . . ,LP (2)

zl
i = 0 ∀i = 1, . . . , S, l = LP + 1, . . . ,L (3)

where (x(ω), I (ω), y(ω)) is an optimal solution of the following problem:

min
x,y,I

L∑
l=1

S∑
i=1

[(
cl
i − zl

i

)
xl

i (ω) + hl
iI

l
i (ω) +

∑
j �=i

t lij y
l
ij (ω)

]
(4)

s.t. I l
i (ω) = I l−1

i (ω) + xl
i (ω) +

∑
k �=i

yl−1
ki (ω) − d̃ l

i (ω) −
∑
j �=i

yl
ij (ω),

∀i = 1, . . . , S, l = 1, . . . ,L (5)

d̃ l
i (ω) = dl

i + αl
iγ

l
i z

l
i + εl

i(ω), ∀i = 1, . . . , S, l = 1, . . . ,L (6)

2While we recognize that the pass-through rates are decision variables set by the retailer, we assume fixed
values in our model for model tractability. Thus, when using this model for decision making, the supplier
must parameterize on the pass-through rate in order to determine (at least approximately) the values that the
retailer is likely to apply.
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xl
i (ω) ≥ 0, I l

i (ω) ≥ 0, ∀i = 1, . . . , S, l = 1, . . . ,L

yl
ij (ω) ≥ 0, ∀i = 1, . . . , S, i �= j, l = 1, . . . ,L

I 0
i (ω) = 0 ,∀i = 1, . . . , S

where ξ(ω) is a random vector consisting of all random components εl
i(ω), and where each

element has expected value zero. The upper level objective (1) is to maximize expected net
profit and is expressed as the difference between the sum of revenues arising from wholesale
pricing (cl

i − zl
i ) and the sum of variable costs. The upper level constraints (2) state that

the wholesale price discounts zl
i should be nonnegative and less than or equal to the per

unit profit margin, cl
i − ml

i . The upper level constraints (3) state that, after the supplier’s
promotion time window, the supplier stops offering a trade promotion to all retail stores, and
we add this set of constraints to our model so that it is able to capture the carry-over effect
(forward buying, for example) of decisions in promotion periods. The objective of the lower
level problem (4) is to minimize the retailer’s total cost of ordering, holding inventory and
diverting. In our study, since discount pass-through rates are fixed, it follows that the retail
prices are indirectly determined by the supplier. As a result, for the lower level problem,
minimizing cost is equivalent to maximizing profit. The first set of lower level constraints (5)
requires that ending inventory at store i in period l equals the ending inventory at store i in
period l − 1, plus the amount ordered from the supplier at store i in period l, plus the
amount shipped from other stores to store i in period l − 1, minus the demand at store i in
period l, minus the amount shipped from store i to other stores in period l. The second set of
constraints (6) models consumer demand as a linear function of the wholesale price discount.
The remaining constraints indicate that all variables are real-valued and nonnegative.

Note that for a realization ω and specific promotion levels, the objective of the lower
level problem is convex (but not strictly convex), which implies the solution to the lower
level problem may not necessarily be unique. As a result, we assume that given the choice
between solutions to the lower level problem with equal cost, the solution selected is the one
yielding the highest expected profit for the supplier. One may alternatively apply a worst-
case approach from the supplier’s perspective, assuming that the retailer chooses the solution
yielding the lowest expected profit for the supplier.

There are two difficulties inherent in solving STP. First, for each outcome of the demand
realization, the resulting problem is a bilevel problem with bilinear objectives at both levels
and with linear constraints, which falls in the class of NP-hard bilinearly constrained bilin-
ear programs (or generalized bilinear programs). The second difficulty is the presence of
uncertainty in demand: for continuous distributions, exact computation of the expectation
involves taking multiple integrals and, in general, implies intractability; for discrete distri-
butions, computing the expectation might involve solving a prohibitively huge number of
NP-hard problems.

In the next section, we propose a three step methodology to solve the STP problem glob-
ally. First, the stochastic trade promotion problem is converted to an equivalent determin-
istic problem. Then, we transform the resulting deterministic bilevel problem into a single-
level problem. Finally, we adapt a branch-and-bound algorithm based on a Reformulation-
Linearization Technique (RLT) for solving the resulting single level generalized bilinear
program.
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4 Solution procedures for STP

4.1 Deterministic equivalent

In order to analyze the STP, we first construct a time-expanded network G = {N,A} rep-
resenting the two-echelon, multi-period supply chain problem, where N = {(i, l) : i =
1, . . . , S, l = 1, . . . ,L} ∪ {(0,0)} is the set of nodes and A is the set of arcs. Node
(0,0) represents the supplier, while node (i, l) corresponds to retail store i in period l.
The set Nl = {(1, l), (2, l), . . . , (S, l)} ⊂ N corresponds to the set of nodes associated
with retail stores in period l. Three types of arcs are contained in the network G: (1)
((0,0), (i, l)),∀(i, l) ∈ N − {(0,0)}, with arc cost cl

i − zl
i per unit of flow (order quantity)

from the supplier to node (i, l); (2) ((i, l), (i, l + 1)),∀(i, l) ∈ N − NS − {(0,0)} with a
unit cost of hl

i corresponding to the inventory carried from node (i, l) to (i, l + 1); and (3)
((i, l), (j, l + 1)),∀i, j = 1, . . . , S, l = 1, . . . ,L − 1, i �= j with a unit cost of t lij for trans-
shipment from node (i, l) to node (j, l + 1).

From the construction of graph G, we might view the lower level problem of STP as a
minimum cost flow problem, which requires sending d̃ l

i (ω) units of flow as cheaply as pos-
sible from node (0,0) to each node (i, l) in the set N −{(0,0)} in an uncapacitated network.
Observe that a minimum cost flow problem with no arc capacities can be decomposed into a
set of S ×L shortest path problems that are independent of the demand levels (please see the
Appendix for a demonstration of the validity of this decomposition). This observation im-
plies that the lower level problem of STP is equivalent to a set of deterministic problems that
are independent of the random terms. Based on this observation, it is not hard to see that for
the entire problem, the stochastic components only appear in the objective function of the
upper-level problem. After taking the expectation of the objective function, the STP is thus
a deterministic problem, and the distributions of the stochastic components do not impact
the optimization problem formulation. We next discuss how to transform this deterministic
equivalent for the two-level problem into a single-level optimization problem.

4.2 Single-level problem

The deterministic trade promotion problem (DTP) is derived directly from the STP by re-
placing the random term with its expectation. The results of Sect. 4.1 imply that the DTP is
equivalent to STP. Note that the lower level problem can be written without holding costs
by making the substitution I l

i = ∑l

τ=1[xτ
i + ∑

k �=i y
τ−1
ki − ∑

j �=i y
τ
ij − (dτ

i + ατ
i γ

τ
i zτ

i )]; then
the DTP can be formulated as:

(DTP) max
x,y,z

L∑
l=1

S∑
i=1

(
cl
i − ml

i − zl
i

)
xl

i

s.t. 0 ≤ zl
i ≤ cl

i − ml
i, ∀i = 1, . . . , S, l = 1, . . . ,LP

zl
i = 0, ∀i = 1, . . . , S, l = LP + 1, . . . ,L

where (x, y) is an optimal solution of

min
x,y

L∑
l=1

S∑
i=1

[(
c̄l
i − zl

i

)
xl

i +
∑
j �=i

t̄ lij y
l
ij − h̄l

i

(
dl

i + αl
iγ

l
i z

l
i

)]

s.t.
l∑

τ=1

(
xτ

i +
∑
k �=i

yτ−1
ki −

∑
j �=i

yτ
ij

)
≥

l∑
τ=1

(
dτ

i + ατ
i γ

τ
i zτ

i

)
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∀i = 1, . . . , S, l = 1, . . . ,L (7)

xl
i ≥ 0, ∀i = 1, . . . , S, l = 1, . . . ,L

yl
ij ≥ 0, ∀i = 1, . . . , S, i �= j, l = 1, . . . ,L,

where h̄l
i = ∑L

τ=l h
τ
i , c̄l

i = cl
i + h̄l

i and t̄ lij = t lij + h̄l+1
j − h̄l

i . For any fixed value of zl
i , the

lower level problem is a linear program, so any optimal solution of the lower level problem
satisfies the strong duality property. As a result, we can replace the lower level program by
its primal-dual optimality conditions, where π is the vector of dual variables associated with
the set of constraints (7). Let us first define:

F ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, y, z,π) :

∑l

τ=1(x
τ
i + ∑

k �=i y
τ−1
ki − ∑

j �=i y
τ
ij − ατ

i γ
τ
i zτ

i ) ≥ ∑l

τ=1 dτ
i ,

∀i = 1, . . . , S, l = 1, . . . ,L∑L

τ=l π
τ
i + zl

i ≤ c̄l
i ,

∀i = 1, . . . , S, l = 1, . . . ,L∑L

τ=l+1 πτ
j − ∑L

τ=l π
τ
i ≤ t̄ lij ,

∀i = 1, . . . , S, i �= j, l = 1, . . . ,L

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and

Ω ≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(x, y, z,π) :

zl
i ≥ 0 and cl

i − ml
i − zl

i ≥ 0, ∀i = 1, . . . , S, l = 1, . . . ,LP

zl
i = 0, ∀i = 1, . . . , S, l = LP , . . . ,L

xl
i ≥ 0 and Ul − xl

i ≥ 0, ∀i = 1, . . . , S, l = 1, . . . ,L

yl
ij ≥ 0 and Ul − yl

ij ,≥ 0, ∀i = 1, . . . , S, i �= j, l = 1, . . . ,L

πl
i ≥ 0 and c̄l

i − πl
i ≥ 0, ∀i = 1, . . . , S, l = 1, . . . ,L,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

where Ul = ∑L

τ=l

∑S

i=1(d
τ
i + ατ

i γ
τ
i mτ

i ) and Ω is a hyper-rectangle. Using the above defini-
tions we can formulate the DTP as follows:

(
SDTP(Ω)

)
max

x,y,z,π
φ(x, y, z,π) =

L∑
l=1

S∑
i=1

(
cl
i − ml

i − zl
i

)
xl

i (8)

s.t.
L∑

l=1

S∑
i=1

[(
c̄l
i − zl

i

)
xl

i +
∑
j �=i

t̄ lij y
l
ij

]
=

L∑
l=1

S∑
i=1

L∑
τ=l

πτ
i

(
dl

i + αl
iγ

l
i z

l
i

)
(9)

(x, y, z,π) ∈ F ∩ Ω.

The above problem maximizes a bilinear objective function (8) over a feasible region defined
by a bilinear constraint (9) and a set of linear constraints. This problem thus falls within the
class of generalized bilinear programs (GBPs), and so the SDTP reduces to a linear program
whenever either z or (x, y,π) is fixed. However, the objective function (8) and the bilinear
constraint (9) are nonconvex functions. Solving a GBP is NP-hard (Petrik and Zilberstein
2011), and, to the best of our knowledge, no methods exist that guarantee convergence to
an exact solution in a finite number of steps. In the following section, we will present some
classical techniques for solving the SDTP, as well as a penalty-based method that we have
developed for solving the problem.
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4.3 Linearization

4.3.1 Successive linear programming approach

Successive linear programming is a commonly used heuristic method for solving bilinear
programming problems. This procedure iterates between fixing the supplier’s price dis-
counts z and the retailer’s primal and dual variables (x, y,π) for solving the SDTP. At a
given iteration k, we first find the values of (xk, yk,πk) that optimize the objective func-
tion for a fixed zk−1, and then find the vector zk that optimizes the objective function for
fixed values of (xk, yk,πk). We repeat this procedure until the objective does not improve
between two successive iterations.

The classical bilinear program is a class of quadratic programs with the following struc-
ture:

max
x,y

cT x + xT Ay + dT y

s.t. x ∈ X := {x : B1x ≤ b1, x ≥ 0}
y ∈ Y := {y : B2y ≤ b2, y ≥ 0}

If the above bilinear program has a finite optimal solution, then there exists an extreme
point x∗ ∈ X and an extreme point y∗ ∈ Y such that (x∗, y∗) is an optimal solution of the
classical bilinear program (Vicente et al. 1992). Since the feasible region is defined by two
separable polyhedral sets, the classical bilinear program is also called a bilinear program
with separable constraints. Sherali and Shetty (1980) showed that, for a classical bilinear
program, the limit point of the successive linear programming approach is a locally optimal
solution. However, the SDTP is a GBP problem, which does not have separable constraints
in the bilinear terms. Therefore, we have no guarantees on solution quality for a solution
obtained using the successive linear programming approach.

4.3.2 Al-Khayyal’s approach

Al-Khayyal and Falk (1983) developed an infinitely convergent branch and bound algorithm
for jointly constrained bilinear programs (JCBPs) using lower bounds derived from convex
envelopes of the bilinear terms. Al-Khayyal (1992) found that the same approach can also
be applied for GBPs.

The first step of the approach is to obtain the concave envelope of the objec-
tive function (8) over Ω . Piecing together all the variables, we obtain a vector Λ ≡
(x, y, z,π,η, ζ, ν), with up to N = (5 + S + L) × (S × L) components, and the concave
envelope of (8) over Ω can be represented as:

ψ(Λ) =
L∑

l=1

S∑
i=1

[(
cl
i − ml

i

)
xl

i − ηl
i

]
s.t. Λ ∈ F1(Ω), (10)

where

F1(Ω) ≡
{

Λ :
ηl

i ≥ 0, ∀i = 1, . . . , S, l = 1, . . . ,L

ηl
i ≥ (cl

i − ml
i)x

l
i + Ulzl

i − (cl
i − ml

i)U
l, ∀i = 1, . . . , S, l = 1, . . . ,L

}
.
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The second step of the approach is to obtain a polyhedral approximation of the convex
hull of the region defined by constraint (9).

By the weak duality theorem, whenever (x, y) and π are feasible for the primal and dual
problems, respectively, the left-hand-side of Eq. (9) is always greater than or equal to its
right-hand-side. As a result, replacing constraint (9) with the following constraint does not
change the feasible region of the SDTP:

L∑
l=1

S∑
i=1

(
c̄l
ix

l
i +

∑
j �=i

t̄ lij y
l
ij −

l∑
τ=1

dτ
i π l

i − zl
ix

l
i −

l∑
τ=1

ατ
i γ

τ
i zτ

i π
l
i

)
≤ 0. (11)

Next, define the polyhedral set

F2(Ω) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ :

∑S

i=1

∑L

l=1(ζ
l
i + ∑l

τ=1 ντl
i ) ≤ 0

(c̄l
i − cl

i + ml
i)x

l
i + ∑

j �=i t̄
l
ij y

l
ij ≤ ζ l

i , ∀i = 1, . . . , S, l = 1, . . . ,L

c̄l
ix

l
i + ∑

j �=i t̄
l
ij y

l
ij − Ulzl

i ≤ ζ l
i , ∀i = 1, . . . , S, l = 1, . . . ,L

−[dτ
i + ατ

i γ
τ
i (cτ

i − mτ
i )]πl

i ≤ ντl
i , ∀i = 1, . . . , S, l = 1, . . . ,L, τ ≤ l

−dτ
i π l

i − ατ
i γ

τ
i c̄l

iz
τ
i ≤ ντl

i , ∀i = 1, . . . , S, l = 1, . . . ,L, τ ≤ l

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Al-Khayyal (1992) showed that for any (x, y, z,π) satisfying constraint (9), there exists
Λ ∈ F2(Ω).

From the results above, we have the following two observations: (i) ∀(x, y, z,π) ∈ F ∩Ω

and Λ ∈ F ∩ Ω ∩ F1(Ω), we have φ(x, y, z,π) ≤ ψ(Λ); and (ii) for any feasible solution
(x, y, z,π) to the SDTP, there exists Λ ∈ F ∩ Ω ∩ F1(Ω) ∩ F2(Ω). Consequently, we have
the following convex program for approximating the SDTP:

(
LP(Ω)

)
max

Λ
ψ(Λ) =

L∑
l=1

S∑
i=1

[(
cl
i − ml

i

)
xl

i − ηl
i

]
s.t. Λ ∈ F ∩ Ω ∩ F1(Ω) ∩ F2(Ω).

To solve the SDTP globally, we can implement an infinitely convergent branch-and-
bound algorithm based on the above approximation scheme, where partitioning is performed
by decomposing Ω into sub-hyper-rectangles. An outline of the algorithm is as follows:

• Initialization Step: The initial problem is the problem LP(Ω). Initialize Ω(1,1) = Ω and
let T1 = {(1,1)} be the index set of a single node at iteration one of the branch-and-bound
tree. Let UB(1,1) = ∞ be the upper bound associated with node (1,1). Let LB = −∞
and UB = ∞ be the initial lower and upper bounds of the problem. Set k = 1, and go to
the Main Step.

• Main Step: At iteration k, select a node (u, v) from Tk and remove this node from Tk .
Solve LP(Ω(u,v)) to obtain the partial solution (x̄, ȳ, z̄, π̄ ). If (x̄, ȳ, z̄, π̄ ) satisfies the con-
straint (9) and φ(x̄, ȳ, z̄, π̄) = ψ(Λ̄), then the algorithm terminates with (x̄, ȳ, z̄, π̄) as an
optimal solution to SDTP(Ω). Otherwise, there are two possible cases: (i) if (x̄, ȳ, z̄, π̄)

satisfies constraint (9) but φ(x̄, ȳ, z̄, π̄) < ψ(Λ̄), then let LBk = φ(x̄, ȳ, z̄, π̄) be the cur-
rent iteration lower bound, and set the partitioning index (p, q) as follows:

(p, q) = arg max
(i,l)

{
z̄l
i x̄

l
i − η̄l

i

};
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else (ii) if (x̄, ȳ, z̄, π̄) does not satisfy constraint (9), then let LBk = −∞ be the current
iteration lower bound, and set the partitioning index (p, q) as follows:

(p, q) = arg max
(i,l)

{
max

[
c̄l
ix

l
i +

∑
j �=i

t̄ lij y
l
ij − z̄l

i x̄
l
i − ζ̄ l

i ,−
L∑

τ=l

(
dl

i π̄
τ
i + αl

iγ
l
i z̄

l
i π̄

τ
i + ν̄lτ

i

)]}
.

After finding (p, q), partition the region Ω(u,v) into two mutually exclusive and ex-
haustive subregions. First, notice that Ω(u,v) is a hyper-rectangle which can be expressed
as follows:

Ω(u,v) ≡ {
(x, y, z,π) ∈ Ω : ZLl

i ≤ zl
i ≤ ZUl

i ∀i = 1, . . . , S, l = 1, . . . ,LP
}
,

where ZLl
i and ZUl

i are the lower and upper bounds of the component zl
i . Using the above

notation, the two new subregions can be represented as follows:

Ω(k+1,1) = Ω(u,v) ∩ {
ZLq

p ≤ zq
p ≤ z̄q

p

}
Ω(k+1,2) = Ω(u,v) ∩ {

z̄q
p ≤ zq

p ≤ ZUq
p

}
.

Set UB(k+1,1) = UB(k+1,2) = ψ(Λ̄). Then add these two nodes to the set Tk and update
the tree, if necessary. Set k = k + 1, and go to the next iteration.

The detailed branch-and-bound algorithm and its updating operations are described in
the Appendix.

Al-Khayyal and Falk (1983) showed that this algorithm converges to a globally optimal
solution for a GBP; however, for our problem, the convergence rate for this algorithm can
be disappointing, even for small-sized instances. In the next section, we therefore develop a
specific penalty-based method for solving the SDTP.

4.3.3 Penalty-based method

We next discuss a customized penalty-based method for solving the SDTP by exploiting
a property of constraint (9). Observe that the SDTP is a jointly constrained bilinear pro-
gram without constraint (9), and jointly constrained bilinear programs can be solved using
a suitable Reformulation-Linearization Technique (RLT).

As a result of the above observation, the first step of our method is to obtain a relaxation
of the SDTP by eliminating constraint (9) from the constraint set and penalizing violations
of this constraint in the objective function (8). Since the left-hand side of (9) is always
greater than or equal to the right-hand side, penalizing violations of constraint (9) yields the
following relaxed problem:

max
x,y,z,π

L∑
l=1

S∑
i=1

(
cl
i − ml

i − zl
i

)
xl

i − M

{
L∑
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S∑
i=1

[(
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i − zl

i

)
xl

i +
∑
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t̄ lij y
l
ij

−
L∑

τ=l

πτ
i

(
dl

i + αl
iγ

l
i z

l
i

)]}

s.t. (x, y, z,π) ∈ F ∩ Ω
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where M is a sufficiently large positive number (which corresponds to a penalty per unit of
violation of the constraint). By rewriting the objective, we obtain the following equivalent
formulation:

(PEN) max
x,y,z,π

L∑
l=1

S∑
i=1

{(
cl
i − ml

i − Mc̄l
i

)
xl

i − M
∑
j �=i

t̄ lij y
l
ij + M

l∑
τ=1

dτ
i π l

i

+ (M − 1)zl
ix

l
i + M

L∑
τ=l

αl
iγ

l
i π

τ
i zl

i

}

s.t. (x, y, z,π) ∈ F ∩ Ω.

The above formulation is a jointly constrained bilinear program. Sherali and Alameddine
(1992) developed an RLT for this problem class and embedded it within a provably conver-
gent branch-and-bound algorithm. Sherali and Alameddine’s RLT reformulates the bilinear
program by first constructing valid nonlinear inequalities from the original constraints defin-
ing F ∩Ω . The following are two general methods for generating these additional nonlinear
inequalities:

• Multiplying any two constraints in Ω pairwise, e.g., (cl
i − ml

i − zl
i)(U

k − xk
j ) ≥ 0; and

• Multiplying a bounding constraint in Ω with a constraint in F , e.g., (cl
i − ml

i −
zl
i)(

∑L

τ=k πτ
j + zk

j − c̄k
j ) ≥ 0.

Defining the set of constraints generated using the above pairwise product operations as
F(Ω), then the original PEN problem constraints together with the constraints in F(Ω)

yield a new equivalent formulation of the problem, which we denote as PEN ′:

(
PEN ′) max

x,y,z,π

L∑
l=1

S∑
i=1

{(
cl
i − ml

i − Mc̄l
i

)
xl
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l
i π

τ
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i

}

s.t. (x, y, z,π) ∈ F ∩ Ω ∩ F(Ω).

All of the nonlinear terms of the PEN ′ formulation are bilinear and, as a result, PEN ′ can be
linearized through an appropriate variable substitution strategy, which transforms the non-
linear constraints of the set F(Ω) to a set of linear constraints. For example, we substitute:

ηkl
i = xk

i z
l
i , ∀i = 1, . . . , S, k, l = 1, . . . ,L,

νkl
i = πk

i zl
i , ∀i = 1, . . . , S, k, l = 1, . . . ,L.

Let ζ represent the vector containing all such new variables created other than η and ν, and
let Fl(Ω) represent the linearized set of constraints from F(Ω). This leads to the following
reformulation of PEN ′:
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max
L∑

l=1

S∑
i=1

{(
cl
i − ml

i − Mc̄l
i

)
xl

i − M
∑
j �=i

t̄ lij y
l
ij

+ M

l∑
τ=1

dτ
i π l

i + (M − 1)ηll
i + M

L∑
τ=l

αl
iγ

l
i ν

lτ
i

}

s.t. (x, y, z,π, ν, η, ζ ) ∈ F ∩ Fl(Ω) ∩ Ω.

Note that after linearization, the resulting problem is a relaxation of the PEN ′ problem,
which corresponds to an upper bounding linear program for the original bilinear program;
Sherali and Alameddine (1992) showed that the resulting upper bound is at least as good as
that obtained using Al-Khayyal’s approach. The resulting branch-and-bound algorithm we
use is very similar to Algorithm 2 of Al-Khayyal’s approach. There is only one difference:
the branch-and-bound algorithm in our method does not need to check whether the partial
solution (x̄, ȳ, z̄, π̄ ) is feasible, so the partitioning index (p, q) can be found as follows:

(p, q) = arg max
(i,l)

{
max

[
νll

i − zl
ix

l
k,

L∑
τ=l

αl
iγ

l
i

(
νlτ

i − πτ
i zl

i

)]}
.

The remainder of the our branch-and-bound algorithm uses the same updating operations
and stopping criteria as Algorithm 2 from Al-Khayyal (1992).

From the above description, we derive a procedure for solving the SDTP using the
penalty-based method and RLT as shown in Algorithm 1.

In Algorithm 1, β is a positive number. At a given iteration, our approach first uses the
branch-and-bound algorithm to obtain an exact optimal solution or near optimal solution
to PEN ′, and then updates the best feasible solution and the lower and upper bounds of
the SDTP problem. If the optimality gap is less than a predetermined tolerance, then the
algorithm terminates and returns the current best feasible solution; otherwise, the algorithm
increases the value of penalty term M by a constant β . From our numerical tests, we found
that for smaller value of M , the associated branch-and-bound algorithm converges faster and
has a greater chance of finding a good feasible solution earlier; for a large enough value of
M , the PEN ′ problem gives the same optimal solution as SDTP, and this value of M was
usually under 10 for our test instances.

Algorithm 1 Penalty-based approach
1: k ← 1, M ← 0, UB ← ∞ and LB ← −∞;
2: while UB − LB > ε do
3: (x ′, y ′, z′,π ′) ← an optimal solution corresponding to PEN ′;
4: UB ← the optimal objective value of PEN ′;
5: (x̄, ȳ, π̄) ← an optimal solution corresponding to SDTP problem for fixed vectors z′;
6: LBk ← ∑L

l=1

∑S

i=1[cl
i − ml

i − (z′)l
i]x̄l

i ;
7: if LB < LBk then
8: LB ← LBk and (x∗, y∗, z∗,π∗) ← (x̄, ȳ, z′, π̄);
9: end if

10: k ← k + 1 and M ← M + β;
11: end while.
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5 Numerical experiments

This section presents computational test results for our penalty-based approach, the iterative
LP heuristic approach, and Al-Khayyal’s approach for solving the SDTP. We will demon-
strate that our penalty-based approach outperforms the other two solution methods from the
literature. In addition to evaluating the performance of different solution approaches, we
also analyze the impacts of different parameters on the bullwhip effect and its associated
costs, as well as on the supplier’s net profit from wholesale discounts. We implemented all
three of the solution approaches in the C# programming language, with the relaxed linear
programs solved using ILOG’s CPLEX 12.5 solver with Concert Technology.

5.1 Comparison of solution methods

To benchmark the performance of our penalty-based approach with the iterative LP heuristic
and Al-Khayyal’s approach, we tested our solution method using nine problem sets. Each
problem set corresponds to a fixed number of retail stores and number of time periods,
(S,L), where S ∈ {2,3,4} and L ∈ {2,3,4}. We tested twenty ranomly generated instances
for each combination of (S,L) values, for a total of 180 problem instances. For both exact
solution approaches, we set the relative optimality tolerance to 10−2, and the time limit to
180 seconds.

Table 1 summarizes the distributions used in generating parameters in our computational
study. For each problem instance, the supplier’s unit wholesale prices cl

i , deterministic com-
ponents of customer demand dl

i , and retailer’s pass through rates αl
i were generated from

uniform distributions first. Then, based on the generated values of cl
i and dl

i , the supplier’s
unit costs ml

i , the retailer’s unit inventory holding costs hl
i , the retailer’s unit transportation

costs t lij and the consumer promotional price elasticity γ l
i were generated based on contin-

uous uniform distributions. We let U(l, u) denote the continuous uniform distribution with
lower bound l and upper bound u.

Observe that the largest size instance in our computational study only considers four
stores, and in practice, it is not common that a company operates a small number of retail
stores but still serves geographically dispersed areas. However, retailers like Wal-Mart usu-
ally use a spoke-and-hub strategy: they first move the products from suppliers to distribution
centers, and then from distribution centers to local stores. By adopting this strategy, retailers
only need operate a small number of distribution centers. In fact, at the start of 2010, 40 out
of the top 75 food retailers in North America have no more than four distribution centers
in U.S. and Canada (MWPVL International Inc. 2010). The distribution centers are usually
geographically dispersed across the country, and the local store orders will be aggregated

Table 1 Parameter distributions used in computational tests

Supplier’s unit wholesale price, cl
i

U(10.00,20.00)

Supplier’s unit cost, ml
i

cl
i
× U(0.50,0.80)

Retailer’s unit inventory holding cost hl
i

cl
i
× U(0.01,0.20)

Retailer’s unit transportation cost, t l
ij

|cl
i
− cl

j
| × U(1.01,1.20)

Deterministic component of consumer demand, dl
i

U(100,500)

Retailer’s pass-through rate, αl
i

U(0.30,1.00)

Consumer promotional price elasticity, γ l
i

dl
i
×cl

i
20 × U(0.10,0.50)
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at the distribution center. Moreover, retail stores served by the same distribution center will
have the same wholesale price, and as a result, transshipment will only occur between the
distribution centers. Our choice of parameters match well with this type of spoke-and-hub
strategy, and the only change that needs to be made is in using distribution centers instead
of stores in our model. In addition, the reason we selected the number of planning periods to
be no more than four is because we assume the retailer can make accurate demand forecasts
over the planning horizon; as a result the number of periods in the planning horizon cannot
be too large, assuming that each time period represents one or two weeks, for example.

For each problem instance, in addition to the price promotion game, we also consider
a “no-discount” case and a “basic promotion” case. In the “no-discount” case, the supplier
does not offer any price discount to the retailer over the entire planning horizon; in this case
the retailer’s optimal profit is PR0 and the supplier’s optimal profit is PM0. In the “basic
promotion” case, the supplier sets its discount policy by assuming the retailer will pass the
entire discount on to its consumers and will neither forward buy nor divert (when, in fact, the
retailer will minimize its cost by applying both forward buying and diverting strategies). For
both of these cases, we define the retailer’s optimal profit and the supplier’s profit as PR1

and PM1, respectively. The performance measures we will use for comparative purposes

include the bullwhip effect, BWE =
√

Var[x]
Var[d] , the retailer’s profit gain, �r = PR1−PR0

PR0
×100 %,

the supplier’s profit gain, �m = PM1−PM0
PM0

× 100 %, and the total system profit gain, � =
PM1+PR1−PM0−PR0

PM0+PR0
× 100 %.

To compare our algorithm with Al-Khayyal’s approach, we consider the running time and
relative optimality performance. The results of our tests, averaged over the twenty random
problem instances for each combination of (S,L) values, are presented in Table 2. The table
shows that for smaller-size problems with (S,L) ∈ {(2,2), (2,3), (2,4), (3,2), (3,3), (4,2)},
our approach on average takes less than 150 seconds to reduce the relative optimality gap
under 3 %. For the same set of the problems, except for problems with (S,L) = (2,2),
Al-Khayyal’s approach could not solve the problems globally within the 180 second time
limit, and the average relative optimality gap is unacceptably large (72.55 %). For large-size
problems with (S,L) ∈ {(3,4), (4,3), (4,4)}, neither approach was able to reduce the rel-
ative optimality tolerance under 5 % within 180 seconds. However, the solutions given by
our approach have much smaller relative optimality gaps when compared with the solutions
obtained using Al-Khayyal’s approach.

Table 2 Computational Results I

Problem instance Al-Khayyal Penalty method

S L Relative
gap (%)

Time Relative
gap (%)

Time

2 2 4.46 147.54 0.91 28.52

3 49.53 180.00 1.57 59.85

4 78.36 180.00 2.33 123.74

3 2 17.02 180.00 1.34 54.33

3 114.41 180.00 2.58 141.48

4 126.61 180.00 5.29 180.00

4 2 103.45 180.00 2.38 125.05

3 126.89 180.00 5.35 180.00

4 134.02 180.00 8.78 180.00
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Table 3 Computational results II

Problem instance Base Al-Khayyal Penalty method

S L �m (%) BWE �m (%) �m (%) BWE

2 2 −11.01 8.01 3.12 10.10 4.35

3 −5.58 6.85 −7.94 5.92 5.16

4 −8.26 6.32 −14.25 4.23 3.40

3 2 −8.10 5.48 2.04 5.05 4.92

3 −8.12 7.87 −19.69 4.29 5.91

4 −8.99 7.33 −15.26 3.98 4.83

4 2 −8.82 4.61 −20.63 3.12 3.99

3 −5.83 6.46 −20.15 3.30 4.24

4 −6.97 6.97 −19.01 3.03 5.25

We also tested each problem instance using the commercial nonlinear programming
solvers GAMS/LINDOGlobal and GAMS/BARON. Both of these solvers only guarantee
local optimality of their solutions, and they failed to obtain meaningful upper bounds for the
problem with (S,L) ∈ {(3,4), (4,3), (4,4)} for all instances. For the other problems with
a meaningful upper bound, the average relative gap is more than 4 % and the maximum
relative gap is 9.3 %.

In addition to relative optimality gaps, we also consider the best feasible solution ob-
tained as another performance criterion. As defined above, PM0 is the supplier’s net profit
for the case of “no discount,” and PM1 is the supplier’s net profit for the promotion cases.
The quantity �m = PM1−PM0

PM0
× 100 % measures the performance of the promotion case

compared with the “no discount” case. If �m > 0, this means the corresponding promotion
case is more profitable than the “no discount” case; otherwise, the “no discount” case is a
better option for the supplier. Moreover, a larger value of �m means a greater level of profit
for the corresponding promotion plan. From Table 3, we observe that our approach found
better feasible solutions than Al-Khayyal’s approach on average, and the general promotion
game case outperforms the “basic promotion” case and the case of “no discount” on aver-
age. However, the “basic promotion” case is not necessarily more profitable than the “no
discount” case. Another interesting observation is that the best feasible solution obtained
from our approach has smaller value of BWE than the “basic promotion” case on average,
which is consistent with the findings of Lee et al. (1997) that the bullwhip effect impairs
upstream performance. On the other hand, the BWE on average is greater than one for the
best solution obtained from our approach, which indicates that the revenue gain from price
promotions can compensate for the extra cost induced by the bullwhip effect if the supplier
takes the retailer’s reactions into considerations and judiciously applies a trade promotion
strategy.

To test the performance of the successive linear programming heuristic, we set the initial
value of the promotion vector z to 0. We continued to use 180 seconds as the time limit. If
the improvement between two successive iterations is less than 10−2, we stop the heuristic
even if it is before reaching the time limit. The results derived from the heuristic are very
disappointing: even when there is an obvious solution better than the “no discount” case
(for example, the “basic promotion” case usually gives a better solution than “no discount
case”), the heuristic always stops at z = 0 after two iterations. The reason for this is as
follows: assuming that (x0, y0,π0) optimizes the objective function for the initial value of
z, then the value of z that optimizes the objective function for the fixed (x0, y0,π0) is still a
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Fig. 1 Supplier’s profit gain in α with γ at different levels

vector of zeroes because, as we can observe from the objective function, for a fixed value of
x, it is always optimal to set z to 0 when this is feasible.

5.2 Parameter analysis

The goal of this section is to study how the pass-through rate, α, and consumer promotional
price elasticity, γ , influence the profit performance (�,�m,�r ) and the BWE for the case of
(S,L) = (3,3). To this end, we considered ten levels of α and three levels of γ when applied
to three randomly generated problem instances, for a total of 90 additional test cases. In this
section, we consider the results obtained by solving each of these test problem instances
using our penalty-based approach, because of its ability to consistently obtain a superior
feasible solution for the SDTP for the previously tested instances.

Figures 1–4 illustrate the results of these experiments. The results shown in the figures
lead to the following observations:

• Figures 1–3 show that, for all problem instances, a higher value of γ implies higher val-
ues of �m,�r and �. This effect is quite intuitive, because when consumers are more
responsive to price reductions, we expect that the performance of both the supplier and
the retailer will improve as a result.

• Figure 1 shows that, for all problem instances, a larger value of the pass-through rate, α,
implies larger values of �m. This observation is consistent with the fact that a low pass-
through rate for trade promotions is a major cause of inefficiency in trade promotions.

• In Fig. 2, for problem instances 1 and 2, the retailer’s profit gain decreases as the pass-
through rate increases when the level of γ is low. So, when the retail price cut does not
attract a sufficient number of additional consumers, the retailer has incentive to lower the
pass-through rate to gain more profit. However, when the level of γ is high, the retailer’s
optimal pass-through rates are usually non-zero, and sometimes the best decision for the
retailer is to pass through more than 100 % of the supplier’s trade promotion to consumers,
as shown for instance 3.

• Figure 3 shows that when the value of γ is sufficiently large, � may initially decrease
in α (or remain unaffected), and then, at some positive value of α, begin increasing in α.
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Fig. 2 Retailer’s profit gain in α with γ at different levels

Fig. 3 Total system profit gain in α with γ at different levels

However, when the level of γ is low, � always decreases in α for instances 1 and 2. Thus,
from a system perspective, the supplier’s choice of whether or not to offer a discount
depends on the value of γ .

• Figure 4 shows an interesting pattern with respect to the bullwhip effect. For all instances,
the bullwhip effect may initially increase or remain unchanged in α; it then jumps to a
much higher value at some positive value of α, after which it ultimately decreases in α.
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Fig. 4 Bullwhip effect in α with γ at different levels

We observe that the “jump” in the bullwhip effect occurs at the same point at which the
increase in �r suddenly becomes large. We also find that the larger the value of γ , the
earlier this “jump” occurs. From our numerical tests, we found that there are typically two
types of promotion plan patterns for each problem instance, which we will call “Plan L”
and “Plan H,” respectively. Price discounts for “Plan H” are much deeper than price dis-
counts for “Plan L.” However, when the pass-through rate α is low, it is optimal for the
supplier to adopt “Plan L” instead of “Plan H.” As the value of α increases, after reaching
a certain positive value of α, the optimal promotion plan for the supplier changes from the
form of “Plan L” to “Plan H,” and we call this the threshold value of α. When the value
of γ is large, this means the consumers are more sensitive to retail price discounts, so, for
the same level of retail discount, a higher value of γ means more new consumers, which
results in a smaller threshold value of α. Because the number of new consumers attracted
by “Plan H” is usually much larger than that of “Plan L,” “Plan H” typically brings a both
larger system profit and a higher value of the bullwhip effect.

6 Concluding remarks

This study considered a stochastic bilevel model that simultaneously determines a supplier’s
trade promotion policy and a retailer’s operations decisions. We presented a procedure which
transforms the stochastic bilevel model to a deterministic single-level problem in the form
of a generalized bilinear programming problem. We provided an exact solution method for
solving this GBP problem, and compared this approach with Al-Khayyal’s approach and a
widely-used heuristic method for solving GBPs. Based on our numerical study, our exact
algorithm has proven to be quite efficient. We also provided numerical evidence that in-
creased supplier profit and increased system profit can coexist with the bullwhip effect as
a result of price promotions if: (i) the supplier accounts for the retailer’s reactions when
making promotion decisions; (ii) there is a sufficient number of additional consumers who
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are attracted by the discounted price; and (iii) the pass-through rate is set judiciously by
the retailer. In addition, this paper builds a foundation for future research. For example, we
may consider the retailer’s pass-through rate as a decision variable. We are also interested
in the promotion design problem when the effectiveness of a promotion depends on the
supplier’s and retailer’s previous decisions. Finally, solving large-scale problem instances
would likely necessitate the application of heuristic solution methods, wherein the methods
we have proposed may be very useful for providing bounds on optimal solutions.

Appendix

A.1 Decomposition of uncapacitated minimum cost flow problem

This section provides a proof that an uncapacitated minimum cost flow problem can be
decomposed into a set of shortest path problems.

Theorem 1 A single-origin, N -destination uncapacitated minimum cost flow problem can
be decomposed into N shortest path problems that do not depend on the demand level.

Proof Assume without loss generality that we have a directed network G = (V ,E), where
V = {0,1, . . . ,N} is the set of nodes and E is the set of arcs. Each arc (i, j) ∈ E has an
associated cost cij that denotes the cost per unit flow on that arc. We also assume that each
arc has an infinite capacity, i.e., there is no upper bound on the maximum amount that can
flow on any arc. The network has a unique node 0, called the source, with supply

∑N

i=1 di .
For each nonsource node i ∈ V , we associate with it a demand level di (≥ 0). The single-
origin N -destination uncapacitated minimum cost flow problem is to determine a minimum
cost flow through the uncapacitated network in order to satisfy demands at the N nonsource
nodes from available supplies at the source node 0. The decision variables in this problem
are arc flows, and we represent the flow on an arc (i, j) ∈ E by xij . The single-origin N -
destination uncapacitated minimum cost flow problem can be formulated as follows:

(UMCF) min
∑

(i,j)∈E

cij xij

s.t.
∑

j :(0,j)∈E

x0j −
∑

j :(j,0)∈E

xj0 =
N∑

i=1

di

∑
j :(i,j)∈E

xij −
∑

j :(j,i)∈E

xji = −di, ∀i ∈ {1, . . . ,N}

xij ≥ 0 ∀(i, j) ∈ E.

The flow decomposition theorem (Ahuja et al. 1993) implies that the flow xij on each arc
(i, j) ∈ E can be decomposed by destination, with xl

ij representing of flow on arc (i, j)

used to satisfy demand at node l. With this notation, we can reformulate the single-origin
N -destination uncapacitated minimum cost flow problem as follows:
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(
UMCF′) min

N∑
l=1

∑
(i,j)∈E

cij x
l
ij

s.t.
∑

j :(0,j)∈E

xl
0j −

∑
j :(j,0)∈E

xl
j0 = dl, ∀l ∈ {1, . . . ,N}

∑
j :(i,j)∈E

xl
ij −

∑
j :(j,i)∈E

xl
ji =

{
0 if i �= l,

−dl if i = l,
∀i, l ∈ {1, . . . ,N}

xl
ij ≥ 0, ∀(i, j) ∈ E, l ∈ {1, . . . ,N}.

By definition, we have xij = ∑L

l=1 xl
ij . Suppose we define variables yl

ij = xl
ij

dl
. Using these,

the single-origin N -destination uncapacitated minimum cost flow problem can be expressed
as follows:

(
UMCF′′) min

N∑
l=1

dl

∑
(i,j)∈E

cij y
l
ij

s.t.
∑

j :(0,j)∈E

yl
0j −

∑
j :(j,0)∈E

yl
j0 = 1, ∀l ∈ {1, . . . ,N}

∑
j :(i,j)∈E

yl
ij −

∑
j :(j,i)∈E

yl
ji =

{
0, if i �= l,

−1, if i = l,
∀i, l ∈ {1, . . . ,N}

yl
ij ≥ 0, ∀(i, j) ∈ E, l ∈ {1, . . . ,N}.

In this above formulation, the set of feasible solutions Y can be decomposed into N sets
Y 1, Y 2, . . . , Y N , where

Y l ≡

⎧⎪⎪⎨
⎪⎪⎩yl :

∑
j :(i,j)∈E

yl
ij −

∑
j :(j,i)∈E

yl
ji =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = 0,

0 if i �= l,

−1 if i = l,

∀(i, j) ∈ E

⎫⎪⎪⎬
⎪⎪⎭ .

By observation, the variables for each subset do not appear in any other set. Consequently,
we can decompose UMCP′′ into N shortest path problems which do not depend on the
demand level in the following formulation:

(
SPl

)
min dl

∑
(i,j)∈E

cij y
l
ij = dl min

∑
(i,j)∈E

cij y
l
ij

s.t.
∑

j :(0,j)∈E

yl
0j −

∑
j :(j,0)∈E

yl
j0 = 1

∑
j :(i,j)∈E

yl
ij −

∑
j :(j,i)∈E

yl
ji =

{
0, if i, �= l

−1, if i = l,
∀i ∈ {1, . . . ,N}

yl
ij ≥ 0 ∀(i, j) ∈ E.



470 Ann Oper Res (2013) 211:447–472

After solving all of these N shortest path problems, we can obtain the solutions to the orig-
inal UMCP using the following relationship:

xij =
L∑

l=1

xl
ij =

L∑
l=1

dly
l
ij ∀(i, j) ∈ E.

�

A.2 Detailed Al-Khayyal approach

The detailed Al-Khayyal branch-and-bound algorithm is shown in Algorithm 2. After ini-
tializing the branch-and-bound tree in line 1, the algorithm repeats the Main Step in the
while loop in lines 2–29 until the optimality gap is less than a predetermined value ε. At the
start of each iteration k of the while loop, a node (u, v) is selected and removed from tree
Tk in line 3. In lines 4 and 5, the linear program LP(Ω(u,v)) is solved to obtain the solution
Λ̄ and the corresponding optimal value Φ(Λ̄) is assigned to UBk . In lines 6–16, the current
iteration lower bound LBk is obtained and the partitioning index (p, q) is found by checking

Algorithm 2 Al-Khayyal’s Branch-and-Bound algorithm

1: Ω(1,1) ← Ω , T1 ← {(1,1)}, k ← 1, UB(1,1) ← ∞, UB ← ∞ and LB ← −∞;
2: while UB − LB > ε do
3: choose an active node (u, v) ∈ Tk and remove node (u, v) from active node set;
4: Λ̄ ← an optimal solution to LP(Ω(u,v));
5: UBk ← Φ(Λ̄);
6: if (x̄, ȳ, z̄, π̄) satisfying constraint (9) then
7: LBk ← φ(x̄, ȳ, z̄, π̄);
8: if LBk < UBk then
9: (p, q) ← arg max(i,l){z̄l

i x̄
l
i − η̄l

i}
10: else
11: (p, q) ← (0,0);
12: end if
13: else
14: LBk ← −∞;
15: (p, q) ← arg max(i,l){max[c̄l

ix
l
i + ∑

j �=i t̄
l
ij y

l
ij − z̄l

i x̄
l
i − ζ̄ l

i ,−
∑L

τ=l (d
l
i π̄

τ
i +

αl
iγ

l
i z̄

l
i π̄

τ
i + ν̄lτ

i )]};
16: end if
17: if (p, q) �= (0,0) then
18: Ω(k+1,1) ← Ω(u,v) ∩ {ZLq

p ≤ z
q
p ≤ z̄

q
p};

19: Ω(k+1,2) ← Ω(u,v) ∩ {z̄q
p ≤ z

q
p ≤ ZUq

p};
20: UB(k+1,i) ← UBk , ∀i = 1,2;
21: end if
22: if LBk > LB then
23: LB ← LBk and (x∗, y∗, z∗,π∗) ← (x̄, ȳ, z̄, π̄);
24: Tk ← Tk − {(m,n) ∈ Tk : UB(m,n) ≤ LB};
25: Tk+1 ← Tk ∪ {(k + 1,1), (k + 1,2)};
26: UB = max{UB(m,n),∀(m,n) ∈ Tk+1};
27: end if
28: k ← k + 1;
29: end while
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the optimality and the feasibility of the solution Λ̄. After finding (p, q), partition the region
Ω(u,v) into two mutually exclusive and exhaustive subregions in lines 18–21. At the end of
the while loop, the branch-and-bound tree is updated by three types of operations in lines
22–27. Included here are

1. update the lower bound of the problem if LB < LBk as follows:

LB ← LBk and
(
x∗, y∗, z∗,π∗) ← (x̄, ȳ, z̄, π̄);

2. update the node set at iteration k as

Tk ← Tk − {
(m,n) ∈ Tk : UB(m,n) ≤ LB

};
3. update the upper bound of the problem as

UB = max
{
UB(m,n),∀(m,n) ∈ Tk+1

}
.
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