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Abstract An intuitionistic fuzzy economic order quantity (EOQ) inventory model with
backlogging is investigated using the score functions for the member and non-membership
functions. The demand rate is varying with selling price and promotional effort (PE). A crisp
model is formulated first. Then, intuitionistic fuzzy set and score function (or net member-
ship function) are applied in the proposed model, considering selling price and PE as fuzzy
numbers. To obtain the best inventory policy, ranking index method has been adopted, show-
ing that the score function can maintain the ranking rule also. Moreover, optimization is
made under the general fuzzy optimal (GFO) and intuitionistic fuzzy optimal (IFO) policy.
Finally, a graphical illustration, numerical examples with sensitivity analysis and conclusion
is made to justify the model.

Keywords Fuzzy inventory · Fuzzy shortage · Fuzzy selling price · Fuzzy promotional
effort · Intuitionistic fuzzy set · Score function · α-Cut · Optimization

1 Introduction

The economic order quantity (EOQ) model is an important technique/methodology to over-
come some bottlenecks of the supply chain (Cárdenas-Barrón 2007; Cárdenas-Barrón et al.
2011, 2012a, 2012b, 2012c). Ioannou et al. (2004) proposed a novel, analytical and simple
approach to determine the supply chain node in which inventory held in order to minimize
inventory-holding costs under service level constraints. Gallego and Hu (2004) analyzed a
discrete-time based production/inventory system with finite production capacity considering
a single item, single-location, periodic-review model with finite capacity and Markov mod-
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ulated demand and supply. Krieg and Kuhn (2004) presented an approximate evaluation
procedure for stochastic single-stage multi-product kanban systems with state-dependent
setups and lost sales, assuming the demand inter-arrival, setup, and container processing
times as exponentially distributed. Arcelus et al. (2006) investigated the retailer’s response
to temporary manufacturer’s trade dealt with a time interval of random length and uncertain
duration. The uncertainty of termination date is handled through the creation of two decision
variables: one is a reordering point, defined as a critical number, which determines the in-
ventory level below which a special order is placed. The second measures the time at which
the reordering point is activated. Kalpakam and Shanthi (2006) developed a lost sales (s, S)
type perishable inventory system with varying ordering quantity under renewal demands
while mean rate of replenishment is dependent on the order size. Ghosh and Chaudhuri
(2006) investigated an economic order quantity model considering quadratic demand, time-
proportional deterioration and shortages in all cycles. Sarkar and Sarkar (2013) extended
an inventory model for deteriorating items with stock-dependent demand, considering time
varying backlogging rate as well as time varying deterioration rate. Generally speaking, the
demand rate of the end customers is quite sensitive with promotional effort and selling price,
maintaining the standard quality of the products. The promotional effort includes free gift,
price discount, better service, delay payments, advertising which results in cost factor. The
customers are motivated or tempted to buy more for promotional effort although it generates
costs. Also, lower selling price per unit item causes higher demand of the customers. Goyal
and Gunasekaran (1995) extended a production-inventory model for advertising sensitive
demand. In this direction, the works of Xie and Neyret (2009), Xie and Wei (2009), Sana and
Chaudhuri (2008), Sana (2010, 2011a, 2011b, 2012) should be mentioned, among others.

In a competitive marketing system, the factors of the businesses are not fixed rather they
are non-randomly uncertain in nature. Again, in many cases such as at the sales counter, the
demand on spot, the selling price is quite flexible in nature. Consequently, we consider the
selling prices and PE as fuzzy numbers. Zadeh (1965) first developed the concept of fuzzy
set theory. Thereafter, Bellman and Zadeh (1970) made an application of fuzzy set theory
in several decision making problems of operations research. Thereafter, several research pa-
pers have been published in fuzzy environment. Kaufmann and Gupta (1988) developed a
fuzzy mathematical model in engineering and management science. Vojosevic et al. (1996)
fuzzified the order cost into trapezoidal fuzzy number in the backorder model. Using these
propositions, another authors Wu and Yao (2003) studied a fuzzy inventory with backorder
for fuzzy order quantity and fuzzy shortage quantity. With the help of fuzzy extension prin-
ciple, an economic order quantity in fuzzy sense for inventory without backorder model has
been developed by Lee and Yao (1999). Yao et al. (2000) analyzed a fuzzy model without
backorder for fuzzy order quantity and fuzzy demand quantity. A lot size reorder point inven-
tory model with fuzzy demands was developed by Kao and Hsu (2002) considering the α-cut
of the fuzzy numbers and they had used ranking index method to solve the model. De et al.
(2003) developed an economic production quantity (EPQ) model for fuzzy demand rate and
fuzzy deterioration rate using the α-cut of the membership function of the fuzzy parameters.
Mishra and Ghosh (2006) established the bi-level quadratic fractional programming problem
with the essentially cooperative decision makers (DMs) and proposed an interactive fuzzy
programming for the problem. Ganesan and Veeramani (2006) proved fuzzy analogues of
some important theorems of linear programming problem with trapezoidal fuzzy numbers.
De et al. (2008) studied an economic ordering policy of deteriorated items with shortage
and fuzzy cost coefficients for vendor and buyer. Recently Kumar et al. (2012) developed a
fuzzy model with ramp type demand rate and partial backlogging.

In crisp sense, several optimization techniques have been used in inventory literature.
Among these, golden region search method and analytic approach via eigen values are
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worth mentioning. Golden Region Search method in Simulation technique was developed
by Kabiran and Olafsson (2011) and analytic approach via eigen values of the system Jaco-
bian Matrix expressing from characteristic polynomial was analyzed by Saleh et al. (2010).
The intuitionistic fuzzy (IF) set theory was independently developed by Takeuti and Titani
(1984) and it has some terminological difficulties in fuzzy set theory. Dabois et al. (2005) ob-
served that Takeuti and Titani’s IF logic is simply an extension of intuitionistic logic (Van D.
Dalen 2002). i.e., all formulas in the intuitionistic logic can be proved in their logic. Takeuti
and Titani’s approach is an absolutely legitimate which is absent in Atanassov’s (1986) IFS.
To remove the misunderstanding, we may abbreviate Atanassov’s (1986) model as A-IFS. It
may be treated as a classification model subject to a valuation space with three classes and
defining specific structure (Montero et al. 2007). The basic concept of A-IFS is based on
the simultaneous consideration of membership μ and non-membership γ of an element of
a set in the set itself (Atanassov 1986) such that 0 ≤ μ + ν ≤ 1. Chen and Tan (1994) and
Dymova and Sevastjanov (2011) proposed subsequently to use the so called score function
S(x) = μ(x) − ν(x) where x is the IFS (Intuitionistic Fuzzy Set).

In this paper, we consider PE and unit selling price as intuitionistic fuzzy set. As far as
our knowledge goes, such research paper has not yet been published in this direction. First,
we have optimized the profit function under crisp environment. Then, we have constructed
a General Fuzzy Optimization (GFO) problem and Intuitionistic Fuzzy Optimization (IFO)
problem. Using the α-cuts of the membership functions and β-cuts of the non-membership
functions for the objective function, we develop the score function (net membership) of
the proposed fuzzy parameters. On the basis of area compensation, we use Yager’s (1981)
ranking index method to achieve the best policy for GFO and IFO problems. To overcome
the complexities on integration, the problem is solved with the help of Mathematica 5.2
software. Finally, a sensitivity analysis, graphical illustrations and a concluding remark are
made to generalize the model.

2 Assumptions and notations

The following notations and assumptions are adopted to develop the model.

2.1 Assumptions

1. Replenishment rate is instantaneously infinite.
2. The time horizon is infinite.
3. Backlogging are allowed.
4. Demand rate is unit selling price (sp) and promotional effort/sales teams’ initiatives (ρ)

dependent

where D = η( sm−sp

sp−sm
) + τ(

ρ

1+ρ
), η and τ are constants.

2.2 Notation

q: The order quantity per cycle.
D: Demand rate per year.
s: Shortage quantity per cycle.
ρ: Promotional effort/sales teams’ initiatives.
ρm: Lower bound of ρ.
ρm: Upper bound of ρ.
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Fig. 1 Inventory versus time

ρ∗: Optimal value of ρ for crisp model.
c1: Setup cost per cycle ($).
c2: Inventory holding cost per unit quantity per unit time ($).
c3: Shortage cost per unit quantity per unit time ($).
sp: Selling price per unit item ($)
sm: Upper bound of sp .
sm: Lower bound of sp .
p1: Purchasing price of unit item ($).
k: Cost ($) of promotional effort/sales teams’ initiatives per unit effort, it is a positive

scale parameter.
m: A positive integer.
t1: Inventory run time (months).
t2: Shortage period (months).
T : Cycle time in months.
Z: Average profit ($) of the inventory.

3 Formulation of the model

3.1 Crisp model

In our proposed model, the inventory starts with shortages and it continues up to time t1.
At time t1, the shortage level (s) is adjusted from the order size q . Then, the rest amount
(q − s) satisfies demand (D per unit time) of the customers for the time span [0, t2]. The
cycle length is T = t1 + t2. Therefore, the average inventory and shortages (see Fig. 1) are
(q−s)2

2q
and ( s2

2q
) respectively. The cost of the effort for promotional activities/sales teams’

initiatives is kρm where k(≥ 0) is scale and m(≥ 0) is elasticity parameters.Therefore, the
average profit of the model, considering revenue from selling the items, purchasing cost,
setup cost, inventory holding cost, penalty for stockout and cost of promotional effort, is

z = 1

T
Revenue from selling − Purchasing cost − Setup cost − Inventory cost

− Penalty for Shortage − cost of Promotional effort

= (
sp − p1

)
D − c1

(
D

q

)
− c2

(
(q − s)2

2q

)
− c3

(
s2

2q

)
− kρm (1)

subject to the conditions

q = DT, s = Dt1, q − s = Dt2, T = t1 + t2 (2)
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Here, the demand rate of the customers is

D = η

(
sm − sp

sp − sm

)
+ τ

(
ρ

1 + ρ

)
(3)

where η, τ , sm, sm are positive constants and (sp, ρ) are variable parameters. The first part of
the demand is selling price sensitive. It is rational that the demand of the customer decreases
with increasing value of selling price (sp). The variable sp has lower bound (sm) and upper
bound (sm). When selling price sp tends to sm, the first part of D tends to zero, but it tends
to infinity when sp tends to sm, i.e., the selling price is less than the purchasing price. In real
situation both the cases are not required in any business organization in a given economy.
Therefore, sp belongs to the open interval (sm, sm). The 2nd part of D is an increasing func-
tion of the promotional effort (PE) which is measured by the promotional activities such as
gift, better services, packaging advertising etc. In existing inventory literature, some authors
considered the demand rate is an unbounded increasing function of ρ which is unrealistic
assumption. In our formula, the promotional index sensitive part tends to τ when ρ → ∞,
i.e., the 2nd part varies from zero to τ for ρ ∈ [0,∞). This is quite realistic in any business
organization.

Now, our objective is to
⎧
⎨

⎩

Maximize Z

subject to the conditions
q ≥ 0, s ≥ 0, ρ ≥ 0

⎫
⎬

⎭
(4)

For maximum value of Z, we always have

∂Z

∂q
= 0 = ∂Z

∂s
and

(
∂2Z

∂q2

)
= −

(
2c1D + (c2 + c3)s

2

q3

)
< 0,

(
∂2Z

∂s2

)
= −

(
c2 + c3

q

)
< 0,

(
∂2Z

∂q2

)(
∂2Z

∂s2

)
−

(
∂2Z

∂q∂s

)2

= 2c1D(c2 + c3)

q4
> 0 ∀q, s ∈ R+.

Now, ∂Z
∂q

= 0 = ∂Z
∂s

provide us as follows:

q∗ =
√

2c1(c2 + c3)D

c2c3
, s∗ =

√
2c1c2D

c3(c2 + c3)
and q∗ =

(
c2 + c3

c2

)
s∗.

Substituting the above values in Eq. (1), we have the optimized (maximum) value of the
average profit function

ϕ
(
sp, ρ

) = Z∗(sp, ρ
) = (

sp − p1

)
D − √

2c1c2c3D/(c2 + c3) − kρm (5)

For maximum value of ϕ(sp, ρ), we should have a solution such that

∂ϕ

∂ρ
= 0 = ∂ϕ

∂sp
and

(
∂2ϕ

∂ρ2

)
< 0,

(
∂2ϕ

∂sp2

)
< 0,

(
∂2ϕ

∂ρ2

)(
∂2ϕ

∂sp2

)
−

(
∂2ϕ

∂ρ∂sp

)2

> 0 for ρ ∈ R+ and sp ∈ (
sm, sm

)
.
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3.2 Fuzzy mathematical model

In the traditional EOQ model, we have seen that, the demand rate is constant but, in practice,
it depends upon PE and selling price per unit which are flexible in nature. For this reason,
we shall fuzzify these parameters.

Now using (2), (3) and (4), the fuzzy problem for (5) is given by

Maximize φ̃(s̃p, ρ̃) = (
s̃p − p1

)
D̃ −

√
2c1c2c3D̃/(c2 + c3) − kρ̃m (6)

Subject to the conditions q̃ =
√

2c1(c2 + c3)D̃

c2c3
and s̃ =

√
2c1c2D̃

c3(c2 + c3)
(7)

where

D̃ = η

(
sm − s̃p

s̃p − sm

)
+ τ

(
ρ̃

1 + ρ̃

)
(8)

3.2.1 Cases of optimality

Now we seek to solve (6) for the following cases:
We may assume sp ∈ [sm, sm] and ρ ∈ [ρm,ρm]. From our proposed model, we see that

at sp = sm the demand rate is infinite and at sp = sm the demand rate depends upon ρ only.
Also from our observation the crisp optimality attained at ρ = ρ∗ (say) and it attains its
maximum value (when average profit reaches near zero) at ρ = ρm (say). Thus we take the
possible domain space for sp and ρ as under.

Case 1: sm < sp∗ < s ′
1 < s1 < s2 < s3 < s ′

3 < sm

Case 2: sm < s ′
1 < sp∗ < s1 < s2 < s3 < s ′

3 < sm

Case 3: sm < s ′
1 < s1 < sp∗ < s2 < s3 < s ′

3 < sm

Case 4: sm < s ′
1 < s1 < s2 < sp∗ < s3 < s ′

3 < sm

Case 5: sm < s ′
1 < s1 < s2 < s3 < sp∗ < s ′

3 < sm

Case 6: sm < s ′
1 < s1 < s2 < s3 < s ′

3 < sp∗ < sm

Case i: ρm < ρ∗ < ρ ′
1 < ρ1 < ρ2 < ρ3 < ρ ′

3 < ρm

Case ii: ρm < ρ ′
1 < ρ∗ < ρ1 < ρ2 < ρ3 < ρ ′

3 < ρm

Case iii: ρm < ρ ′
1 < ρ1 < ρ∗ < ρ2 < ρ3 < ρ ′

3 < ρm

Case iv: ρm < ρ ′
1 < ρ1 < ρ2 < ρ∗ < ρ3 < ρ ′

3 < ρm

Case v: ρm < ρ ′
1 < ρ1 < ρ2 < ρ3 < ρ∗ < ρ ′

3 < ρm

Case vi: ρm < ρ ′
1 < ρ1 < ρ2 < ρ3 < ρ ′

3 < ρ∗ < ρm.

To obtain all solutions we have to compute a total of 36 different tables which is out of
scope in this paper. We intend here to know the trend of the GFO and IFO solution near
crisp optimal solution. Hence, we shall take the cases (4, iv) only.

Definition 1 Intuitionistic fuzzy set Let a set X be fixed. An Intuitionist fuzzy set A in X

is an object having the form A = {〈x,μA(x), νA(x)〉 : x ∈ X} where the μA(x) : X → [0,1]
and νA(x) : X → [0,1] define the degree of membership and degree of non-membership
respectively. If the element x ∈ X to the set A, which is a subset of X, for every element of
x ∈ X, 0 ≤ μA(x) + νA(x) ≤ 1.
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Fig. 2 (Non) Membership
function for TIFN

Definition 2 (α,β) level intervals or (α,β)-cuts:
A set of (α,β)-cut, generated by IFS-A, where α and β ∈ [0,1] are fixed numbers such

that (α + β) ∈ [0,1] that defined as

Aα,β =
{
(x,μA(x), νA(x)) : x ∈ X

μA(x) ≥ α, νA(x) ≤ β,α,β ∈ [0,1]
}

.

(α,β) level intervals or (α,β)-cut denoted by Aα,β is defined as the crisp set of elements
x which belongs to A at least to the degree α and which does belong to A at most to the
degree β .

Definition 3 Triangular Intuitionistic Fuzzy Number (TIFN) (Fig. 2)
A TIFN, A, is an Intuitionistic fuzzy set in R with following membership function μA(x)

and non-membership function νA(x) (for more details see Mahapatra and Roy 2009):

μA(x) =
⎧
⎨

⎩

x−a1
a2−a1

for a1 < x < a2
a3−x

a3−a2
for a2 < x ≤ a3

0 for elsewhere

⎫
⎬

⎭
and νA(x) =

⎧
⎪⎨

⎪⎩

a2−x

a2−a′
1

for a′
1 < x < a2

x−a2
a′

3−a2
for a2 < x ≤ a′

3

1 for elsewhere

⎫
⎪⎬

⎪⎭
(9)

where a′
1 < a1 < a2 < a3 < a′

3 and μA(x), νA(x) ≤ 0.5.
For μA(x) = νA(x), the TIFN is denoted by AT IFN = (a1, a2, a3 : a′

1, a2, a
′
3).

If we are interested to find a solution near the crisp optimality, then we shall choose the
above case (4), for selling price sp and (iv) for ρ only.

Let the unit selling price sp and PE (ρ) are representing Triangular intuitionistic fuzzy
numbers.

Therefore, the membership and non-membership functions for ρ and sp are obtained as
follows:

μρ̃(ρ̃) =
⎧
⎨

⎩

ρ−ρ1
ρ2−ρ1

for ρ1 < x < ρ2
ρ3−ρ

ρ3−ρ2
for ρ2 < x ≤ ρ3

0 for elsewhere

⎫
⎬

⎭
(10)
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and

νρ̃(ρ̃) =

⎧
⎪⎨

⎪⎩

ρ2−ρ

ρ2−ρ′
1

for ρ ′
1 < ρ < ρ2

ρ−ρ2
ρ′

3−ρ2
for ρ2 < ρ ≤ ρ ′

3

1 for elsewhere

⎫
⎪⎬

⎪⎭
(11)

As per Chen and Tan (1994), the score function (net membership) of ρ is given by

ωρ̃(ρ̃) =

⎧
⎪⎨

⎪⎩

ρ−ρ1
ρ2−ρ1

− ρ2−ρ

ρ2−ρ′
1

for δ1 < x < ρ2
ρ3−ρ

ρ3−ρ2
− ρ−ρ2

ρ′
3−ρ2

for ρ2 < x ≤ δ3

0 for elsewhere

⎫
⎪⎬

⎪⎭
(12)

where δ1 = (
ρ2

2−ρ1ρ′
1

2ρ2−ρ1−ρ′
1
) and δ3 = (

ρ3ρ′
3−ρ2

2
ρ3+ρ′

3−2ρ2
).

Putting the above score function in a compact form, we get

ωρ̃(ρ̃) =
⎧
⎨

⎩

λ1(ρ − δ1) for δ1 < x < ρ2

λ2(δ3 − ρ) for ρ2 < x ≤ δ3

0 for elsewhere

⎫
⎬

⎭
(13)

where λ1 = [ 2ρ2−ρ1−ρ′
1

(ρ2−ρ1)(ρ2−ρ′
1)

] and λ2 = [ ρ3+ρ′
3−2ρ2

(ρ3−ρ2)(ρ′
3−ρ2)

].
Now, the α-cut of the score function ωρ̃(ρ̃) is given by

[
L−1

ρ (α), R−1
ρ (α)

] =
[

α

λ1
+ δ1, δ3 − α

λ2

]
(14)

The membership and non-membership functions for sp along with score function are
respectively as follows:

μs̃p

(
s̃p

) =

⎧
⎪⎨

⎪⎩

sp−s1
s2−s1

for s1 < sp < s2

s3−sp

s3−s2
for s2 < sp < s3

0 for elsewhere

⎫
⎪⎬

⎪⎭
(15)

νs̃p

(
s̃p

) =

⎧
⎪⎨

⎪⎩

s2−sp

s2−s′
1

for s ′
1 < sp < s2

sp−s2
s′
3−s2

for s2 < sp < s ′
3

1 for elsewhere

⎫
⎪⎬

⎪⎭
(16)

π
(
sp

) =
⎧
⎨

⎩

λ′
1(s

p − δ′
1) for δ′

1 < sp < s2

λ′
2(δ

′
3 − sp) for s2 < sp ≤ δ′

3
0 for elsewhere

⎫
⎬

⎭
(17)

where

λ′
1 =

[
2s2 − s1 − s ′

1

(s2 − s1)(s2 − s ′
1)

]
, λ′

2 =
[

s3 + s ′
3 − 2s2

(s3 − s2)(s
′
3 − s2)

]
,

δ′
1 =

(
s2

2 − s1s
′
1

2s2 − s1 − s ′
1

)
and δ′

3 =
(

s3s
′
3 − s2

2

s3 + s ′
3 − 2s2

)
.
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Also, the α-cut of the score function π(sp) is given by

[
L−1

sp (α), R−1
sp (α)

] =
[

α

λ′
1

+ δ′
1, δ

′
3 − α

λ′
2

]
(18)

Let, D = d1 + d2 where d1 = η( sm−sp

sp−sm
) and d2 = τ(

ρ

1+ρ
).

Therefore, the membership and non-membership function of d1 is as follows

μd1(d̃1) =

⎧
⎪⎪⎨

⎪⎪⎩

[s2−sm−η(
sm−sm
d1+η

)]
s3−s2

for η(sm−s3)

s3−sm
< d1 <

η(sm−s2)

s2−sm

[sm−s1+η(
sm−sm
d1+η

)]
s2−s1

for η(sm−s2)

s2−sm
< d1 <

η(sm−s1)

s1−sm

0 for elsewhere

⎫
⎪⎪⎬

⎪⎪⎭
(19)

νd1(d̃1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[sm−s2+η(
sm−sm
d1+η

)]
s′
3−s2

for
η(sm−s′

3)

s′
3−sm

< d1 <
η(sm−s2)

s2−sm

[sm−s′
1−η(

sm−sm
d1+η

)]
s2−s′

1
for η(sm−s2)

s2−sm
< d1 <

η(sm−s′
1)

s′
1−sm

1 for elsewhere

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(20)

Therefore, the net membership (score function) of d1 is given by

ψ(d1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[sm+s2−η(
sm−sm
d1+η

)]
s3−s2

− [sm−s2+η(
sm−sm
d1+η

)]
s′
3−s2

for d ′
1 < d1 < d

′′
1

[sm+s1−η(
sm−sm
d1+η

)]
s2−s1

− [sm−s1+η(
sm−sm
d1+η

)]
s′
2−s1

for d
′′
1 < d1 < d

′′′
1

0 for elsewhere

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

or,

ψ(d1) =

⎧
⎪⎨

⎪⎩

k1 − k2
d1+η

for d ′
1 < d1 < d

′′
1

k4
d1+η

− k3 for d
′′
1 < d1 < d

′′′
1

0 for elsewhere

⎫
⎪⎬

⎪⎭
(21)

where

k1 = (s2 − sm)

[
1

s3 − s2
+ 1

s ′
3 − s2

]
, k2 =

[
ηk1(s

m − sm)

(s2 − sm)

]
,

k3 = (s1 − sm)

[
1

s2 − s1
+ 1

s2 − s ′
1

]
, k4 =

[
ηk3(s

m − sm)

(s1 − sm)

]

and d ′
1, d

′′
1 , d

′′′
1 are to be calculated properly.

Therefore α-cut of the score function ψ(d1) is given by

[
L−1

d1 (α),R−1
d1 (α)

] =
[

k2

k1 − α
− η,

k4

k3 + α
− η

]
(22)

The membership and non-membership function of d2 are as follows

μd2(d̃2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
τ

(τ−d2)
−(1+ρ1)

ρ2−ρ1
] for (

τρ1
1+ρ1

) < d2 < (
τρ2

1+ρ2
)

[ (1+ρ2)− τ
(τ−d2)

ρ3−ρ2
] for (

τρ2
1+ρ2

) < d2 < (
τρ3

1+ρ3
)

0 for elsewhere

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(23)
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νd2(d̃2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[ (1+ρ1)− τ
(τ−d2)

ρ2−ρ′
1

] for (
τρ1

1+ρ1
) < d2 < (

τρ2
1+ρ2

)

[
τ

(τ−d2)
−(1+ρ′

3)

ρ′
3−ρ2

] for (
τρ2

1+ρ2
) < d2 < (

τρ′
3

1+ρ′
3
)

1 for elsewhere

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(24)

Therefore the score function of d2 is given by

ζ(d2) =

⎧
⎪⎪⎨

⎪⎪⎩

[ τ
(τ−d2)

−(1+ρ1)]
ρ2−ρ1

− [(1+ρ2)− τ
(τ−d2)

]
ρ2−ρ′

1
for d ′

2 < d2 < d
′′
2

[(1+ρ2)− τ
(τ−d2)

]
ρ3−ρ2

− [ τ
(τ−d2)

−(1+ρ′
3)]

ρ′
3−ρ2

for d
′′
2 < d2 < d

′′′
2

0 for elsewhere

⎫
⎪⎪⎬

⎪⎪⎭
(25)

or,

ζ(d2) =

⎧
⎪⎨

⎪⎩

(
u1

τ−d2
) − u2 for d ′

2 < d2 < d
′′
2

u3 − (
u4

τ−d2
) for d

′′
2 < d2 < d

′′′
2

0 for elsewhere

⎫
⎪⎬

⎪⎭
(26)

where

u1 = τ

[
1

ρ2 − ρ1
+ 1

ρ2 − ρ ′
1

]
, u2 =

[
1 + ρ1

ρ2 − ρ1
+ 1 + ρ2

ρ2 − ρ ′
1

]
,

u3 =
[

1 + ρ3

ρ3 − ρ2
+ 1 + ρ ′

3

ρ ′
3 − ρ2

]
, u4 = τ

[
1

ρ3 − ρ2
+ 1

ρ ′
3 − ρ2

]

and d ′
2, d

′′
2 , d

′′′
2 are to be calculated properly and consequently, the α-cut of the score function

ζ is given by

ζ(d2)�α = [
L−1

d2 (α),R−1
d2 (α)

] =
[
τ −

(
u1

u2 + α

)
, τ −

(
u4

u3 − α

)]
(27)

Now, using (22) and (27) the α-cuts of the score function of D = d1 + d2 are as follows:
S(D)|α = ψ(d1)|α + ζ(d2)|α that provides as

[
L−1

D (α),R−1
D (α)

]

=
[(

k2

k1 − α

)
−

(
u1

u2 + α

)
− η + τ,

(
k4

k3 + α

)
−

(
u4

u3 − α

)
− η + τ

]
(28)

However, since the α-cut of the score function of the total demand D is monotonically
increasing so the α-cut of

√
D is given by

[
L−1√

D
(α),R−1√

D
(α)

]

=
[√(

k2

k1 − α

)
−

(
u1

u2 + α

)
− η + τ ,

√(
k4

k3 + α

)
−

(
u4

u3 − α

)
− η + τ

]
(29)

Also the α-cuts of the score function of (sp − p1) is obtained by using (17) and is given
by

[
L−1

sp−p1(α),R−1
sp−p1(α)

] =
[

α

λ′
1

+ p1 + δ′
1,p1 + δ′

3 − α

λ′
2

]
(30)
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Now, we have from Eq. (5)

ϕ = Z∗(sp, ρ
) = (

sp − p1

)
D −

√
2c1c2c3D

c2 + c3
− kρm

Using basic arithmetic on α-cut, the α-cut of the score function ϕ can be constructed
with the help of Eqs. (14), (28), (29) and (30). Therefore,

L−1
ϕ (α) =

[(
p1 + δ′

1 + α

λ′
1

){
k2

k1 − α
− u1

u2 + α
− η + τ

}

−
√

2c1c2c3

c2 + c3

{
k4

k3 + α
− u4

u3 − α
− η + τ

}
− k

(
δ3 − α

λ2

)m]
(31)

and

R−1
ϕ (α) =

[(
p1 + δ′

3 + α

λ′
2

){
k4

k3 + α
− u4

u3 − α
− η + τ

}

−
√

2c1c2c3

c2 + c3

{
k2

k1 − α
− u1

u2 + α
− η + τ

}
− k

(
δ1 + α

λ1

)m]
(32)

Let us construct the indexed values of the decision parameters s, q and φ.
To do this we shall use (31) and (32) and Yager’s (1981) ranking index method. Then,

we have

I (ϕ) = 1

2

∫ 1

0

{
L−1

ϕ (α) + R−1
ϕ (α)

}
dα

= 1

2

(
p1 + δ′

1

)[
k2 Log

(
k1

k1 − 1

)
− u1 Log

(
1 + u2

u2

)
− (η − τ)

]

+ 1

2λ′
1

[
u1u2 Log

(
1 + u2

u2

)
+ k1k2 Log

(
k1

k1 − 1

)
− u1 − k2 −

(
η − τ

2

)]

+ 1

2

(
p1 + δ′

3

)[
k4 Log

(
k3 + 1

k3

)
− u4 Log

(
u3 − 1

u3

)
− (η − τ)

]

+ 1

2λ′
2

[
u3u4 Log

(
u3 − 1

u3

)
+ k3k4 Log

(
k3 + 1

k3

)
− u4 − k4 −

(
η − τ

2

)]

− 1

2

√(
2c1c2c3

c2 + c3

)∫ 1

0

{√
k2

k1 − α
− u1

u2 + α
− (η − τ)

+
√

k4

k3 + α
− u4

u3 − α
− (η − τ)

}
dα

−
(

k

m + 1

)[
λ1

(
δ1 + 1

λ1

)m+1

− λ1δ
m+1
1 + λ2δ

m+1
3 − λ2

(
δ3 − 1

λ2

)m+1]
(33)
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Table 1 Crisp optimal solution
for fixed ρ and sp q∗ s∗ sp∗

ρ∗ t∗2 days t∗1 days Z∗∗ ($)

186.223 44.339 15.73 0.961 26 4 864.82

Table 2 Crisp optimal solution
for different ρ and m m ρ∗ q∗ s∗ sp∗

t∗2 days t∗1 days Z∗∗ ($)

1 2.538 174.022 41.433 16.33 26 4 879.36

2 1.169 183.772 43.755 15.84 865.57

3 0.961 186.223 44.338 15.73 864.82

4 0.900 187.020 44.529 15.70 865.69

5 0.878 187.319 44.600 15.68 866.73

6 0.870 187.429 44.626 15.68 867.69

7 0.868 187.457 44.633 15.68 868.54

Further using (29), we have

I (s) = 1

2

√(
2c1c2

c3(c2 + c3)

)∫ 1

0

{√
k2

k1 − α
− u1

u2 + α
− (η − τ)

+
√

k4

k3 + α
− u4

u3 − α
− (η − τ)

}
dα (34)

and

I (q) =
(

c2 + c3

c2

)
I (s) (35)

Furthermore, using (14) and (18) the indexed value of sp and ρ are obtained respectively
as under:

I (ρ) = 1

2

∫ 1

0

{
L−1

ρ (α) + R−1
ρ (α)

}
dα = 1

2

(
δ1 + δ2 + 1

2λ1
− 1

2λ2

)
(36)

and

I
(
sp

) = 1

2

∫ 1

0

{
L−1

sp (α) + R−1
sp (α)

}
dα = 1

2

(
δ′

1 + δ′
2 + 1

2λ′
1

− 1

2λ′
2

)
(37)

4 Numerical example

Example 1 For Crisp Model, let a seller started his/ her business with initial demand rate
η = 80 units, τ = 50 units, setup cost c1 = 100 ($), holding cost per unit item c2 = 2.5 ($),
Shortage cost c3 = 8 ($), sm = 30; sm = 12; m = 3, purchasing price p1 = 12 ($), k = 15 ($),
the cycle time T = 1 month then we get the following results in Table 1.

From Table 2, we see that the maximum profit will reach when ρ∗ = 2.538 and m∗ = 1;
the inventory run time is 26 days and the shortage period is 4 days only. Also we further
observe that the profit will be nominal for m = 3 and ρm = 3.9.
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Table 3 GFO Solution for sm < s1 < s2 < sp∗ < s3 < sm and ρ1 < ρ2 < ρ∗ < ρ3 < ρm

ρ1 ρ2 ρ3 s1 s2 s3 t∗2 t∗1 I (s) I (q) I (sp) I (ρ) I (φ)

0.4 0.9 1.5 14 15 17 25 5 28.442 119.453 15.25 0.925 218.41

20 24 6 25.013 105.053 16.00 0.925 170.03

23 23 7 22.676 95.238 16.75 0.925 156.19

26 23 7 20.877 87.683 17.50 0.925 157.72

0.4 0.9 1.9 14 15 17 25 5 28.615 120.182 15.25 1.025 211.26

20 24 6 25.186 105.781 16.00 1.025 164.51

23 23 7 22.850 95.967 16.75 1.025 152.29

26 23 7 21.051 88.412 17.50 1.025 155.45

0.4 0.9 2.5 14 15 17 25 5 28.817 121.030 15.25 1.025 192.17

20 24 6 25.389 106.630 16.00 1.025 147.29

23 23 7 23.052 96.815 16.75 1.025 136.95

26 23 7 21.253 89.260 17.50 1.025 141.98

Table 4 IFO Solution for sm < s′
1 < s1 < s2 < sp∗ < s3 < s′

3 < sm and ρ′
1 < ρ1 < ρ2 < ρ∗ < ρ3 < ρ′

3 <

ρm

ρ′
1 ρ1 ρ2 ρ3 ρ′

3 s′
1 s1 s2 s3 s′

3 t∗2 t∗1 I (s) I (q) I (sp) I (ρ) I (φ)

0.2 0.4 0.9 1.5 2 13 14 15 17 20 24 6 29.755 124.968 15.19 0.924 250.47

20 23 24 6 27.955 117.407 15.60 0.924 310.62

23 26 24 6 26.568 111.585 15.99 0.924 375.43

26 29 24 6 25.358 106.502 16.37 0.924 441.66

0.2 0.4 0.9 1.9 3 13 14 15 17 20 24 6 29.817 125.229 15.19 0.996 250.30

20 23 24 6 28.017 117.667 15.60 0.996 311.21

23 26 24 6 26.630 111.845 15.99 0.996 376.74

26 29 24 6 25.421 106.765 16.37 0.996 445.66

0.2 0.4 0.9 2.5 3.5 13 14 15 17 20 24 6 29.875 125.473 15.19 1.075 245.95

20 23 24 6 28.075 117.911 15.60 1.075 307.55

23 26 24 6 26.688 112.089 15.99 1.075 373.72

26 29 24 6 25.479 107.008 16.37 1.075 443.28

Example 2 As per Example 1, let a seller started his/her business with linear demand factor
η = 80 units and τ = 50 units. If the set up cost c1 = $100.00, holding cost per unit item
c2 = $2.5, shortage cost c3 = $8.0, selling price per unit item sm = $30.0, sm = $12.0, unit
purchasing price p1 = $12.0, k = $15.0, m = 3, the cycle time T = 1 month then we have
the solution in Table 3.

4.1 Interpretation on GFO and IFO solutions (Tables 3–4)

In Table 3, when ρ assumes value 0.925 and unit selling price sp be $15.25 with shortage
quantity 28.442 unit and order quantity 119.453 unit then the average maximum profit be
$218.41 under GFO policy. However, Table 3 shows that for minimum shortage time 5 days
with ρ = 1.025, little more order quantity (0.375 unit) than the above, the profit is decreased
to $192.17. Throughout the whole table, we see within a specific selling price interval, the



70 Ann Oper Res (2015) 233:57–76

Fig. 3 GFO and IFO Solutions
near Crisp Optimality

profit function follows a parabolic path. Also it is noticed that the order quantity is high with
same selling price and follows the marginal profit. Table 4 shows, in IFO environment, for 6
days shortage time, the maximum order quantity be 106.765 units, shortage quantity 25.421
units, unit selling price $16.37, ρ = 0.996 and maximum profit be $445.66. The whole table
shows the profit function behaves linear increasing trend within specific limits of selling
prices. It is also observed that,in all cases, shortage period is fixed to 6 days and it is getting
better result than GFO policy.

4.2 Comments on Fig. 3

In Fig. 3, when sp lies in [15, 17] then IFO policy gives better result than the GFO policy
for all cases. The upper straight line bar shows the optimal solutions for the IFO policy
and the lower V-shaped bar shows the solutions for GFO policy. For GFO policy, when sp

and ρ follows a straight path then the average maximum profit function follows a parabolic
path whereas, in IFO policy, whenever follows a parabolic path then unit selling price and
average maximum profit follows a straight path. The total graph shows IFO policy gives
the better solution than GFO solution. Furthermore, it is undesirable to say that, the optimal
solution involves in GFO or IFO policy has a large difference with respect to the crisp
value.

5 Sensitivity analysis

We take a sensitivity for the crisp model of the parameters {c1, c2, c3, k, τ, η,p1} from
(−50 % to +50 %) and this can be shown in the following table.
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Table 5 Sensitivity Analysis

Parameter % change ρ∗ q∗ s∗ sp∗ t∗2 t∗1 Z∗ (
Z∗−Z∗

Z∗ )

100 %

c1 +50 1.002 208.897 49.737 16.34 25 5 788.59 −8.81

+30 0.987 200.664 47.777 16.11 25 5 816.50 −5.58

−30 0.925 167.948 39.988 15.27 27 3 924.93 6.95

−50 0.893 152.114 36.218 14.90 28 2 976.18 12.87

c2 +50 0.990 151.000 48.191 16.16 25 5 810.62 −6.26

+30 0.980 162.185 46.853 16.01 25 5 829.56 −4.08

−30 0.932 227.655 40.861 15.36 27 3 912.95 5.56

−50 0.905 278.240 37.600 15.03 27 3 957.46 10.71

c3 +50 0.969 175.549 30.267 15.85 27 3 849.98 −1.72

+30 0.966 178.863 34.663 15.81 27 3 854.71 −1.17

−30 0.951 199.569 61.595 15.60 25 5 881.81 1.96

−50 0.939 216.782 83.377 15.45 23 7 901.55 4.25

k +50 0.831 187.987 44.759 15.66 26 4 859.50 −0.62

+30 0.875 187.366 44.611 15.68 26 4 861.36 −0.40

−30 1.089 184.665 43.968 15.80 26 4 869.61 0.55

−50 1.222 183.199 43.019 15.87 26 4 874.20 1.08

τ +50 1.190 168.031 40.017 16.67 26 4 911.26 5.36

+30 1.095 176.205 41.954 16.21 26 4 890.73 2.30

−30 0.822 194.338 46.271 15.40 26 4 843.38 −2.48

−50 0.717 198.909 47.359 15.23 26 4 831.19 −3.89

η +50 0.891 258.772 61.613 14.94 27 3 1372.76 58.73

+30 0.913 231.105 55.052 15.18 27 3 1165.60 34.78

−30 1.054 134.596 32.046 16.97 25 5 583.30 −32.55

−50 1.240 89.990 21.405 20.06 22 8 420.87 −51.33

p1 +50 1.235 71.420 17.005 6.27 9 11 237.19 −72.57

+30 1.224 88.056 20.966 23.40 21 9 380.685 −55.98

−30 . . . unbounded
solution

. . . . . . . . . . . . . . . . . .

−50 . . . unbounded
solution

. . . . . . . . . . . . . . . . . .

From Table 5, we observe that the parameters c1, c2 and τ have fair sensitivity whenever
a change is made from (−50 % to +50 %) each separately. At +50 % and −50 % changes
in demand parameter τ , the profit is increased to 5.36 % and it decreases to −3.89 % re-
spectively. At +50 % and −50 % changes in c2 the profit decreases to −6.26 % and it
increases to 10.71 % respectively. The cost price parameter p1 is tremendously high sensi-
tive for changes from −50 % to +50 %. At −50 % and −30 % change of p1 the solution
is unbounded but at +50 % change, the average profit decreases to −72.57 %. The demand
parameter η has moderately high and linear sensitivity within the changes from −50 % to
+50 %. Throughout the table, the average total profit is maximum when the demand pa-
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rameter η increases to +50 % and in that case the decision variables are the order quantity
q∗ = 258.772, the shortage quantity s∗ = 61.613, the promotional effort ρ∗ = 0.891 and the
maximum average profit Z∗ = $1372.76.

6 Conclusion

In this paper we have discussed the solutions of Crisp, GFO and IFO problems. The sell-
ing price and promotional effort/sales teams’ initiatives dependent demand rate is consid-
ered in well known classical backorder EOQ model. Considering profit function, we have
solved the model under intuitionistic fuzzy environment. The score function (net member-
ship) have been taken care of and a trend is studied for their optimal solutions. In this study,
it is observed in fuzzy environment that the average profit would decrease always, but the
use of A-IFS has restriction in the worst condition. In the appendix, it has been shown that
the net membership function follows the ranking index rule. Neither high selling price nor
low promotional effort would be able to give a considerable high average profit. The pro-
posed model provides a proper direction to a manager of a business organization to achieve
maximum profit while the decision variables are fuzzy variables in nature. The new major
contribution of the paper is to consider the demand function as a function of selling price
and promotional effort simultaneously in crisp model. The analysis of the model by GFO
and IFO approach is also quite new, considering these decision variables as fuzzy variables.

7 Scope of future work

The proposed model can be extended further in many ways. One immediate extension can
be done in a supply chain consisting of multiple members involving sharing cost of promo-
tional effort among them and discount offer on whole sale prices in each stage to motivate
the downstream members to buy more. Using several score functions, this model can be ex-
tended further so that any one may obtain a better solution. This may enrich the trend value
also.

Appendix

Here, we shall show that the score (net membership) function follows Yager’s (1981) ranking
index method.

We have
(i)

I (ρ) = 1

2

(
δ1 + δ3 + 1

2λ1
− 1

2λ2

)

= 1

4

[
(ρ2 − ρ1)(ρ2 − ρ ′

1) + 2(ρ2
2 − ρ1ρ

′
1)

2ρ2 − ρ1 − ρ ′
1

+ (ρ3 − ρ2)(ρ
′
3 − ρ2) + 2(ρ3ρ

′
3 − ρ2

2)

ρ3 + ρ ′
3 − 2ρ2

]

Letting ρ ′
1 = ρ1, ρ ′

3 = ρ3, in fuzzy sense, we get

I (ρ) = 1

4

[
(ρ2 − ρ1)(ρ2 − ρ1) + 2(ρ2

2 − ρ2
1)

2(ρ2 − ρ1)
+ (ρ3 − ρ2)(ρ3 − ρ2) + 2(ρ2

3 − ρ2
2 )

2(ρ3 − ρ2)

]
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=
(

(ρ2 − ρ1) + 2(ρ2 + ρ1)

8
+ (ρ3 − ρ2) + 2(ρ3 + ρ2)

8

)

= 3ρ3 + 4ρ2 + ρ1

8
yields−−→ ρ when ρ1 = ρ2 = ρ3 = ρ, in crisp sense.

Hence the proof.
Let d2 = τρ

1+ρ
then ρ = τ

τ−d2
.

(ii) So, the net membership is given by

ζ(d2) =

⎧
⎪⎪⎨

⎪⎪⎩

[ τ
(τ−d2)

−(1+ρ1)]
ρ2−ρ1

− [(1+ρ2)− τ
(τ−d2)

]
ρ2−ρ′

1
∀d ′

2 < d2 < d
′′
2

[(1+ρ2)− τ
(τ−d2)

]
ρ3−ρ2

− [ τ
(τ−d2)

−(1+ρ′
3)]

ρ′
3−ρ2

∀d
′′
2 < d2 < d

′′′
2

0, elsewhere

⎫
⎪⎪⎬

⎪⎪⎭

Here,
[ τ
(τ−d2)

−(1+ρ1)]
ρ2−ρ1

− [(1+ρ2)− τ
(τ−d2)

]
ρ2−ρ′

1
≥ α and

[(1+ρ2)− τ
(τ−d2)

]
ρ3−ρ2

− [ τ
(τ−d2)

−(1+ρ′
3)]

ρ′
3−ρ2

≥ α, after a

little bit calculation, we have

d2 ≥ τ −
τ( 1

ρ2−ρ1
+ 1

ρ2−ρ′
1
)

α + (
1+ρ1
ρ2−ρ1

+ 1+ρ2
ρ2−ρ′

1
)

and d2 ≤ τ −
τ( 1

ρ3−ρ2
+ 1

ρ′
3−ρ2

)

(
1+ρ1
ρ3−ρ2

+ 1+ρ2
ρ′

3−ρ2
) − α

, respectively.

Therefore,

[
L−1

d2 (α),R−1
d2 (α)

] =
[
τ −

τ( 1
ρ2−ρ1

+ 1
ρ2−ρ′

1
)

α + (
1+ρ1
ρ2−ρ1

+ 1+ρ2
ρ2−ρ′

1
)
, τ −

τ( 1
ρ3−ρ2

+ 1
ρ′

3−ρ2
)

(
1+ρ1
ρ3−ρ2

+ 1+ρ2
ρ′

3−ρ2
) − α

]

=
[
τ − k1

α + k2
, τ − k3

k4 − α

]

where

k1 = τ

(
1

ρ2 − ρ1
+ 1

ρ2 − ρ ′
1

)
, k2 =

(
1 + ρ1

ρ2 − ρ1
+ 1 + ρ2

ρ2 − ρ ′
1

)
,

k3 = τ

(
1

ρ3 − ρ2
+ 1

ρ ′
3 − ρ2

)
and k4 =

(
1 + ρ1

ρ3 − ρ2
+ 1 + ρ2

ρ ′
3 − ρ2

)

Now, the indexed value is

I (d2) = 1

2

∫ 1

0

[
L−1

d2 (α) + R−1
d2 (α)

]
dα

= 1

2

∫ 1

0

[
τ − k1

α + k2
+ τ − k3

k4 − α

]
dα

= 1

2

[
2τ − k1 Log

(
1 + k2

k2

)
+ k3 Log

(
k4 − 1

k4

)]
.

To have a fuzzy value, we have ρ ′
1 → ρ1 and ρ ′

3 → ρ3 those provide

k1 →
(

2τ

ρ2 − ρ1

)
, k2 →

(
2 + ρ1 + ρ2

ρ2 − ρ1

)
, k3 →

(
2τ

ρ3 − ρ2

)
and
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k4 →
(

2 + ρ1 + ρ2

ρ3 − ρ2

)
.

Therefore, from above, we have

I (d2) = 1

2

[
2τ − 2τ

ρ2 − ρ1
Log

(
1 + ρ2 − ρ1

2 + ρ2 + ρ1

)
+ 2τ

ρ3 − ρ2
Log

(
1 − ρ3 − ρ2

2 + ρ2 + ρ3

)]
.

The crisp value of d2 is

d2 = lim
ρ1→ρ2
ρ3→ρ2

I (d2)

= lim
ρ1→ρ2
ρ3→ρ2

[
τ − τ

ρ2 − ρ1
Log

(
1 + ρ2 − ρ1

2 + ρ1 + ρ2

)
+ τ

ρ3 − ρ2
Log

(
1 + ρ3 − ρ2

2 + ρ2 + ρ3

)]

where

lim
ρ1→ρ2

[
1

ρ2 − ρ1
Log

(
1 + ρ2 − ρ1

2 + ρ1 + ρ2

)]

= lim
ρ1→ρ2

(
1

2 + ρ1 + ρ2

)
× lim

ρ1→ρ2

[ Log(1 + ρ2−ρ1
2+ρ1+ρ2

)

(ρ2 − ρ1)/(2 + ρ1 + ρ2)

]
= 1

2(1 + ρ2)

and

lim
ρ3→ρ2

[
1

ρ3 − ρ2
Log

(
1 − ρ3 − ρ2

2 + ρ2 + ρ3

)]

= lim
ρ3→ρ2

( −1

2 + ρ2 + ρ3

)
× lim

ρ3→ρ2

[ Log(1 − ρ3−ρ2
2+ρ2+ρ3

)

−(ρ3 − ρ2)/(2 + ρ2 + ρ3)

]
= 1

2(1 + ρ2)
.

Thus

d2 = lim
ρ1→ρ2
ρ3→ρ2

I (d2)

=
[
τ − τ

2(1 + ρ2)
− τ

2(1 + ρ2)

]

= τ

[
1 − 1

1 + ρ2

]
= τρ2

1 + ρ2
→ τρ

1 + ρ

yields−−→ Crisp value.

Proceeding this way we can prove the other IFS as well. Hence the Yager’s Ranking
method can be applied on net membership function also. This completes the proof.
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