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Abstract We present a full Nesterov and Todd step primal-dual infeasible interior-point al-
gorithm for symmetric optimization based on Darvay’s technique by using Euclidean Jordan
algebras. The search directions are obtained by an equivalent algebraic transformation of the
centering equation. The algorithm decreases the duality gap and the feasibility residuals at
the same rate. During this algorithm we construct strictly feasible iterates for a sequence of
perturbations of the given problem and its dual problem. Each main iteration of the algo-
rithm consists of a feasibility step and some centering steps. The starting point in the first
iteration of the algorithm depends on a positive number ξ and it is strictly feasible for a
perturbed pair. The feasibility steps find strictly feasible iterates for the next perturbed pair.
By using centering steps for the new perturbed pair, we obtain strictly feasible iterates close
to the central path of the new perturbed pair. The algorithm finds an ε-optimal solution or
detects infeasibility of the given problem. Moreover, we derive the currently best known
iteration bound for infeasible interior-point methods.

Keywords Symmetric optimization · Infeasible interior-point methods ·
Darvay’s technique · Euclidean Jordan algebras · Small-update method

1 Introduction

Symmetric optimization (SCO) is to minimize a linear function over the intersection of an
affine space and the symmetric cone. Symmetric cones are intimately related to Euclidean
Jordan algebras (Faraut and Korányi 1994), and these algebras provide us with a basic tool-
box to carry out our analysis. There is an extensive literature on the analysis of interior-point
methods (IPMs) for SCO. The basic idea for solving SCO using IPMs is due to Nesterov
and Nemirovski (1994). Their method was primarily either primal or dual based. Later on,
Nesterov and Todd (1997) proposed interior-point algorithms on a special class of cones
called self-scaled cones. The first work connecting Jordan algebras and optimization is due
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to Güler (1996). He observed that the family of the self-scaled cones is identical to the set
of symmetric cones for which there exists a complete classification theory. Faybusovich
(1997) first extended primal-dual IPMs for semidefinite optimization (SDO) to SCO by us-
ing Euclidean Jordan algebras. Muramatsu (2002) presented a commutative class of search
directions for SCO and analyzed the complexities of primal-dual IPMs for SCO. Rangara-
jan (2006) proved the polynomial-time convergence of infeasible IPMs (IIPMs) for conic
programming over symmetric cones using a wide neighborhood of the central path for a
commutative family of search directions. Schmieta and Alizadeh (2003) introduced primal-
dual IPMs for SCO extensively under the framework of Euclidean Jordan algebra. By con-
structing strictly feasible iterates for a sequence of the perturbed problems of the given
problem and its dual problem, Roos (2006) introduced a full-Newton primal-dual IIPM for
linear optimization (LO) based on the classical directions. Kheirfam (2011) extended Roos’
algorithm for LO to SDO based on a special self-regular proximity. Gu et al. (2011) ex-
tended this algorithm to SCO by using Euclidean Jordan algebra. Darvay (2003) proposed a
full-Newton step primal-dual path-following interior-point algorithm for LO. The search di-
rection of his algorithm is introduced by using an algebraic equivalent transformation of the
centering equation which define the central path and then applying Newton’s method for the
new system of equations. Recently, Wang and Bai (2012) generalized Darvay’s full-Newton
step primal-dual path-following interior-point algorithm for LO to SCO by using Euclidean
Jordan algebras.

In this paper, by combining Darvay’s and Roos’ works we propose a full Nesterov and
Todd (NT) step primal-dual infeasible interior-point algorithm for SCO by using Euclidean
Jordan algebras. At each iteration, we use only full NT-steps which have the advantage that
no line searches are needed. By constructing strictly feasible iterates for a sequence of the
perturbed problems of the given problem and its dual problem, our algorithm decreases the
duality gap and the feasibility residuals at the same rate. Finally, the order of the iteration
bound coincides with the currently best known iteration bound for SCO.

The paper is organized as follows: In Sect. 2, we briefly recall the theory of the Euclidean
Jordan algebra and their associated symmetric cones. In Sect. 3, after briefly reviewing the
concept of the central path for SCO, we recall the Darvay’s technique for SCO, the search
directions and the quadratical convergence. The primal-dual infeasible interior-point algo-
rithm for SCO is presented in Sect. 4. In Sect. 5, we analyze the algorithm and derive the
currently best known iteration bound for IIPMs. Finally, some conclusions and remarks fol-
low in Sect. 6.

2 Euclidean Jordan algebras and symmetric cones

In this section, we introduce Jordan algebras and symmetric cones as well as some of their
basic properties, closely following (Schmieta and Alizadeh 2003). These properties serve as
our toolbox for the analysis of IIPMs. For a comprehensive study of Jordan algebras, the
reader is referred to Faraut and Korányi (1994).

A Jordan algebra J is a finite dimensional vector space endowed with a bilinear map
◦ : J × J → J if for all x, y ∈ J , x ◦ y = y ◦ x, and x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where
x2 = x ◦ x. A Jordan algebra (J ,◦) is called Euclidean if there exists a symmetric positive
definite quadratic form Q on J such that Q(x ◦ y, z) = Q(x,y ◦ z). A Jordan algebra has
an identity element, if there exists a unique element e ∈ J such that x ◦ e = e ◦ x = x, for
all x ∈ J . The set K(J ) := {x2 : x ∈ J } is called the cone of squares of the Euclidean
Jordan algebra (J ,◦, 〈·, ·〉). A cone is symmetric if and only if it is the cone of squares of a
Euclidean Jordan algebra (Faraut and Korányi 1994).
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An element c ∈ J is idempotent if c ◦ c = c. Two elements x and y are orthogonal if
x ◦ y = 0. An idempotent c is primitive if it is nonzero and can not be expressed by sum
of two other nonzero idempotents. A set of primitive idempotents {c1, c2, . . . , ck} is called
a Jordan frame if ci ◦ cj = 0, for any i �= j ∈ {1,2, . . . , k} and

∑k

i=1 ci = e. For any x ∈ J ,
let r be the smallest positive integer such that {e, x, x2, . . . , xr} is linearly dependent; r is
called the degree of x and is denoted by deg(x). The rank of J , denoted by rank(J ), is
defined as the maximum of deg(x) over all x ∈ J .

Theorem 1 (Theorem III.1.2 in Faraut and Korányi 1994) Let (J ,◦, 〈·, ·〉) be a Euclidean
Jordan algebra with rank(J ) = r . Then, for any x ∈ J , there exists a Jordan frame
{c1, c2, . . . , cr} and real numbers λ1(x), λ2(x), . . . , λr(x) such that x = ∑r

i=1 λi(x)ci .

Every λi(x) is called an eigenvalue of x. We denote λmin(x) (λmax(x)) as the min-
imal (maximal) eigenvalue of x. We can define the following: the square root, x

1
2 :=∑r

i=1

√
λi(x)ci , wherever all λi ≥ 0, the inverse, x−1 := ∑r

i=1 λi(x)−1ci , wherever all
λi �= 0, the square x2 := ∑r

i=1 λi(x)2ci ; the trace tr(x) := ∑r

i=1 λi(x). If x−1 is defined,
we call x invertible.

Since “◦” is bilinear map, for every x ∈ J , a linear operator L(x) can be defined such
that L(x)y = x ◦ y for all y ∈ J . In particular, L(x)e = x and L(x)x = x2. For each x ∈ J ,
define

P (x) := 2L(x)2 − L
(
x2

)
,

where, L(x)2 = L(x)L(x). The map P (x) is called the quadratic representation of x.
For any x, y ∈ J , x and y are said to be operator commutable if L(x) and L(y) com-
mute, i.e., L(x)L(y) = L(y)L(x). In other words, x and y are operator commutable if
for all z ∈ J , x ◦ (y ◦ z) = y ◦ (x ◦ z) (Schmieta and Alizadeh 2003). For any x, y ∈ J ,
the inner product is defined as 〈x, y〉 = tr(x ◦ y), and the Frobenius norm of x as follows

‖x‖F = √〈x, x〉 = √
tr(x2) =

√∑r

i=1 λ2
i (x). Observe that ‖e‖F = √

r , since identity ele-
ment e has eigenvalue 1 with multiplicity r . Furthermore, we have

λmin(x) ≤ ‖x‖F , λmax(x) ≤ ‖x‖F and
∣
∣〈x, y〉∣∣≤ ‖x‖F ‖y‖F .

Lemma 1 (Lemma 3.2 in Faybusovich 2002) Let x, s ∈ intK. Then, there exists a unique
w ∈ intK such that

x = P (w)s.

Moreover,

w = P
(
x

1
2
)(

P
(
x

1
2
)
s
)− 1

2
[= P

(
s− 1

2
)(

P
(
s

1
2
)
x
) 1

2
]
,

where intK denotes the interior of the cone K.

The point w is called the scaling point of x and s. Hence, there exists ṽ ∈ intK such that

ṽ = P (w)− 1
2 x = P (w)

1
2 s,

which is the so-called NT-scaling of J .
Let x, y ∈ J . We say that two elements x and y are similar, as denoted by x ∼ y, if and

only if x and y share the same set of eigenvalues. We have x ∈ K if and only if λi ≥ 0, for
all i = 1,2, . . . , r and x ∈ intK if and only if λi > 0, for all i = 1,2, . . . , r . We also say x is
positive semidefinite (positive definite) if x ∈ K(x ∈ intK).
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Theorem 2 (Theorem III.2.1, Proposition III.2.2 in Faraut and Korányi 1994) Let J be a
Euclidean Jordan algebra. Then K(J ) is a symmetric cone, and is the set of elements x in J
for which L(x) is positive semidefinite. Furthermore, if x is invertible, then P (x)intK(J ) =
intK(J ).

Lemma 2 (Lemma 30 in Schmieta and Alizadeh 2003) Let x, s ∈ intK. Then
∥
∥P (x)

1
2 s − e

∥
∥

F
≤ ‖x ◦ s − e‖F .

Lemma 3 (Theorem 4 in Sturm 2000) Let x, s ∈ intK. Then

λmin
(
P (x)

1
2 s

) ≥ λmin(x ◦ s).

Lemma 4 (Lemma 14 in Schmieta and Alizadeh 2003) Let x, s ∈ J . Then, the eigenvalues
of x + s are bounded as follows:

λmin(x + s) ≥ λmin(x) + λmin(s) ≥ λmin(x) − ‖s‖F .

3 Full NT-step based on Darvay’s technique

In this section, we briefly recall the central path for SCO, and Darvay’s technique extended
to SCO by Wang and Bai (2012). Consider the following primal and dual problems:

min
{〈c, x〉 : Ax = b, x ∈ K

}
, (P)

and

max
{
bT y : AT y + s = c, s ∈ K

}
, (D)

where, c and the rows of A lie in J , and b ∈ Rm. Moreover, the rows of A are linearly
independent. Throughout the paper, we assume that (P) and (D) satisfy the interior point
condition (IPC), i.e., there exist x0 ∈ intK and s0 ∈ intK such that Ax0 = b and AT y0 +
s0 = c. This can be achieved via the so-called homogeneous self-dual embedding (Sturm
2000). Under the IPC, finding an optimal solution of (P) and (D) is equivalent to solving the
following system (Schmieta and Alizadeh 2003; Faybusovich 1997):

Ax = b, x ∈ K

AT y + s = c, s ∈ K (1)

x ◦ s = 0.

The basic idea of primal-dual IPMs is to replace the third equation in (1), the so-called
complementary condition for (P) and (D), by the parameterized equation x ◦ s = μe, with
μ > 0. Thus, one may consider

Ax = b, x ∈ K
AT y + s = c, s ∈ K (2)

x ◦ s = μe.

For each μ > 0, the parameterized system (2) has a unique solution (x(μ), y(μ), s(μ)), is
called the μ-center of (P) and (D), and these solutions form a curve parameterized by μ.
This curve is called the central path and most IPMs approximately follow the central path
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to reach the optimal set. If μ −→ 0, then the limit of the path exists and yields optimal
solutions for (P) and (D) (Vieira 2007).

Similarly to the LO case (Darvay 2003), Wang and Bai (2012) replace the standard cen-
tering equation x◦s = μe by ϕ( x◦s

μ
) = ϕ(e) where ϕ(.) is the vector-valued function induced

by the univariate function ϕ(t). Thus, the system (2) becomes

Ax = b, x ∈ K

AT y + s = c, s ∈ K (3)

ϕ

(
x ◦ s

μ

)

= ϕ(e).

Applying Newton’s method to system (3), then using Taylor’s theorem to the third equation,
leads to

AΔx = 0,

AT Δy + Δs = 0, (4)

x ◦ Δs + s ◦ Δx = μ

(

ϕ′
(

x ◦ s

μ

))−1

◦
(

ϕ(e) − ϕ

(
x ◦ s

μ

))

.

Due to the fact that L(x)L(s) �= L(s)L(x), system (4) does not always have a unique so-
lution in intK. It is well known that this difficulty can be resolved by applying a scaling
scheme. This is given in the following lemma.

Lemma 5 (Lemma 28 in Schmieta and Alizadeh 2003) Let u ∈ intK. Then

x ◦ s = μe ⇔ P (u)x ◦ P (u)−1s = μe.

Replacing the third equation of the system (3) by

ϕ

(
P (u)x ◦ P (u)−1s

μ

)

= ϕ(e),

and applying Newton’s method to the resulting system leads us to the following system

AΔx = 0,

AT Δy + Δs = 0,

P (u)x ◦ P (u)−1Δs + P (u)−1s ◦ P (u)Δx

= μ

(

ϕ′
(

P (u)x ◦ P (u)−1s

μ

))−1

◦
(

ϕ(e) − ϕ

(
P (u)x ◦ P (u)−1s

μ

))

.

(5)

Let u = w− 1
2 , where w is the NT-scaling point of x and s as defined in Lemma 1. We define

v := P (w)− 1
2 x√

μ

[

= P (w)
1
2 s√

μ

]

, (6)

and

A := √
μAP(w)

1
2 , dx := P (w)− 1

2 Δx√
μ

, ds := P (w)
1
2 Δs√
μ

. (7)

This enables us to rewrite the system (5), considering ϕ(t) = √
t , as follows:
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Adx = 0,

A
T Δy

μ
+ ds = 0, (8)

dx + ds = 2(e − v) := pv.

The search directions dx and ds are obtained by solving (8) so that Δx and Δs are computed
via (7). The new iterate is obtained by taking a full NT-step as follows

x+ := x + Δx, s+ := s + Δs.

For the analysis of the algorithm, we define a norm-based proximity measure σ(x, s;μ) as
follows

σ(v) := σ(x, s;μ) := ‖pv‖F

2
= ‖e − v‖F . (9)

We can conclude that

σ(v) = 0 ⇔ v = e ⇔ dx = ds = 0 ⇔ x ◦ s = μe. (10)

Hence, the value of σ(v) can be considered as a measure for the distance between the given
triple (x, y, s) and the μ-center.

The following lemma is crucial in the analysis of the algorithm, which states that the
Newton process is quadratically convergent. We recall it without proof.

Lemma 6 (Lemma 4.4 in Wang and Bai 2012) Let σ := σ(x, s;μ) < 1. Then

σ
(
x+, s+;μ) ≤ σ 2

1 + √
1 − σ 2

.

Thus σ(x+, s+;μ) ≤ σ 2, which means the quadratical convergence of the algorithm.

The following lemma provides an iteration bound O(
√

r log 〈x0,s0〉
ε

) for the algorithm.

Lemma 7 (Theorem 4.1 in Wang and Bai 2012) Let θ = 1
2
√

r
. Then the algorithm requires

at most

O

(√
r log

〈x0, s0〉
ε

)

,

iterations. The output is a primal-dual pair (x, s) satisfying 〈x, s〉 ≤ ε.

4 A full NT-step infeasible IPM

In the case of an infeasible method, we call the triple (x, y, s) an ε-solution of (P) and (D)
if the norms of the residual vectors b − Ax and c − AT y − s do not exceed ε, and also
tr(x ◦ s) ≤ ε. In what follows, we present an infeasible-start algorithm that generates an
ε-solution of (P) and (D), if it exists, or establishes that no such solution exists.
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4.1 The perturbed problems

We assume (P) and (D) have an optimal solution (x∗, y∗, s∗) with tr(x∗ ◦ s∗) = 0. As usual
for IIPMs, we start the algorithm with (x0, y0, s0) = ξ(e,0, e) and μ0 = ξ 2, where ξ is a
positive number such that

x∗ + s∗ �K ξe, (11)

where the Löwner partial ordering �K of J defined by a cone K is defined by x �K s if
x − s ∈ K. The initial values of the primal and dual residual vectors are r0

p = b − Ax0 and
r0
d = c − AT y0 − s0. In general, r0

p �= 0 and r0
d �= 0. The iterates generated by the algorithm

will be infeasible for (P) and (D), but they will be feasible for perturbed versions of (P) and
(D) that we introduce below. For any ν with 0 < ν ≤ 1, we consider the perturbed problem

min
{〈

c − νr0
d , x

〉 : b − Ax = νr0
p, x ∈ K

}
, (Pν )

and its dual problem

max
{(

b − νr0
p

)T
y : c − AT y − s = νr0

d , s ∈ K
}
. (Dν )

Note that if ν = 1, then x = x0 and (y, s) = (y0, s0) yield strictly feasible solutions of (Pν )
and (Dν ), respectively. We conclude that if ν = 1, both (Pν ) and (Dν ) are strictly feasible,
which means that both perturbed problems (Pν ) and (Dν ) satisfy the IPC. It should be men-
tioned that the problems (Pν ) and (Dν ) for LO have been studied in Freund (1996). More
generally, one has the following lemma (Lemma 4.1 in Gu et al. 2011).

Lemma 8 Let (P) and (D) be feasible and 0 < ν ≤ 1. Then, the perturbed problems (Pν )
and (Dν ) satisfy the IPC.

Assuming that (P) and (D) are both feasible, it follows from Lemma 8 that the problems
(Pν ) and (Dν ) satisfy the IPC, for each ν ∈ (0,1]. Then, their central paths exist, meaning
that the system

b − Ax = νr0
p, x ∈ K,

c − AT y − s = νr0
d , s ∈ K, (12)

x ◦ s = μe,

has a unique solution, for any μ > 0. For ν ∈ (0,1] and μ = νμ0 = νξ 2, we denote this
unique solution as (x(μ, ν), y(μ, ν), s(μ, ν)), where x(μ, ν) is the μ-center of (Pν) and
(y(μ, ν), s(μ, ν)) is the μ-center of (Dν). The parameters μ and ν will always be in a
one-to-one correspondence, according to μ = νμ0 = νξ 2. For the sake of simplicity, we
denote x(μ) = x(μ, ν), y(μ) = y(μ, ν) and s(μ) = s(μ, ν). By taking ν = 1, one has
(x(1), y(1), s(1)) = (x0, y0, s0) = (ξe,0, ξe) and x0 ◦ s0 = μ0e. Hence, x0 is the μ0-center
of the perturbed problem (P1) and (y0, s0) is the μ0-center of the perturbed problem (D1).

Similarly to the feasible case, we replace the standard centering equation x ◦ s = μe by
ϕ( x◦s

μ
) = ϕ(e). Then, the system of (12) becomes

b − Ax = νr0
p, x ∈ K, (13)

c − AT y − s = νr0
d , s ∈ K, (14)

ϕ

(
x ◦ s

μ

)

= ϕ(e). (15)
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Algorithm 1 A full NT-step IIPM based on Darvay’s technique.
Input:

accuracy parameter ε > 0;
barrier update parameter θ , 0 < θ < 1;

and threshold parameter 0 < τ ≤ h < 1 (default h = 1√
2
).

begin
x := ξe; y := 0; s := ξe; μ := μ0 = ξ 2; ν = 1;

while max
(
tr(x ◦ s),‖rp‖F ,‖rd‖F

)
> ε do

begin
feasibility step:

(x, y, s) := (x, y, s) + (Δf x,Δf y,Δf s);
update of μ and ν:

μ := (1 − θ)μ; ν := (1 − θ)ν;
centering step:
while σ(x, s;μ) > τ do
begin

(x, y, s) := (x, y, s) + (Δx,Δy,Δs)

end
end

end.

4.2 An iteration of our algorithm

We just established that if ν = 1 and μ = μ0, then (x0, y0, s0) is the μ-center of the problems
(Pν ) and (Dν ). We measure proximity to the μ-center of the perturbed problems by the
quantity σ(x, s;μ) as defined in (9).

Initially, we have σ(x, s;μ) = 0. In the sequel, we assume that at the start of each itera-
tion, just before the μ-and ν-update, σ(x, s;μ) ≤ τ , where τ is a positive threshold value.
This certainly holds at the start of the first iteration. Since we then have σ(x, s;μ) = 0.

Now, we describe one main iteration of our algorithm. The algorithm begins with an
infeasible interior-point (x, y, s) such that (x, y, s) is feasible for the perturbed problems
(Pν ) and (Dν ), with μ = νμ0 and such that tr(x ◦ s) ≤ rμ and σ(x, s;μ) ≤ τ . We re-
duce ν to ν+ = (1 − θ)ν, with θ ∈ (0,1), and find new iterate (x+, y+, s+) that is feasi-
ble for the perturbed problems (Pν+ ) and (Dν+ ), and such that σ(x+, s+;μ+) ≤ τ . Every
iteration consists of a feasibility step, a μ-update and a few centering steps, respectively.
First, we find a new point (xf , yf , sf ) which is feasible for the perturbed problems with
ν+ := (1 − θ)ν. Then, μ is decreased to μ+ := (1 − θ)μ. Generally, there is no guaran-
tee that σ(xf , sf ;μ+) ≤ τ . So, a few centering steps is applied to produce a new point
(x+, y+, s+) such that σ(x+, s+;μ+) ≤ τ . This process is repeated until the algorithm ter-
minates. We now summarize the steps of the algorithm as Algorithm 1.

5 Analysis of the feasibility step

First, we describe the feasibility step in details. The analysis will follow in the sequel. Sup-
pose that we have strictly feasible iterate (x, y, s) for (Pν ) and (Dν ). This means that (x, y, s)

satisfies (13) and (14) with μ = νξ 2. We need displacements Δf x, Δf y and Δf s such that

xf := x + Δf x, yf := y + Δf y, sf := s + Δf s, (16)
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are feasible for (Pν+ ) and (Dν+ ). One may easily verify that (xf , yf , sf ) satisfies (13) and
(14), with ν replaced by ν+, only if the first two equations in the following system are
satisfied.

AΔf x = θνr0
p,

AT Δf y + Δf s = θνr0
d

P (w)− 1
2 x ◦ P (w)

1
2 Δf s + P (w)

1
2 s ◦ P (w)− 1

2 Δf x

= μ

(

ϕ′
(

P (w)− 1
2 x ◦ P (w)

1
2 s

μ

))−1

◦
(

ϕ(e) − ϕ

(
P (w)− 1

2 x ◦ P (w)
1
2 s

μ

))

.

(17)

The third equation is inspired by the third equation in the system (5) that we used to define
search directions for the feasible case.

According to (17), after the feasibility step the iterates satisfy the affine equations in (13)
and (14), with ν replaced by ν+. The hard part in the analysis will be to guarantee that xf ,
sf are positive and to guarantee that the new iterate satisfies σ(xf , sf ;μ+) ≤ h < 1.

Let (x, y, s) denote the iterate at the start of an iteration with tr(x ◦ s) ≤ rμ and
σ(x, s;μ) ≤ τ . At the start of the first iteration this is certainly true, because tr(x0 ◦ s0) =
rμ0 and σ(x0, s0;μ0) = 0. Define

df
x := 1√

μ
P(w)− 1

2 Δf x, df
s := 1√

μ
P(w)

1
2 Δf s, (18)

where w is the NT-scaling point of x and s. One can easily check that the system (17), which
defines the search directions Δf x, Δf y and Δf s, considering ϕ(t) = √

t , can be expressed
in terms of the scaled search directions d

f
x and d

f
s as follows

Ādf
x = θνr0

p,

ĀT Δf y

μ
+ df

s = 1√
μ

θνP (w)
1
2 r0

d , (19)

df
x + df

s = 2(e − v) = pv,

where Ā = √
μAP(w)

1
2 . To get the search directions Δf x and Δf s in the original x and

s-space we use (18), which gives

Δf x = √
μP(w)

1
2 df

x , Δf s = √
μP(w)− 1

2 df
s .

The new iterates are obtained by taking a full step, as given by (16). Hence, we have

xf = x + Δf x = √
μP(w)

1
2
(
v + df

x

)
,

sf = s + Δf s = √
μP(w)− 1

2
(
v + df

s

)
.

From the third equation in (19) we derive that
(
v + df

x

) ◦ (
v + df

s

) = v2 + v ◦ (
2(e − v)

) + df
x ◦ df

s

= v2 + v ◦ pv + df
x ◦ df

s . (20)

Moreover, from pv = 2(e − v), we have

v + 1

2
pv = e �⇒ v2 + v ◦ pv = e − 1

4
p2

v. (21)

Let us introduce the notation

p̄v := df
x − df

s . (22)
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In that case, we have

df
x ◦ df

s = p2
v − p̄2

v

4
. (23)

Using (20), (21) and (23), we get

(
v + df

x

) ◦ (
v + df

s

) = e − 1

4
p2

v + 1

4

(
p2

v − p̄2
v

) = e − 1

4
p̄2

v. (24)

Lemma 9 (Lemma 4.1 in Wang and Bai 2012) Let x(α) = x + αΔx, s(α) = s + αΔs for
0 ≤ α ≤ 1 with x, s ∈ intK and x(α) ◦ s(α) ∈ intK for α ∈ [0, ᾱ]. Then, x(ᾱ) ∈ intK and
s(ᾱ) ∈ intK.

Since P (w)
1
2 and P (w)− 1

2 are automorphisms of intK, Theorem 2 implies that xf and sf

belong to intK if and only if v + d
f
x and v + d

f
s belong to intK, respectively. The following

lemma shows the strict feasibility of the full NT-step.

Lemma 10 Let x ∈ intK and s ∈ intK. Then the iterates (xf , yf , sf ) are strictly feasible if
∣
∣
∣
∣λi

(
p̄v

2

)∣
∣
∣
∣ < 1, i = 1,2, . . . , r.

Proof Introduce a step length α with α ∈ [0,1] and define

vx(α) = v + αdf
x , vs(α) = v + αdf

s .

We thus have

vx(α) ◦ vs(α) = v2 + αv ◦ (
df

x + df
s

) + α2df
x ◦ df

s

= v2 + αv ◦ pv + α2df
x ◦ df

s

= (1 − α)v2 + α

(

e − p2
v

4

)

+ α2

4

(
p2

v − p̄2
v

)
.

If |λi(
p̄v

2 )| < 1, then we have

0 ≺K e − 1

4
p̄2

v = e − 1

4
p2

v + 1

4

(
p2

v − p̄2
v

)
,

and this implies that

1

4

(
p2

v − p̄2
v

) �K −e + 1

4
p2

v . (25)

Therefore, we get for 0 ≤ α ≤ 1

(1 − α)v2 + α

(

e − p2
v

4

)

+ α2

4

(
p2

v − p̄2
v

)

�K (1 − α)v2 + α

(

e − p2
v

4

)

+ α2

(

−e + 1

4
p2

v

)

= (1 − α)v2 + α(1 − α)

(

e − p2
v

4

)

= (1 − α)2v2 + 2α(1 − α)v �K 0. (26)
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So vx(α) ◦ vs(α) ∈ intK for α ∈ [0,1]. Hence, since x, s ∈ intK, Lemma 9 implies that
vx(1) = v + d

f
x ∈ intK and vs(1) = v + d

f
s ∈ intK. This completes the proof. �

In the sequel, we denote

ϑ(v) := 1

2

√∥
∥d

f
x

∥
∥2

F
+ ∥

∥d
f
s

∥
∥2

F
,

which implies ‖df
x ‖F ≤ 2ϑ(v) and ‖df

s ‖F ≤ 2ϑ(v). Moreover we have

∥
∥df

x ◦ df
s

∥
∥

F
≤ 1

2

(∥
∥df

x

∥
∥2

F
+ ∥

∥df
s

∥
∥2

F

) = 2ϑ(v)2, (27)

∣
∣λi

(
df

x ◦ df
s

)∣
∣ ≤ ∥

∥df
x ◦ df

s

∥
∥

F
≤ 2ϑ(v)2, i = 1,2, . . . , r. (28)

We proceed by deriving an upper bound for σ(xf , sf ,μ+). Recall from definition (9) that

σ
(
xf , sf ;μ+) := σ

(
vf

) = ∥
∥e − vf

∥
∥

F
, (29)

where vf := 1√
μ(1−θ)

P (wf )− 1
2 xf [= 1√

μ(1−θ)
P (wf )

1
2 sf ] and wf is the scaling point of xf

and sf .

Lemma 11 (Lemma 4.3 in Gu et al. 2011) One has
√

1 − θvf ∼ [
P

(
v + df

x

) 1
2
(
v + df

s

)] 1
2 .

Lemma 12 If |λi(
p̄v

2 )| < 1, i = 1,2, . . . , r . Then

σ
(
vf

) ≤ σ(v)2 + 2ϑ(v)2 + θ
√

r

1 − θ + √
(1 − θ)(1 − σ(v)2 − 2ϑ(v)2)

.

Proof Using Lemma 11, Lemma 2 and (24) we have

σ
(
vf

) = ∥
∥e − vf

∥
∥

F
≤ 1

1 + λmin(vf )

∥
∥e − (

vf
)2∥∥

F

= 1

1 + λmin(vf )

∥
∥
∥
∥e − P

(
v + d

f
x√

1 − θ

) 1
2
(

v + d
f
s√

1 − θ

)∥
∥
∥
∥

F

≤ 1

1 + λmin(vf )

∥
∥
∥
∥e −

(
v + d

f
x√

1 − θ

)

◦
(

v + d
f
s√

1 − θ

)∥
∥
∥
∥

F

= 1

1 + λmin(vf )

∥
∥
∥
∥e − e − 1

4 p̄2
v

1 − θ

∥
∥
∥
∥

F

= 1

(1 − θ)(1 + λmin(vf ))

∥
∥
∥
∥ − θe + 1

4
p̄2

v

∥
∥
∥
∥

F

≤ 1

(1 − θ)(1 + λmin(vf ))

(

θ
√

r +
(‖p̄v‖F

2

)2)

. (30)

By Lemma 11, Lemma 3, (20), (21), Lemma 4 and (28) we get

λmin
((

vf
)2) = λmin

(

P

(
v + d

f
x√

1 − θ

) 1
2
(

v + d
f
s√

1 − θ

))
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≥ λmin

((
v + d

f
x√

1 − θ

)

◦
(

v + d
f
s√

1 − θ

))

= 1

1 − θ
λmin

(

e − 1

4
p2

v + df
x ◦ df

s

)

≥ 1

1 − θ

(

1 − 1

4
‖pv‖2

F + λmin

(
df

x ◦ df
s

)
)

≥ 1

1 − θ

(
1 − σ(v)2 − 2ϑ(v)2

)
. (31)

By substituting (31) into (30) and using (9), the third equation of (19) and (27), we get

σ
(
vf

) ≤
√

1 − θ

(1 − θ)(
√

1 − σ(v)2 − 2ϑ(v)2 + √
1 − θ)

((‖p̄v‖F

2

)2

+ θ
√

r

)

=
√

1 − θ

(1 − θ)(
√

1 − σ(v)2 − 2ϑ(v)2 + √
1 − θ)

(
1

4

∥
∥df

x − df
s

∥
∥2

F
+θ

√
r

)

=
1
4 (‖df

x + d
f
s ‖2

F − 4〈df
x , d

f
s 〉) + θ

√
r√

1 − θ(
√

1 − σ(v)2 − 2ϑ(v)2 + √
1 − θ)

=
1
4 (‖pv‖2

F − 4〈df
x , d

f
s 〉) + θ

√
r√

1 − θ(
√

1 − σ(v)2 − 2ϑ(v)2 + √
1 − θ)

= σ(v)2 − 〈df
x , d

f
s 〉 + θ

√
r√

1 − θ(
√

1 − σ(v)2 − 2ϑ(v)2 + √
1 − θ)

≤ σ(v)2 + ‖df
x ‖F ‖df

s ‖F + θ
√

r√
1 − θ(

√
1 − σ(v)2 − 2ϑ(v)2 + √

1 − θ)

≤ σ(v)2 + 1
2 (‖df

x ‖2
F + ‖df

s ‖2
F ) + θ

√
r√

1 − θ(
√

1 − σ(v)2 − 2ϑ(v)2 + √
1 − θ)

= σ(v)2 + 2ϑ(v)2 + θ
√

r√
1 − θ(

√
1 − σ(v)2 − 2ϑ(v)2 + √

1 − θ)
,

this completes the proof. �

Because we need to have σ(vf ) ≤ h < 1 (default h = 1√
2
), it follows from Lemma 12

that it suffices to have

σ(v)2 + 2ϑ(v)2 + θ
√

r

1 − θ + √
(1 − θ)(1 − σ(v)2 − 2ϑ(v)2)

≤ 1√
2

< 1. (32)

At this stage, we choose

τ = 1

16
, θ = α

2
√

r
, α ≤ 1. (33)

The left-hand side of (32) is monotonically increasing with respect to ϑ(v)2, then for r ≥ 1
and σ(v) ≤ τ , one can verify that

ϑ(v) ≤ 1

2
√

2
⇒ σ

(
vf

) ≤ 1√
2

< 1. (34)
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5.1 Upper bound for ϑ(v)

In this section, we obtain an upper bound for ϑ(v) which will enable us to find a default
value for θ . For this purpose, consider the system (19) which defines the search directions
Δf x, Δf y and Δf s in terms of the scaled search directions d

f
x and d

f
s . By eliminating d

f
s

from (19), we get

Ādf
x = θνr0

p,

−ĀT Δf y

μ
+ df

x = pv − 1√
μ

θνP (w)
1
2 r0

d .
(35)

Multiplying the second equation of (35) from left with Ā and using the first equation of (35)
it follows that

−Δf y

μ
= (

ĀĀT
)−1

Ā

(

pv − 1√
μ

θνP (w)
1
2 r0

d

)

− θν
(
ĀĀT

)−1
r0
p.

Substitution into the second equation of (35) gives

df
x = (

I − ĀT
(
ĀĀT

)−1
Ā

)
(

pv − 1√
μ

θνP (w)
1
2 r0

d

)

+ θνĀT
(
ĀĀT

)−1
r0
p.

Let (x∗, y∗, s∗) be the optimal solution satisfying (11). Then, we have

r0
p = A

(
x∗ − x0

)
, r0

d = AT
(
y∗ − y0

) + (
s∗ − s0

)
,

and
(
I − ĀT

(
ĀĀT

)−1
Ā

)
ĀT

(
y∗ − y0

) = 0.

Hence, it follows that

df
x = (

I − ĀT
(
ĀĀT

)−1
Ā

)
(

pv − θν√
μ

P(w)
1
2
(
s∗ − s0

)
)

+ θν√
μ

ĀT
(
ĀĀT

)−1
ĀP (w)− 1

2
(
x∗ − x0

)
.

For d
f
s , by using d

f
x + d

f
s = pv , we obtain

df
s = θν√

μ

(
I − ĀT

(
ĀĀT

)−1
Ā

)
P (w)

1
2
(
s∗ − s0

)

+ ĀT
(
ĀĀT

)−1
Ā

(

pv − θν√
μ

P(w)− 1
2
(
x∗ − x0

)
)

.

Therefore, using orthogonality and the Cauchy-Schwartz inequality, after some computa-
tions, we obtain

∥
∥df

x

∥
∥2

F
+ ∥

∥df
s

∥
∥2

F
≤ 2‖pv‖2

F

+ 3θ2ν2

μ

(∥
∥P (w)− 1

2
(
x∗ − x0

)∥
∥2

F
+ ∥

∥P (w)
1
2
(
s∗ − s0

)∥
∥2

F

)

= 8σ(v)2 + 3θ2ν2

μ

(∥
∥P (w)− 1

2
(
x∗ − x0

)∥
∥2

F
+ ∥

∥P (w)
1
2
(
s∗ − s0

)∥
∥2

F

)
.

(36)
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Since (x∗, y∗, s∗) is a primal-dual feasible solution we have x∗ �K 0 and s∗ �K 0. Hence

0 �K x0 − x∗ �K ξe, 0 �K s0 − s∗ �K ξe.

Using that P (w)
1
2 is self-adjoint with respect to the inner product 〈·, ·〉 and P (w)e = w2,

we may write
∥
∥P (w)

1
2
(
s0 − s∗)∥∥2

F
= 〈

P (w)
(
s0 − s∗),

(
s0 − s∗)〉

= 〈
P (w)

(
s0 − s∗), ξe

〉 − 〈
P (w)

(
s0 − s∗), ξe − (

s0 − s∗)〉

≤ 〈
P (w)

(
s0 − s∗), ξe

〉 = 〈
s0 − s∗,P (w)ξe

〉 = ξ
〈
s0 − s∗,w2

〉

= ξ
〈
ξe,w2

〉 − ξ
〈
ξe − (

s0 − s∗),w2
〉 ≤ ξ

〈
ξe,w2

〉 = ξ 2tr
(
w2

)
.

In the same way it follows that
∥
∥P (w)− 1

2
(
x0 − x∗)∥∥2

F
≤ ξ 2tr

(
w−2

)
.

Substitution of the last two inequalities into (36) and use from μ = νξ 2 gives
∥
∥df

x

∥
∥2

F
+ ∥

∥df
s

∥
∥2

F
≤ 8σ(v)2 + 3θ2νtr

(
w2 + w−2

)

≤ 8σ(v)2 + 3θ2

ξ 2λmin(v)2
tr(x + s)2

≤ 8σ(v)2 + 3θ2

ξ 2(1 − σ(v))2
tr(x + s)2, (37)

where the second inequality follows by Lemma 4.5 in Gu et al. (2011) and the third inequal-
ity follows by (9), because

σ(v)2 = ‖e − v‖2
F =

r∑

i=1

(
1 − λi(v)

)2
,

implies that

1 − σ(v) ≤ λi(v) ≤ 1 + σ(v), i = 1,2, . . . , r.

Lemma 13 (Lemma 4.6 in Gu et al. 2011) Let (x, y, s) be feasible for the perturbed prob-
lems (Pν ) and (Dν ) and let (x0, y0, s0) = (ξe,0, ξe) and (x∗, y∗, s∗) be as defined in (11).
Then

tr(x + s) ≤ 2ξr, (38)

where r = tr(e) is the rank of the associated Euclidean Jordan algebra.

Substituting (38) into (36), we obtain

∥
∥df

x

∥
∥2

F
+ ∥

∥df
s

∥
∥2

F
≤ 8σ(v)2 + 12θ2r2

(1 − σ(v))2
. (39)

5.2 Value for θ

At this stage, we choose τ = 1
16 . Since σ(v) ≤ τ = 1

16 and the right-hand-side of (39) is
monotonically increasing in σ(v), we have

∥
∥df

x

∥
∥2

F
+ ∥

∥df
s

∥
∥2

F
≤ 1

32
+ 3072θ2r2

225
.
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Using θ = α

2
√

r
, the above relation becomes

∥
∥df

x

∥
∥2

F
+ ∥

∥df
s

∥
∥2

F
≤ 1

32
+ 768rα2

225
. (40)

From (34) we know that ϑ(v) ≤ 1
2
√

2
is needed in order to have σ(vf ) ≤ 1√

2
. Due to (40),

this will hold if

1

32
+ 768rα2

225
≤ 1

2
.

If we take

α = 1√
8r

, (41)

the above inequality is satisfied.

5.3 Complexity analysis

We have seen that if at the start of an iteration the iterate satisfies σ(x, s;μ) ≤ τ , with
τ = 1

16 , then after the feasibility step, with θ as defined in (33) and α as in (41), the iterate
is strictly feasible and satisfies σ(xf , sf ;μ+) ≤ 1√

2
.

After the feasibility step, we perform a few centering steps in order to get the iterate
(x+, y+, s+) which satisfies σ(x+, s+;μ+) ≤ τ . By Lemma 6, after k centering steps we
will have the iterate (x+, y+, s+) that is still feasible for (Pν+ ) and (Dν+ ) and satisfies

σ
(
x+, s+;μ+) ≤

(
1√
2

)2k

.

From this, one easily deduces that σ(x+, s+;μ+) ≤ τ will hold after at most

1 + log2 log2
1

τ
= 1 + log2 log2 16 = 1 + log2 4 = 3, (42)

centering steps. So, each main iteration consists of one feasibility step and at most 3 center-
ing steps.

In each main iteration both the duality gap and the norms of the residual vectors are
reduced by the factor 1 − θ . Hence, the total number of main iterations is bounded above by

1

θ
log

max{rξ 2,‖r0
p‖F ,‖r0

d‖F }
ε

,

the above iteration bound was first obtained by Potra (1996), and it is still the best-known it-
eration bound for IIPMs. Due to (33), (41) and the fact that we need at most 4 inner iterations
per main iteration, we may state the main result of the paper.

Theorem 3 If (P) and (D) are feasible and ξ > 0 is such that x∗ + s∗ � ξe for some optimal
solution x∗ of (P) and (y∗, s∗) of (D), then after at most

16
√

2 r log
max{rξ 2,‖r0

p‖F ,‖r0
d‖F }

ε
,

inner iterations, the algorithm finds an ε-optimal solution of (P) and (D).
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6 Conclusions

In this paper, we presented a primal-dual infeasible interior-point algorithm for SCO by
combining Darvay’s technique and Roos’ algorithm. To our knowledge, this is the first time
that a primal-dual infeasible interior-point algorithm, with adaptive combinations of Dar-
vay’s technique and Roos’ algorithm, has been analyzed for SCO underlying the Euclidean
Jordan algebras. The proposed algorithm is closely related to Roos’ algorithm. The com-
plexity obtained here over symmetric cones, using the NT direction, coincides with the best
bound obtained for IIPMs.
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