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Abstract In this paper we address the production scheduling and distribution planning
problem in a yoghurt production line of the multi-product dairy plants. A mixed integer
linear programming model is developed for the considered problem. The objective func-
tion aims to maximize the benefit by considering the shelf life dependent pricing component
and costs such as processing, setup, storage, overtime, backlogging, and transportation costs.
Key features of the model include sequence dependent setup times, minimum and maximum
lot sizes, overtime, shelf life requirements, machine speeds, dedicated production lines, typ-
ically arising in the dairy industry. The model obtains the optimal production plan for each
product type, on each production line, in each period together with the delivery plan.

The hybrid modelling approach is adopted to explore the dynamic behavior of the real
world system. In the hybrid approach, operation time is considered as a dynamic factor and
it is adjusted by the results of the simulation and optimization model iteratively. Thus, more
realistic solutions are obtained for the scheduling problem in yoghurt industry by using the
iterative hybrid optimization-simulation procedure. The efficiency and applicability of the
proposed model and approach are demonstrated in a case study for a leading dairy manufac-
turing company in Turkey.

Keywords Production and distribution planning · MILP · Hybrid approach · Dairy industry

1 Introduction

Manufacturing of dairy food is a major industry in most developed and developing
economies of the world. There is a wide range of dairy products corresponding to the large
diversity of consumer tastes and consumption trends. Due to factors such as high variability
of raw materials, intermediate and final products, fluctuating prices, or variable processing
times, production planning in dairy industry is a generally challenging task (Lütke Entrup
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2005). Optimizing resources and processes is the key to turning these challenges into a com-
petitive advantage. To address the challenges of the new market as well as adopt business
process to the changing conditions and regulations of this industry, more efforts should be
focused on new methods aimed at optimizing a real case production scheduling problem
arising in the dairy industry.

This research is motivated by a practical problem in which a production facility with lim-
ited capacity is producing perishable products that require delivery to a set of geographically
dispersed distribution centres on or before their effective life times expire. The problem is
formulated as a mixed integer linear programming (MILP) model, which is an extension of
the formulation previously studied by Doganis and Sarimveis (2008a, 2008b). The model
is extended to account for backlogging, overtime, and delivery to distribution centres. Shelf
life dependent pricing component is also incorporated in the same way as in the model devel-
oped by Lütke Entrup et al. (2005). Several features of the model characteristics considered
in the literature are combined within the proposed model. Moreover, the model is embedded
in a hybrid MILP and simulation framework to explore the stochastic operation times.

In this paper operation times in the MILP model are considered as the dynamic factor
and adjusted by the results from independently developed simulation model. Hybrid MILP
and simulation models are aimed at combining the strength of MILP and the simulation
model and reducing the impact of limiting characteristics of these models. Iterative use of
MILP and simulation methodologies exploit the benefit of obtaining optimal solutions, while
revealing the impact of operation time uncertainty on system performance (Kim and Kim
2001; Acar et al. 2010).

The main contributions of this paper can be summarized as follows: (i) Propose a MILP
formulation for the production scheduling and distribution planning problem within the
dairy industry, (ii) Develop a hybrid approach that combines the advantages of simulation
model and MILP model, (iii) applying the model to a real world production scheduling and
distribution planning problem arises in a leading company of the dairy industry in Turkey.

This paper is organized as follows. In the next section, brief survey of relevant literature
is given. Section 3 gives a detailed description of the problem. Section 4 describes the hybrid
approach consisting of MILP model formulation and simulation model. The case study is
then presented to highlight the characteristics of the proposed model and methodology in
Sect. 5. Finally in Sect. 6, some conclusions and future research directions are drawn.

2 Literature review

Based on the characteristics of the problem, we review the most relevant and recent literature
on production scheduling in dairy industry and application of hybrid MILP and simulation
modelling approach to the production and distribution planning problems.

2.1 Production scheduling in dairy industry

Despite its importance in practical settings, only few researchers have addressed the pro-
duction scheduling problem in dairy industry. Pioneering works was done by Smith-Daniels
and Ritzman (1988), Claassen and van Beek (1993), van Dam et al. (1993), Nakhla (1995).
Smith-Daniels and Ritzman (1988) develop a general lot sizing model for process industries
and apply their method to a situation representative of a food processing facility. Claassen
and van Beek (1993) develop an approach to solve a planning and scheduling problem for
the bottleneck packaging facilities of the cheese production division of a large dairy com-
pany. van Dam et al. (1993) have investigated and compared the origins of the increasing
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complexity of the scheduling problems of several companies in the process industry produc-
ing dairy products, pharmaceutical products, tobacco, paint, chocolate products, and foods.
And they have analyzed the ways in which these companies deal with this increasing com-
plexity in different situations. Nakhla (1995) emphasizes the need for flexibility for oper-
ations scheduling in the dairy industry, and proposes a rule-based approach for scheduling
packaging lines in a dairy industry. Foulds and Wilson (1997) have proposed two heuris-
tic algorithms for a variation of the generalized assignment problem arising in the New
Zealand dairy industry. Then Basnet et al. (1999) have described an exact algorithm to solve
scheduling and sequencing problem in the same industry. Recent years there are also papers
that focus on side aspects of production scheduling, like environmental effects of production
tasks and scheduling of workforce. Berlin et al. (2007) study a heuristic to arrange products
to minimize the environmental impact of yoghurt products in their life cycle.

Until recently, the use of optimization based techniques for the production planning prob-
lem in the dairy industry has received little attention in the operations research literature.
Lütke Entrup et al. (2005) present three different MILP formulations for scheduling fresh
food industry. The shelf life of the products has been explicitly considered. To guarantee
the compactness and computability of the models, a block planning approach developed by
Gunther and Neuhaus (2004) is chosen. However the MILP models presented in the pa-
per focus on flavoring and packaging stages. Thus operations involving the processing and
storage of products are neglected.

Doganis and Sarimveis (2007) propose a model that aims the optimal production schedul-
ing in a single yoghurt production line. The model takes into account all the standard con-
straints encountered in production scheduling (material balances, inventory limitations’, ma-
chinery capacity). It also considers special features that characterize yoghurt production
which are limitations in production sequencing mainly due to different fat contents and fla-
vors of various products and sequence dependent setup times and costs. However the model
is limited to single production line. In another study Doganis and Sarimveis (2008a) present
a methodology for optimum scheduling of yoghurt packaging lines that consist of multi-
ple parallel machines. The methodology incorporates features that allow it to tackle industry
specific problems, such as multiple intermediate due dates, job mixing and splitting, product
specific machine speed, minimum, maximum lot size and sequence dependent changeover
times and costs. However the model does not incorporate multi-stage production decisions,
and ignores some industry-specific characteristics, such as shelf life. Doganis and Sarimveis
(2008b) build on the work on modelling of the special constraints in food production sys-
tems by Doganis and Sarimveis (2007, 2008a) and extend them to include the factor of shelf
life. The extended model considers shelf life restrictions and optimizes the balance between
the cost inflicting factors and the profit-contributing aspects of minimizing time duration
between production and delivery of products to the retailers. Marinelli et al. (2007) propose
a solution approach for a capacitated lot sizing and scheduling problem with parallel ma-
chines and shared buffers, arising in a packaging company producing yoghurt. A two-stage
heuristic methodology based on decomposition of the problem into lot sizing and scheduling
problem has been developed. However it is assumed that the production rate is fixed by a sin-
gle bottleneck stage, setup times and costs are sequence independent. In a very recent study,
Gellert et al. (2011) investigate the planning for filling lines, within the successful frame-
work for integrated sequencing and scheduling problems from the authors’ previous study,
taking into account the new aspect of flexible scheduling environment regarding cleaning
and sterilization. However, their problem only concerns the scheduling and sequencing for
filling lines and ignores all potential limitations regarding rest of the processing system.
Amorim et al. (2011) develop multi-objective mixed integer programming (MIP) models to
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deal with simultaneous lot sizing and scheduling of perishable products for different strate-
gic scenarios: pure make to order and hybrid make to order, make to stock environments.
A hybrid genetic algorithm is developed to solve both models, and it is tested in various
problem instances based on the real-life dairy plant described by Kopanos et al. (2010). The
main contribution of this paper lies on the multi-objective framework. They differentiate, in
a multi-objective framework, between costs and freshness. Ahumada and Villalobos (2011)
present an integrated tactical planning model for the packaging and distribution of fresh
produce with the inclusion of perishability. The model handles the perishability of the crops
through storage constraints, and used a loss function in the objective function. Alternative
transportation modes are also taken into consideration. More recently, Amorim et al. (2012)
present the study that addresses the integrated production and distribution planning of per-
ishable products in a multi-objective framework. They formulate models for the case where
perishable goods have a fixed and a loose shelf life.

Kopanos et al. (2010) study on the lot sizing and scheduling problem in a multi-product
yoghurt production line of a real life plant. A mixed discrete/continuous time MILP model
is proposed. The problem under question is mainly focused on the packaging stage, whereas
timing and capacity constraints are imposed with respect to the pasteurization, homogeniza-
tion and fermentation stage. Sequence dependent setup times and costs are explicitly taken
into account and optimized by the proposed framework. However, the scheduling problem
they consider only involves the packaging stage. Kopanos et al. (2011a), present a MILP
framework for the resource constrained production planning problem in semi-continuous
food process, similar to the dairy industry. Quantitative as well as qualitative optimization
goals are included in the proposed model. Renewable resource limitations are appropriately
taken into account. All of the above mentioned works are related to the single stage pro-
duction systems in dairy industry. Kopanos et al. (2011b) present a novel MILP formulation
and solution strategy to address the challenging production scheduling problems in multi-
product multi-stage food industries. The main features of the proposed approach rely on the
integrated production stages, and the inclusion of strong valid integer cuts favoring shorter
computational times. In a paper by Kopanos et al. (2012a) the MILP model developed by
Kopanos et al. (2011b) is further enhanced by introducing new sets of tightening constraints
in order to improve computational efficiency in industrial size scheduling problems in food
industries. Both papers consider production scheduling problem in a real world multi-stage
food processing industry with the limited shelf life of intermediate mixes in the aging stage.
In a very recent work, Kopanos et al. (2012b) present a novel MILP framework based on a
hybrid discrete/continuous time representation for the simultaneous detailed production and
distribution planning problem of multi-site, multi-product, semi-continuous food processing
industry. The novelty of the proposed mathematical formulation lays on the integration of
the different modelling approaches and the detailed production and distribution operations.

As demonstrated by the amount of recent contributions to the dairy industry research,
this field has gained a remarkable momentum in the last decade. Although there is an in-
creasingly interest in the subject of production scheduling in dairy industry, there is only a
small number of papers that have focused on both production and distribution. To the best
of our knowledge, we have found only one paper (Kopanos et al. 2012b) that deals with pro-
duction scheduling and distribution planning in the dairy industry. The model proposed by
Kopanos et al. (2012b) decides the assignment of transportation trucks to processing sites-
distribution center in every period as well as transportation load for every truck. They impose
material balance and logistics operations constraints. Three different transportation modes
and min/max truck capacity are taken into consideration. Our paper differs from the model
by Kopanos et al. (2012b) by handling the perishability issues in production scheduling and
distribution planning model within the dairy industry.
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2.2 Hybrid analytic and simulation approach in the supply chain planning problems

Mathematical approaches require too many simplifications to model realistic chain prob-
lems. Real world situations are characterized by a high degree of uncertainty. Inclusion
of uncertainties often makes pure mathematical modelling intractable. Discrete event sim-
ulation is emerging as a decision support tool for the food industry due to powerful and
realistic modelling and analysis characteristics (Yoo et al. 2010). On the other hand hybrid
approaches proposed in the literature offer the advantages of simulation based methodolo-
gies together with the optimization capabilities of mathematical programming models for
the effective decision making.

Major drawback in most past research on dairy industry is the assumption that the crit-
ical parameter such as the operation time is deterministic, whereas the uncertainty can be
observed, such as machine breakdowns, late deliveries. Therefore it is necessary to handle
the uncertainty. Discrete event simulation allows production scheduling to be modeled more
realistically.

Shanthikumar and Sargent (1983) discuss comparative advantages and disadvantages
of analytic versus simulation models giving a unifying definition for hybrid simulation,
analytic approaches and modelling. Several researchers have developed iterative solution
approaches for various types of problems that integrate optimization and simulation ap-
proaches. Byrne and Bakir (1999) study a hybrid algorithm combining mathematical pro-
gramming and simulation models of a manufacturing system for the multi-period, multi-
product production planning problem. Kim and Kim (2001) propose an iterative approach
for finding the capacity-feasible production plan, applying the hybrid framework by Byrne
and Bakir (1999). An extended formulation of linear programming (LP) model is proposed
to consider the workload profile of the production quantity and the actual amount of the ca-
pacity to be allocated to the requirements for each machine. Lee and Kim (2002) develop an
integrated multi-period, multi-product, multi-shop production and distribution model. They
also take into consideration various kinds of uncertain factors so that the integrated supply
chain system can reflect the dynamic characteristics of the real system. Operation time in
the analytic model is considered as a dynamic factor. They propose a hybrid approach that
combines both the analytic and the simulation model. In another paper Lee et al. (2002)
study the same model. While the operation time is a stochastic factor in their previous work
(Lee and Kim 2002), machine capacity and distribution capacity are considered as stochas-
tic factors in this paper. Hsieh (2002) reviews hybrid approaches and their applications and
proposes a new hybrid modelling class, and illustrates a cost function for selecting ana-
lytic or simulation modelling approaches through a problem solving process. Gnoni et al.
(2003) consider the production planning problem of a multi-site manufacturing system sub-
ject to capacity constraints in case of an uncertain, multi-product and multi-period demand.
A hybrid model, resulting from the integration of a MILP model and a simulation model,
is developed to solve a lot sizing and scheduling problem. Byrne and Hossain (2005) de-
scribe an extended LP model for the hybrid approach proposed by Byrne and Bakir (1999)
incorporating JIT concepts.

Safaei et al. (2010) propose a hybrid mathematical-simulation model to solve the multi-
product, multi-period, multi-site production distribution planning problem. Almeder et al.
(2009) present a new approach that combines the advantages of complex simulation models
and abstract optimization models. They include simulation and optimization in an itera-
tive process in order to gain the advantages of optimization (exact solution) and simulation
(nonlinearities, complex structure, stochasticity). Acar et al. (2010) develop a decision sup-
port framework for a global specialty chemical manufacturer that operates under demand,
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supply, and transportation lead-time uncertainties. Their modelling approach combined op-
timization and simulation methodologies to obtain optimal supply chain plans via math-
ematical modelling, while incorporating uncertainties in the execution of these plans via
simulation. In a recent paper Nikolopoulou and Ierapetritou (2012) propose a hybrid simu-
lation and optimization approach for the integrated planning and scheduling problem. The
simulation based optimization strategy uses an agent based system to model the supply chain
network.

Among the recent studies no study deals with the integration of different modelling
methodologies, such as integration of analytical and simulation models, in order to join ad-
vantages offered by each of them in facing complex scheduling problems arising in the dairy
industry. The discussion of previous scheduling literature on the dairy industry establishes
the need for a hybrid model in dairy industry that efficiently recognizes uncertainty. This
study proposes a hybrid approach for the production scheduling and distribution planning
problem in the dairy industry.

3 Problem definition

In this paper we address the production scheduling and distribution planning problem in a
yoghurt production line of the multi-product dairy plants. The dairy industry can be con-
sidered as a part of the process industry. In general the plant must closely coordinate three
primary processes: (1) the transformation of raw materials into intermediate products, and
(2) the filling and packaging operations of final products, and (3) the delivery of end prod-
ucts to the distribution centres. Yoghurt production process starts with collection of milk
and continues with pasteurization, standardization, homogenization, culture addition, pack-
aging, fermentation, cold storage and distribution processes respectively. Yoghurt product
types differ from each other according to fat rate of milk and cup sizes. While cup size is
determined in packaging operation, fat rate is arranged with standardization operation. The
packaging process is considered in the scheduling problem. The other operations in the pro-
cess are assumed as infinite. Production scheduling is also interrelated with a part of trans-
portation problem. The demand collected from customers is determined the quantity that
the production scheduling model should produce. The complexity of the problem is further
compounded by the delivery. In addition, sequence dependent setup times are considered in
the system. There are strong limitations for the product sequence.

The problem that is investigated in this paper has the following structures:

1. The supply network consists of several plants which deliver the final products to the
various distribution centres.

2. Each plant comprises several not necessarily identical packaging production lines. Each
packaging line produces a given range of products. Multiple assignments of products to
the production lines are allowed.

3. For each product, inventory balances are updated on a daily basis according to the pro-
duction output from the various lines at the plants, the outbound transportation quanti-
ties send to the distribution centres.

4. The demand for each product in each day is collected from the distribution centres
respectively. The scheduling horizon is supposed as 5 days. The time horizon of short
term planning for yoghurt manufacturing is usually one week (Nakhla 1995).

5. The changeover time and cost are involved for only possible transitions between prod-
ucts. In the dairy industry, there is often a natural sequence in which the various products
are to be produced in order to minimize total changeover time such as, from the lower
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taste to the stronger or from the brighter color to the darker (Gunther and Neuhaus
2004).

6. The time for quality control process is considered in the model. It is not allowed that
the products are not delivered before they complete the required time for the quality
control process. A quarantine time is defined as a precondition for the achievement of
the desired sensory qualities (Lütke Entrup et al. 2005).

7. The freshness that has a significant part in competition is taken into account for prof-
itability. The objective function aims at maximizing the contribution margin taking into
account a shelf life-dependent pricing component as stated in the model developed by
Lütke Entrup et al. (2005).

8. Operation cost for two products that can be produce at the same packaging line differs
from each other. Therefore, the operation cost is computed for each product and line.

9. The available working hours for the lines are defined according to the shifts. An over-
time production of the third shift is allowed in every working day under environment
of heavy demand. If necessary, the production day can be proceeded with Sunday shifts
and the third shifts in weekdays which are defined as overtime. Only on Mondays, two
of shifts are reserved as cleaning time for the production unit. The cleaning time is
not flexible that it cannot be shortened and delayed, because the yoghurt is fresh and
sterilized production.

10. The production speed of each product is considered as dynamic within the lines. It is an
important factor for production scheduling.

11. Backlogging is considered in MILP model. The unmet demand in the previous periods
is transferred to the next periods. In addition, it causes a cost for every additional day.

Key decision variables are:

(i) the produced quantity for each product, on each line, and in each period,
(ii) the optimal assignment of products to each production line, and in each production

period,
(iii) the optimal quantity of each product transported from each line to each distribution

center in each demand period,
(iv) the sequencing among products on each production line in each period,
(v) the starting and completion time of each product on each line,

(vi) The inventory level of each product at the end of the day,
(vii) The unmet demand for each product over the planning horizon.

4 Solution approach

The analytic model tends to provide exact and static information, while simulation model
provides approximate and dynamic information about the system of interest or problem en-
tity (Hsieh 2002). The products are assigned to the related lines on MILP model. In real
world system, operation times cannot be considered as fixed values. For that reason, sim-
ulation is used to take into consider the down times and obtain more realistic solution. In
achieving real solution, simulation and MILP model are evaluated together for the produc-
tion scheduling problem in the yoghurt production process.

4.1 Model formulation

In this section, the proposed MILP formulation is presented for the production scheduling
and distribution planning problem described above. Our presented model is inspired from
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the model provided by Doganis and Sarimveis (2008a, 2008b). The model is extended to
account for unmet demand, overtime, shelf life dependent benefit pricing component, and
the delivery of products to the distribution centres. The penalty for the unmet demand and
transportation costs are also included in the objective function. On the other hand shelf
life-dependent pricing component has been included in the objective function in a similar
way as in the model developed by Lütke Entrup et al. (2005). The mathematical model
determines the optimal scheduling program to maximize the benefit by considering the shelf
life dependent pricing component and costs.

Indices
i days
d demand days
j, k, t products
l lines
a distribution centres

Parameters
benefitj maximum benefit for meeting the maximum shelf life of product j , (TL/unit)
crj critical rate for shelf life of product j required by customers, (% of maximum

shelf life)
slj shelf life of product j , (day)
cProd
j l production cost of one unit of product j on line l, (TL/unit)

cInv
j inventory cost for one unit of product j for a day, (TL/unit)

cUnmet
j cost of unmet demand for product j , (TL/unit)

c
Setup
jk changeover cost from product j to product k, (TL)

covertime
l cost for overtime of line l per unit of time, (TL/hour)

c
transportation
al cost for transportation from plant including line l to distribution center a,

(TL/unit)
djad demand from distribution center a for product j on demand day d , (unit)
qqj quarantine time, which is the required time for quality control operation for

product j , (day)
lsj l machine speed for product j on line l, (unit/hour)
sjk changeover time from product j to product k, (hour)
max timeli maximum available time of line l on day i, (hour)
rtimeli regular in use shift of line l on day i, (hour)
MinLj minimum lot size of product j

MaxLj maximum lot size of product j

M Extremely big number
p Extremely small number

Decision variables
xijld quantity of product j produced on line l on day i for demand day d , (unit)
yjlad quantity of product j transported from line l to distribution center a and on

demand day d , (unit)
inputj total production of product j during the whole scheduling period, (unit)
outputj total demand of product j during the whole scheduling period, (unit)
udjad unmet demand of product j on demand day d for distribution center a, (unit)
invij l inventory level of product j on line l at the end of day i, (unit)
overtimeil overtime on line l on day i, (hour)
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PT ij l utilization of line l for product j on day i, (hour)
ST ij l starting time for processing of product j on line l on day i, (hour)
FT ij l finishing time for processing of product j on line l on day i, (hour)
lasttimeil finishing time of the last product on line l on day i

Binary variables

bijl 1, if product j is produced on line l, on day i.
zijkl 1, if product k is produced exactly after product j on line l on day i.

Objective function

I∑

i=1

J∑

j=1

L∑

l=1

D∑

d=1

benefitj · (1 − crj ) · slj − (d − i)

(1 − crj ) · slj · xijld

−
I∑

i=1

J∑

j=1

L∑

l=1

D∑

d=1

c
prod
j l · xijld −

I∑

i=1

J∑

j=1

L∑

l=1

cinv
j · invij l

−
J∑

j=1

D∑

d=1

A∑

a=1

cunmet
j · udjda −

I∑

i=1

J∑

j=1

J∑

k=1

L∑

l=1

c
setup
jk · zijkl

−
I∑

i=1

L∑

l=1

covertime
l · overtime(i, l) −

J∑

j=1

L∑

l=1

A∑

a=1

D∑

d=1

c
transport
al · yjlad (1)

The objective function (1) aims to maximize the benefit by considering the shelf life of
products and costs such as production, setup, storage, overtime, unmet demand and trans-
portation. It is supposed that the manufacturer yields a financial benefit if the products have
a longer residual shelf life when being delivered (Lütke Entrup et al. 2005). The shelf life-
dependent benefit increases linearly because the benefits for customer increase with ev-
ery additional day of residual shelf life. For instance, suppose that product j has a total
shelf life of 30 days, the customers require 66 % of shelf life as a minimum residual shelf
life (crj = 0.66). If product is delivered on 3th day of its shelf life, the benefit will be
benefitj · 0.70, however if product is delivered on 6th day of its shelf life, the benefit will be
benefitj · 0.41 for the product.

∑

d=i

xij ld ≤ MinLj · bijl ∀i, ∀j, ∀l (2)

∑

d=i

xij ld ≥ MaxLj · bijl ∀i, ∀j, ∀l (3)

inputj =
I∑

i=1,

D∑

d=1:(d−i)≥qqj ∧(d−i)≤(1−crj )·slj

L∑

l=1

xijld +
D∑

d=1

A∑

a=1

udjad ∀j (4)

outputj =
D∑

d=1

A∑

a=1

djad +
D∑

d=1

A∑

a=1

udjad−1 ∀j, (udja0 = 0, ∀j, a) (5)

inputj = outputj ∀j (6)
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Lower and upper bounds on the product lot sizes are imposed by the Constraints (2)–(3). The
variables inputj and outputj in Constraints (4), (5) and (6) are designed to satisfy demand
of day d fully or partially for product j . Constraint (4) refers to sum of production quantity
and unmet demand of product j . Products that will cover demand at demand day d have to
be produced within a specific time window concerning shelf life and quarantine time. The
parameter qqj refers to the quarantine time. A quarantine time is precondition for achieve-
ment of the desired sensory qualities. The products can only be delivered after quarantine
time has passed (i + qqj ≤ d). Moreover, the shelf life lost (d − i) may not exceed a thresh-
old defined by customer requirements on shelf life (d − i) ≤ (1 − crj ) · slj ) (Lütke Entrup
et al. 2005). Constraint (5) corresponds to the sum of demand from all distribution centres
during the whole scheduling period for product j and unmet demand of distribution centres.
Constraint (6) guaranties that sum of production and unmet demand for product j during the
last period should be equal to the sum of demand that comes from all distribution centres
during the whole scheduling period.

xijld = 0 ∀i ≥ ∀j, ∀l (7)

According to Constraint (7), production quantity must equal to zero out of the time windows
defined. That is, demand of demand day d cannot be produced in the same day (d = i) or
after the demand day (i > d). Production is impossible when production day is greater than
the demand day.

A∑

a=1

yjlad =
I∑

i=1

xijld ∀j, ∀l, ∀d (8)

Constraint (8) provides the quantity of product j produced on line l for the demand of
day d to be the same with the quantity of product j transferred to the various distribution
centres for demand of day d .

djad =
L∑

l=1

yjlad + udjad ∀j, ∀a, d = 1, given udja0 = 0 (9)

djad + udjad−1 =
L∑

l=1

yjlad + udjad ∀j,∀a,∀d > 1 (10)

According to constraints (9) and (10), sum of unmet demand of distribution center a

for product j on demand day d and the quantity of product j that transferred from various
production lines to distribution center a should be equal to sum of the demand of distribution
center a for product j on demand day d and unmet demand for product j from the previous
period.

invi,j,l =
D∑

d=1

xijld −
A∑

a=1

yjlai i = 1, ∀j, ∀l (11)

invij l = invi−1j l +
D∑

d=1

xijld −
A∑

a=1

yjlai i > 1, ∀j, ∀l (12)

Constraints (11)–(12) are the inventory balance equations. Constraint (11) shows the
inventory level only for the first day. The inventory of product j on line l at the end of first
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day is equal to the quantity of product j produced on line l during the first day to meet the
demands of different demand days minus the quantity of product j shipped from line l to the
various distribution centres during the first day. Constraint (12) refers to the inventory level
at the end of day i on line l. On the remaining days inventory of product j on line l is equal
to the quantity of product j produced on line l on day i to meet the demands of different
demand days plus the inventory of the previous day and minus the quantity of product j

shipped from line l to the various distribution centres during period i.

PT ij l =
∑D

d=1 xijld

lsj l

∀i, ∀j, ∀l (13)

ST ij l = 0 ∀i, j = 1, ∀l (14)

FT ij l = ST ij l + PT ij l +
J∑

k=j+1

zijkl · sjk ∀i, ∀j, ∀l (15)

ST ij l ≥ FT ij−1l ∀i, j > 1, ∀l (16)

Constraints (13)–(16) are timing constraints that define the starting and finishing time for
each product on each line and day. The processing time of a product is calculated by dividing
the production quantity by the line speed for the product as declared by Constraint (13). The
starting time of the first product is set to zero in each day as shown in Constraint (14).
The finishing time of product j on line l and day i is defined in Constraint (15), and is
determined by adding, processing time and changeover time needed for the transition to the
next product to be produced to the starting timeNote that, when a product is not produced,
processing time, and all associated binary variables equal to zero. The finishing time is
exactly same with the starting time. The starting time of product j on line l on day i should
be greater than the finishing time of the previous product as emphasized in Constraint (16).

lasttimeil = FT iJ l ∀i, ∀l (17)

lasttimeil ≤ max timeil ∀i, ∀l (18)

lasttimeil ≤ rtimeil + overtimeil ∀i, ∀l (19)

The total processing time in a day is equal to the finishing time of the last product. It is
considered in Constraint (17), lasttimeil refers to the finishing time of the last product on line
l on day i. The total machine time is bounded with the maximum time available a machine
can work in Constraint (18). rtimeil corresponds to regular shift of line l on day i. Last time
passing over the regular shift means over time for line l on day i. Overtime needed on line l

on day i is computed in Constraint (19).

xijld ≤ bijl · M ∀i, ∀j, ∀l, ∀d (20)

zijkl = 0 ∀i, j > k, ∀l (21)

zijkl ≤ 1 + (1 − bijl) + (1 − bikl) − p ·
k−1∑

t=j+1

bitl ∀i, j, k > j, l (22)

zijkl ≥ bijl + bikl − 1 −
k−1∑

t=j+1

bitl ∀i, ∀j, k > j, ∀l (23)
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J∑

j=1

bijl −
J∑

j=1

J∑

k≥j

zijkl ≤ 1 ∀i, ∀l (24)

zijkl ≤ bijl ∀i, ∀j, k > j, ∀l (25)

zijkl ≤ bikl ∀i, ∀j, k > j, ∀l (26)

Binary variable in Constraint (20) is equal to 1 if and only if product j is produced on
line l on day i for demand of day d . Constraint (21) ensures that only specific sequence
of product is allowed on line l. The relationship between bijl and bikl is illustrated in Con-
straints (22) and (23). zijkl is equal to 1, if product j and k are produced in a row. Constraint
(24) shows that the number of produced items, minus the number of setups must be less than
or equal to 1. In all cases where the line produces at least one product during a day, this con-
straint holds. In the unlikely case where the line is not utilized at all during a day, Constraint
(24) still holds, as both the number of produced items and the number of setups are equal
to 0. Although Constraint (24) does not add new information to the model, it increases the
speed of model to obtain the solution. Constraints (25)–(26) link the binary variables.

xijld , yjlad , deujda ≥ 0 ∀i, ∀j, ∀l, ∀d, ∀a

inputj ,outputj ≥ 0 ∀j

invij l ,PT ij l ,ST ij l ,FT ij l ≥ 0 ∀i, ∀j, ∀l

lasttimeil ≥ 0 ∀i, ∀l

bij l ∈ {0,1} ∀i, ∀j, ∀l

zijkl ∈ {0,1} ∀i, ∀j, ∀k > j, ∀l

(27)

Nonnegativity and integrity constraints are defined in (27).

4.2 Simulation model

In real-world system, operation times cannot be accepted as a static factor. Because of the
dynamic nature of the real system, the exact solution obtained from the mathematical model
cannot be applied practically. Simulation models include nonlinearities, complex structure
and stochastic structure which are main features of the real system.

The simulation model is established to represent the MILP model. It includes machine
failures as different from the mathematical model. The conceptual model of the system is
shown in Fig. 1. Production starts with the products on a line considering the production day
row. The priority of products is important, since it is not allowed the product with high se-
quence number to produce firstly in the MILP model. For that reason, the simulation model
always starts with the first product. After the desired quantity of the first product is com-
pleted, the model controls the conditions and starts the production of second product. When
all program given according to MILP results for day i is completed, the model starts the
production of the following day. During the program, the failures become active. Thus, the
operation times required for the production schedule given by MILP model can be mea-
sured. In order to obtain mean operation times, five independent replications are performed
in the simulation model.
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Fig. 1 Conceptual model

4.3 Hybrid solution approach

The production systems generally include dynamic nature in real systems. The simulation
model provides to insert real operation times to the mathematical model. The production
schedule that is achieved from the mathematical model is taken as an input for the simu-
lation model. The simulation model result gives us total production time for each product.
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Fig. 2 Interaction between
simulation model and MILP
model

The total time of a product spent in a machine is used to compute the real operation time
for that product on a particular machine. The solution of simulation model is reflected as the
operation time in the mathematical model. Therefore, the operation time in the mathemat-
ical model is adjusted by the results of the simulation model and the mathematical model
regenerates new production scheduling program by the adjusted operation time (Safaei et al.
2010). The interaction between simulation and optimization is displayed in Fig. 2. Within
this framework it is possible to test the optimal deterministic solution of the MILP model in
a stochastic environment and to analyze whether this solution is also feasible in the context
of a more complex and more realistic simulation model.

The iteration ends if the difference rate between preceding simulation operation time
(POT) and current simulation operation time (COT) is close enough to be acceptable. When
the difference is close enough, the mathematical model is regarded as reflecting the realistic
situation through the simulation model. Therefore, the scheduling program taken from math-
ematical model at that iteration reflects the stochastic situations and regarded as realistically
optimal.

The procedure consists of 7 steps (Safaei et al. 2010):

Step 1 Solve the mathematical model and obtain the production plan.
Step 2 Run the simulation model based on the current production plan.
Step 3 Obtain current operation times for products on each machine via simulation model

(COT).
Step 4 If the difference rate between preceding operation time (POT) and current operation

time (COT) is within the rate of 0.025, then go to step 6, otherwise go to step 5.
Step 5 Solve the mathematical model using operation times for products on each line as

machine speed.
Step 6 Mathematical solution: Optimal production plan.
Step 7 Stop.

A flow diagram in Fig. 3 illustrates the solution procedure.

5 Case study and computational results

A scheduling problem in yoghurt production lines of multi-product dairy plants is analyzed
in this research. The dairy firm is a milk-processing company that runs two factories located
in different cities. Ten different product types are produced in factories that include nine
production lines to satisfy demands of customers. The product types differ from each other
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Fig. 3 Flow diagram of hybrid
method

Table 1 Plant-production line
matrix L1 L2 L3 L4 L5 L6 L7 L8 L9

F1 X X X X

F2 X X X X X

based on cup size and yoghurt type. Five types of products are common that they can be
produced in both factories. While two of them can be produced only in Factory 1, three
of them can be produced in Factory 2 because of the location of the production lines. The
assignment of the nine production lines to the factories is shown in Table 1. Lines 1, 2, 3
and 7 are located in Factory 1 and Lines 4, 5, 6, 8 and 9 are located in Factory 2. For that
reason some products can only be produced in one factory. Table 2 refers to assignment of
products to the lines and factories. In the Table 1, P1 refers to product type 1 and L1 refers
to production line 1. While some products can be produced in more than one machine, some
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Table 2 Machine–product matrix

Product/Line P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

L1 X X

L2 X

L3 X X

L4 X X

L5 X

L6 X X

L7 X X

L8 X

L9 X X

Table 3 Machine speeds for product types

Product/Machine
(unit/hr)

L1 L2 L3 L4 L5 L6 L7 L8 L9

P1 2013 0 0 2013 0 0 0 0 0

P2 0 0 0 2640 0 0 0 0 0

P3 3420 0 0 0 0 0 0 0 0

P4 0 1768 0 0 1768 0 0 0 0

P5 0 0 4615 0 0 4615 0 0 0

P6 0 0 4615 0 0 4615 0 0 0

P7 0 0 0 0 0 0 1230 1230 0

P8 0 0 0 0 0 0 1142 0 0

P9 0 0 0 0 0 0 0 0 1547

P10 0 0 0 0 0 0 0 0 2316

machines can produce more than one product. Table 3 shows the machine speeds for each
product type, and production line. Some products which can be produced more than one
production line have the same machine speed for the different production lines.

In multi-product machines, changeover times should be considered because in a machine,
more than one product can be produced and setup times are sequence dependent. In the dairy
industry, there is often a natural sequence in which the various products are to be produced
in order to minimize total changeover time such as, from the lower taste to the stronger or
from the brighter color to the darker (Nakhla 1995; Gunther and Neuhaus 2004). In dairy
industry, it is common that products have to spend at least a minimum time. This can be
caused by obligatory quality checks (Lütke Entrup 2005). Therefore, all products should
complete their quality control process after the production. For all yoghurt products, the
quality control process is completed in 2 days. It means that, the customer should order the
demands at least two days before or the demands should be produced at least 2 days before
the order day. The demands for all products come from 7 different distribution centres. In
this case, production horizon is determined as 5 days which starts on Monday. The demands
of Wednesday are defined as the beginning of demand period because of the two-day-long
quality process. It consists of 5 days that starts with Wednesday and ends with Sunday.
Because the yoghurt is a perishable product, stock level should be kept in an acceptable level.
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Table 4 Scheduling horizon for yoghurt production

Shift Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Regular working
time

X X X X X X X X X X X

Overtime X X X X X X X X

Cleaning X X

Table 5 Data defined by product type

Product

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

cr 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66

benefit (TL/unit) 400 500 300 250 100 300 350 450 150 375

c (inv) (TL/unit) 50 10 30 70 20 30 25 35 50 45

c (unmet) (TL/unit) 100 200 70 150 300 250 350 230 400 230

qq (day) 2 2 2 2 2 2 2 2 2 2

Table 6 Transportation cost from lines to distribution centers

Dist. center Line (TL/unit)

L1 L2 L3 L4 L5 L6 L7 L8 L9

DC1 1.2 1.2 1.2 2.2 2.2 2.2 1.2 2.2 2.2

DC2 1.9 1.9 1.9 0.8 0.8 0.8 1.9 0.8 0.8

DC3 1.7 1.7 1.7 0.6 0.6 0.6 1.7 0.6 0.6

DC4 0.2 0.2 0.2 1.5 1.5 1.5 0.2 1.5 1.5

DC5 2.1 2.1 2.1 1.0 1.0 1.0 2.1 1.0 1.0

DC6 1.8 1.8 1.8 2.4 2.4 2.4 1.8 2.4 2.4

DC7 0.4 0.4 0.4 1.3 1.3 1.3 0.4 1.3 1.3

It is important to determine the production quantity in every period of time properly. The
stock level should minimize the unmet demand with maximum freshness. Shelf life takes a
significant part in the objective function because customers tend to buy the product with a
longer remaining shelf life. The financial benefit of a product increases, if the product has
a longer shelf life when being delivered. The shelf life dependent benefit increases linearly
between the minimum customer requirement on shelf life and the maximum possible shelf
life (Lütke Entrup et al. 2005).

Regular, overtime and maximum working hours can be seen from Table 4. Table 5 pro-
vides the main data regarding maximum benefit for meeting the maximum shelf life of prod-
uct, critical rate, quarantine time, unmet demand cost, and inventory cost for each product
type. Transportation cost from production lines to distribution centres is stated in Table 6.
Production cost is defined for each product and production line, and overtime cost is de-
fined for each production line. These data are shown in Tables 7 and 8, respectively. Product
demands for the case study are given in Table 9.
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Table 7 Production cost

Product Line (TL/unit)

L1 L2 L3 L4 L5 L6 L7 L8 L9

P1 8 – – 8 – – – – –

P2 – – – 12 – – – – –

P3 15 – – – – – – – –

P4 – 10 – – 10 – – – –

P5 – – – – – 7 – – –

P6 – – 5 – – 5 – – –

P7 – – – – – – 9 9

P8 – – – – – – 13 – –

P9 – – – – – – – – 11

P10 – – – – – – – – 16

Table 8 Overtime cost for each
line Line/cost (TL/hr) Overtime cost

L1 116.5

L2 142.6

L3 100.8

L4 100.8

L5 182.2

L6 182.2

L7 123.4

L8 150.5

L9 135.3

In real systems, the theoretical capacities for machines cannot be used completely be-
cause of failures. Production disturbances on packaging lines are studied based on machine
failures. Machine breakdowns are one of the sources of capacity disruptions. In this system,
there are two types of breakdowns as short and long failures. When a breakdown comes out
during production, the production of a product is prevented because of the failure. Table 10
shows the probability density of failure and repair times for the production lines. Short fail-
ures emerge more often than long failures. But, the repair times for short failure types are
shorter and they do not prevent production as much as the long failures.

The results of initial condition for operation times and mean of results are listed in Ta-
ble 11. In Table 11, pt11 refers the operation time of a unit of Product 1 on Line 1. Similarly,
pt45 refers the operation time of Product 4 on Line 5. Mean operation times obtained from
simulation model are used as speed of machines in the MILP model. The resulting opera-
tion time for each product and production line through the iterations are given in Table 12.
Operation times are fluctuating. However the widths of fluctuation decrease as iteration is
increased. It can be seen from Table 12 of results that dramatic changes have occurred in
operation times immediately after the initial iteration.

In Table 13, the computation of critical rate is shown for the hybrid method. The opera-
tion times correspond to the results of simulation model for iterations 1–4. For instance, the
operation time of Product 5 on Line 3 is 0.013 for the initial solution, 0.014 for iterations
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Table 9 Demand data

Product Demand day Distribution center

DC1 DC2 DC3 DC4 DC5 DC6 DC7 Total

TYPE 1 1 1802 1701 1675 1816 2590 1908 2712 14204

2 1400 1828 1524 2237 2372 1960 1707 13028

3 2235 2226 1502 1780 2254 2273 1903 14173

4 2241 2254 2150 2100 1500 1900 1750 13895

5 1800 1940 2570 1810 1780 3406 2370 15676

TYPE 2 1 1166 1195 1137 2239 2389 2262 2020 12408

2 2121 2369 1423 2191 2460 2109 1627 14300

3 2314 2564 1891 1396 1226 1874 1996 13261

4 1668 1492 2391 2150 2100 1500 1900 13201

5 1750 1800 1940 2570 1810 1780 3406 15056

TYPE 3 1 2402 4130 2211 3111 3360 2785 2146 20145

2 3785 3153 2589 2089 2799 3249 2215 19879

3 2429 3222 3372 2602 2914 2102 2345 18986

4 2461 2857 2264 3150 4100 3500 2900 21232

5 2750 2830 2927 3570 3810 2780 4406 23073

TYPE 4 1 5637 4466 2397 9227 6855 5625 4112 38319

2 6189 5637 6569 9075 6153 6720 6130 46473

3 4049 5241 5200 9930 4534 6538 5680 41172

4 5231 5316 5780 9156 6743 6903 5900 45029

5 4953 5740 5324 8900 6627 6527 5236 43307

TYPE 5 1 1414 2503 2907 3907 2973 3947 3206 20857

2 1522 2070 3117 2117 3218 3813 2800 18657

3 1694 2819 3155 2155 3194 3716 2715 19448

4 1600 3885 3261 2261 2783 3400 2670 19860

5 1523 3240 3316 2356 2907 3305 2920 19567

TYPE 6 1 4312 3279 4740 3230 4280 4948 3233 28022

2 4222 3549 4839 3264 4320 4673 3674 28541

3 4207 3136 4923 3183 4630 4541 3043 27663

4 4228 3648 4515 3176 4547 4223 3554 27891

5 4380 3519 4680 3230 4985 4598 3995 29387

TYPE 7 1 2312 2779 3740 1230 2323 1913 1590 15887

2 2222 2549 3839 1264 2148 1926 2126 16074

3 2207 2136 3923 1183 2497 1856 2258 16060

4 2228 1648 3515 1176 2516 1997 1987 15067

5 2514 1937 3427 1223 2184 1896 2130 15311

TYPE 8 1 1319 2438 1402 1234 3102 1807 943 12245

2 1323 2514 1816 1525 2784 2687 1298 13947

3 1297 2347 1912 1716 3402 2354 716 13744

4 1225 2754 1308 1987 2927 2967 514 13682

5 1180 2905 1197 1638 2643 1826 978 12367
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Table 9 (Continued)

Product Demand day Distribution center

DC1 DC2 DC3 DC4 DC5 DC6 DC7 Total

TYPE 9 1 1418 2539 2403 1133 2103 1503 1321 12420

2 1422 2615 2917 1424 2674 1527 1844 14423

3 1396 2448 2013 1615 2405 1349 1123 12349

4 1324 2855 1409 1886 2816 1123 1216 12629

5 1279 3006 2198 1539 2514 1427 988 12951

TYPE 10 1 1994 3570 3379 1593 2957 2114 1858 17465

2 2000 3677 4102 2003 3760 2147 2593 20282

3 1963 3443 2831 2271 3382 1897 1579 17366

4 1862 4015 1981 2652 3960 1579 1710 17759

5 1799 4227 3091 2164 3535 2007 1389 18212

Table 10 Probability density of failure and repair times

Lines Short failure Long failure

Failure frequency Repair time Failure frequency Repair time

1 expo (200) norm (3, 0.5) expo (4320) norm (30, 10)

2 expo (250) norm (7, 3) expo (3600) norm (65, 15)

3 expo (120) norm (2, 2) expo (2000) norm (20, 7)

4 expo (300) norm (7, 5) expo (3000) norm (120, 25)

5 expo (220) norm (5,4) expo (2160) norm (50, 15)

6 expo (175) norm (5, 2) expo (1900) norm (70, 13)

7 expo (80) norm (3, 1) expo (1450) norm (40, 6)

8 expo (300) norm (2, 0.2) expo (3600) norm (170, 20)

9 expo (250) norm (6.5, 1) expo (200) norm (200, 15)

1, 2, 3, and 4. The critical rate indicates the rate between iterations. Critical rate is calcu-
lated by dividing absolute value of (preceding operation time-current operation time) by the
current operation time.

The mathematical formulation was solved using CPLEX 12.4. The simulation model was
implemented in Arena version 10.0. They were solved on a laptop with Intel Core i7 Q720,
1.73 GHz and 8 GB memory. The computational results are summarized in Table 14. The
variability of objective function in each iteration can be seen in Fig. 4. The changes in ma-
chine speed have also resulted in substantial increase in total system costs over the original
analytic optimum. The solution identified by the hybrid procedure after the initial iteration
involves reduced machine speed. Hence this solution incurs high costs, which results in a
reduction in the profit, due the capacity disruption. Despite of decreasing in objective value,
the last iteration gives us more realistic and practical solution for the problem.

As well as objective value, the trend of decision variables that affects the objective value
is represented in the following tables for the iterations. The variations in unmet demand
for the products are shown in Fig. 5 and Table 15. While the unmet demand of Product 1
decreases in the last iteration, increasing for Product 10 is observed in the last iteration.
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Table 11 The results of simulation model for each replication in initial conditions

Operation time (min) Replications Mean time

1 2 3 4 5

pt11 0.030 0.032 0.030 0.030 0.030 0.031

pt31 0.023 0.021 0.020 0.023 0.024 0.022

pt42 0.034 0.034 0.034 0.034 0.034 0.034

pt53 0.013 0.014 0.013 0.014 0.013 0.014

pt63 0.020 0.018 0.019 0.018 0.017 0.018

pt14 0.035 0.031 0.033 0.031 0.040 0.034

pt24 0.035 0.033 0.033 0.033 0.037 0.034

pt45 0.036 0.035 0.034 0.036 0.036 0.035

pt56 0.013 0.013 0.014 0.014 0.014 0.013

pt66 0.019 0.021 0.023 0.019 0.018 0.020

pt77 0.050 0.054 0.052 0.050 0.050 0.051

pt87 0.065 0.059 0.062 0.063 0.064 0.063

pt78 0.053 0.052 0.053 0.052 0.049 0.052

pt99 0.040 0.043 0.039 0.040 0.040 0.040

pt109 0.036 0.033 0.033 0.038 0.033 0.034

Table 12 Simulation results for each iteration

Operation time (min) Simulation results

Initial solution Iteration 1 Iteration 2 Iteration 3 Iteration 4

pt11 0.030 0.031 0.030 0.030 0.030

pt31 0.018 0.022 0.021 0.022 0.021

pt42 0.034 0.034 0.034 0.034 0.034

pt53 0.013 0.014 0.014 0.014 0.014

pt63 0.013 0.018 0.019 0.019 0.019

pt14 0.030 0.034 0.032 0.035 0.035

pt24 0.023 0.034 0.034 0.032 0.032

pt45 0.034 0.035 0.035 0.035 0.035

pt56 0.013 0.013 0.014 0.014 0.014

pt66 0.013 0.020 0.018 0.018 0.018

pt77 0.049 0.051 0.052 0.051 0.051

pt87 0.053 0.063 0.064 0.063 0.064

pt78 0.049 0.052 0.052 0.052 0.052

pt99 0.039 0.040 0.040 0.040 0.040

pt109 0.026 0.034 0.034 0.034 0.034

In Figs. 6 and 7, the trend of inventory is represented. Figure 6 shows the variation in
the inventory level for production lines in each iteration. We observe that storage constraints
result in a reduction of inventories by initiating failure in operation time. As can be seen
in Fig. 6, there is no great change between the iterations, since simulation models leads to
similar operation times after the initial iteration. Dramatic changes have occurred after the
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Table 13 Computation of critical rate for hybrid method

Operation
times

Initial
solution

Critical
rate 1

Iteration 1 Critical
rate 2

Iteration 2 Critical
rate 3

Iteration 3 Critical
rate 4

Iteration 4

pt11 0.030 0.024 0.031 0.009 0.030 0.001 0.030 0.007 0.030

pt31 0.018 0.205 0.022 0.040 0.021 0.013 0.022 0.005 0.021

pt42 0.034 0.000 0.034 0.000 0.034 0.000 0.034 0.000 0.034

pt53 0.013 0.041 0.014 0.000 0.014 0.004 0.014 0.013 0.014

pt63 0.013 0.293 0.018 0.019 0.019 0.019 0.019 0.008 0.019

pt14 0.030 0.126 0.034 0.052 0.032 0.063 0.035 0.003 0.035

pt24 0.023 0.337 0.034 0.011 0.034 0.067 0.032 0.021 0.032

pt45 0.034 0.041 0.035 0.000 0.035 0.000 0.035 0.000 0.035

pt56 0.013 0.036 0.013 0.025 0.014 0.002 0.014 0.024 0.014

pt66 0.013 0.351 0.020 0.136 0.018 0.015 0.018 0.021 0.018

pt77 0.049 0.049 0.051 0.008 0.052 0.006 0.051 0.006 0.051

pt87 0.053 0.163 0.063 0.013 0.064 0.015 0.063 0.025 0.064

pt78 0.049 0.057 0.052 0.007 0.052 0.001 0.052 0.001 0.052

pt99 0.039 0.041 0.040 0.000 0.040 0.000 0.040 0.000 0.040

pt109 0.026 0.247 0.034 0.011 0.034 0.000 0.034 0.000 0.034

Table 14 Computational results for the case study

No of variables 33606

No of integer variables 17640

No of constraints 51223

# Iterations CPU s.

Initialization MILP 547

Simulation 853

1 MILP 565

Simulation 845

2 MILP 569

Simulation 857

3 MILP 548

Simulation 862

initial iteration. Figure 7 shows the total inventory levels between iterations and the initial
solution.

Figure 8 shows the total and particularly overtime variability for the lines between iter-
ations. Only lines 1, 2, 7, 8 and 9 need overtime for the production program. As it is seen
in Fig. 8, overtime value increases at iteration 1. However, there is no difference between
iterations after the initial solution, as convergence is achieved. While there is no need to
overtime for Line 1 and Line 8 in the initial solution, overtime starts at iteration 1 for Line 1
and Line 8. The failures considered in the hybrid model causes the decreasing of the machine
speed. That’s why the lines need overtime for meeting the demands.

The production quantities for the products in each iteration are shown in Fig. 9. In gen-
eral, after the first iteration, there is a little change in production quantities for each day. The
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Fig. 4 The changes of objective function

Fig. 5 The unmet demand of products based on iterations

system is balanced with the second iteration. Finally; the optimal production scheduling
program obtained through the hybrid method is tabulated as Gantt chart in Table 16.

Through the computational experiments, we can conclude the following results:

• The overall benefit decreases in comparison with the initial solution. However, the results
obtained by considering stochastic factors reflect the real system features.

• The overtime values are redesigned for the lines, thus the workforce can be planned in a
more realistic way.

• The inventory level of the lines starts decreasing at iteration 1. That means the inventory
holding cost decreases compared to the initial condition.

• Unmet demand is not affected from failures, since the capacity is distributed optimally by
the MILP model.
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Table 15 The quantity of unmet demand for products in each day

Demand day Product Initial solution Iteration 1 Iteration 2 Iteration 3 Grand total

3 1 13984 0 0 0 13984

3 0 20145 20145 20145 60435

4 17267 18329 11957 11957 59510

7 1000 6607 13925 9722 31254

8 25168 14084 11335 10215 60802

9 4400 5480 7480 6480 23840

10 17465 17465 17465 17465 69860

Total 3 79284 82110 82307 75984 319685

4 10 7296 19912 17402 17412 62022

Total 4 7296 19912 17402 17412 62022

5 10 0 8767 11664 11664 32095

Total 5 0 8767 11664 11664 32095

6 10 0 2142 1330 1330 4802

Total 6 0 2142 1330 1330 4802

Grand total 86580 112931 112703 106390 418604

Fig. 6 Inventory levels for lines

6 Conclusion

This paper addresses the short term production scheduling and distribution planning problem
within the dairy industry. The problem is modeled as a MILP. An efficient hybrid solution
methodology based on a MILP formulation and a simulation approach is presented to ob-
tain optimal production schedules, and distribution plan via mathematical modelling while
incorporating uncertainties in the execution of these plans via simulation. To evaluate the
model and the solution method, a case study is introduced.

The objective function aims to maximize the benefit by considering the shelf life depen-
dent pricing component and various cost components. The shelf life constraints are designed
in MILP model to improve product freshness. The shelf-life dependent pricing components
are determined based on the real data. In addition, sequence dependent setup time, demand
due dates, different machine speed for products, overtime planning, unmet demand, and
delivery to the distribution centres are included in the MILP model formulation.
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Fig. 7 Total inventory levels in each iteration

Fig. 8 Overtime for iterations in each line

Fig. 9 Production quantity for products in each iteration

As a result, MILP model provides a scheduling program by optimizing the resources. In
order to apply scheduling program in practice, the stochastic factors that are ignored in the
MILP model are added to the problem by the simulation model. While the attributes of food
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Table 16 Gantt chart for optimal production scheduling program

processing are accepted as fixed values in most of the previous studies, operation time is
inserted as a stochastic parameter for the realistic solution. It is adjusted according to the
simulation model results. For determining operation time, probability density of machine
failures and repair times are considered as short and long durations in the simulation model.
Hybrid approach combines the advantages of MILP model and simulation model. There-
fore, it is clear that this approach is more realistic even compared with traditional planning
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approaches. The key limitation of the overall solution approach lies in the large computa-
tional times that are mainly due to large number of integer variables. As a future research
direction, we are investigating methods to reduce the time spent in MILP and simulation
models. There are several extensions and variations to be investigated as future research.
On practical side, the current model may be expanded to incorporate multi-stage production
scheduling. The other stochastic factors can be added to the model besides operation time
for more realistic solution.
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