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Abstract In this paper, Markov models of repairable systems with repair time omission are
considered whose finite state space is grouped into two sets, the set of working states, W ,
and the set of failed states, F . If the system enters failed states from a working state at any
instance, and sojourns at the failed states F less than a given nonnegative critical value τ ,
then the repair interval can be omitted from downtime records. Otherwise, If the system
enters failed states from a working state at any instance, and sojourns at the failed states F

more than the given nonnegative critical value τ , then the repair interval cannot be omitted
from downtime records. In terms of the assumption, a new model is developed. The focus of
attention is the new model’s availability, interval reliability and interval unreliability. Several
results are derived for these reliability indexes for the new model. Some special cases and
numerical examples are given to illustrate the results obtained by using Maple software in
the paper.

Keywords Interval reliability · Availability · Markov repairable system · Time interval
omission

1 Introduction

Markov repairable system with state aggregated is a hot topic in the literature, because
there have been the number of papers devoted to this class of models recently. The re-
search in this direction has used aggregated stochastic processes which developed greatly
in Ion channel modeling, for example, Colquhoun and Hawkes (1982) introduced an aggre-
gated Markov process to model the performance of Ion-Channel. Recently, some scholars
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have borrowed the techniques in Ion channel modeling on repairable systems. For example,
Cui et al. (2012a) studied a single-unit repairable system with state aggregations. Cui et al.
(2007) developed an aggregated Markov repairable system with history-dependent up and
down states, in which some states are changeable. Wang and Cui (2011) extended the model
into the semi-Markov repairable system with history-dependent up and down states which
is more realistic than previous one. Wang et al. (2011) studied a Markov repairable system
with stochastic regimes switching and got the distribution of up time of the system. Time
interval omission problem is very important in the fields of in Ion-Channel theory and relia-
bility. Ball et al. (1991) considered an aggregated semi-Markov process incorporating time
interval omission in terms of Ion-Channel modeling theory. In the field of reliability, Zheng
et al. (2006) first developed a new model which is based on a single-unit Markov repairable
system. In that model, if a short repair time does not affect the system operating or through-
put, the system could be thought of as operating during this repair time, and availability was
discussed for the model in detail by the authors in that paper. Bao and Cui (2010) further
extended the work of Zheng et al. (2006) to series Markov repairable system with neglected
or delayed failures. However, there are only two states, i.e., one up state and one down state,
in the state space for the model in Zheng et al. (2006), so that some practical situation still
cannot be covered, for example, there are several hundred states in a electricity transmission
system, so we develop an aggregated Markov system with time interval omission in the pa-
per, whose finite state space is grouped into two sets, the set of working states and the set of
failed states.

Availability (Li et al. 2006) and interval reliability (in Cui et al. 2012b, it is called inter-
val availability) are two important reliability measures in the field of reliability. Availability
is the probability that system is ‘up’ at time t (Barlow and Proschan 1965). The interval
reliability is the probability that system is ‘up’ throughout the time interval [a, b]. Csenki
(1994, 1995) discussed the interval reliability of systems modeled by finite semi-Markov
processes. Csenki (2007) further studied the joint interval reliability for a Markov repairable
system. There are also many indexes to be used in describing the various properties of the
repairable systems, for example, in Hawkes et al. (2011), several reliability indexes for re-
pairable systems were given. Although it exists many indexes for a repairable system such
as distribution of up or down duration, visit number to up or down sets in a cycle, and their
mean and so forth, the availability is a main considered index in many repairable systems
such as in Cui et al. (2007) and Bao and Cui (2010), and so on. However, Zheng et al.
(2006) discussed only one reliability index, i.e., the availability for the model, there are still
many reliability indexes that need to be discussed for the repairable system with time inter-
val omission. So we first develop an aggregated Markov system with time interval omission
that is an extension of Zheng et al. (2006), then we discussed some new reliability indexes,
i.e., availability, interval reliability, and interval unreliability for the model in the paper. In
Cui et al. (2012b), model II in the paper is exactly the same with our model in the paper,
and the consideration reliability indexes also are the same as these in our present paper, but
we present a new method based on Laplace transforms to give the formulae on the interval
reliability in the present paper, and the interval unreliability was not included in Cui et al.
(2012b) paper, because of sum not being one for interval reliability and unreliability. We
first consider the interval reliability for the aggregated Markov system with time interval
omission in the given time interval [0, t ], then we further consider the interval reliability in
the general time interval [a, b] by using Markov property. The interval unreliability is also
considered in the present paper.

The rest of the paper is organized as follows. In Sect. 2, the model is developed and some
assumptions are also given. Several reliability indexes are obtained for the model in Sect. 3.
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Some special cases are also discussed in this section. A numerical example is presented to
illustrate the results of the paper in Sect. 4. Finally, conclusions are given in Sect. 5.

2 Assumptions and modeling

Given a repairable system, denoted as a homogenous irreducible continuous-time Markov
stochastic process {X(t), t ≥ 0}, with transition rate matrix Q and finite state space S =
{1,2, . . . , n}. The state space, S, can be grouped into two sets, W and F (i.e. S = W ∪
F, (W ∩F = φ)), where W is the set of working (or ‘up’) states and F is the set of failed (or
‘down’) states. Thus the repairable system will alternate between W and F indefinitely. The
initial probability vector is Φ0 = (πW ,πF ) and the transition rate matrix Q can be divided
into four parts in terms of the partition of state space, i.e.,

Q =
(

QWW QWF

QFW QFF

)
.

Some basic notation and results which are used in the present paper are now summarized. In
terms of Colquhoun and Hawkes (1982), the transition probability matrix of {X(t), t ≥ 0},
denoted as P(t), can be defined as follows:

P(t)
�= (

pij (t)
)
|S|×|S| = exp(Qt), i, j ∈ S,

where pij (t) = P {X(t) = j |X(0) = i}, i, j ∈ S and P(t) denotes probabilities, given ini-
tial probability vector, that the repairable system be in each state of S at instance time t .
Colquhoun and Hawkes (1982) defined another matrix as follows:

PWW(t)
�= (

P
{
X(t) = j,X(u) ∈ W,u ≤ t |X(0) = i

}) = exp(QWW t), i, j ∈ W,

where PWW(t) denotes probabilities, given initial probability vector, that the repairable sys-
tem stays in the working states W throughout a given time interval [0, t ].

The density matrix of the duration of a sojourn in W is given by

GWF (t) = exp(QWW t)QWF .

Taking Laplace transform, it follows that

G∗
WF (s) =

∫ ∞

0
e−stGWF (t)dt = (sI − QWW)−1QWF .

The matrix, G∗
WF (0), will be denoted simply as GWF , for brevity, i.e.,

GWF = G∗
WF (0) = −Q−1

WW QWF .

The density matrix of the duration of sojourns in F is given by

GFW (t) = exp(QFF t)QFW .

Thus

Ψ ∗
τ (s) =

∫ τ

0
e−stGFW (t)dt =

∫ τ

0
e−st exp(QFF t)QFW dt

= (sI − QFF )−1
(
I − exp

(−(sI − QFF )
)
τ
)
QFW ,

denotes the Laplace transform of duration of sojourns in F , and the duration of the sojourns
is less than a given nonnegative critical value τ .
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Fig. 1 A possible sample path of the original Markov repairable system and the new model for Case I

The probability that the repairable system stays in the failed states F being less than τ is
as follows ∫ τ

0
GFW (t)dt = Q−1

FF

[
exp(QFF τ) − I

]
QFW .

In the following, a new model is defined on the basic assumptions for the original Markov
repairable system.

(1) The new system has two possible states: one working state and one failure state, i.e.,
state 1 and state 0, respectively.

(2) The new system is in the working state 1 when the original Markov repairable system is
in the working states W .

(3) If the original Markov repairable system enters a failed state, and stays in failed states
F less than a given nonnegative critical value τ , i.e., it takes no longer τ to repair the
system to enter a working state, then the new system is still in the working state 1 during
this repair time.

(4) If the original Markov repairable system enters the failed states F , and stays in failed
states more than a given nonnegative critical value τ , i.e., it takes more than τ to repair
the system to enter a working state, then the new system is considered to remain in the
failure state 0 during this repair time until the repair is finished.

Notice that if a repair time at each state is less thanτ , but the sum of these repair times are
greater than τ , then the multiple failure states are classified as failure state 0 in the new
model. Our model doesn’t consider the delayed failures.

The evolution of the new system follows a new continuous-time stochastic process
{X̃(t), t ≥ 0}, which is defined as follows

X̃(t) =
{

1, if the new system in the working state at time t,

0, if the new system in the failure state at time t.

Some possible sample paths of the original Markov repairable system and the new model
for Cases I and II are presented in Figs. 1 and 2.
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Fig. 2 A possible sample path of the original Markov repairable system and the new model for Case II

3 Reliability indexes

3.1 Availability

The availability of the original Markov repairable system of {X(t), t ≥ 0} can be got easily

AX(t)
�= P

{
X(t) ∈ W

} = (πW,πF ) exp(Qt)

(
1W

0F

)
,

where 1W and 0F is a unit column vector and a zero column vector with appropriate dimen-
sions, respectively, see Csenki (2007).

Definition 1 The availability of the new model of {X̃(t), t ≥ 0} is defined as follows

AX̃(t)
�= P

{
X̃(t) = 1

}
.

Theorem 1 For the new model of {X̃(t), t ≥ 0} as described in Sect. 2, the availability is

AX̃(t) = AX(t)

+
∫ min(t,τ )

0

{
(πW,πF ) exp

(
Q(t − s)

)(
I|W | ×|W |
0|F |×|W |

)
× QWF

[
exp(QFF s) − exp(QFF τ)

]
1F

}
ds,

where I is a unit matrix with appropriate size, 0 is a zero matrix with appropriate size.

Proof From the assumptions of the new model, we have

AX̃(t)
�= P

{
X̃(t) = 1

} = P
{
X̃(t) = 1,X(t) ∈ W

} + P
{
X̃(t) = 1,X(t) ∈ F

}
= P

{
X(t) ∈ W

} + P
{
X̃(t) = 1,X(t) ∈ F

}
= AX(t)

+
∫ min(t,τ )

0

{
(πW ,πF ) exp

(
Q(t − s)

)(
I|W |×|W |
0|F |×|W |

)
× QWF

[
exp(QFF s) − exp(QFF τ)

]
1F

}
ds,

since (πW,πF ) exp(Q(t − s)) is a probability vector that the original Markov repairable
system of {X(t), t ≥ 0} sojourns in each state of S at instance time t − s, and the function

of matrix
( I|W |×|W |

0|F |×|W |
)

is to keep the repairable system starts from the working states of W ,
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and [exp(QFF s)− exp(QFF τ)]1F is probabilities that the duration of the Markov repairable
system of {X(t), t ≥ 0} remains within in the failed states is greater than s, but less than
τ , so that the repair time interval can be omitted. The column vector 1F is to sum up all
possible probabilities satisfied the requirements. The proof is completed. �

3.2 Interval reliability

In general, the given nonnegative critical value τ is very small, so, we only consider the case
t > τ in the following section.

The interval reliability of the original Markov repairable system of {X(t), t ≥ 0}, given a
time interval [0, t ], can be got easily

AX[0, t] �= P
{
X(u) ∈ W, for all u ∈ [0, t]} = πW exp(QWW t)1W ,

see Csenki (2007).
The interval reliability of the original Markov repairable system of {X(t), t ≥ 0}, given a

time interval [a, b], can be got easily

AX[a, b] �= P
{
X(u) ∈ W, for all u ∈ [a, b]}

= Φ0 exp(Qa)

(
I|W |×|W |
0|F |×|W |

)
exp

(
QWW(b − a)

)
1W ,

see Csenki (2007).

Definition 2 The interval reliability of the new model of {X̃(t), t ≥ 0}, given a time interval
[0, t ], is defined as follows:

AX̃[0, t] �= P
{
X̃(u) = 1, for all u ∈ [0, t]}.

In the following, we shall discuss the interval reliability of the new model of
{X̃(t), t ≥ 0}.

Based on the total probability formula, we can get

AX̃[0, t] �= P
{
X̃(u) = 1, for all u ∈ [0, t]}

= P
{
X̃(u) = 1, for all u ∈ [0, t],X(0) ∈ W

} + P
{
X̃(u) = 1,

for all u ∈ [0, t],X(0) ∈ F
}

= P
{
X̃(u) = 1, for all u ∈ [0, t]|X(0) ∈ W

}
P

{
X(0) ∈ W

}
+ P

{
X̃(u) = 1, for all u ∈ [0, t]|X(0) ∈ F

}
P

{
X(0) ∈ F

}
= πW 1WP

{
X̃(u) = 1, for all u ∈ [0, t]|X(0) ∈ W

}
+ πF 1F P

{
X̃(u) = 1, for all u ∈ [0, t]|X(0) ∈ F

}
.

We first consider P {X̃(u) = 1, for all u ∈ [0, t]|X(0) ∈ W }. Figure 1 is a possible sam-
ple path for the original Markov repairable system of {X(t), t ≥ 0}, and the new model of
{X̃(t), t ≥ 0} for this case, we call it Case I. Case I can be decomposed into Situations 1
and 2 in the following.

P
{
X̃(u) = 1, for all u ∈ [0, t]|X(0) ∈ W

}
=

∞∑
j=0

P
{
X̃(u) = 1, for all u ∈ [0, t],N(t) = j |X(0) ∈ W

}
,
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where N(t) denotes the complete up-down cycle number of the original Markov repairable
system of {X(t), t ≥ 0} by time t . Further, the two situations X(t) ∈ W and X(t) ∈ F will be
considered, respectively. In fact, totally, we need to consider 4 situations for getting AX̃[0, t],
i.e.

Situation 1: X(t) ∈ W,N(t) = 0,1, . . . , conditional on X(0) ∈ W ,
Situation 2: X(t) ∈ F,N(t) = 0,1, . . . , conditional on X(0) ∈ W ,
Situation 3: X(t) ∈ W,M(t) = 0,1, . . . , conditional on X(0) ∈ F ,
Situation 4: X(t) ∈ F,M(t) = 0,1, . . . , conditional on X(0) ∈ F .

Notice that M(t) denotes the complete down-up cycle number of the original Markov re-
pairable system of {X(t), t ≥ 0} by time t .

In the following, we will consider 4 situations listed above, respectively.

Situation 1
∑∞

j=0 P {X̃(u) = 1, for all u ∈ [0, t],N(t) = j,X(t) ∈ W |X(0) ∈ W }.
Let Tj and Dj be sums of the first j th working and repair durations within j complete

up-down cycles, respectively. Let T0 = D0 = 0, and

fW(i1)W(i2)−(j,j)(u)
�= lim

du→0
P

{
Tj + Dj ∈ (u,u + du),

X(Tj + Dj) = i2|X(0) = i1

}
/du, i1, i2 ∈ W.

Based on the results of Colquhoun and Hawkes (1982), thus we have

f∗WW−(j,j)(s) = [
G∗

WF (s)Ψ ∗
τ (s)

]j = (
f ∗

W(i1)W(i2)−(j,j)
(s)

)
|W |×|W |,

where f ∗
W(i1)W(i2)−(j,j)

(s) = ∫ ∞
0 e−sufW(i1)W(i2)−(j,j)(u)du.

Note that in order to guarantee fW(i1)W(i2)−(j,j)(u) to be a proper probability density func-
tion, we have

fW(i1)W(i2)−(j,j)(u) =
�−1[f ∗

W(i1)W(i2)−(j,j)
(s)](u)

f ∗
W(i1)W(i2)−(j,j)

(0)
,

and

fWW−(j,j)(u) = (
fW(i1)W(i2)−(j,j)(u)

)
|W |×|W |.

H1−W−W(t) =
∞∑

j=0

P
{
X̃(u) = 1, for all u ∈ [0, t],N(t) = j,X(t) ∈ W |X(0) ∈ W

}
= P

{
X̃(u) = 1, for all u ∈ [0, t],N(t) = 0,X(t) ∈ W |X(0) ∈ W

}
+

∞∑
j=1

P
{
X̃(u) = 1, for all u ∈ [0, t],N(t) = j,X(t) ∈ W |X(0) ∈ W

}
= πW

πW 1W

exp(QWW t)1W

+
∞∑

j=1

P
{
X̃(u) = 1, for all u ∈ [0, t],N(t) = j,X(t) ∈ W |X(0) ∈ W

}
.

We now consider the summation
∞∑

j=1

P
{
X̃(u) = 1, for all u ∈ [0, t],N(t) = j,X(t) ∈ W |X(0) ∈ W

}
.
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In fact, we can get

∞∑
j=1

P
{
X̃(u) = 1, for all u ∈ [0, t],N(t) = j,X(t) ∈ W |X(0) ∈ W

}

=
∞∑

j=1

P
{
Tj + Dj < t ≤ Tj+1 + Dj |X(0) ∈ W

}

= πW

πW 1W

∞∑
j=1

∫ t

0
fWW−(j,j)(u) exp

(
QWW(t − u)

)
du1W .

Note that each duration of repair in the complete working-repair cycles must be less than
the given nonnegative critical value τ , so that the repair interval can be omitted and the
original Markov repairable system of {X(t), t ≥ 0} can be thought of as the working during
this repair interval.

Thus, it is obvious that

H1−W−W(t) = πW

πW 1W

exp(QWW t)1W

+ πW

πW 1W

∞∑
j=1

∫ t

0
fWW−(j,j)(u) exp

(
QWW(t − u)

)
du1W.

The Laplace transform of H1−W−W(t) is

H ∗
1−W−W(s) = πW

πW 1W

(
I − G∗

WF (s)Ψ ∗
τ (s)

)−1
(sI − QWW)−11W .

Situation 2
∑∞

j=0 P {X̃(u) = 1, for all u ∈ [0, t],N(t) = j,X(t) ∈ F |X(0) ∈ W }.
When j = 0, we have

P
{
X̃(u) = 1, for all

u ∈ [0, t],N(t) = 0,X(t) ∈ F |X(0) ∈ W
}

= πW

πW 1W

∫ t

0
GWF (t)Rτ (t − u)du1F ,

where

Rτ (v) =
{

exp(QFF v) − exp(QFF τ), when v < τ ;
0, otherwise.

In the following, we consider the summation

∞∑
j=1

P
{
X̃(u) = 1, for all u ∈ [0, t],N(t) = j,X(t) ∈ F |X(0) ∈ W

}
.



Ann Oper Res (2014) 212:169–183 177

In fact, we get

∞∑
j=1

P
{
X̃(u) = 1, for all u ∈ [0, t],N(t) = j,X(t) ∈ F |X(0) ∈ W

}

=
∞∑

j=1

P
{
t − τ < Tj+1 + Dj < t ≤ Tj+1 + Dj+1|X(0) ∈ W

}

= πW

πW 1W

∞∑
j=1

∫ t

0
fWF−(j+1,j)(u)Rτ (t − u)du1F .

So, we have

H2−W−F (t) = πW

πW 1W

∞∑
j=0

∫ t

0
fWF−(j+1,j)(u)Rτ (t − u)du1F .

So, the Laplace transform of H2−W−F (t) is

H ∗
2−W−F (s) = πW

πW 1W

[
I − G∗

WF (s)Ψ ∗
τ (s)

]−1
G∗

WF (s)

×
{
(sI − QFF )−1

(
I − exp

(−(sI − QFF )
)
τ
) − 1

s

(
1 − e−sτ

)
exp(QFF τ)

}
1F ,

where f∗WF−(j+1,j)(s) = [G∗
WF (s)Ψ ∗

τ (s)]j G∗
WF (s) = (f ∗

W(i1)F (i2)−(j,j)
(s))|W |×|F |,

f ∗
W(i1)F (i2)−(j+1,j)(u) = �−1{f ∗

W(i1)F (i2)−(j+1,j)(s)}(u)

f ∗
W(i1)F (i2)−(j+1,j)(0)

,

fWF−(j+1,j)(u) = (
fW(i1)F (i2)−(j+1,j)(u)

)
|W |×|F |.

For P {X̃(u) = 1, for all u ∈ [0, t]|X(0) ∈ F }, Fig. 2. is a possible sample path for the
original Markov repairable system of {X(t), t ≥ 0}, and the new model of {Y (t), t ≥ 0} for
this case, we call it Case II. Case II can be decomposed into Situations 3 and 4.

Situation 3
∑∞

j=0 P {X̃(u) = 1, for all u ∈ [0, t],M(t) = j,X(t) ∈ W |X(0) ∈ F }.
When j = 0, we have

P
{
X̃(u) = 1, for all u ∈ [0, t],M(t) = 0,X(t) ∈ W |X(0) ∈ F

}
= πF

πF 1F

∫ τ

0
GFW (u) exp

(
QWW(t − u)

)
du1W .

In the following, we consider the summation

∞∑
j=1

P
{
X̃(u) = 1, for all u ∈ [0, t],M(t) = j,X(t) ∈ W |X(0) ∈ F

}
.



178 Ann Oper Res (2014) 212:169–183

In fact, we get

∞∑
j=1

P
{
X̃(u) = 1, for all u ∈ [0, t],M(t) = j,X(t) ∈ W |X(0) ∈ F

}

=
∞∑

j=1

P
{
Dj+1 + Tj < t ≤ Dj+1 + Tj+1|X(0) ∈ F

}

= πF

πF 1F

∞∑
j=1

∫ t

0
fF(i1)W(i2)−(j+1,j)(u) exp

(
QWW(t − u)

)
du1W .

So, we have

H3−F−W(t) = πF

πF 1F

∫ τ

0
GFW (u) exp

(
QWW(t − u)

)
du1W

+ πF

πF 1F

∞∑
j=1

∫ t

0
fFW−(j+1,j)(u) exp

(
QWW(t − u)

)
du1W .

So, the Laplace transform of H3−F−W(t) is

H ∗
3−F−W(s) = πF

πF 1F

(I − Ψ ∗
τ (s)G

∗
WF (s))−1Ψ ∗

τ (s)(sI − QWW)−11W,

where f∗FW−(j+1,j)(s) = [Ψ ∗
τ (s)G

∗
WF (s)]jΨ ∗

τ (s) = (f ∗
F(i1)W(i2)−(j+1,j)

(s))|F |×|W |,

fF(i1)W(i2)−(j+1,j)(u) = �−1{f ∗
F(i1)W(i2)−(j+1,j)(s)}(u)

f ∗
F(i1)W(i2)−(j+1,j)(0)

,

fFW−(j+1,j)(u) = (
fF(i1)W(i2)−(j+1,j)(u)

)
|F |×|W |.

Note that the first duration of repair interval must be less than the given nonnegative critical
value τ in this situation, so that although the system starts from a down state, the first repair
interval can be omitted.

Situation 4
∑∞

j=0 P {X̃(u) = 1, for all u ∈ [0, t],M(t) = j,X(t) ∈ F |X(0) ∈ F }.
When j = 0, we have

P
{
X̃(u) = 1, for all u ∈ [0, t],M(t) = 0,X(t) ∈ F |X(0) ∈ F

} = P
{
t < D1 < τ |X(0) ∈ F

}
.

Because we only consider the case t > τ , so we have

P
{
X̃(u) = 1, for all u ∈ [0, t],M(t) = 0,X(t) ∈ F |X(0) ∈ F

} = 0.

In the following, we consider the summation

∞∑
j=1

P
{
X̃(u) = 1, for all u ∈ [0, t],M(t) = j,X(t) ∈ F |X(0) ∈ F

}
.
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In fact, we get

∞∑
j=1

P
{
X̃(u) = 1, for all u ∈ [0, t],M(t) = j,X(t) ∈ F |X(0) ∈ F

}

=
∞∑

j=1

P
{
t − τ < Dj + Tj < t ≤ Dj+1 + Tj |X(0) ∈ F

}

= πF

πF 1F

∞∑
j=1

∫ t

0
fFF−(j,j)(u)Rτ (t − u)du1F .

So, we have

H4−F−F (t) = πF

πF 1F

∞∑
j=1

∫ t

0
fFF−(j,j)(u)Rτ (t − u)du1F .

The Laplace transform ofH4−F−F (t) is

H ∗
4−F−F (s) = πW

πW 1W

[
I − Ψ ∗

τ (s)G
∗
WF (s)

]−1
Ψ ∗

τ (s)G
∗
WF (s)

×
{
(sI − QFF )−1

(
I − exp

(−(sI − QFF )
)
τ
) − 1

s

(
1 − e−sτ

)
exp(QFF τ)

}
1F ,

where f∗FF−(j,j)(s) = [Ψ ∗
τ (s)G

∗
WF (s)]j = (f ∗

F(i1)F (i2)−(j,j)
(s))|F |×|F |,

fF(i1)F (i2)−(j,j)(u) = �−1{f ∗
F(i1)F (i2)−(j+1,j)(s)}(u)

f ∗
F(i1)F (i2)−(j,j)(0)

,

fFF−(j,j)(u) = (
fF(i1)F (i2)−(j,j)(u)

)
|F |×|F |.

Integrating the above results, we have

A∗
X̃
[0, t](s) =

∫ ∞

0
e−stAX̃[0, t]dt

= πW 1WH ∗
1−W−W(s) + πW 1WH ∗

2−W−F (s) + πF 1F H ∗
3−F−W(s)

+ πF 1F H ∗
4−F−F (s).

Taking inverse Laplace transform, we can easily get the formula of AX̃[0, t].

Theorem 2 For the new model of {X̃(t), t ≥ 0} as described in Sect. 2, the interval reliabil-
ity AX̃[0, t] is

AX̃[0, t] = �−1
(
A∗

X̃
[0, t](s))(t),

where the symbol �−1 denotes the inverse Laplace transform.

Definition 3 The interval reliability of the new model of {X̃(t), t ≥ 0}, given a time interval
[a, b],0 ≤ a ≤ b, is defined as follows

AX̃[a, b] �= P
{
X̃(u) = 1, for all u ∈ [a, b]}.
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Theorem 3 For the new model of {X̃(t), t ≥ 0} as described in Sect. 2, the interval reliabil-
ity AX̃[a, b] is

AX̃[a, b] = AX̃[0, b − a]|Φ0=P(a),

where P(a) = (πW,πF ) exp(Qa) is the probability vector of the original Markov repairable
system of {X(t), t ≥ 0} stays in each state of S at instance time a.

Proof Because of the time homogeneity and Theorem 2, the poof can be got easily. �

3.3 Interval unreliability

Definition 4 The interval unreliability of the new model of {X̃(t), t ≥ 0} is defined as fol-
lows

ĀX̃[a, b] �= P
{
X̃(u) = 0, for all u ∈ [a, b]}.

Theorem 4 For the new model of {X̃(t), t ≥ 0} as described in Sect. 2, the interval unreli-
ability is

ĀX̃[a, b] = πF exp
(
QFF max{b, τ })1F

+
∫ a

0

{
(πW ,πF ) exp

(
Q(a − s)

)(
I|W |×|W |
0|F |×|W |

)

× QWF

[
exp

(
QFF max{b − a + s, τ })]1F

}
ds.

Proof From the assumptions of the model, we can get easily

ĀX̃[a, b] �= P
{
X̃(u) = 0, for all u ∈ [a, b]} = P

{
X̃(u) = 0,X(u) ∈ F, for all u ∈ [a, b]}.

The first term πF exp(QFF max{b, τ })1F is the probability that the original Markov re-
pairable system stays in failed states before instance time b.

Since exp(QFF max{b − a + s, τ }) is the probability that the duration of the original
Markov repairable system of {X(t), t ≥ 0} stays in the failed states is greater than both
b−a + s and τ , so that the repair time interval cannot be omitted. The proof is completed. �

3.4 Special cases

In order to understand easily the previous results, we can consider some special cases as
follows.

When |S| = 2, i.e., |W | = |F | = 1, Q = ( QWW QWF

QFW QFF

) = ( −λ λ

μ −μ

)
, (πW ,πF ) = (α,1 − α).

In fact, this is a single unit Markov repairable system. We can get

AX(t) = 1

λ + μ

[
α(λ + μ)e−(λ+μ)t − μe−(λ+μ)t + μ

]
.

AX̃(t) = AX(t) +
∫ min(t,τ )

0

1

λ + μ

[
α(λ + μ)e−(λ+μ)(t−s)

− μe−(λ+μ)(t−s) + μ
]
λ
(
e−μs − e−μτ

)
ds.

ĀX̃[a, b] = (1 − α) exp
(−μmax{b, τ })

+
∫ a

0

1

λ + μ

[
α(λ + μ)e−(λ+μ)(a−s)

− μe−(λ+μ)(a−s) + μ
]
λ
[
exp

(−μmax{b − a + s, τ })]ds.
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Fig. 3 The curves of interval reliability for the new model, and original Markov repairable system

Taking inverse Laplace transform by using Maple software, we can get the formula of
AX̃[0, t], but the formula is so verbose that we do not list it here.

Specially, when α = 1, AX(t) = μ

λ+μ
+ λ

λ+μ
e−(λ+μ)t , and when α = 1, AX̃(t) = AX(t) +∫ min(t,τ )

0
1

λ+μ
[μ + λe−(λ+μ)(t−s)]λ(e−μs − e−μτ )ds, this result degenerates into the result in

the Zheng et al. (2006), i.e., the result in Zheng et al. (2006) is a special case of our result in
the paper.

When α = 1, ĀX̃[a, b] = ∫ a

0
1

λ+μ
[μ + λe−(λ+μ)(a−s)]λ[exp(−μmax{b − a + s, τ })]ds.

4 Numerical examples

In the following section, some numerical examples will be showed to illustrate the results
obtained above.

Let |S| = 4, i.e., |W | = |F | = 2,

Q =

⎛
⎜⎜⎝

−1 0 0 1
0 −1 0 1

0 0 −1 1
1 0 0 −1

⎞
⎟⎟⎠ , (πW ,πF ) =

(
1

4
,

1

4
,0,

1

2

)
,

τ = 0.5. For convenience, we consider t > τ . Based on the results in Sect. 3, we can get
AX̃[0, t] by using inverse Laplace transform.

We can get the following numerical results.

(i) When the value of t is given, the interval reliability AX[0, t] and AX̃[0, t] can be ob-
tained, respectively. We take t = 1.5 and t = 2, respectively, then we get

AX[0,1.5] ≈ 0.1116, AX̃[0,1.5] ≈ 0.4223,

AX[0,2] ≈ 0.0677, AX̃[0,2] ≈ 0.3305.

The curves of interval reliability for the new model, and original Markov repairable
system are shown in Fig. 3.
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(ii) When the values of a, b are given, the interval reliability AX[a, b] and AX̃[a, b] can be
obtained respectively. We take a = 2, b = 3.25 and a = 2, b = 3.65, respectively, then
we get

AX[2,3.25] ≈ 0.0716, AX̃[2,3.25] ≈ 0.4702,

AX[2,3.65] ≈ 0.0480, AX̃[2,3.65] ≈ 0.4006.

It is obvious that

AX[0,1.5] < AX̃[0,1.5], AX[0,2] < AX̃[0,2],
AX[2,3.25] < AX̃[2,3.25], AX[2,3.65] < AX̃[2,3.65].

It is also clear that the curve of AX̃[0, t] is upper on the curve of AX[0, t] at any
instance time t , i.e., the interval reliability for the new system is higher than the ones
for the original Markov repairable system, because the repair interval may be omitted
in the new model. In fact, the property is also applicable for the availability.

Of course, for any given 0 ≤ a < b1 < b2, we get

AX[a, b1] ≥ AX[a, b2], AX̃[a, b1] ≥ AX̃[a, b2],
Its proofs is easily finished based on the previous theorems, they are omitted here. And it

is obvious that AX[2,3.25] > AX[2,3.65],AX̃[2,3.25] > AX̃[2,3.65], which illustrate the
property that AX[a, b1] ≥ AX[a, b2],AX̃[a, b1] ≥ AX̃[a, b2].

5 Conclusions

In the paper, a new model based on the original Markov repairable system whose state space
is partitioned into working state set and failed state set, is developed. While the model is the
same as model II in Cui et al. (2012b), the analysis methods are different. The interval relia-
bility formulae in Cui et al. (2012b) included a double integral and Laplace transform, which
may cause some computation problems. Our method only employs Laplace transforms to
express the results, which are more compact. Our method is more efficient for numerical
calculation. Several reliability indexes for the new model, i.e., availability, interval reliabil-
ity, and interval unreliability have been presented. In particular, Laplace transform method
is used to formulate the interval reliability. Finally, some special cases and numerical exam-
ples are also discussed to illustrate the results obtained in the paper. The future work may
be included by considering the multi-point availability and multi-interval reliability for the
new model, and by extending the original Markov repairable systems into the semi-Markov
cases.
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