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Abstract This paper is a twofold contribution. First, it contributes to the problem of enu-
merating some classes of simple games and in particular provides the number of weighted
games with minimum and the number of weighted games for the dual class as well. Second,
we focus on the special case of bipartite complete games with minimum, and we compare
and rank these games according to the behavior of some efficient power indices of players of
type 1 (or of type 2). The main result of this second part establishes all allowable rankings
of these games when the Shapley-Shubik power index is used on players of type 1.

Keywords Simple game · Weighted and complete games · Enumerations · Shapley-Shubik
power index · Banzhaf power indices

1 Introduction

The study of voting systems can be traced back to the late nineteenth century, when
Dedekind studied monotonic Boolean functions. In the context of voting systems these func-
tions correspond to simple games. In their seminal book, Von Neumann and Morgenstern
(1944) came up with the definition of a simple game as a type of cooperative game where
the payoffs to coalitions are either 1 or 0, i.e., coalitions can be considered either winning
or losing.
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A particular case of simple games, and possibly the most important subcase, is that of
weighted games, in which weights are assigned to players and a threshold is set so that a
coalition is winning if and only if the sum of weights of its players is at least the threshold.
This is natural in Parliaments and also in corporate voting when different shareholders may
own different numbers of shares. Two natural extensions of weighted games have also been
thoroughly studied: (1) complete games and (2) simple games with small dimension. In this
paper we deal with a particular class of complete games, the so called “complete games with
minimum” (see, e.g., Freixas and Puente 1998, 2008).

It turns out that every complete game with five or fewer players is weighted, so the
smallest possible illustrations of complete non-weighted games occur for six players: y1,
y2, b1, b2, b3, and b4 (here y means players of yellow type, whereas b means players of
blue type), and we declare that a coalition is winning if and only if it contains: at least three
players and at least one of them is yellow. Intuitively, it is clear that all the yellow players
have the same influence (according to the desirability relation), and all the blue players
have the same influence, but the yellow players have more influence than the blue players—
suggesting a complete (weak) ordering for the players in this example of a voting system.
In terms of the language we introduce later (in Sect. 2) this simple game is complete but not
weighted.

Note that e.g., the coalitions of type {y1, y2, bi} for i = 1,2,3,4 are minimal winning
since all players contained are essential for the coalition to be winning. The same occurs for
the coalitions {yi, bj , bk} for i = 1,2 and 1 ≤ j < k ≤ 4. However, this latter set of coalitions
has an additional singularity: none of the players in these coalitions can be replaced by
a weaker player. E.g., we cannot replace in these coalitions the yellow player for a blue
player since the new coalition obtained would not be winning. In terms of the language we
introduce later (in Sect. 2) we say that the coalitions of type {yi, bj , bk} for i = 1,2 and
1 ≤ j < k ≤ 4 are shift-minimal winning coalitions. On the contrary, if in a shift-minimal
winning coalition we replace a weaker player by a stronger one we obtain a minimal, but not
shift-minimal, winning coalition. Finally, observe that all shift-minimal winning coalitions
have the same number of players of each color, i.e., they all contain one yellow player and
two blue players and this information can be encapsulated in the vector: (1,2) where the
first component represents the number of yellow players and the second the number of blue
players. Then, we refer to the game as being complete with only one type of shift-minimal
winning coalitions, or equivalently, a complete game with minimum as was denominated
in Freixas and Puente (1998, 2008). Note that in the previous example there is a bipartition
between types of players: yellow players and blue players. Hence, the example introduced
is a bipartite complete game with minimum.

The first part of the paper deals with enumerations for weighted games with min-
imum, while the second part deals with rankings of players for power indices in bi-
partite complete games with minimum. The dimension of complete games with mini-
mum is studied in Freixas and Puente (2008). For instance, the previous example has
dimension 2 and, therefore, it decomposes as the intersection of two weighted games:
[5;3,3,1,1,1,1] ∩ [3;1,1,1,1,1,1] (the notation for a representation of a weighted game
is introduced in the preliminaries section). Most existing voting systems have a small dimen-
sion. E.g., the current voting system of the European Council is an example of a complete
game with dimension 3, i.e., it decomposes as an intersection of three weighted games which
cannot be simplified to an intersection of fewer weighted games (Freixas 2004).

The voting system to amend the Canadian Constitution is an example of a non-weighted
game which meets both requirements: it is complete (and has only one type of shift-minimal
winning coalitions) and has dimension 2, i.e., it decomposes as the intersection of two
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weighted games. Since 1982, an amendment to the Canadian Constitution can become law
only if it is approved by at least seven of the ten Canadian provinces, subject to the proviso
that the approving provinces have, among them, at least half of Canada’s population. It was
first studied in Kilgour (1983). A census (in percentages) taken from 1960 for the Canadian
provinces was: Prince Edward Island (1 %), Newfoundland (3 %), New Brunswick (3 %),
Nova Scotia (4 %), Manitoba (5 %), Saskatchewan (5 %), Alberta (7 %), British Columbia
(9 %), Quebec (29 %) and Ontario (34 %). This is another example of a bipartite com-
plete game with minimum and the vector representing all shift-minimal winning coalitions
is: (1,6) where the first component indicates that exactly one of the two most populated
provinces votes in favor of the voted law and 6-out-of-8 of the other provinces vote in favor
of the voted law as well. Games of this type are the object of study in this paper.

This paper primarily concerns enumerations. The number of complete games is known
up to nine players only (Freixas and Molinero 2010), and the number of weighted games is
also known up to nine players (Kurz 2012). A seminal result on enumeration formulas for
weighted games and complete games is May’s theorem (May 1952), and many other results
have followed, e.g., the enumeration of weighted games with up to six players dates back at
least to 1962 (Muroga et al. 1962).

The mathematical structure of complete games was studied in detail in the nineties by
several scholars, e.g., in Krohn and Sudhölter (1995) and Carreras and Freixas (1996). In the
latter work a system of quantities (called characteristic invariants) is associated with every
complete game and their basic properties are stated. It is shown that these quantities deter-
mine the game (uniqueness) and that every such system is associated with some complete
game (existence).

According to this classification the simplest case arises when the matrix (one of the
two components of the characteristic invariants) has only one shift-minimal winning vec-
tor (which corresponds therefore to a set of closely related shift-minimal winning coalitions
that are enough to generate the complete game). These games have been studied in Freixas
(1997) and Freixas and Puente (1998). The first paper provides necessary and sufficient
conditions to determine whether a game of this type is weighted. In the second paper the
characteristic invariants are used to ease the calculus of different types of solutions of the
game like the nucleolus, the kernel and semivalues.

The interest for this type of structures has also emerged in the field of Cryptography. The
access structure in a secret sharing scheme (see e.g., Stinson 1992) can also be modeled
by a simple game. To this end Simmons (1990) introduced the concept of a hierarchical
access structure. Such an access structure stipulates that agents are partitioned into m levels,
and a sequence of thresholds k1 < k2 < · · · < km is set, so that a coalition is authorized
if and only if it has k1 agents of the first level and k2 agents of the first two levels and
k3 agents of the first three levels etc. These hierarchical structures are called conjunctive
since all the m conditions must be satisfied for a coalition to be authorized. If only one
of the m conditions must be satisfied for a coalition to be authorized, then the structure
is called disjunctive. A typical example of a conjunctive hierarchical game would be the
United Nations Security Council, where for the passage of a resolution all five permanent
members must vote for it and also at least nine members in total. The ideality of disjunctive
games was proved by Brickell (1989), while the ideality of conjunctive games was proved
by Tassa (2007). Ideality means they can carry the most informationally efficient secret
sharing scheme and be completely secure (i.e., not giving any information about the secret
to unauthorized coalitions). Gvozdeva et al. (2013) relate these two types of structures with
complete games with one shift-minimal winning vector and with complete games with one-
shift maximal losing vector.
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In this paper we use game theoretic methods and terminology, and we talk about com-
plete games with minimum or, equivalently, complete games with a unique shift-minimal
winning vector (instead of hierarchical conjunctive structures) and games with a unique
shift-maximal losing vector (instead of hierarchical disjunctive structures).

Here we enumerate weighted games with minimum. We find a polynomial formula as a
function of the number of players of the game. This complements the corresponding known
result for the enumeration of complete games of this type (Freixas and Puente 1998).

As for the second contribution, we recall that the distribution of power in some important
real-world institutions (the International Monetary Fund, the voting system of the World
Bank, the United Nations Security Council, the procedure to amend the Canadian Constitu-
tion, etc.) has been extensively studied, e.g., in Leech (2002a, 2002b), Alonso-Meijide and
Bowles (2005), Taylor and Pacelli (2008), Felsenthal and Machover (1998), Straffin (1982)
and Kilgour (1983) to cite just some references.

We consider here the set of bipartite complete games with minimum, i.e., complete games
with two types of equivalent players and one shift-minimal winning vector, and discuss the
possible rankings of these games given by the Shapley-Shubik power index for a player of
type 1. The main result of this part establishes all the allowable rankings for the power of
players of a given type in bipartite complete games with minimum for which the number
of players of each type is fixed. We do remark that many papers in the literature have been
devoted to study whether two or more power indices provide the same rankings in each
game (see e.g., Diffo Lambo and Moulen 2002; Carreras and Freixas 2008; Freixas 2010).
However, as far as we know, very little has been done on comparing power of players in
different games.

The paper is organized as follows. In Sect. 2 we review some basic concepts and defini-
tions of simple games, revise the terminology of the characteristic invariants for complete
games and recall the known enumerations for complete games and for weighted games. In
Sect. 3 we obtain a formula for the number of weighted games with one shift-minimal win-
ning vector and deduce some consequences. In Sect. 4 we do a comparison of power for
different complete games with two types of equivalent players and one shift-minimal win-
ning vector. We prove that a limited number of rankings are possible for the Shapley-Shubik
power index and we formulate a similar conjecture for the relative Banzhaf index. A study
of duality in Sect. 5 permits us to extend the results obtained in the two previous sections
to complete games with one shift-maximal losing vector. Some hints for future research are
given in Sect. 6.

2 Preliminaries

This preliminary section is organized into five subsections. The first two refer to simple
games in general and complete games in particular. The remaining three recall a result on
the structure of complete games that will be essential for our purposes, previous results
found in the literature on enumerations of games, and some power indices.

2.1 Simple games

A (monotonic) simple game is a pair (N, W) where N = {1,2, . . . , n} and W is a collection
of subsets of N such that:

(i) ∅ /∈ W ,
(ii) N ∈ W ,

(iii) if S ∈ W and S ⊆ T , then T ∈ W .
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From now on we will omit the term monotonic. Simple games can be viewed as models of
voting systems in which a single alternative, such as a bill or an amendment, is pitted against
the status quo. The set N is called the grand coalition, its members are called players and
its subsets coalitions, and the subsets in W are called winning coalitions. The intuition here
is that a set S is a winning coalition if and only if the bill or amendment passes when
the players in S are precisely the ones who vote for it. A subset of N that is not in W
is called a losing coalition and the collection of losing coalitions is denoted by L. If each
proper subcoalition of a winning coalition is losing, this winning coalition is called minimal.
The set of minimal winning coalitions is denoted by W m. It should be noted that a simple
game is completely determined by its minimal winning coalitions. If each proper coalition
containing a losing coalition is winning, this losing coalition is called maximal. The set of
maximal losing coalitions is denoted by LM and it also determines the game.

Let (N, W) be a simple game. The dual game of (N, W) is the game (N, W ∗) where
W ∗ = {S ⊆ N : N \ S /∈ W}.

A player i has veto in a simple game (N, W) if S ∈ W implies i ∈ S. A player i ∈ N is
called a null player in (N, W) if i /∈ S for every S ∈ W m. A player i ∈ N is a dictator if and
only if W m = {{i}}, in which case the remaining players in N become null players. Note
that a dictator is the most extreme form of having veto.

A simple game (N, W) is a weighted game if it admits a representation by means of n

non-negative real numbers w1, . . . ,wn and a positive real number q such that S ∈ W if and
only if w(S) ≥ q , where w(S) = ∑

i∈S wi for each coalition S ⊆ N . The number q is called
the quota of the game and wi the weight of player i. From now [q;w1, . . . ,wn] will mean
the representation of (N, W) by means of weights w1, . . . ,wn and quota q . The weighted
representation (whenever it exists) is never unique. For instance, [c · q; c · w1, . . . , c · wn] is
also a representation of (N, W) for all c > 0.

Two simple games (N, W) and (N ′, W ′) are said to be isomorphic if there exists a bijec-
tive map f : N → N ′ such that S ∈ W if and only if f (S) ∈ W ′.

Let (N, W) be a simple game. Set Wi = {S ∈ W : i ∈ S} and let τij : N → N denote the
transposition of players i, j ∈ N (i.e., τij (i) = j , τij (j) = i and τij (k) = k for k �= i, j ). The
individual desirability relation, introduced by Isbell (1956, 1958) and later generalized by
Maschler and Peleg (1966), is the binary relation � on N :

i � j if and only if τij (Wj ) ⊆ Wi ,

meaning that i is at least as desirable as j as a coalition partner. It is easy to see that �
is a preorder (i.e., a reflexive and transitive relation), we abbreviate i � j , j � i by i ≈ j

and say that i and j are equi-desirable players (≈ is an equivalence relation in N ), and we
abbreviate i � j , j �� i by i  j and say that i is strictly more desirable than j as a coalition
partner.

The relation � induces an ordering ≥ in the set of ≈-classes N/≈ = {N1, . . . ,Nt }. Thus,
Np ≥ Nq if and only if i � j for any i ∈ Np and any j ∈ Nq .

2.2 Complete games

The desirability is not always complete (total). Then, if any two players are comparable
by �, (N, W) is said to be a complete game;1 in this case, the ≈-classes are linearly ordered
by ≥. We say that a complete game has trivial classes if it possesses either veto or null
players. Notice that each weighted game is complete because wi ≥ wj implies i � j .

1Complete games are also known in the literature of simple games as linear games or directed games.
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A coalition S ∈ W is shift-minimal winning if (S \ {i}) ∪ {j} /∈ W for all i ∈ S and j /∈ S

with i  j . Note that a winning coalition can be minimal without being shift-minimal.

Example 2.1 Let (N, W) be the simple game defined by N = {1,2,3,4,5}, and W m =
{S ⊆ N : |S| = 3, S �= {3,4,5}}. It is easy to check that N decomposes into a bipartition
of equivalent players N1 = {1,2} and N2 = {3,4,5}, and i  j for all i ∈ N1 and j ∈ N2.
Coalitions {1,2,3}, {1,2,4}, {1,2,5} are minimal winning but not shift-minimal winning in
(N, W). The remaining six winning coalitions of cardinality 3 are shift-minimal winning.

From now on we only deal with complete games and without loss of generality we
assume 1 � 2 � · · · � n in the following. We can partition the whole set N of players
into equivalence classes N1, . . . ,Nt and say that the complete game consists of t types of
(weakly) ordered players. By ni we denote the cardinality of the set Ni for 1 ≤ i ≤ t . Coali-
tions are categorized into different types, which can be described by a vector (m1, . . . ,mt )

meaning mi -out-of-ni players (from the set Ni ) for 1 ≤ i ≤ t .
Let us consider Example 2.1 with n1 = 2 and n2 = 3. Due to the assumed ordering of

the players we have N1 = {1,2} and N2 = {3,4,5} and i  j for all i = 1,2 and j = 3,4,5
so that we can write N1 > N2. With this, the vector (1,2) is the type of coalitions {1,3,4},
{1,3,5}, {1,4,5}, {2,3,4}, {2,3,5} and {2,4,5}. Since we have 1 ≈ 2 and 3 ≈ 4 ≈ 5 either
all these six coalitions are winning or they are all losing and we can therefore speak of a
winning or a losing vector. In Example 2.1 (1,2) is a (shift-minimal) winning vector.

Let (N, W) be a simple game and Nh be the classes of equally desirable players for 1 ≤
h ≤ t . We call a vector m̃ := (m1, . . . ,mt ), where 0 ≤ mh ≤ |Nh| for 1 ≤ h ≤ t , a winning
vector if S ∈ W , where S is an arbitrary coalition of N containing exactly mh elements of
Nh for 1 ≤ h ≤ t . Analogously, we call such a vector a losing vector if S ∈ L, where S is an
arbitrary coalition of N containing exactly mh elements of Nh for 1 ≤ h ≤ t .

Following Carreras and Freixas (1996), several concepts of ordering among vectors (i.e.,
types of coalitions) in N

t
0 (where N0 = N ∪ {0}) have to be considered. For two vectors ã =

(a1, . . . , at ) ∈ N
t
0 and b̃ = (b1, . . . , bt ) ∈ N

t
0, representing types of coalitions in a complete

simple game, we write (the standard componentwise order between vectors) ã ≥ b̃ if and
only if we have ai ≥ bi for all i = 1, . . . , t . We use ã > b̃ if ã ≥ b̃ and ã �= b̃. We write
ã � b̃ if and only if we have

∑k

i=1 ai ≥ ∑k

i=1 bi for all 1 ≤ k ≤ t . For ã � b̃ and ã �= b̃ we
use ã  b̃ as an abbreviation and say that they are comparable vectors with vector b̃ being
smaller than vector ã. If neither ã � b̃ nor b̃ � ã holds, we write ã �� b̃ and say that vector
ã and vector b̃ are incomparable.

As (1,2) is a winning vector in Example 2.1, so are (1,3), (2,2) and (2,3) because
of the monotonicity property required in the definition of simple game, but also is (2,1)

because Example 2.1 is a complete game. From (1,2) nothing can be deduced about the
vectors (1,1), (0,3), (0,2), (1,0) and (0,1). However, we can check that all the coalitions
associated with these vectors are losing for Example 2.1.

A vector m̃ = (m1, . . . ,mt ) in a complete game with t types of equivalent players (N, W)

is a minimal winning vector if m̃ is a winning vector and every vector m̃′ with m̃′ < m̃ is
losing. Analogously, a vector m̃ is a maximal losing vector if m̃ is a losing vector and every
vector m̃′ with m̃′ > m̃ is winning. Of course, a vector is shift-minimal winning (resp.,
shift-maximal losing) if and only if any coalition represented by the vector is shift-minimal
winning (resp., shift-maximal losing).
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Fig. 1 The Hasse diagram for
the ordering � of vectors on
ñ = (2,3)
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Similarly, a shift-minimal winning vector2 m̃ is a winning vector such that every vector
m̃′ with m̃′ ≺ m̃ is losing. Analogously, a vector m̃ is a shift-maximal losing vector if m̃ is a
losing vector and every vector m̃′ with m̃′  m̃ is winning.

We denote by Wm, Wsm, LM and LsM the sets of minimal winning vectors, shift-minimal
winning vectors, maximal losing vectors and shift-maximal losing vectors, respectively. In
Example 2.1 we have:

Wm = {
(2,1), (1,2)

}
,

Wsm = {
(1,2)

}
,

LM = {
(2,0), (1,1), (0,3)

}
,

LsM = {
(2,0), (0,3)

}
.

The Hasse diagram for the ordering of vectors in complete games with the given hierarchy
ñ = (2,3) is shown in Fig. 1.

2.3 A parameterization theorem for complete games

Carreras and Freixas have given a full parameterization of complete games, up to iso-
morphisms, in Carreras and Freixas (1996) using vectors as models of coalitions and
the partial order �. We denote the (decreasing) lexicographic order by �, i.e., we have
(a1, . . . , an) � (b1, . . . , bn) if there is an index 1 ≤ h ≤ n with ai = bi for all 1 ≤ i < h and
ah > bh. An example is given by (1,2,1) � (1,1,3).

2In Carreras and Freixas (1996) they are called δ-minimal winning vectors.
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Theorem 2.2

(a) Assume that a vector ñ = (n1, n2, . . . , nt ) with natural coefficients and a matrix

M =

⎛

⎜
⎜
⎝

m1,1 m1,2 . . . m1,t

m2,1 m2,2 . . . m2,t

...
...

. . .
...

mr,1 mr,2 . . . mr,t

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

m̃1

m̃2
...

m̃r

⎞

⎟
⎟
⎠

with natural or null coefficients are given, satisfying the following properties:
(i) m1,1 > 0 and 0 ≤ mi,j ≤ nj , mi,j ∈ N0 for 1 ≤ i ≤ r and 1 ≤ j ≤ t ,

(ii) m̃i �� m̃j for all 1 ≤ i < j ≤ r ,
(iii) for each 1 ≤ j < t there is at least one row-index i such that mi,j > 0, mi,j+1 <

nj+1, and
(iv) m̃i � m̃i+1 for 1 ≤ i < r .
Then, there exists a unique complete game (N, W) with invariants (̃n, M), i.e., with ñ

as a vector of the cardinalities of the equivalence classes and matrix M where their
rows consist of the shift-minimal winning vectors.

(b) Two complete games (N1, W1) and (N2, W2) are isomorphic if and only if ñ1 = ñ2 and
M1 = M2.

As a consequence of this theorem, any complete game can be denoted as (̃n, M), the pair
of characteristic invariants of the game.

In such a vector/matrix representation (characteristic invariants) of a complete game the
number of players n is determined by n = ∑t

i=1 ni . Although Theorem 2.2 looks technical
at first glance, the necessity of the required properties is easily explained. Obviously, nj ≥ 1
and 0 ≤ mi,j ≤ nj must hold for 1 ≤ i ≤ r , 1 ≤ j ≤ t . If m̃i � m̃j or m̃i � m̃j then we have
m̃i = m̃j or either m̃i or m̃j cannot be a shift-minimal winning vector. If for a column-index
1 ≤ j < t we have mi,j = 0 or mi,j+1 = nj+1 for all 1 ≤ i ≤ r , then we can check whether we
have g ≈ h for all g ∈ Nj , h ∈ Nj+1, which is a contradiction to the definition of the classes
Nj and therefore also for the numbers nj . Obviously a complete game does not change if
two rows of the matrix M are interchanged. Thus we require a given ordering of the rows
to avoid repetitions: � stands for the lexicographic ordering of vectors in N

t
0.

As the desirability relation is total in complete games, it defines for these games a weak
ordering on the set of players. For example, writing that a five-player complete game has hi-
erarchy 1 > 2 = 3 = 4 > 5 means that there is one player which has the maximum influence,
another one that has the minimum influence and the other three have all the same intermedi-
ate influence, in that case we can represent the previous ordering as the vector (1,3,1). We
say that two complete games have the same hierarchy if the ordering that defines the desir-
ability relation on them is the same. Thus, if (̃n1, M1) and (̃n2, M2) are the characteristic
invariants of two complete games, they have the same hierarchy if ñ1 = ñ2.

The Hasse diagram for the ordering � of vectors in complete games with the given hier-
archy ñ = (2,2) is shown in next Fig. 2.

We would like to remark that for t = 1 only r = 1 is possible and the requirements
in Theorem 2.2 reduce to 1 ≤ m1,1 ≤ n1 = n. Also for t = 2 one can easily give a more
compact formulation for the requirements in Theorem 2.2. A complete description of the
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Fig. 2 The Hasse diagram for
the ordering � of vectors on
ñ = (2,2)
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possible values n1, n2, m1,1, m1,2 corresponding to a complete game with parameters n,
t = 2, and r = 1 is given by

1 ≤ n1 ≤ n − 1,

n1 + n2 = n,

1 ≤ m1,1 ≤ n1,

0 ≤ m1,2 ≤ n2 − 1.

Two important real-world examples of voting weighted games with only one shift-minimal
winning vector are (see Chap. 8 in Taylor and Pacelli 2008 for more details on these
two examples): the United Nations Security Council—without taking abstention into
consideration—and the procedure to amend the Canadian Constitution. These examples
have (̃n, M) = ((5,10), (5,4)) and (̃n, M) = ((2,8), (1,6)) as respective characteristic in-
variants.

2.4 Known enumerations for weighted games and for complete games

Let wg(n, t, r) be the number of weighted games with n players, t equivalence classes
N1, . . . ,Nt and r shift-minimal winning vectors. Let wg(n,∗, r)3 be the number of weighted
games with n players and r shift-minimal winning vectors (independently of the number of
equivalence classes, t ). Let wg(n, t,∗) be the number of weighted games with n players, and
t equivalence classes N1, . . . ,Nt (independently of the number of shift-minimal winning
vectors, r). We identify wg(n,∗,∗), i.e., the number of weighted games with n players
independently of the values of r and t , with simply wg(n). Analogous notations cg(n, t, r),
cg(n,∗, r), cg(n, t,∗) and cg(n) will be used for the respective enumerations of complete
games.

3More precisely, the notation wg(n,∗, r) stands for
∑n

t=1 wg(n, t, r).
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The first exact counting can at least be traced back to May (1952) which establishes the
number of symmetric or anonymous simple games. Any such game with n players admits a
weighted representation [q;1,1, . . . ,1

︸ ︷︷ ︸
n

] where q ∈ {1, . . . , n}.

Let wgsym(n), cgsym(n) and sgsym(n) be respectively the number of symmetric: weighted
games, complete games and, simple games with n players.

Theorem 2.3 wg(n,1,1) = cg(n,1,1) = n = wgsym(n) = cgsym(n) = sgsym(n).

The number of complete games with one shift-minimal winning vector was determined
in Freixas and Puente (1998), and a more refined result appears in Freixas and Puente (2008)
(parts 1 and 2 of the next result respectively).

Theorem 2.4

1. cg(n,∗,1) = 2n − 1,

2. cg(n, t,1) =

⎧
⎪⎨

⎪⎩

n, if t = 1,
(

n+1
2t−1

)
, if 2 ≤ t ≤ n

2 + 1,

0, otherwise.

Other formulas have been obtained quite recently. In Freixas et al. (2012b) we can find the
next enumeration, where F(n) are the Fibonacci numbers, which constitute a well-known
sequence of integer numbers defined by the following recurrence relation: F(0) = 0, F(1) =
1, and F(n) = F(n − 1) + F(n − 2) for all n > 1.

Theorem 2.5 cg(n,2,∗) = F(n + 6) − (n2 + 4n + 8).

Let us finally remark that a formula for cg(n,∗,2) is found in Kurz and Tautenhahn
(2012).

Theorem 2.6

cg(n,∗,2) =
n∑

t=1

cg(n, t,2)

= 2 · (4n + 2n
) ·

(

6 · 8n − 4n2 − 3

n(n − 3)

(
2n − 5

n − 4

)

+ 2n2 + 3n − 2

(n + 1)(n − 2)

(
2n − 3

n − 3

))

.

In Kurz and Tautenhahn (2012) it is proved that cg(n, t, r) is a quasi-polynomial in n,
if t and r are given, and can therefore be automatically computed (without escaping of the
problem of capacity limitations). The main purpose of Sect. 3 is to determine wg(n,∗,1) as
well as to obtain other related finer results.

2.5 Power indices

Informally a power index is a numerical measure that estimates the a priori capacity or
influence of each player in a simple game. Of course the notion of power is complex and has
been analyzed in depth by several authors. An interesting reference is the book by Morriss
(2002), which analyzes power from a philosophical point of view.
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Two prominent power indices are more recognized and used than others, and both known
power indices, and both of them are based on the notion of a swing. A coalition S is a swing
for i ∈ S if and only if S ∈ W but S \ {i} /∈ W . Let ci(N, W) denote the number of swings
of player i in game (N, W). Then the relative Banzhaf index (Banzhaf 1965) is defined as

Bzi(N, W) = ci(N, W)
∑

j∈N cj (N, W)

while the absolute Banzhaf index (Owen 1978) is defined as

Bz′
i (N, W) = ci(N, W)

2n−1
.

The Shapley-Shubik index (Shapley and Shubik 1954), which is the restriction of the well-
known Shapley (1953) value for cooperative games, can be expressed as a function of the
swings as follows. Let s be the cardinality of the swing S for i and cs

i (N, W) be the number
of swings for i for coalitions S of cardinality s. Then,

SSi(N, W) =
n∑

s=1

(s − 1)!(n − s)!
n! cs

i (N, W).

This less usual formulation of the Shapley-Shubik index will be helpful here for our pur-
poses. The Shapley-Shubik index of a player can be viewed as his/her expected part of a
fixed total prize, i.e., the power of a player is meant to be the player’s expected payoff.
Dubey and Shapley (1979) proved the following result.

Proposition 2.7 If (N, W) is any simple game then, for all i ∈ N , we have

(a) SSi(N, W) = SSi(N, W ∗).
(b) Bzi(N, W) = Bzi(N, W ∗) and Bz′

i (N, W) = Bz′
i (N, W ∗).

The fact that cs
i (N, W) = cs

i (N, W ∗) for all s = 1,2, . . . , n justifies (a) and implies that
ci(N, W) = ci(N, W ∗), which justifies (b), a property discovered by Dubey and Shapley
(1979).

3 Counting weighted games with minimum

If we consider a subgame of a weighted game when this game is stripped of its null and
veto players, then the original game is weighted if and only if the subgame is weighted and,
similarly, the original game is complete if and only if the subgame is complete, see e.g.,
Taylor and Zwicker (1999).

Let (̃n, M) be a complete game with t equivalence classes. By (̃n, M)↓ we denote
⎛

⎜
⎝(ns, . . . , ne),

⎛

⎜
⎝

m1,s . . . m1,e

...
. . .

...

mr,s . . . mr,e

⎞

⎟
⎠

⎞

⎟
⎠ ,

where s = 1 if there are no veto players, s = 2 if there are veto players (which would form
the strongest class), e = t if there are no null players, and e = t − 1 if there are null players
(which would form the weakest class). If all players of (̃n, M) have veto or are null players
(̃n, M)↓ is empty.

For instance, (̃n, M)↓ does not change for the system to amend the Canadian Constitu-
tion, i.e., (̃n, M)↓ = (̃n, M) = ((2,8), (1 6)), whereas (̃n, M)↓ reduces to ((10), (4)) for
the United Nations Security Council, because the five permanent members have veto right.
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Lemma 3.1 Let ŵg(n, t, r) be the number of non-trivial weighted games with t equivalence
classes N1, . . . ,Nt and r shift-minimal winning vectors. For r > 1 or t > 2 we have

wg(n, t, r) = ŵg(n, t, r) +
n−1∑

h=1

2 · ŵg(n − h, t − 1, r)

+ (h − 1) · ŵg(n − h, t − 2, r), (1)

where we define ŵg(n, t, r) = 0 for the non-feasible cases n < t or t < 1. For r = 1 and
t = 1 an additional 1 has to be added to the right hand side of Eq. (1), and for r = 1 and
t = 2 an additional term n − 1 has to be added to the right hand side of Eq. (1).

Proof Every weighted game arises from a non-trivial weighted game or an empty game by
appending h1 ≥ 0 veto players and h2 ≥ 0 null players. �

For r = 1 and arbitrary t the set of maximal losing vectors of complete games without
null players, i.e., with m1,t ≥ 1, was analytically given in Freixas and Puente (2008) (see
next lemma). As for r = 1 the first indices in vector m̃1 do not carry any information we
omit them.

Lemma 3.2 For a complete game
(
(n1, . . . , nt ), (m1 . . .mt )

)

without null players, i.e., with mt ≥ 1, the complete set of shift-maximal losing vectors is
given in the following matrix:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1,1 n2 n3 . . . nt

a2,1 a2,2 n3 . . . nt

a3,1 a3,2 a3,3 . . . nt

...
...

...
. . .

...

at−1,1 at−1,2 at−1,3 . . . nt

at,1 at,2 at,3 . . . at,t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=:
⎛

⎝

ã1
...

ãt

⎞

⎠ ,

where

ai,j := max

{

0,min

{

nj , −1 +
i∑

h=1

mh −
j−1∑

h=1

nh

}}

for 1 ≤ j ≤ i ≤ t .

Note that each vector ãi for 1 ≤ i ≤ t represents shift-maximal losing coalitions. Indeed,
these coalitions contain

∑i

j=1 mj − 1 strongest players (according to the desirability rela-
tion) and additionally they also contain the

∑t

j=i+1 nj weakest players, i.e., those players
that belong to the t − i weakest equivalence classes, from the (i + 1)th class to the t th last
class. If in one of these coalitions an additional player was added or a weaker player was
replaced by a stronger one, then the new vector b̃ representing the coalition would contain
at least

∑i

j=1 mj players for each 1 ≤ i ≤ t and therefore would be winning.
The conditions (i)–(iv) of Theorem 2.2(a) reduce to 1 ≤ m1 ≤ n1, 0 ≤ mt ≤ nt − 1, and

1 ≤ mh ≤ nh − 1 for all h such that 2 ≤ h ≤ t − 1. We remark that if a complete game with
r = 1 has null players, then the complete set of shift-maximal losing vectors is given by the
vectors in Lemma 3.2 except for the last vector ãt . We would like to remark too that ãt is
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a losing vector which is not maximal and that there is a typo in the remark of Freixas and
Puente (2008), i.e., the first row (instead of the last one) must be deleted.

Having an analytic description of the shift-maximal losing vectors at hand it is not too
hard to characterize the set of weighted games analytically. Indeed, already in Freixas (1997)
the non-trivial weighted games with r = 1, i.e., those having exactly one shift-minimal win-
ning vector, were completely classified.

Theorem 3.3 A non-trivial complete game (̃n, M) with r = 1 is a weighted game if and
only if either t = 1 or t = 2 and m2 ∈ {1, n2 − 1}.

Proof Due to Theorem 2.2 we can assume t ≥ 2. For t = 2 the shift-maximal losing vectors
are given by

(m1 − 1, n2) and (m1 + c,m2 − 1 − c),

where c = min(n1 − m1,m2 − 1). Choosing w1 = 1 we conclude

m1 + w2m2 > m1 − 1 + w2n2,

m1 + w2m2 > m1 + c + w2(m2 − 1 − c),

which is equivalent to w2 < 1
n2−m2

and (1 + c)w2 > c. If m2 = n2 − 1 or c = 0, which
is equivalent to m2 = 1, there exists a solution for w2. If m2 ≤ n2 − 2 and c ≥ 1 the two
inequalities are contradicting.

Now we consider the remaining cases t ≥ 3. Here the vectors

(m1 − 1, n2, . . . , nt ), and (m1 + 1,m2 − 1,m3 − 1, n4, . . . , nt )

are losing vectors (the second not necessarily shift-maximal). Thus for w1 = 1 we have

m1 +
t∑

j=2

wjmj > m1 − 1 +
t∑

j=2

wjnj ,

m1 +
t∑

j=2

wjmj > m1 + 1 + w2(m2 − 1) + w3(m3 − 1) +
t∑

j=4

wjnj ,

from which we conclude 1 > w2 + w3 and w2 + w3 > 1, which is a contradiction. �

Thus together with Lemma 3.1 and Theorem 2.3 we can conclude:

Theorem 3.4 For n ≥ 1 we have

w̃g(n,1,1) = n − 1,

w̃g(n,2,1) =
{

0 if n ≤ 2,

n2 − 6n + 9 if n ≥ 3,

w̃g(n, t,1) = 0 if t ≥ 3,

wg(n,1,1) = n,

wg(n,2,1) =
{

n − 1 if n ≤ 2,

2(n − 2)2 + 2 if n ≥ 3,

wg(n,3,1) =
{

0 if n ≤ 3,
5n3−48n2+157n−174

6 if n ≥ 4,
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wg(n,4,1) =
{

0 if n ≤ 5,
n4−16n3+95n2−248n+240

12 if n ≥ 6,

wg(n, t,1) = 0 if t ≥ 5.

Adding up the previous enumerations we get the following compact expression for the
total number of weighted games with a unique shift-minimal winning vector.

Corollary 3.5

wg(n,∗,1) =
{

2n − 1 if n ≤ 5,
n4−6n3+23n2−18n+12

12 if n ≥ 6.

Thus, the numbers of weighted games wg(n,∗,1) and complete games cg(n,∗,1) (see
Theorem 2.4) coincide for n ≤ 5 players, but their ratio converges to zero as n increases.
An asymptotic upper bound for weighted games is given in de Keijzer et al. (2010) and an
asymptotic lower bound for complete games is given in Peled and Simeone (1985), where
these games are called regular Boolean functions. Many useful and accurate asymptotic
estimations for simple games and subclasses of them are provided in Korshunov (2003).

4 Analysis of voting power for bipartite complete games with minimum

Many papers have been devoted to study classes of games for which two or more power
indices provide the same rankings in every game of such classes, see e.g., Diffo Lambo and
Moulen (2002), Carreras and Freixas (2008), Freixas (2010). However, as far as we know,
very little has been studied about comparisons of different games depending on how a given
power index acts on them.

In this section we will consider complete games with two types of equivalent players and
with only one shift-minimal winning vector. For these games we will give explicit formulas
to calculate some efficient power indices. Since the games have only two types of equivalent
players and the considered power indices are efficient, it will be possible to totally rank
these games according to the behavior of the power index on players that belong to a fixed
class. Of course, the order obtained considering the power over a type of players for bipartite
complete games with games with minimum is reversed if the power index is evaluated over
players that belong to the other equivalence class.

An important tool to this purpose is monotonicity in Young’s (1985) sense which was
used to give a characterization of the Shapley value that avoids additivity. If we assume a
fixed set of players N we write WBi W ′ whenever if S is a swing for i in W ′ then S is a
swing for i in W . Relation Bi allows us to qualitatively compare the position of a given
player i in two games. However, we do not see a direct application of such a monotonicity
for most of the cases we are going to study.

4.1 Allowable rankings for the Shapley-Shubik index

The main purpose of this subsection is to study the allowable hierarchies that the Shapley-
Shubik index produces when applied to different bipartite complete (t = 2) games with
minimum (r = 1). We also illustrate the difficulty to extend similar results for other power
indices.
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Proposition 4.1 Let (̃n, M) be a complete game with ñ = (n1, n2) and M = (a b), where
a ≥ 1 and b ≤ n2 − 1.

(1) For a player of type 1 the number of coalitions where he is a swing player is given by

c1 =
n2∑

i=b+1

(
n1 − 1

a − 1

)

·
(

n2

i

)

+
min{b,n1−a}∑

i=0

(
n1 − 1

a + i − 1

)

·
(

n2

b − i

)

.

(2) For a player of type 2 the number of coalitions where he is a swing player is given by4

c2 =
min{b−1,n1−a}∑

i=0

(
n1

a + i

)

·
(

n2 − 1

b − i − 1

)

.

(3) The Shapley-Shubik power index SS1(a, b,n1, n2) of a player of type 1 is given by

1

n! ·
n2∑

i=b+1

(
n1 − 1

a − 1

)

·
(

n2

b

)

· (a + i − 1)! · (n − a − i)!

+ (a + b − 1)! · (n − a − b)!
n! ·

min{b,n1−a}∑

i=0

(
n1 − 1

a + i − 1

)

·
(

n2

b − i

)

.

(4) The Shapley-Shubik power index SS2(a, b,n1, n2) of a player of type 2 is given by

(a + b − 1)! · (n − a − b)!
n! ·

min{b−1,n1−a}∑

i=0

(
n1

a + i

)

·
(

n2 − 1

b − i − 1

)

.

(5) For b ≥ 1 we have

SS2(a, b,n1, n2) − SS2(a, b − 1, n1, n2)

= (a + b − 2)! · (n − a − b)! · n1 · (n1−1
a−1

) · (n2−1
b−1

)

n! > 0.

(6) For a ≥ 2 we have

SS2(a − 1, b, n1, n2) − SS2(a, b,n1, n2)

=
⎧
⎨

⎩

0, if b = 0,

(a + b − 2)! · (n − a − b)! · (n2 − 1) · ( n1
a−1

) · (n2−2
b−1

)

n! , if b ≥ 1.

Proof (1) The vectors representing coalitions where a player of type 1 is a swing player
are given by (a, b + 1), (a, b + 2), . . . , (a,n2) and (a, b), (a + 1, b − 1), (a + 2, b − 2),
. . . , (c, d) where:

(c, d) =
{

(a + b,0), if a + b ≤ n1,

(n1, a + b − n1), otherwise.

The number of swings for a player of type 1 for an arbitrary vector (x, y) is:
(
n1−1
x−1

) · (n2
y

)
.

(2) The vectors representing coalitions where a player of type 2 is a swing player are
given by (a, b), (a + 1, b − 1), (a + 2, b − 2), . . . , (e, f ) where:

(e, f ) =
{

(a + b − 1,1), if a + b ≤ n1,

(n1, a + b − n1), otherwise.

4Unfortunately we cannot apply Vandermonde’s identity
∑k

j=0
(m
j

)( n
k−j

) = (m+n
k

)
directly.
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The number of swings for a player of type 2 for an arbitrary vector (x, y) with y > 0 is:(
n1
x

) · (n2−1
y−1

)
.

(3)–(4) These results follow from the definition given in this paper for the Shapley-
Shubik index and parts (1)–(2) respectively. (5) For n1 − a ≤ b − 2 we have

SS2(a, b,n1, n2) − SS2(a, b − 1, n1, n2)

= (a + b − 2)!(n − a − b)!
n!

·
[

n1−a∑

i=0

(
n1

a + i

)(
n2 − 1

b − i − 1

)(

a + b − 1 − (n − a − b + 1)(b − i − 1)

n2 − b + i + 1

)]

and for n1 − a ≥ b − 1 we have:

SS2(a, b,n1, n2) − SS2(a, b − 1, n1, n2)

= (a + b − 2)!(n − a − b)!
n! ·

[

(a + b − 1)

b−1∑

i=0

(
n1

a + i

)(
n2 − 1

b − i − 1

)

− (n − a − b + 1)

b−2∑

i=0

(
n1

a + i

)(
n2 − 1

b − i − 2

)]

,

both of which can be simplified to the stated expression.
(6) Similar to (5). �

Corollary 4.2

1. For a given vector (n1, n2) let ((m1,m2)) and ((m′
1,m

′
2)) be two different complete sim-

ple games, i.e., 0 < m1,m
′
1 ≤ n1 and 0 ≤ m2,m

′
2 < n2. If m1 ≥ m′

1 and m2 ≤ m′
2 then

SS2(m1,m2) ≤ SS2(m
′
1,m

′
2) and SS1(m1,m2) ≥ SS1(m

′
1,m

′
2), where equality holds if

and only if m2 = m′
2 = 0.

2. For a given vector (n1, n2):

1

n
< SS1(1, n2 − 1) ≤ SS1(m1,m2) ≤ SS1(n1,1) < SS1(c,0) = 1

n1
(2)

where c is any integer number between 1 and n1.
Inequalities (2) imply

1

n
> SS2(1, n2 − 1) ≥ SS2(m1,m2) ≥ SS2(n1,1) > SS2(c,0) = 0

where c is any integer number between 1 and n1.

Remark 4.3 We have implemented a computer program which can determine the Banzhaf
and the Shapley-Shubik power index for bipartite complete games with minimum. For the
case n1 = 3, n2 = 7 we have the following ordering with respect to SS1:

(3,0) = (2,0) = (1,0) > (3,1) > (3,2) > (2,1) > (3,3)

> (2,2) > (3,4) > (1,1) > (2,3) > (3,5) > (1,2) > (2,4)

> (3,6) > (1,3) > (2,5) > (1,4) > (2,6) > (1,5) > (1,6).
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Note that, in general, for an arbitrary pair (n1, n2) the rankings of some games with
respect to SS1 or Bz1 (printed in bold in the previous example) are fixed. We refer to the
games of type (c,0) for c > 0 which are always tied among them and situated on the top
of the ranking and, oppositely, the game (1, n2 − 1) which is always situated at the bottom
of the ranking. These extreme games are highlighted in black in the previous example for
n1 = 3, n2 = 7. Additionally, Corollary 4.2 provides some constraints on the rankings of the
different games with respect to SS1 or Bz1:

1. leaving the first component fixed:
(3,1) > (3,2) > (3,3) > (3,4) > (3,5) > (3,6);
(2,1) > (2,2) > (2,3) > (2,4) > (2,5) > (2,6); and
(1,1) > (1,2) > (1,3) > (1,4) > (1,5) > (1,6).

2. leaving the second component fixed:
(3,1) > (2,1) > (1,1); (3,2) > (2,2) > (1,2); (3,3) > (2,3) > (1,3);
(3,4) > (2,4) > (1,4); (3,5) > (2,5) > (1,5) and (3,6) > (2,6) > (1,6).

Taking into account all these restrictions we have that for the given hierarchy n = (3,7)

we have 13 weighted games, three of which are of type (c,0) and give the maximum value
1/n1 = 1/3 for the SS1 to three most powerful players; the ranking of all other games with
respect to SS1 is strict so that there are, in principle, 10! potential strict orderings for the
power of SS1 over the set of these games, but Corollary 4.2 guarantees that at most 12 of
these rankings are possible.

4.2 Comparisons for the two Banzhaf indices

As we shall see in this section, we find for the relative Banzhaf index a similar result to that
one obtained for the Shapley-Shubik index (for less than 100 players), while it fails for the
absolute Banzhaf index.

The relative Banzhaf power index Bz1(a, b,n1, n2) of a player of type 1 is given by
c1

n1 · c1 + n2 · c2
.

The relative Banzhaf power index Bz2(a, b,n1, n2) of a player of type 2 is given by
c2

n1 · c1 + n2 · c2
.

The absolute Banzhaf power index Bz′
1(a, b,n1, n2) of a player of type 1 is given by

c1

2n−1
.

The absolute Banzhaf power index Bz′
2(a, b,n1, n2) of a player of type 2 is given by

c2

2n−1
.

Remark 4.4 For the Banzhaf absolute power index, Corollary 4.2 is wrong, and an example
is given by n = 4, n1 = n2 = 2 and the games ((2,1)), ((1,1)) with Banzhaf values ( 3

8 , 1
8 ),

( 4
8 , 2

8 ), respectively. Another example is given by n = 7, n1 = 3, n2 = 4 and the games
((3,1)) and ((2,2)) with absolute Banzhaf indices ( 15

64 , 1
64 ), ( 26

64 , 10
64 ), respectively.

Example 4.5 (Ties) Let us consider the equality case in Corollary 4.2 for the relative
Banzhaf power index, i.e., where the powers sum up to 1. For m2 = m′

2 = 0 equality holds.
Other examples are given by
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• n = 7, n1 = 3, and the games ((3,3)), ((1,2)) with Banzhaf numerators (5,3), (20,12),
• n = 8, n1 = 2, and the games ((2,5)), ((1,4)) with Banzhaf numerators (7,5), (42,30),
• n = 9, n1 = 6, and the games ((6,2)), ((1,1)) with Banzhaf numerators (4,2), (12,6),
• n = 13, n1 = 5, and the games ((5,7)), ((2,5)) with Banzhaf numerators (9,7),

(1044,812),
• n = 13, n1 = 9, and the games ((6,2)), ((1,1)) with Banzhaf numerators (736,288),

(23,9).

These are all examples where (m1,m2) > (m′
1,m

′
2) or (m1,m2) < (m′

1,m
′
2). If we assume

m1 ≥ m′
1 and m2 ≤ m′

2 then there is no further example for n ≤ 32.

Remark 4.6 For the relative Banzhaf power index Corollary 4.2 is true for all n ≤ 100.

This suggests to ask whether Corollary 4.2 is true for the relative Banzhaf index for all n.

Conjecture 4.7

(1) For b ≥ 1 we have Bz2(a, b,n1, n2) − Bz2(a, b − 1, n1, n2) > 0.
(2) For a ≥ 2 we have Bz2(a − 1, b, n1, n2) − Bz2(a, b,n1, n2) ≥ 0 which equals zero for

b = 0 and otherwise it is positive.

It would imply a corollary analogous to Corollary 4.2.

Corollary 4.8

1. For a given vector (n1, n2) let ((m1,m2)) and ((m′
1,m

′
2)) be two different complete sim-

ple games, i.e., 0 < m1,m
′
1 ≤ n1 and 0 ≤ m2,m

′
2 < n2. If m1 ≥ m′

1 and m2 ≤ m′
2 then

Bz2(m1,m2) ≤ Bz2(m
′
1,m

′
2) and Bz1(m1,m2) ≥ Bz1(m

′
1,m

′
2), where equality holds if

and only if m2 = m′
2 = 0.

2. For a given vector (n1, n2):

1

n
< Bz1(1, n2 − 1) ≤ Bz1(m1,m2) ≤ Bz1(n1,1) < Bz1(c,0) = 1

n1
(3)

where c is any integer number between 1 and n1.
Inequalities (3) imply

1

n
> Bz2(1, n2 − 1) ≥ Bz2(m1,m2) ≥ Bz2(n1,1) > Bz2(c,0) = 0

where c is any integer number between 1 and n1.

However, the ranking over different games for Shapley-Shubik and relative Banzhaf in-
dex are not necessarily the same, as the following example illustrates.

Example 4.9 For the case n1 = 3, n2 = 7 we have checked the following rankings with
respect to Bz1:

(3,0) = (2,0) = (1,0) > (3,1) > (2,1) > (1,1) > (3,2)

> (2,2) > (3,3) > (1,2) > (2,3) > (3,4) > (1,3) > (2,4)

> (3,5) > (2,5) > (1,4) > (3,6) > (2,6) > (1,5) > (1,6).
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This ranking of different games with vector ñ = (3,7) does not coincide with the ranking
obtained for the SS1 but, restricted to weighted games, it is one of the 12 expected rankings
for the SS1 according to Corollary 4.2.

Remark 4.10 One might conjecture that Corollary 4.2 holds for some effective generalized
power indices as for example semivalues. Semivalues for simple games (or power semi-
indices) are uniquely determined as those power indices that satisfy: symmetry, positivity,
dummy player property and transfer (see Carreras et al. 2003) and with specific coefficients
{pj }n

j=1 such that
∑n

j=1 pj

(
n−1
j−1

) = 1 and pj ≥ 0 for all j . The absolute Banzhaf power index

is given by pj = 1/2n−1 for all 1 ≤ j ≤ n and the Shapley-Shubik power index is given by
pj = 1

n(n−1
j−1)

. The (unnormalized) power, SV , of player i is given by

SV (i) :=
n∑

i=1

p|S| · cs
i ,

where |S| = s.
Let us consider the following example: n = 10, n1 = 7, and the games ((7,1)) and

((1,2)) with power index numerators (3p7 + 3p8 + p9,p7), (36p2 + p3,35p2). This ex-
ample is a counterexample to Corollary 4.8 if and only if

207p2p7 + 315p2p8 + 105p2p9 − 3p3p7 < 0.

If we assume pj = pn−j−1 then this is equivalent to

p2 · (105p0 + 325p1 + 207p2 − 3p3) < 0,

and thus it is possible.

5 Results preserved by duality

This section establishes a simple but significant result on enumerations and highlights that
the results obtained in the previous section about power indices are preserved by duality.

Let us recall that the dual game of (N, W) is (N, W ∗) where: W ∗ = {S ⊆ N : N \
S /∈ W}. Then it is not difficult to check the following:

Lemma 5.1

(i) (N, W) is weighted if and only if (N, W ∗) is weighted, and if [q;w1, . . . ,wn] is an
integer representation for (N, W) then [T − q + 1;w1, . . . ,wn] is an integer represen-
tation for (N, W ∗) where T = ∑n

i=1 wi and vice versa.
(ii) i � j if and only if i �∗ j where �∗ stands for the desirability relation for game

(N, W ∗). Thus, (N, W) is complete if and only if (N, W ∗) is complete, and the
≈-classes Ni for (N, W) and its ordering N1 > N2 · · · > Nt are preserved by �∗, i.e.,
(N, W) and (N, W ∗) have the same ranking ñ.

(iii) The complete game (N, W) has the vector ñ = (n1, . . . , nt ) ∈ N
t
>0 and the matrix

M =

⎛

⎜
⎜
⎝

m1,1 m1,2 . . . m1,t

m2,1 m2,2 . . . m2,t

...
...

. . .
...

mr,1 mr,2 . . . mr,t

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

m̃1

m̃2
...

m̃r

⎞

⎟
⎟
⎠
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as characteristic invariants (hence, fulfilling properties (1)–(4) in Theorem 2.2) and
matrix

L =

⎛

⎜
⎜
⎝

l1,1 l1,2 . . . l1,t

l2,1 l2,2 . . . l2,t

...
...

. . .
...

ls,1 ls,2 . . . ls,t

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎝

l̃1

l̃2
...

l̃s

⎞

⎟
⎟
⎟
⎠

of shift-maximal losing vectors if and only if the complete game (N, W ∗) has vector
ñ = (n1, . . . , nt ) ∈ N

t
>0 and matrix

M∗ =

⎛

⎜
⎜
⎝

n1 − ls,1 n2 − ls,2 . . . nt − ls,t
n1 − ls−1,1 n2 − ls−1,2 . . . nt − ls−1,t

...
...

. . .
...

n1 − l1,1 n2 − l1,2 . . . nt − l1,t

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎝

m̃∗
1

m̃∗
2

...

m̃∗
s

⎞

⎟
⎟
⎟
⎠

as characteristic invariants (hence, fulfilling properties (1)–(4) in Theorem 2.2(a)) and
matrix

L∗ =

⎛

⎜
⎜
⎝

n1 − mr,1 n2 − mr,2 . . . nt − mr,t

n1 − mr−1,1 n2 − mr−1,2 . . . nt − mr−1,t

...
...

. . .
...

n1 − m1,1 n2 − m1,2 . . . nt − m1,t

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎝

l̃∗1
l̃∗2
...

l̃∗r

⎞

⎟
⎟
⎟
⎠

of shift-maximal losing vectors.

Let cg(n, t, r) be the number of complete games with n players, with t equivalence
classes and r shift-maximal losing vectors and similar notation for: cg(n,∗, r), wg(n, t, r)

and wg(n,∗, r). Lemma 5.1 allows us to deduce the next corollary and describes how the
bijection for characteristic invariants works.

Corollary 5.2 cg(n, t, r) = cg(n, t, r) and wg(n, t, r) = wg(n, t, r).

The application of this Corollary and the results on enumerations in Sects. 2 and 3 to
games with one shift-maximal losing vector gives the enumerations for complete games and
for weighted games respectively. An analogous version of Theorem 2.4 is given by

Corollary 5.3

1. cg(n,∗,1) = 2n − 1,

2. cg(n, t,1) =
⎧
⎨

⎩

n, if t = 1,(
n+1
2t−1

)
, if 2 ≤ t ≤ n

2 + 1,

0, otherwise.

An analogous version of Corollary 3.5 is given by

Corollary 5.4

wg(n,∗,1) =
{

2n − 1, if n ≤ 5,
n4−6n3+23n2−18n+12

12 , if n ≥ 6.
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Due to Proposition 2.7 and Lemma 5.1 it follows that the results in Sect. 4 for the
Shapley-Shubik index extend to complete games with one-shift maximal losing vector, since
for any given (n1, n2) and M = (a b), the dual game is given by the same vector and ma-
trix L∗ = (n1 − a n2 − b) which corresponds to matrix M∗ where:

(i) M∗ = (n1 − a + 1 0) if b = 0, otherwise:

(ii) M∗ = (
n1−a+1 0

n1−a−b+1 n2
) if a + b − 1 ≤ n1,

(iii) M∗ = (
n1−a+1 0

0 n−a−b+1
) if a + b − 1 > n1.

Thus Proposition 4.1 has a simple analogue, and therefore Corollary 4.2 has a simple ana-
logue too. The conjecture stated for the relative Banzhaf index derived for the computation
up to 100 players is also open in this dual context.

6 Future work

Any progress concerning enumeration of games, like cg(n, t, r) or wg(n, t, r), will be a
significant advance in both directions: either providing new formulas or providing tighter
bounds. In Kurz and Tautenhahn (2012) it is proved that cg(n, t, r) is a quasi-polynomial
in n, if t and r are given, and can therefore be automatically computed (without escaping of
the problem of capacity limitations). We wonder whether these automatic computations can
be performed for the number wg(n, t, r) of weighted games.

We also encourage research in other classes of simple games. For instance, roughly
weighted games (considered in Taylor and Zwicker 1999 and extensively studied in
Gvozdeva and Slinko 2011) which are complete, i.e., roughly weighted complete games
with n players and t types of equivalent players to determine rcg(n, t, r).

As a future research concerning Sect. 4 (and 5) it would be nice to find the proofs of our
Conjectures 4.7 and 4.8. It seems likely that these conjectures are true since they hold for
games with less than 100 players. It would also be of interest to know whether the Shapley-
Shubik power index is the unique semiindex (semivalue restricted to simple games) that
satisfies Corollary 4.2.
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