
Ann Oper Res (2013) 209:207–230
DOI 10.1007/s10479-013-1333-4

Two-stage stochastic lot-sizing problem under cost
uncertainty

Zhili Zhou · Yongpei Guan

Published online: 27 February 2013
© Springer Science+Business Media New York 2013

Abstract For production planning problems, cost parameters can be uncertain due to mar-
keting activities and interest rate fluctuation. In this paper, we consider a single-item two-
stage stochastic lot-sizing problem under cost parameter uncertainty. Assuming cost param-
eters will increase or decrease after time period p each with certain probability, we min-
imize the total expected cost for a finite horizon problem. We develop an extended linear
programming formulation in a higher dimensional space that can provide integral solutions
by showing that its constraint matrix is totally unimodular. We also project this extended
formulation to a lower dimensional space and obtain a corresponding extended formulation
in the lower dimensional space. Final computational experiments demonstrate that the ex-
tended formulation is more efficient and performs more stable than the two-stage stochastic
mixed-integer programming formulation.

Keywords Polyhedral combinatorics · Integer programming · Lot-sizing · Stochastic
programming

1 Introduction

The traditional single-item uncapacitated lot-sizing problem (see, e.g., Wagner and Whitin
1958 and Nemhauser and Wolsey 1999) is to determine a production plan for a product
to satisfy demands in a finite time horizon (e.g., T time periods) while minimizing total
costs that include setup, production, and inventory holding costs. In certain practice, de-
mands can maintain to be deterministic and cost parameters are uncertain. For instance, for
several cases shown in Heikkilä (2002), manufactures obtain deterministic demand infor-
mation when a good relationship is maintained with customers. In addition, long life circle

Z. Zhou
IBM Research Collaboratory, IBM, Singapore 486048, Singapore
e-mail: zhili@sg.ibm.com

Y. Guan (�)
Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA
e-mail: guan@ise.ufl.edu

mailto:zhili@sg.ibm.com
mailto:guan@ise.ufl.edu

208 Ann Oper Res (2013) 209:207–230

products and customized products provide deterministic demand information as well. For
instance, in the chemical industry, a company produces mainly functional products, which
are defined as ones that have long product life cycles and deterministic demands (see, e.g.,
Lee and Chen 2005). In the furniture industry, a portion of a company’s products are built
after the company gets orders from customers. Under these situations, the demand can be
easily forecasted accurately. However, the cost parameter forecast may need to be adjusted
monthly or quarterly. The cost parameter uncertainty can come from different ways. In the
business environment, when manufacturers purchase materials and resources from upper-
stream suppliers, the purchasing cost varies with the upper-stream marketing activities such
as promotions (see, e.g., Narasimhan 1988 and Simester 1997). Because promotions are
marketing tools of the upper-stream suppliers, they are uncertain and directly reflected as
the production cost for the lower-stream manufacturers. When a promotion happens, the
production cost for the lower-stream manufacturers will change accordingly. In addition, the
interest rate and currency exchange rate fluctuations also increase or decrease the production
costs of manufacturers, especially in the global business environment (see, e.g., Campa and
Goldberg 2005).

Motivated by the above problem settings, in this paper we concentrate on studying pro-
duction planning problems under cost parameter uncertainty, and in particular, analyzing the
mathematical insights of a special case, e.g., a single-item problem. We study the single-item
lot-sizing problem in which cost parameters after a given time period (e.g., time period p)
will be uncertain and follow a discrete probability distribution with finite support. We for-
mulate the problem as a two-stage multi-period stochastic integer program, which is an
extension of the single-item deterministic uncapacitated lot-sizing problem. There has been
extensive research on the deterministic lot-sizing problems. A survey of results and solution
approaches are described in Pochet and Wolsey (2006). In the following literature review
part, we focus on convex hull description and extended formulation studies on single-item
lot-sizing problems for both deterministic and stochastic cases.

For the single-item deterministic uncapacitated lot-sizing problem, the convex hull de-
scription has been derived in Barany et al. (1984). In Pochet and Wolsey (1988), the first
polyhedral study is performed for this problem with backlogging, and the convex hull
description for this problem with backlogging is described in Küçükyavuz and Pochet
(2007). In addition, Wagelmans et al. (1992) introduced the Wagner-Whitin costs, i.e.,
αi + h′

i ≥ αi+1, b′
i + αi+1 ≥ αi with 1 ≤ i ≤ T − 1, where αi , h′

i and b′
i are unit produc-

tion, inventory, and backlogging costs for time period i, and implemented an O(T) time
dynamic programming algorithm to solve the problem. Accordingly, Pochet and Wolsey
(1994) developed an extended formulation for the single-item Wagner-Whitin cost case with
O(T 2) constraints when backlogging is not considered, and with O(2T) constraints plus an
O(T 2 logT) time separation algorithm when backlogging is considered.

For the single-item stochastic uncapacitated lot-sizing problem (SULS), most recent re-
search works focus on developing efficient algorithms. The first polynomial time algorithm
was studied in Guan and Miller (2008). Huang and Ahmed (2009) considered the case with-
out setup cost and developed primal and dual algorithms for a multi-stage stochastic linear
programming formulation for the problem. The computational complexity of the proposed
algorithm is shown within O(N2), where N is the number of nodes in the scenario tree.
Huang and Küçükyavuz (2008) considered the variation of the problem with the consider-
ation of random lead times, and developed a dynamic programming algorithm that runs in
O(N3) time. Recently, Jiang and Guan (2011) improves Huang and Küçükyavuz (2008)’s
algorithm to be O(N2) time. The reformulation for the problem was originally introduced
in Ahmed et al. (2003). Later on, in Guan et al. (2006a), the extended (strong) formulation

Ann Oper Res (2013) 209:207–230 209

approach was proved to be equivalent to adding the (�, S) inequalities in the original formu-
lation, in terms of providing LP lower bounds. However, both approaches could not provide
integral solutions for SULS. Thus, efficient cutting planes (see, e.g., Guan et al. 2006b;
Summa and Wolsey 2008) have been studied for its deterministic equivalent scenario tree
based reformulation. An extended formulation that provides integral solutions for SULS up
to now is only for two-period cases, which was developed in Guan et al. (2006a). Other
related research works are referred to Feiringa and Sastri (1990), Ahmed and Garcia (2003),
Terkaj and Tolio (2006), and Zanjania et al. (2010).

In this paper, we study the extended formulation of two-stage stochastic lot-sizing prob-
lem with backlogging and uncertain cost parameters. Compared with SULS without back-
logging, SULS with backlogging is more complicated with more flexibility to satisfy de-
mands. First, we develop an extended formulation in a higher dimensional space that can
provide integral solutions by showing that its constraint matrix is totally unimodular. Sec-
ond, we project this extended formulation to a lower dimensional space and obtain a corre-
sponding extended formulation in the lower dimensional space. In other words, we provide
an alternative linear formulation with more decision variables for the two-stage stochastic
lot-sizing problem that can provide integral solutions. For the computational performance,
we first report the value of the stochastic solution of our proposed two-stage multi-period
stochastic integer program. Then, instead of solving a stochastic mixed-integer program-
ming problem, the SULS with backlogging problem is directly solved as a linear program,
which improves the computational efficiency and performs stably for different sizes of test
instances.

This paper contributes to expanding the study of extended formulations for the determin-
istic lot-sizing problem to the two-stage stochastic programming setting. It provides one of
the first studies on extended formulations for the stochastic lot-sizing problems. In addition,
the SULS with backlogging is a subproblem of multi-item stochastic lot-sizing problems.
The extended formulation of SULS with backlogging could help simplify the subproblem
for multi-item stochastic lot-sizing problems and analyze their polyhedral structures. The
extended formulation can also be embedded into the decomposition framework (e.g., the
Lagrange relaxation decomposition) to speed up solving large scale production planning
under uncertainty problems.

The remaining part of this paper is organized as follows: In Sect. 2, we define the Wagner-
Whitin cost condition for the two-stage stochastic lot-sizing problem. We also discover the
optimality condition and use it to generate an extended formulation in a higher dimensional
space. We prove that the constraint matrix for the extended formulation is totally unimodular.
In Sect. 3, we project the extended formulation back to a lower dimensional space such
that we can find valid inequalities that can describe the convex hull of the problem in the
lower dimensional space. In Sect. 4, we report the computational results and demonstrate
the efficiency of the proposed extended formulation. Finally, in Sect. 5, we conclude our
research.

2 Mathematical formulation

In this section, we first provide the list of notation in the following table. The detailed ex-
planation will be provided when we introduce them.

As described in the introduction part, we assume the cost parameters for period 1 to a
given period (defined as period p) are deterministic. After the given period (i.e., period p),

210 Ann Oper Res (2013) 209:207–230

cost parameters are uncertain and follow a discrete probability distribution with finite sup-
port. The corresponding two-stage multi-period stochastic lot-sizing problem can be formu-
lated as follows (cf. Birge and Louveaux 1997):

min
p∑

i=1

(
αixi + β ′

izi + h′
i si + b′

i�i

)+ Eξ Q
(
x, z, s, �, ξ(w)

)

s.t. xi + si−1 + �i = di + si + �i−1, 1 ≤ i ≤ p

xi ≤ Mzi, 1 ≤ i ≤ p

xi, si, �i ≥ 0, zi ∈ {0,1}, 1 ≤ i ≤ p

where

Q
(
x, z, s, �, ξ(w)

)

= min
x2,z2,s2,�2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T∑

i=p+1

⎛

⎜⎜⎜⎜⎝

αi(w)x2
i (w)

+β ′
i (w)z2

i (w)

+h′
i (w)s2

i (w)

+b′
i (w)�2

i (w)

⎞

⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣

x2
i (w) + s2

i−1(w) + �2
i (w) = di + s2

i (w) + �2
i−1(w)

x2
i (w) ≤ Miz

2
i (w)

x2
i (w), s2

i (w), �2
i (w) ≥ 0, z2

i (w) ∈ {0,1}
t (p) + 1 ≤ t (i) ≤ T

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Note here as indicated in Table 1, t (i) represents the time period of node i and s2
i−1(w) = sp

if t (i − 1) = t (p). Decision variables (zi, xi, si , �i) and (z2
i (w), x2

i (w), s2
i (w), �2

i (w)) repre-
sent the setup decision, production level, inventory level, and backlogging level on the first
and second stages, respectively. The corresponding cost parameters are (β ′, α,h′, b′

i) and
(β ′(w),α(w),h′(w), b′

i (w)). Parameter di represents the demand in time period i, which is
deterministic.

After exploring possible realizations of the second-stage random variables (β ′
i , αi, h

′
i , b

′
i),

we can generate a two-stage stochastic scenario tree for the problem as shown in Fig. 1.
Nodes 1, . . . , p are the first-stage nodes and nodes q1, . . . , �W are the second-stage nodes,
where the branching node p connects the first and the second stages and is unique on the
scenario tree. Assuming there are W possible scenarios, as listed in Table 1, we let Pw , 1 ≤
w ≤ W , represent the branch where scenario w happens and accordingly let ρw , 1 ≤ w ≤ W ,
represent the probability that scenario w will happen. Since there is no demand uncertainty,
we have di = dt(i) ≥ 0 for the second-stage nodes as well. We let V represent the set of nodes
in the scenario tree, V(i) represent the set of nodes which are descendants of node i, P(i, j)

represent the set of nodes on the path from node i to node j , and P i
t (w) represent the set

of nodes on the path from node i to node j , which is on Pw and t (j) = t . For brevity, we
let P(j) represent the set of nodes on the path from the root node to node j . We let C(i)

represent the set of children of node i and L represent the set of leaf nodes. Finally, we
let W(i) represent the set of scenarios that will occur after node i. For instance, if i ≤ p,
then W(i) = {1, . . . ,W }; otherwise, if t (i) ≥ t (p) + 1, then W(i) contains a single element
w such that i ∈ Pw . The deterministic equivalent formulation of the two-stage stochastic
lot-sizing under cost uncertainty problem, referred to as two-stage stochastic lot-sizing with
backlogging (SULSB), can be described as follows:

min
p∑

i=1

(
αixi + β ′

izi + h′
i si + b′

i�i

)+
W∑

w=1

ρw

[∑

i∈Pw,t (i)≥t (p)+1

(
αixi + β ′

izi + h′
i si + b′

i�i

)]

(SULSB)

s.t. xi + sa(i) + �i = di + si + �a(i), i ∈ V,

xi ≤ Mizi, i ∈ V,

xi, si , �i ≥ 0, zi ∈ {0,1}, i ∈ V,

Ann Oper Res (2013) 209:207–230 211

Table 1 Notation for two-stage SULS with backlogging

Notation Representation

V The set of nodes in the scenario tree

V (i) The set of descendants of node i

C(i) The set of children of node i

P (i, j) The set of nodes on the path from nodes i to j

P (j) The set of nodes on the path from the root node to node j

L The set of leaf nodes

W The set of scenarios

W(i) The set of scenarios that will occur after node i

Pω The set of nodes on the branch corresponding to scenario ω

pω The probability for the scenario ω to happen

t (i) The time index of node i

p The index for the branching node

a(i) The parent node of node i

(β ′
i
, αi , h

′
i
, b′

i
) The setup and unit production, inventory, and backlogging costs on the

first stage

(β ′
i
(ω),αi (ω),h′

i
(ω), b′

i
(ω)) The setup and unit production, inventory, and backlogging costs on the

second stage

di The demand in time period i

(zi , xi , si , �i) The setup decision and production, inventory, and backlogging levels
on the first stage

(z2
i
(ω), x2

i
(ω), s2

i
(ω), �2

i
(ω)) The setup decision and production, inventory, and backlogging levels

on the second stage

fi , gi The auxiliary decision variables to indicate whether node i is stocked
and backlogged

mi
t , ni

t The auxiliary decision variables to indicate if inventory or backlogging
from node i covers up to time period t

ψ(i) The time period of the earliest descendant of node i which is set up or
backlogged, i.e., ψ(i) = min{t (j) : zj = 1 or gj = 1, j ∈ V (i) \ {i}}

η(i, t) The ancestor node of node i at time t

ξ(i, t,ω) The descendant of node i at time period t and at the branch correspond-
ing to scenario ω

Fig. 1 The scenario tree for the
two-stage SULSB

where (xi, si, �i , zi) presents the decision variables for node i and, as indicated in Table 1,
a(i) is the parent node of node i. Without loss of generality, we assume s0 = 0, �0 = 0, and
tighten Mi = ∑T

t=t (i) dt .

212 Ann Oper Res (2013) 209:207–230

Now, we study the optimal solution forms of inventory and backlogging levels for the
two-stage SULSB with Wagner-Whitin costs (defined as SULSB-WW) and generate a refor-
mulation which can describe the integral polyhedron of the problem in a higher dimensional
space.

First, we define Wagner-Whitin costs for two-stage SULSB. We substitute xi = di + si −
�i − sa(i) + �a(i) to eliminate decision variable xi in the original formulation. Then, we get a
reformulation of the problem in the (s, �, z) space as follows:

p∑

i=1

(
αixi + β ′

izi + h′
i si + b′

i�i

)+
W∑

w=1

ρw

[∑

i∈Pw,t (i)≥t (p)+1

(
αixi + β ′

izi + h′
i si + b′

i�i

)]

=
p∑

i=1

[
αi(di + si − �i − si−1 + �i−1) + β ′

izi + h′
i si + b′

i�i

]

+
W∑

w=1

ρw

[∑

i∈Pw,t (i)≥t (p)+1

αi(di + si − �i − sa(i) + �a(i)) + β ′
izi + h′

i si + b′
i�i

]

=
p−1∑

i=1

[(
αi + h′

i − αi+1
)
si + (

b′
i − αi + αi+1

)
�i + β ′

izi

]+
p∑

i=1

αidi

+
(

αp + h′
p −

W∑

w=1

ρwαqw

)
sp +

(
b′

p − αp +
W∑

w=1

ρwαqw

)
�p + β ′

pzp

+
W∑

w=1

∑

j∈Pw,t (j)≥t (p)+1

ρw

(
h′

j + αj − αC(j)

)
sj

+
W∑

w=1

∑

j∈Pw,t (j)≥t (p)+1

ρw

(
b′

j − αj + αC(j)

)
�j

+
W∑

w=1

∑

j∈Pw,t (j)≥t (p)+1

ρwβ ′
j zj +

W∑

w=1

∑

j∈Pw,t (j)≥t (p)+1

ρwαjdj

=
∑

i∈V

(hisi + bi�i + βizi) + (a constant)

where

hi =

⎧
⎪⎨

⎪⎩

αi + h′
i − αi+1, 1 ≤ t (i) ≤ t (p) − 1

αp + h′
p −∑W

w=1 ρwαqw , t (i) = t (p),

ρw(h′
i + αi − αC(i)), t (i) ≥ t (p) + 1,

bi =

⎧
⎪⎨

⎪⎩

b′
i − αi + αi+1, 1 ≤ t (i) ≤ t (p) − 1,

b′
p − αp +∑W

w=1 ρwαqw , t (i) = t (p),

ρw(b′
i − αi + αC(i)), t (i) ≥ t (p) + 1,

and βi = β ′
i if 1 ≤ t (i) ≤ t (p) and βi = ρwβ ′

i otherwise. We let αC(i) = 0 if i ∈ L.

Definition 1 A two-stage SULSB is said to have Wagner-Whitin costs if for all i ∈ V ,

hi ≥ 0, bi ≥ 0, and βi ≥
∑

j∈C(i)

βj . (1)

Ann Oper Res (2013) 209:207–230 213

Fig. 2 The scenario tree for a
three-period SULSB

For the deterministic version, the optimal solution forms of inventory and backlogging
levels are studied by Pochet and Wolsey (1994). For two-stage SULSB, we consider the
optimal solution forms of inventory level si and backlogging level �i for each i ∈ V . In
the optimal solution for SULSB-WW, the demand for each node i will be satisfied (1) by
setting up the production at node i, (2) by inventory left from its parent node, or (3) by
backlogging from its children. Before we describe the proposition, we show a three-period
example to demonstrate the optimal solution form as shown in Fig. 2. In this example, if the
unit inventory cost at node 1 and the setup costs at nodes 2 and 5 are very high, then it may
happen in the optimal solution that productions are set up at nodes 1, 3, and 4. Demand at
node 1 is satisfied by the production of itself. Demand at node 2 is satisfied by backlogging
from node 4. Node 3 covers demands in nodes 3 and 5. Thus the second-stage nodes 2 and
3 are backlogged and set up respectively. Meanwhile, the first-stage node 1 does not cover
any demand in the second stage.

To describe the property of the optimal solution and generate the extended formulation,
besides listing the notation in Table 1, we provide the detailed explanation as follows:

fi : binary decision variable to indicate if node i is stocked (if yes, fi = 1; otherwise, fi = 0)
gi : binary decision variable to indicate if node i is backlogged (if yes, gi = 1; otherwise,
gi = 0)

mi
t : binary decision variable to indicate if the inventory left from node i covers the demand

at time period t , t ≥ t (i) + 1 (if yes, mi
t = 1; otherwise mi

t = 0)
ni

t : binary decision variable to indicate if the backlogging at node i covers the demand at
time period t , t ≤ t (i) (if yes, ni

t = 1; otherwise ni
t = 0)

ψ(i): the time period of the earliest descendant of node i which is set up or backlogged,
i.e., ψ(i) = min{t (j) : zj = 1 or gj = 1, j ∈ V(i) \ {i}}

η(i, t): the ancestor node of node i at time t , i.e., η(i, t) = {k ∈ P(i) : t (k) = t}
ξ(i, t,w): a descendant of node i at time period t and at the branch corresponding to sce-
nario w.

In addition, as shown in Fig. 3, we define Ψ (i) = {r ∈ V(i), t (i) < t(r) < ψ(i)}, Λ(i) =⋃
r∈L∩V(i) arg min{t (k) : k ∈ P(i, r) \ {i} and zk = 1}, and Φ(i) = ⋃

j∈Λ(i) P(i, j) \ {i, j}.

Proposition 1 For two-stage SULSB-WW, there exists an optimal inventory level of the
form:

si =
ψ(i)−1∑

t=t (i)+1

dt , i ∈ V, (2)

and an optimal backlogging level of the form:

�j = max
1≤τ≤t (j)

t (j)∑

t=τ

dt

[
gη(j,t) −

∑

r∈P(η(j,t),j)

zr

]+
, j ∈ Φ(i). (3)

In addition, the optimal solutions of two-stage SULSB-WW satisfy the following conditions:

214 Ann Oper Res (2013) 209:207–230

Fig. 3 The subtree of node i

fi + gi + zi = 1, i ∈ V (4)

gi + zi ≥ gi− , i ∈ V \ {1} (5)

fi− + zi− ≥ fi, i ∈ V \ {1}. (6)

Proof Let Λ = {i ∈ V : zi = 1}. First, for each i ∈ Λ, we prove that (2) and (3) hold by
showing (2) and

�j =
t (j)∑

t=ψ(i)

dt for each j ∈ Φ(i) \ Ψ (i) (7)

hold first. Then, we show (3) holds based on (7).
Proof of (2) and (7). We prove (2) and (7) by contradiction under three cases:

Case 1: (2) does not hold and (7) holds. In this case, the optimal inventory level s∗
i is either

larger or less than
∑ψ(i)−1

t=t (i)+1 dt .

Case 1.1. If s∗
i <

∑ψ(i)−1
t=t (i)+1 dt , then there exists at least one node j ∈ Ψ (i) for which t (j) =

ψ(i) − 1 and whose demand is not satisfied. Thus, s∗
i is not a feasible solution, which is

a contradiction.
Case 1.2. If s∗

i >
∑ψ(i)−1

t=t (i)+1 dt , then let ŝi = ∑ψ(i)−1
t=t (i)+1 dt − ε, where 0 < ε ≤ s∗

i −
∑ψ(i)−1

t=t (i)+1 dt . It can be observed that (ŝ, �∗) is also a feasible solution and leads to an
equal total cost or a smaller total cost, which is a contradiction. For the former case, we
can increase ε such that (2) holds.

Case 2: (2) holds and (7) does not hold. We can give the similar proof as in Case 1 to find a
contradiction.

Case 3: Neither (2) nor (7) holds. In order to satisfy the demand in each node in Φ(i), we
can construct two feasible solutions for two-stage SULSB-WW.
Let s1

i = s∗
i + ε, where ε is a small positive number, and each node j in Λ(i) produces ε

less. Then �1
j = �∗

j − ε, j ∈ Φ(i) \ Ψ (i). The corresponding objective value is

F 1 =
∑

i∈V

(hisi + bi�i + βiyi) +
∑

j∈Ψ (i)

hj ε −
∑

j∈Φ(i)\Ψ (i)

bj ε.

Ann Oper Res (2013) 209:207–230 215

Let s2
i = s∗

i − ε, and each node j in Λ(i) produces ε more. Then �2
j = �∗

j + ε, j ∈ Φ(i) \
Ψ (i). The corresponding objective value is

F 2 =
∑

i∈V

(hisi + bi�i + βiyi) −
∑

j∈Ψ (i)

hj ε +
∑

j∈Φ(i)\Ψ (i)

bj ε.

If
∑

j∈Ψ (i) hj <
∑

j∈Φ(i)\Ψ (i) bj , then F 1 < F ∗; if
∑

j∈Ψ (i) hj >
∑

j∈Φ(i)\Ψ (i) bj , then
F 2 < F ∗. This contradicts the assumption that F ∗ is the optimal objective value. Note
here, if

∑
j∈Ψ (i) hj = ∑

j∈Φ(i)\Ψ (i) bj , we can increase (or decrease) s∗ and decrease (or
increase) �∗ to match the optimal form. Therefore, (7) holds.

Proof of (3): According to (7), si covers demands for nodes in Ψ (i). In order to minimize
the objective function, nodes in Ψ (i) do not obtain backlogging. Thus, gj = 0, j ∈ Ψ (i).
Therefore, �j = max{τ :1≤τ≤t (j)}

∑t (j)

t=τ dt [gη(j,t) −∑
r∈P(η(j,t),j) zr]+ = ∑t (j)

t=ψ(i) dt . Therefore,
(2) and (3) hold.

Second, we prove that conditions (4), (5), and (6) hold.
According to the definition of fi and gi , i ∈ V , it is obvious that conditions (5) and (6)

hold.
Now we prove that condition (4) holds by two cases:

Case 1. If j ∈ Ψ (i), then the demand in node j is satisfied by inventory and fj = 1. In order
to keep the smallest production cost, fj + gj + zj = 1.

Case 2. If j ∈ [Φ(i) \Ψ (i)] ∪Λ(i), then fj = 0 and we need to prove gj + zj = 1. In order
to satisfy the demand, gj + zj ≥ 1.

Case 2.1. If j ∈ Λ(i), zj = 1. If gj = 1, then we can let node j produce more to cover the
backlogging amount and reduce the objective value, which is a contradiction. Therefore,
gj = 0 and fj + gj + zj = 1.

Case 2.2. If j ∈ Φ(i) \ Ψ (i), gj = 1. According to (3), the demand of node j can be
covered by backlogging from its children. In order to minimize the objective function,
zj = 0.
Therefore, based on Cases 1 and 2, fj + gj + zj = 1, j ∈ Φ(i). �

Under (4), at most one of gη(i,k) and zη(i,k) equals 1. Then gη(i,k) − zη(i,k) = 1 if gη(i,k) = 1;
gη(i,k) − zη(i,k) ≤ 0 if gη(i,k) = 0. Thus,

�j = max
1≤τ≤t (j)

t (j)∑

t=τ

dt

[
gη(j,t) −

∑

r∈P(η(j,t),j)

zr

]+

= max
1≤τ≤t (j)

t (j)∑

t=τ

dt

[
gη(j,t) − zη(j,t) −

∑

r∈P(η(j,t),j)\{η(j,t)}
zr

]+

= max
1≤τ≤t (j)

t (j)∑

t=τ

dt

[
gη(j,t) −

∑

r∈P(η(j,t),j)\{η(j,t)}
zr

]+
. (8)

From (4), we also have

fi + gi + zi = fa(i) + ga(i) + za(i) = 1. (9)

Thus, one of constraints (5) and (6) is redundant. That is, if constraint (5) holds, then (6)
must hold based on (9). Now, we introduce three types of inequalities corresponding to the
optimal inventory level for node i on the scenario tree.

216 Ann Oper Res (2013) 209:207–230

1. Path I inequality. This type of inequality is for the second-stage nodes. For a given node
i on the second stage, w is determined and

mi
t ≥ fξ(i,t,w) −

∑

j∈P i
t (w)\{i,ξ(i,t,w)}

zj , t (i) ≥ t (p) + 1, t ≥ t (i) + 1. (10)

That is, node i covers demands along its branch until next backlogging or production.
2. Path II inequality. This type of inequality is for the first-stage nodes (except node p). For

a given node i on the first stage, node i + 1 is its child node and

mi
t ≥ fi+1, 1 ≤ t (i) ≤ t (p) − 1, t = t (i) + 1, (11)

mi
t ≥ mi+1

t − zi+1, 1 ≤ t (i) ≤ t (p) − 1, t ≥ t (i) + 2. (12)

Inequality (11) indicates that if the demand of child node i + 1 is satisfied by inventory,
then the inventory left from node i covers the demand of node i + 1. Inequality (12)
indicates that if node i + 1 is not set up and the inventory left from node i + 1 covers
the demand up to time t , t ≥ t (i) + 2, then the inventory left from node i also covers the
demand up to time t .

3. Connection inequality. This type of inequality is for the branching node p,

m
p
t ≥ fqw , qw ∈ C(p), t = t (p) + 1, (13)

m
p
t ≥ m

qw
t − zqw , qw ∈ C(p), t ≥ t (p) + 2. (14)

Inequalities (13) and (14) are similar to (11) and (12). The inventory left from node p

will cover demands from period t (p)+1 to t −1 unless there is a set up or a backlogging,
before or at time period t along each scenario path.

With the information of mi
t , the inventory level left from each node i in the scenario tree is

as follows:

si =
T∑

t=t (i)+1

dtm
i
t , i ∈ V. (15)

Because for a given node i, its ancestor at time period t , η(i, t), is unique, the following
two inequalities hold for each node i ∈ V based on (8):

ni
t ≥ gη(i,t) −

∑

j∈P(η(i,t),i)\{η(i,t)}
zj , i ∈ V and t ≤ t (i). (16)

�i =
t (i)∑

t=1

dtn
i
t , i ∈ V. (17)

Constraints (4), (5), (10)–(17) guarantee the feasibility of the reformulation for two-
stage SULSB-WW since the demand for each time period is covered. Now, we show these
constraints provide an extended formulation for two-stage SULSB-WW, which accordingly
provides an integral solution for the problem.

Proposition 2 Constraints (4), (5), and (10) to (17) provide an extended formulation for
two-stage SULSB-WW.

Proof Because constraints (15) and (17) can be directly transferred to the objective function,
we prove this proposition by showing the constraint matrix described by constraints (4), (5),
(10)–(14), and (16) is totally unimodular. The detailed proof is shown in Appendix. �

Ann Oper Res (2013) 209:207–230 217

3 Projection to a lower dimensional space

Now, we study the integral polyhedron in the (f, g, z, s, �) space to generate an extended
formulation for the two-stage SULSB-WW problem. First, we define

QM =
{

(f, g, z, s, �) : (f, g, z, s, �) satisfies

si ≥
τ∑

t=t (i)+1

dt

(
fξ(i,t,wt) −

∑

j∈P i
t (wt)\{i,ξ(i,t,wt)}

zj

)
,

wt ∈ W(i), t (i) + 1 ≤ τ ≤ T , i ∈ V, (18)

�i ≥
t (i)∑

t=τ

dt

(
gη(i,t) −

∑

j∈P(η(i,t),i)\{η(i,t)}
zj

)
, 1 ≤ τ ≤ t (i), i ∈ V, (19)

(4) and (5), 0 ≤ fi, gi, zi ≤ 1, si , �i ≥ 0, i ∈ V

}
.

We prove that QM is an integral polyhedron for the two-stage SULSB-WW problem
in the (f, g, z, s, �) space, by showing that it is a projection of QH into the (f, g, z, s, �)

space, where QH records the polyhedron of the two-stage SULSB-WW problem in the
(f, g, z,m,n, s, �) space, i.e.,

QH = {
(f, g, z,m,n, s, �) : (f, g, z,m,n, s, �) satisfies

(4), (5), (10) to (17),

0 ≤ fi, gi, zi ,m
i
t , n

i
t ′ ≤ 1, si , �i ≥ 0, t (i) + 1 ≤ t ≤ T , 1 ≤ t ′ ≤ t (i), i ∈ V

}
.

Proposition 3 Proj(f,g,z,s,�)QH = QM .

Proof We prove this proposition by showing the following two claims:
Claim 1. All inequalities in QM are valid for QH .
Claim 2. For an arbitrary extreme point (f, g, z, s, �) ∈ QM , there exists a (f, g, z,m,

n, s, �) ∈ QH .
Proof of Claim 1. We prove Claim 1 by showing that

si ≥
T∑

t=t (i)+1

dt

[
fξ(i,t,wt) −

∑

j∈P i
t (wt)\{i,ξ(i,t,wt)}

zj

]+
, wt ∈ W(i), (20)

�i ≥
t (i)∑

t=1

dt

[
gη(i,t) −

∑

j∈P(η(i,t),i)\{η(i,t)}
zj

]+
(21)

are valid for QH , because if (20) and (21) hold, then

si ≥
T∑

t=t (i)+1

dt

[
fξ(i,t,wt) −

∑

j∈P i
t (wt)\{i,ξ(i,t,wt)}

zj

]+

≥
τ∑

t=t (i)+1

dt

(
fξ(i,t,wt) −

∑

j∈P i
t (wt)\{i,ξ(i,t,wt)}

zj

)
, t (i) + 1 ≤ τ ≤ T ;

218 Ann Oper Res (2013) 209:207–230

�i ≥
t (i)∑

t=1

dt

[
gη(i,t) −

∑

j∈P(η(i,t),i)\{η(i,t)}
zj

]+

≥
t (i)∑

t=τ

dt

(
gη(i,t) −

∑

j∈P(η(i,t),i)\{η(i,t)}
zj

)
, 1 ≤ τ ≤ t (i).

Based on (16), (17) and the nonnegativity of ni
t , we have

�i =
t (i)∑

t=1

dtn
i
t ≥

t (i)∑

t=1

dt max

{
0, gη(i,t) −

∑

j∈P(η(i,t),i)\{η(i,t)}
zj

}

=
t (i)∑

t=1

dt

[
gη(i,t) −

∑

j∈P(η(i,t),i)\{η(i,t)}
zj

]+
.

Thus, (21) holds.
Now, we prove (20) by two conditions. (1) t (i) ≥ t (p) + 1; (2) t (i) ≤ t (p).
For condition (1), t (i) ≥ t (p) + 1, based on (10), (15), and the nonnegativity of mi

t , we
have

si =
T∑

t=t (i)+1

dtm
i
t ≥

T∑

t=t (i)+1

dt max

{
0, fξ(i,t,wt) −

∑

j∈P i
t (wt)\{i,ξ(i,t,wt)}

zj

}

=
T∑

t=t (i)+1

dt

[
fξ(i,t,wt) −

∑

j∈P i
t (wt)\{i,ξ(i,t,wt)}

zj

]+
,

where wt is the single element in W(i) for each t (p) + 1 ≤ t ≤ T . Thus, (20) holds.
For condition (2), t (i) ≤ t (p), we have

si =
T∑

t=t (i)+1

dtm
i
t = dt(i)+1m

i
t(i)+1 +

T∑

t=t (i)+2

dtm
i
t

≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dt(i)+1[fi+1]+ +
T∑

t=t (i)+2

dt

[
mi+1

t − zi+1

]+
, if t (i) < t(p), (22)

dt(i)+1[fqwt(i)+1
]+ +

T∑

t=t (i)+2

dt

[
m

qwt
t − zqwt

]+
, if t (i) = t (p), (23)

where (22) is based on (11), (12), and the nonnegativity of mi
t , and (23) is based on (13),

(14), and the nonnegativity of mi
t .

If t (i) = t (p), as shown in (23), based on (10)

[
m

qwt
t − zqwt

]+ ≥
[
fξ(qwt ,t,wt) −

∑

j∈P
qwt
t (wt)\{qwt ,ξ(qwt ,t,wt)}

zj − zqwt

]+

=
[
fξ(qwt ,t,wt) −

∑

j∈P
qwt
t (wt)\{ξ(qwt ,t,wt)}

zj

]+

=
[
fξ(p,t,wt) −

∑

j∈P p
t (wt)\{p,ξ(p,t,wt)}

zj

]+
,

Ann Oper Res (2013) 209:207–230 219

where the second equation holds due to ξ(qwt , t,wt) = ξ(p, t,wt), P qwt
t (wt) ⊆ P p

t (wt) and
P qwt

t (wt) \ ξ(qwt , t,wt) = P p
t (wt) \ {p, ξ(qwt , t,wt)}, because wt is the single element in

W(p) for each t (p) + 1 ≤ t ≤ T . Thus, (20) holds.
Now, we only need to show that, if t (i) < t(p),

[
mi+1

t − zi+1

]+ ≥
[
fξ(i,t,wt) −

∑

j∈P i
t (wt)\{i,ξ(i,t,wt)}

zj

]+
. (24)

By observation, if t ≤ t (p), (24) holds based on (11) and (12). Hence, we discuss t = t (p)+
1 and t > t (p) + 1.

(a) If t = t (p) + 1, then

[
mi+1

t − zi+1

]+ ≥
[
m

p
t −

p∑

j=i+1

zj

]+
≥

[
fqwt

−
p∑

j=i+1

zj

]+
=

[
fqwt

−
∑

j∈P i
t (wt)\{i,qwt }

zj

]+
,

where the first inequality follows (12) and the second inequality follows (13).
(b) If t > t (p) + 1, then

[
mi+1

t − zi+1

]+ ≥
[
m

p
t −

p∑

j=i+1

zj

]+
≥

[
m

qwt
t −

∑

j∈P i
t (p)+1(wt)\{i}

zj

]+

≥
[
fξ(i,t,wt) −

∑

j∈P i
t (p)+1(wt)\{i}

zj −
∑

j∈P
qwt
t (wt)\{qwt ,ξ(i,t,wt)}

zj

]+

≥
[
fξ(i,t,wt) −

∑

j∈P i
t (wt)\{i,ξ(i,t,wt)}

zj

]+
,

where the first inequality follows (12), the second one follows (14), and the third one follows
(10). Thus, (20) holds.

Therefore, Claim 1 holds.
Now, we prove Claim 2 holds.
For any give extreme point (f, g, z, s, �) ∈ QM , we construct m and n such that

(f, g, z,m,n, s, �) ∈ QH . That is, (f, g, z,m,n, s, �) satisfies the conditions (4), (5), (10)
to (17). Now, for a given extreme point (f̂ , ĝ, ẑ, ŝ, �̂) ∈ QM , let

m̂i
t = max

w∈W(i)

[
f̂ξ(i,t,w) −

∑

j∈P i
t (w)\{i,ξ(i,t,w)}

ẑj

]+
(25)

and n̂i
t =

[
ĝη(i,t) −

∑

j∈P(η(i,t),i)\{η(i,t)}
ẑj

]+
. (26)

Since (f̂ , ĝ, ẑ, ŝ, �̂) is an extreme point in QM , we first observe that (f̂ , ĝ, ẑ, ŝ, �̂) satisfies
equation (15) based on (25) and (18). Similarly, (f̂ , ĝ, ẑ, ŝ, �̂) satisfies equation (17) based
on (26) and (19). It is also obvious that (f̂ , ĝ, ẑ, m̂, n̂, ŝ, �̂) satisfies (4) and (5). Based on
(25), inequalities (10), (11), and (13) hold. Based on (26) and the nonnegativity of n̂i

t , in-
equality (16) holds.

Now, we only need to show that (12) and (14) hold.
For (12), let w∗ be the scenario where m̂i+1

t achieves the maximum value. Then, we
observe that m̂i

t achieves the maximum value in the same scenario w∗. We prove (12) holds

220 Ann Oper Res (2013) 209:207–230

when ẑi+1 = 1 and ẑi+1 = 0. If ẑi+1 = 1, then m̂i
t = 0 based on (25). Then, m̂i

t = 0 ≥ m̂i+1
t −

1 = m̂i+1
t − ẑi+1. If ẑi+1 = 0, then

m̂i
t =

[
f̂ξ(i,t,w∗) −

∑

j∈P i
t (w

∗)\{i,η(i,t,w∗)}
ẑj

]+

=
[
f̂ξ(i,t,w∗) −

∑

j∈P i
t (w

∗)\{i,i+1,η(i,t,w∗)}
ẑj

]+

=
[
f̂ξ(i,t,w∗) −

∑

j∈P i+1
t (w∗)\{i+1,η(i,t,w∗)}

ẑj

]+

= m̂i+1
t = m̂i+1

t − ẑi+1.

Thus, (12) holds.
For (14), according to (25),

m̂
p
t = max

wt ∈W(p)

[
f̂ξ(p,t,wt) −

∑

j∈P p
t (wt)\{p,ξ(p,t,wt)}

ẑj

]+

≥
[
f̂ξ(p,t,wt) −

∑

j∈P p
t (wt)\{p,ξ(i,t,wt)}

ẑj

]+
, for each wt ∈ W(p).

Now, for each particular wt ∈ W(p),
[
f̂ξ(p,t,wt) −

∑

j∈P p
t (wt)\{p,ξ(p,t,wt)}

ẑj

]+

=
[
f̂ξ(p,t,wt) −

∑

j∈P p
t (wt)\{p,qwt ,ξ(p,t,wt)}

ẑj − ẑqwt

]+

=
[
f̂ξ(qwt ,t,wt) −

∑

j∈P
qwt
t (wt)\{qwt ,ξ(p,t,wt)}

ẑj − ẑqwt

]+

= [
m̂

qwt
t − ẑqwt

]+

≥ m̂
qwt
t − ẑqwt

,

where the second equation follows P p
t (wt) \ {p,qwt } = P qwt

t (wt) \ {qwt } and the third equa-
tion follows m̂

qwt
t = fξ(qwt ,t,wt) − ∑

j∈P
qwt
t (wt)\{qwt ,ξ(p,t,wt)} ẑj for a given wt ∈ W(p). Then,

(14) holds. Thus, (f̂ , ĝ, ẑ, m̂, n̂, ŝ, �̂) ∈ QH and Claim 2 holds.
Therefore, the conclusion holds. �

4 Computational experiments

In this section, we report the computational results to mainly demonstrate the computational
efficiency and stability of the extended formulation for SULS with backlogging. All algo-
rithms are implemented in C++ and carried out on a Linux workstation with two AMD
Opteron Quad-Core 2.2 GHz processors and 32 GB RAM. We use CPLEX 12.4 Callable

Ann Oper Res (2013) 209:207–230 221

Table 2 The percentage value of the stochastic solution for SULSB: T = 50

Ratio 1 Ratio 2

0.2 0.4 0.6 0.2 0.4 0.6

W = 100 4.33 % 2.34 % 1.79 % 4.39 % 2.29 % 1.78 %

W = 200 2.34 % 1.24 % 0.91 % 2.22 % 1.28 % 0.95 %

W = 300 1.55 % 0.77 % 0.65 % 1.51 % 0.77 % 0.66 %

Library to implement our extended formulation and the two-stage mixed-integer program-
ming formulation. To fairly compare the performance of these two formulations, we restrict
the CPLEX Callable Library to run on a single thread.

The computational experiments are designed for two purposes, examining the value of
stochastic solution of SULSB (VSSSULSB) and demonstrating the efficiency and stability of
the extended formulation of SULSB. A number of SULSB instances are generated corre-
sponding to different scenario tree structures and different ratios of the setup cost to the
unit production cost. We consider the underlying two-stage scenario tree is balanced with
T time periods and W branches. We consider 27 different tree structures for both purposes.
To test the extended formulation, we consider T ∈ {50,100,150}, W ∈ {10,20,30}, and
p ∈ {0.2T ,0.4T ,0.6T }. To examine VSSSULSB, we consider a larger number of scenarios
with W ∈ {100,200,300}, the same time horizon T ∈ {50,100,150}, and the branching
time period p ∈ {0.4T ,0.5T ,0.6T }. We consider the setup cost to production cost ratios to
be 25 and 50, respectively. Therefore, there are 54 combinations in total for each case.

For each combination, we generate 5 random instances as follows. For each node i in
the scenario tree, the unit production cost αi is uniformly distributed in the interval [10,30]
with average production cost ᾱ = 20 and the setup cost β ′

i is uniformly distributed in the
interval [0.8(β ′/α)ᾱ,1.2(β ′/α)ᾱ]. We let the demand di , the unit inventory cost h′

i , and the
unit backlogging cost b′

i uniformly distribute in the intervals [50,100], [2,7], and [2,5],
respectively. Finally, all W branches are assigned equal probabilities, i.e., ρw = 1/W . For
each combination, we run 5 instances and report the average value.

We first test the mixed-integer programming formulation of SULSB and its correspond-
ing expected (mean) value problem, where the expected value problem (EVSULSB) is ob-
tained by substituting all random variables in SULSB by their expected values. Then,
the value of using the expected value solution, e.g., EEVSULSB, can be obtained by solv-
ing SULSB in which the first-stage variables are replaced by the corresponding solution
of EVSULSB. In Tables 2, 3, 4, we report the percentage value of the stochastic solution
of SULSB, i.e., VSSSULSB/EEVSULSB to demonstrate the needs to solve SULSB, where
VSSSULSB = EEVSULSB − ObjSULSB with ObjSULSB representing the optimal objective value
of SULSB. As described in Birge and Louveaux (1997), VSS measures how good (bad) a
decision based on the EV problem solution compared with the decision based on stochastic
programming. We let “Ratio 1” and “Ratio 2” indicate the cases in which the ratios between
the setup cost and the unit production cost β ′/α are 25 and 50, respectively.

The results in Tables 2 to 4 indicate that under the same setting in terms of time horizon,
scenario number, and β ′/α ratio, the percentage VSSSULSB increases when the branching
node time period, p, decreases. In average, the values of percentage VSSSULSB are 2.5 %,
1.5 %, and 1.2 % corresponding to branching node time periods 0.2T , 0.4T , and 0.6T ,
respectively. Thus, the computational results demonstrate that the cost of ignoring uncer-
tainties is higher when cost uncertainties happen at an earlier time period in the planning
horizon.

222 Ann Oper Res (2013) 209:207–230

Table 3 The percentage value of the stochastic solution for SULSB: T = 100

Ratio 1 Ratio 2

0.2 0.4 0.6 0.2 0.4 0.6

W = 100 3.78 % 2.24 % 1.78 % 4.12 % 2.37 % 1.95 %

W = 200 2.05 % 1.16 % 1.07 % 2.13 % 1.23 % 0.98 %

W = 300 1.39 % 0.95 % 0.72 % 1.41 % 0.83 % 0.66 %

Table 4 The percentage value of the stochastic solution for SULSB: T = 150

Ratio 1 Ratio 2

0.2 0.4 0.6 0.2 0.4 0.6

W = 100 4.04 % 2.38 % 2.04 % 3.73 % 2.37 % 2.02 %

W = 200 1.95 % 1.18 % 1.05 % 2.11 % 1.22 % 0.97 %

W = 300 1.27 % 0.83 % 0.71 % 1.44 % 0.84 % 0.67 %

Table 5 Computational time (in seconds) comparison between stochastic programming formulation and
extended formulation of SULSB: T = 50

p = 0.2T p = 0.4T p = 0.6T

ELP MIP GAP ELP MIP GAP ELP MIP GAP

Ratio 1 W = 10 0.20 0.31 55.00 % 0.09 0.16 77.78 % 0.07 0.14 100.00 %

W = 20 0.30 1.53 410.00 % 0.20 0.63 215.00 % 0.14 0.22 57.14 %

W = 30 0.51 4.20 723.53 % 0.36 1.55 330.56 % 0.23 0.95 313.04 %

Ratio 2 W = 10 0.15 1.13 653.33 % 0.09 1.00 1011.11 % 0.07 0.35 400.00 %

W = 20 0.31 4.27 1277.42 % 0.20 2.73 1265.00 % 0.13 1.46 1023.08 %

W = 30 0.48 5.72 1091.67 % 0.34 5.09 1397.06 % 0.22 1.99 804.55 %

Second, we test both the mixed-integer programming and extended linear program-
ming formulations for SULSB, and evaluate the performance of these two formulations
by comparing their running times to obtain an optimal solution. The running times (in
seconds) of these two formulations are reported in Tables 5, 6, 7. We let “MIP”, “ELP”
and “GAP” denote the mixed-integer programming formulation, the extended linear pro-
gramming formulation, and the computational time difference between the mixed-integer
programming formulation and the extended linear programming formulation, i.e., GAP =
(TimeMIP − TimeELP)/TimeELP. We also let “Ratio 1” and “Ratio 2” indicate the cases in
which the ratios between the setup cost and the unit production cost β ′/α are 25 and 50,
respectively.

Tables 5 to 7 demonstrate that all these two formulations obtain an optimal solution
within 30 seconds for all tested instances. In average, the time spent for the mixed-integer
programming approach is 2.77 times of that of the extended formulation approach. Mean-
while, the performance of the extended formulation is stable for both “Ratio 1” and “Ratio 2”
cases. But the mixed-integer programming approach takes more times to run “Ratio 2” than
“Ratio 1” instances in average.

Ann Oper Res (2013) 209:207–230 223

Table 6 Computational time (in seconds) comparison between stochastic programming formulation and
extended formulation of SULSB: T = 100

p = 0.2T p = 0.4T p = 0.6T

ELP MIP GAP ELP MIP GAP ELP MIP GAP

Ratio 1 W = 10 1.04 1.80 73.08 % 0.69 1.49 115.94 % 0.32 0.99 209.38 %

W = 20 2.17 4.96 128.57 % 1.16 2.98 156.90 % 0.69 1.91 176.81 %

W = 30 3.38 5.64 66.86 % 1.95 4.26 118.46 % 1.07 2.86 167.29 %

Ratio 2 W = 10 1.03 3.37 227.18 % 0.68 2.47 263.24 % 0.35 1.91 445.71 %

W = 20 2.14 8.42 293.46 % 1.29 9.24 616.28 % 0.74 3.30 345.95 %

W = 30 3.31 13.94 321.15 % 1.91 8.22 330.37 % 1.16 5.01 331.90 %

Table 7 Computational time (in seconds) comparison between stochastic programming formulation and
extended formulation of SULSB: T = 150

p = 0.2T p = 0.4T p = 0.6T

ELP MIP GAP ELP MIP GAP ELP MIP GAP

Ratio 1 W = 10 2.94 3.73 26.87 % 1.65 3.51 112.73 % 1.04 2.36 126.92 %

W = 20 5.71 7.52 31.70 % 3.48 4.68 34.48 % 2.12 3.93 85.38 %

W = 30 9.16 10.68 16.49 % 5.56 7.45 33.99 % 3.49 6.04 73.07 %

Ratio 2 W = 10 3.08 13.27 330.84 % 1.76 4.28 143.18 % 1.08 3.59 232.41 %

W = 20 5.87 20.77 253.83 % 3.60 11.27 213.06 % 2.14 7.10 231.78 %

W = 30 9.29 29.01 212.27 % 5.70 13.92 144.21 % 3.42 8.52 149.12 %

The above computational results show that the extended formulation approach has a bet-
ter chance to be more efficient and stable, as compared to the mixed-integer programming
formulation approach.

5 Conclusion

In this research, we studied the two-stage stochastic lot-sizing problem under cost uncer-
tainty and developed an extended linear programming formulation for the problem that can
provide an integral optimal solution. In future research, a part of our results can be applied
to a more general multi-stage stochastic programming setting. For instance, under the multi-
stage setting, Proposition 1 still holds. The relationship between nodes in the stochastic sce-
nario tree is similar to the relationship described in constraints (10) to (14). It is possible that
similar reformulation can provide an extended formulation for the multi-stage stochastic lot-
sizing problem under cost uncertainty in a higher dimensional space. In addition, we will
target to solve large scale production planning problems under cost uncertainty, in which
the extended formulation for each single-item problem can be embedded into a decompo-
sition framework (e.g., the Lagrange relaxation decomposition). We will evaluate how this
approach helps solve large scale practical production planning under uncertainty problems.

Acknowledgements The authors would like to thank the editor and the two anonymous referees for their
helpful suggestions on improving the quality of this paper. This research was partially supported by the U.S.
National Science Foundation under Award CMMI0700868 and under CAREER Award CMMI0748204.

224 Ann Oper Res (2013) 209:207–230

Appendix: Proof of Proposition 2

To show that the constraint matrix described by constraints (4), (5), (10)–(14), and (16)
is totally unimodular, we order variables fi , gi , and zi with loop i ranging from 1 to |V|.
Variable mi

t is ordered with an outer loop i ranging from 1 to |V|, and an inner loop t ranging
from t (i) + 1 to T . Variable ni

t is ordered with an outer loop i ranging from 1 to |V|, and
an inner loop t ranging from 1 to t (i). Table 8 shows the constraint matrix corresponding to
Fig. 2.

As the submatrix corresponding to variable ni
t is an identity matrix for i ∈ V and t ≤

t (i), we do not need to consider ni
t in our construction. As the submatrix corresponding to

variable mi
t is an identity matrix for t (i) ≥ t (p)+ 2, i ∈ V , and t ≥ t (i)+ 1, we only need to

consider mi
t , 1 ≤ t (i) ≤ t (p) + 1, t ≥ t (i) + 1 in our construction. In the following, we only

study the constraint submatrix for the variables we need to consider, denoted as matrix A.
We show that for any column subset J of matrix A, there exist partitions J1 and J2 of J

such that
∣∣∣∣
∑

j∈J1

aij −
∑

j∈J2

aij

∣∣∣∣ ≤ 1 (27)

for all i. We partition variables f , g, z, m in J starting from branching node p and then,
extend it in both directions to nodes after p and before p.

First, we define M(i) as the closest ancestor of node i such that zM(i) ∈ J and m(i) as
the closest descendant of node i such that zm(i) ∈ J .

In the following Steps 1 to 5, we allocate the decision variables m and z to J1 and J2:

Step 1. Allocate m
p
t to J1, zp to J1, and zqw to J2, where t ≥ t (p) + 1, qw ∈ C(p).

Step 2. Allocate m
qw
t , t ≥ t (p) + 2 to the same set as zqw (if zqw ∈ J), or to the same set as

m
p
t (if zqw /∈ J and m

p
t ∈ J), or to J1 (if zqw /∈ J and m

p
t /∈ J).

Step 3. Allocate zi , t (i) ≥ t (p) + 2, to the opposite set of zM(i), if M(i) exists and
t (M(i)) ≥ t (p). Otherwise, allocate zi to the opposite set of m

p
t if m

p
t ∈ J . If m

p
t /∈ J ,

then allocate zi to J2.
Step 4. Allocate zi , 1 ≤ i ≤ p − 1, to the opposite set of zm(i), if m(i) exists and t (m(i)) ≤
t (p). Otherwise, allocate zi to J1.

Step 5. Allocate mi
t , 1 ≤ i ≤ p − 1, to the opposite set of zm(i), if m(i) exists and t (m(i)) ≤

t (p). Otherwise, allocate mi
t to J1.

In the following Steps 6 and 7, we allocate the decision variables f and g to J1 and J2:

Step 6. Allocate fi to the same set of zM(i) if M(i) exits; allocate fi to the opposite set of
zi if M(i) does not exist and zi ∈ J ; allocate fi to the opposite set of zm(i) if m(i) exists,
M(i) does not exist, and zi /∈ J ; allocate fi to J1 if m(i) and M(i) do not exist and zi /∈ J .

Step 7. Allocate gi to the same set of zm(i) if m(i) exists; allocate gi to the opposite set of
zi if m(i) does not exist and zi ∈ J ; allocate gi to the opposite set of zM(i) if m(i) does not
exist, M(i) exists, and zi /∈ J ; allocate gi to J2 if m(i) and M(i) do not exist and zi /∈ J .

Following the above partition steps, we observe the following two properties:

Claim 1 If zi ∈ J and M(i) exists, zi goes to the opposite set of zM(i) for all i ∈ V \ {1}.

Proof of Claim 1 If 1 ≤ t (M(i)) ≤ t (i) ≤ t (p), because the closest descendant of M(i) is i

and t (i) ≤ t (p), m(M(i)) = i, zM(i) goes to the opposite set of zi based on Step 4.

Ann Oper Res (2013) 209:207–230 225

Ta
bl

e
8

T
he

m
at

ri
x

of
co

ns
tr

ai
nt

s
(4

),
(5

),
(1

0)
to

(1
4)

,a
nd

(1
6)

fo
r

th
e

ex
am

pl
e

in
Fi

g.
2

z
1

z
2

z
3

z
4

z
5

f
1

f
2

f
3

f
4

f
5

g
1

g
2

g
3

g
4

g
5

m
1 2

m
1 3

m
2 3

m
3 3

n
2 1

n
3 1

n
4 2

n
4 1

n
5 2

n
5 1

1
1

1
1

2
1

1
1

3
1

1
1

4
1

1
1

5
1

1
1

6
1

−1
1

7
1

−1
1

8
1

−1
1

9
1

−1
1

10
−1

1

11
−1

1

12
−1

1

13
−1

1

14
1

1
−1

15
1

1
−1

16
1

−1
1

17
1

−1
1

18
1

−1
1

19
1

−1
1

20
1

1
−1

1

21
1

1
−1

1

226 Ann Oper Res (2013) 209:207–230

If 1 ≤ t (M(i)) < t(p) < t(i) ≤ T , zM(i) goes to J1 based on Step 4 and zi goes to J2

based on Step 3 (if t (i) ≥ t (p) + 2) or based on Step 1 (if t (i) = t (p) + 1).
If t (p) = t (M(i)) < t(i) ≤ T , zM(i) goes to J1 based on Step 1 (i.e., M(i) = p), zi goes

to J2 based on Step 1 (if i = qw) or Step 3 (if t (i) ≥ t (p) + 2). Thus, zi goes to the opposite
set of zM(i).

If t (p) + 1 ≤ t (M(i)) < t(i) ≤ T , zi goes to the opposite set of zM(i) based on Step 3.
Therefore, Claim 1 holds. �

Claim 2 If j (wk1) and j (wk2) are the first second-stage nodes corresponding to scenarios
wk1 and wk2 such that zj (wk1), zj (wk2) ∈ J , then zj (wk1) and zj (wk2) go to the same set.

Proof of Claim 2 For any first second-stage node j (w), if j (w) = qw , then zj (w) goes to J2

based on Step 1, otherwise j (w) goes to J2 based on Step 3 due to the fact that j (w) is the
first second-stage node in J and on the branch corresponding to w and t (p) ≤ t (j (w)) ≤ T .
Thus, the claim holds. �

Now, we verify that (27) holds for constraints (4), (5), (10)–(14), and (16) under the
above partition. First, corresponding to each row, if J contains at most one decision variable
in A, then it is obvious that (27) holds. In the following, we consider the case in which J

contains at least two decision variables in each row of A.

1. For constraint (4), we discuss the following four cases:
1.1 {fi, gi} ⊆ J and zi /∈ J

1.1.1 If both M(i) and m(i) exist, fi goes to the same set of zM(i) based on Step 6;
gi goes to the same set of zm(i) based on Step 7. Because M(m(i)) = M(i)

(due to zi /∈ J), zm(i) goes to the opposite set of zM(i) based on Claim 1. Thus,
fi goes to the opposite set of gi . Then, (27) holds.

1.1.2 If M(i) exists and m(i) does not exist, fi goes to the same set of zM(i) based
on Step 6; gi goes to the opposite set of zM(i) based on Step 7. Thus, fi goes
to the opposite set of gi .

1.1.3 If m(i) exists and M(i) does not exist, gi goes to the same set of zm(i) based
on Step 7; fi goes to the opposite set of zm(i) based on Step 6. Thus, fi goes
to the opposite set of gi .

1.1.4 If neither m(i) nor M(i) exists, fi and gi go to J1 and J2 respectively based
on Steps 6 and 7.

1.2 {gi, zi} ⊆ J and fi /∈ J

1.2.1 If m(i) exists, then gi goes to the same set of zm(i) based on Step 7. Because
M(m(i)) = i, zm(i) goes to the opposite set of zi based on Claim 1. Thus, gi

goes to the opposite set of zi . Then, (27) holds.
1.2.2 If m(i) does not exist, gi goes to the opposite set of zi based on Step 7. Thus,

(27) holds.
1.3 {fi, zi} ∈ J and gi /∈ J

1.3.1 If M(i) exists, fi goes to the same set of zM(i) based on Step 6; zi goes to the
opposite set of zM(i) based on Claim 1. Then, fi goes to the opposite set of zi .
Thus, (27) holds.

1.3.2 If M(i) does not exist, fi goes to the opposite set of zi based on Step 6. Thus,
(27) holds.

1.4 {fi, gi, zi} ∈ J . This conclusion directly follows 1.3, because fi goes to the opposite
set of zi . Then, (27) holds no matter where gi goes.

Ann Oper Res (2013) 209:207–230 227

2. For constraint (5), we discuss the following four cases:
2.1 If {gi, zi} ∈ J and ga(i) /∈ J this condition is the same as 1.2. Thus, (27) holds.
2.2 If {ga(i), zi} ∈ J and gi /∈ J , ga(i) goes to the same set as zi due to zi = zm(a(i)) based

on Step 7. Thus, (27) holds.
2.3 If {gi, ga(i)} ∈ J and zi /∈ J , we first have m(i) = m(a(i)). If (a) m(i) = m(a(i)) ex-

ists, then gi and ga(i) go to the same set as zm(i) based on Step 7. If (b) m(i) = m(a(i))

does not exist and za(i) ∈ J , then ga(i) goes to the opposite set of za(i) based on Step 7.
Also, because za(i) ∈ J , we have zM(i) = za(i). Then, gi goes to the opposite set of
za(i) based on Step 7. Thus, gi and ga(i) go to the same set. If (c) m(i) = m(a(i))

does not exist, za(i) /∈ J and M(a(i)) exists, then zM(i) = zM(a(i)). Because zi /∈ J , gi

and ga(i) go to the opposite set of zM(i) = zM(a(i)) based on Step 7. Thus, gi and ga(i)

go to the same set. If (d) m(i) = m(a(i)), M(a(i)) does not exist, za(i) /∈ J , then both
gi and ga(i) go to J2 based on Step 7.

2.4 If {gi, ga(i), zi} ∈ J , this conclusion directly follows 2.2, because ga(i) and zi go to
the same set. Then, (27) holds no matter where gi goes.

3. For constraint (10), we consider two cases:
3.1 t (i) ≥ t (p) + 2. For this case, we do not need to consider mi

t based on the identity
matrix argument at the beginning of the proof. Then, based on Step 6, fξ(i,t,w) goes to
the same set of zM(ξ(i,t,w)), where zM(ξ(i,t,w)) ∈ J and the corresponding M(ξ(i, t,w))

is the largest-index such node in path P i
t (w) with P i

t (w) representing the set of nodes
on the path from node i to a node at time period t and on the branch corresponding
to scenario w. Note that there must exist at least one such M(ξ(i, t,w)) based on
the assumption that we have at least two elements in J for each constraint. Based on
Step 4, zj alternatively goes to J1 and J2 based on Step 4, where t (p)+2 ≤ t (j) ≤ t .
Thus, (27) holds.

3.2 t (i) = t (p)+1. For this case, i = qw , for some 1 ≤ w ≤ W . We discuss the following
two cases:
3.2.1 If m

qw
t /∈ J , this argument is the same as 3.1. Thus, (27) holds.

3.2.2 If m
qw
t ∈ J , under this condition, we discuss fξ(qw,t,w) /∈ J and fξ(qw,t,w) ∈ J

respectively.
3.2.2.1 fξ(qw,t,w) /∈ J . Under this case, if zqw ∈ J , m

qw
t and zm(qw) go to the

same set and the opposite set of zqw based on Steps 2 and 3 respec-
tively; if zqw /∈ J , m

qw
t goes to the same set as m

p
t (i.e., J1) if m

p
t ∈ J

or J1 if m
p
t /∈ J based on Step 2 and similarly zm(qw) goes to J2 based

on Step 3. Thus, m
qw
t and zm(qw) go to the opposite sets. Besides these,

zj ∈ J alternatively goes to J1 and J2 where t (p)+2 ≤ t (j) ≤ t based
on Step 3. Thus, (27) holds.

3.2.2.2 fξ(qw,t,w) ∈ J . Under this case, we discuss two cases depending on if
there exists a node j ∈ P i

t (w) \ {i, ξ(i, t,w)} such that zj ∈ J .
3.2.2.2.1 If no such node j exists, then {fξ(qw,t,w),m

qw
t } ∈ J ,

based on our assumption that at least two elements in each con-
straint in matrix A. If zqw ∈ J , M(ξ(qw, t,w)) = qw due to zj /∈ J

for each j ∈ P i
t (w) \ {i, ξ(i, t,w)}. Based on Steps 6 and 2, fξ(qw,t,w)

and m
qw
t go to the same set of zqw . If zqw /∈ J , based on Step 2,

m
qw
t goes to J1. In the following, we prove that fξ(qw,t,w) goes to

J1 in this case. Based on Step 6, fξ(qw,t,w) goes to (a) the same
set of zM(ξ(qw,t,w)) if M(ξ(qw, t,w)) exists, (b) the opposite set of
zξ(qw,t,w) if M(ξ(qw, t,w)) does not exist and zξ(qw,t,w) ∈ J , (c) the
opposite set of zm(ξ(qw,t,w)) if m(ξ(qw, t,w)) exists, M(ξ(qw, t,w))

228 Ann Oper Res (2013) 209:207–230

does not exist, and zξ(qw,t,w) /∈ J , or (d) J1 if M(ξ(qw, t,w)) and
m(ξ(qw, t,w)) do not exist, and zξ(qw,t,w) /∈ J . For (a), M(ξ(qw, t,w))

exists and zqw /∈ J . Based on Step 4, zM(ξ(qw,t,w)) goes to J1, because
1 ≤ t (M(ξ(qw, t,w))) ≤ t (p). For (b), zξ(qw,t,w) ∈ J , zqw /∈ J , and
M(ξ(qw, t,w)) does not exist. Then, zξ(qw,t,w) goes to J2 based on
Step 3 and accordingly fξ(qw,t,w) goes to J1. For (c), zm(ξ(qw,t,w)) ∈ J ,
and zξ(qw,t,w), zM(ξ(qw,t,w)), zqw /∈ J . Then, zm(ξ(qw,t,w)) goes to J2 based
on Step 3. Thus, accordingly fξ(qw,t,w) goes to J1. Then, fξ(qw,t,w) and
m

qw
t go to the same set.
3.2.2.2.2 If there exists such a node j , then fξ(qw,t,w) goes to the

same set of zM(ξ(qw,t,w)) based on Step 6. If zqw ∈ J , m
qw
t goes to the

same set of zqw based on Step 2, and zm(qw) goes to the opposite set of
zqw based on Step 3. If zqw /∈ J , m

qw
t goes to J1 based on Step 2 and

zm(qw) goes to J2 based on Step 3. Thus, for both zqw ∈ J and zqw /∈ J ,
m

qw
t goes to the opposite set of zm(qw). Besides these, zj alternatively

goes to J1 and J2, j ∈ P i
t (w) \ {i, ξ(i, t,w)}. Thus, (27) holds.

4. For constraint (11), we only need to consider the case in which {mi
t , fi+1} ∈ J .

4.1 If M(i + 1) exists, fi+1 goes to the same set as zM(i+1) based on Step 6. If m(i)

exists and t (m(i)) ≤ t (p), mi
t goes to the opposite set of zm(i) based on Step 5.

Because m(i) = m(M(i + 1)), zM(i+1) and zm(i) go to the opposite set based on
Step 4. Thus, fi+1 and mi

t go to the same set. If m(i) does not exist, or m(i) exists
and t (m(i)) > t(p), then m(M(i +1)), t (m(M(i +1))) ≤ t (p), does not exist. Thus,
zM(i+1) and mi

t go to J1 based on Steps 4 and 5. Thus, mi
t and fi+1 go to the same

set. Therefore, (27) holds.
4.2 If M(i + 1) does not exist and zi+1 ∈ J , then m(i) = i + 1. Thus, mi

t and fi+1 go to
the opposite set of zi+1 based on Steps 5 and 6. Thus, (27) holds.

4.3 If M(i + 1) does not exist, zi+1 /∈ J , and m(i + 1) exists, then, m(i) = m(i + 1). If
1 ≤ t (m(i +1)) ≤ t (p), mi

t and fi+1 go to the opposite set of zm(i+1) based on Steps 5
and 6; otherwise, if t (m(i + 1)) > t(p), mi

t goes to J1 and fi+1 goes to the opposite
set of zm(i+1). Since zm(i+1) goes to J2 based on Step 1 (if t (m(i + 1)) = t (p) + 1)
or Step 3 (under this case, M(m(i + 1)) does not exist), fi+1 and mi

t go to the same
set. Then, (27) holds.

4.4 If neither M(i +1) nor m(i +1) exists and zi+1 /∈ J , then mi
t and fi+1 go to J1 based

on Steps 5 and 6. Then, (27) holds.
5. For constraint (12), we discuss the following four cases:

5.1 {mi
t , zi+1} ⊆ J , and mi+1

t /∈ J . Based on Step 5, mi
t goes to the opposite set of zi+1

since zi+1 is the closest descendant of node i. Thus, (27) holds.
5.2 {mi+1

t , zi+1} ⊆ J , and mi
t /∈ J . Under this case, mi+1

t and zi+1 will go to the same set,
because both zi+1 and mi+1

t are in the opposite set of zm(i+1), if m(i + 1) exists and
t (m(i + 1)) ≤ t (p) or in J1 otherwise, based on Steps 4 and 5.

5.3 {mi
t ,m

i+1
t } ⊆ J , and zi+1 /∈ J . Because zi+1 /∈ J , mi

t and mi+1
t are in the same set

based on Step 5.
5.4 {mi

t ,m
i+1
t , zi+1} ⊆ J . The conclusion follows from Step 5. Variable mi

t goes to the
opposite set of zi+1, since zi+1 is the closest descendant of node i. Then, (27) holds
no matter where mi+1

t goes.
6. For constraint (13), we only need to consider the case in which {fqw ,m

p
t } ⊆ J . Based on

Step 1, m
p
t goes to J1. In the following, we show that fqw goes to J1.

6.1 If M(qw) exists, then zM(qw) goes to J1 based on Step 1 if M(qw) = p, or Step 4 if
t (m(M(qw))) ≤ t (p) − 1. Thus, based on Step 6, fqw goes to the same set of zM(qw),
which is J1.

Ann Oper Res (2013) 209:207–230 229

6.2 If zqw ∈ J , M(qw) does not exist, then zqw goes to J2 based on Step 1. Based on
Step 6, fqw goes to the opposite set of zqw , which is J1.

6.3 If m(qw) exists, zqw /∈ J and M(qw) does not exist, then t (m(qw)) ≥ t (p) + 2 and
zm(qw) goes to the opposite set of m

p
t based on Step 3. Based on Step 6, we have fqw

goes to the opposite set of zm(qw). Thus, fqw and m
p
t go to the same set, which is J1.

6.4 If m(qw) and M(qw) do not exist and zqw /∈ J , then fqw goes to J1 based on Step 6.
7. For constraint (14), we need to consider the following four cases:

7.1 {mp
t , zqw } ⊆ J and m

qw
t /∈ J . Based on Step 1, m

p
t and zqw go to J1 and J2, respec-

tively. Thus, (27) holds.
7.2 {mqw

t , zqw } ⊆ J and m
p
t /∈ J . m

qw
t and zqw go to the same set based on Step 2.

7.3 {mp
t ,m

qw
t } ⊆ J and zqw /∈ J . Under this case, m

p
t and m

qw
t go to the same set based

on Step 2.
7.4 {mp

t ,m
qw
t , zqw } ⊆ J . Under this case, m

p
t and zqw go to J1 and J2, respectively based

on Step 1. Then, (27) holds no matter where m
qw
t goes.

8. For constraint (16), we do not need to consider ni
t based on the identity matrix argument

at the beginning of the proof. Based on Step 7, gη(i,t) goes to the same set of zm(η(i,t)). Note
here, there must exist m(η(i, t)) based on the assumption that we have at least two ele-
ments in J . If t (m(η(i, t))) ≤ t (p) or t (η(i, t)) ≥ t (p)+1, then η(i, t) and m(η(i, t)) are
one-to-one corresponding. Otherwise, all zm(η(i,t)) in different scenarios go to the same
set based on Claim 2 because t (m(η(i, t))) ≥ t (p) + 1. Besides these, zj alternatively
goes to J1 and J2 based on Claim 1. Thus, (27) holds.

Therefore, the desired property (27) holds for constraints (4), (5), (10)–(14), and (16),
and the corresponding constraint matrix is totally unimodular.

References

Ahmed, S., & Garcia, R. (2003). Dynamic capacity acquisition and assignment under uncertainty. Annals of
Operations Research, 124, 267–283.

Ahmed, S., King, A. J., & Parija, G. (2003). A multi-stage stochastic integer programming approach for
capacity expansion under uncertainty. Journal of Global Optimization, 26, 3–24.

Barany, I., Van Roy, T. J., & Wolsey, L. A. (1984). Uncapacitated lot-sizing: the convex hull of solutions.
Mathematical Programming Studies, 22, 32–43.

Birge, J., & Louveaux, F. (1997). Introduction to stochastic programming. Berlin: Springer.
Campa, J., & Goldberg, L. (2005). Exchange rate pass through into import prices. Review of Economics and

Statistics, 87, 679–690.
Di Summa, M., & Wolsey, L. A. (2008). Lot-sizing on a tree. Operations Research Letters, 36, 7–13.
Feiringa, B. R., & Sastri, T. (1990). Improving production planning by utilizing stochastic programming.

Computers & Industrial Engineering, 19, 53–56.
Guan, Y., & Miller, A. J. (2008). Polynomial-time algorithms for stochastic uncapacitated lot-sizing prob-

lems. Operations Research, 56, 1172–1183.
Guan, Y., Ahmed, S., Miller, A. J., & Nemhauser, G. L. (2006a). On formulations of the stochastic uncapac-

itated lot-sizing problem. Operations Research Letters, 34, 241–250.
Guan, Y., Ahmed, S., Nemhauser, G. L., & Miller, A. J. (2006b). A branch-and-cut algorithm for the stochas-

tic uncapacitated lot-sizing problem. Mathematical Programming, 105, 55–84.
Heikkilä, J. (2002). From supply to demand chain management: efficiency and customer satisfaction. Journal

of Operations Management, 20, 747–767.
Huang, K., & Ahmed, S. (2009). The value of multistage stochastic programming in capacity planning under

uncertainty. Operations Research, 57, 893–904.
Huang, K., & Küçükyavuz, S. (2008). On stochastic lot-sizing problems with random lead times. Operations

Research Letters, 36, 303–308.
Jiang, R., & Guan, Y. (2011). An O(n2)-time algorithm for the stochastic uncapacitated lot-sizing problem

with random lead times. Operations Research Letter, 39, 74–77.

230 Ann Oper Res (2013) 209:207–230

Küçükyavuz, S., & Pochet, Y. (2007). Uncapacitated lot sizing with backlogging: the convex hull. Mathemat-
ical Programming, 118, 151–175.

Lee, Y. M., & Chen, E. J. (2005). Case studies: supply chain optimization models in a chemical company. In
J. Geunes, E. Akcali, P. M. Pardalos, H. E. Romeijn, & Z. J. Shen (Eds.), Applications of supply chain
management and E-commerce research (pp. 453–477). Berlin: Springer.

Narasimhan, C. (1988). Competitive promotional strategies. The Journal of Business, 61, 427–449.
Nemhauser, G. L., & Wolsey, L. A. (1999). Integer and combinatorial optimization. New York: Wiley.
Pochet, Y., & Wolsey, L. A. (1988). Lot-size models with backlogging: strong reformulations and cutting

planes. Mathematical Programming, 40, 317–335.
Pochet, Y., & Wolsey, L. A. (1994). Polyhedra for lot-sizing with Wagner-Whitin costs. Mathematical Pro-

gramming, 67, 297–323.
Pochet, Y., & Wolsey, L. (2006). Production planning using mixed integer programming. Berlin: Springer.
Simester, D. (1997). Optimal promotion strategies: a demand-sided characterization. Management Science,

43, 251–256.
Terkaj, W., & Tolio, T. (2006). A stochastic approach to the FMS loading problem. Journal of Manufacturing

Systems, 35, 481–490.
Wagelmans, A., van Hoesel, C., & Kolen, A. (1992). Economic lot sizing: an O(n logn) algorithm that runs

in linear time in the Wagner-Whitin case. Operations Research, 40, 145–156.
Wagner, H. M., & Whitin, T. M. (1958). Dynamic version of the economic lot size model. Management

Science, 5, 89–96.
Zanjania, M. K., Nourelfatha, M., & Ait-Kadia, D. (2010). A multi-stage stochastic programming approach

for production planning with uncertainty in the quality of raw materials and demand. International
Journal of Production Research, 48, 4701–4723.

	Two-stage stochastic lot-sizing problem under cost uncertainty
	Abstract
	Introduction
	Mathematical formulation
	Projection to a lower dimensional space
	Computational experiments
	Conclusion
	Acknowledgements
	Appendix: Proof of Proposition 2
	References

