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Abstract This paper presents a new hybrid evolutionary algorithm to solve multi-objective
multicast routing problems in telecommunication networks. The algorithm combines sim-
ulated annealing based strategies and a genetic local search, aiming at a more flexible and
effective exploration and exploitation in the search space of the complex problem to find
more non-dominated solutions in the Pareto Front. Due to the complex structure of the mul-
ticast tree, crossover and mutation operators have been specifically devised concerning the
features and constraints in the problem. A new adaptive mutation probability based on sim-
ulated annealing is proposed in the hybrid algorithm to adaptively adjust the mutation rate
according to the fitness of the new solution against the average quality of the current popula-
tion during the evolution procedure. Two simulated annealing based search direction tuning
strategies are applied to improve the efficiency and effectiveness of the hybrid evolutionary
algorithm. Simulations have been carried out on some benchmark multi-objective multicast
routing instances and a large amount of random networks with five real world objectives in-
cluding cost, delay, link utilisations, average delay and delay variation in telecommunication
networks. Experimental results demonstrate that both the simulated annealing based strate-
gies and the genetic local search within the proposed multi-objective algorithm, compared
with other multi-objective evolutionary algorithms, can efficiently identify high quality non-
dominated solution set for multi-objective multicast routing problems and outperform other
conventional multi-objective evolutionary algorithms in the literature.
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1 Introduction

1.1 The multicast routing problem (MRP)

Multicast is a telecommunication technique that simultaneously transfers information (IP
datagrams) from a source to a group of destinations in communication networks. Compared
to unicast, which relies on the point-to-point transmission, multicast is a more efficient so-
lution which utilises the parallelism in networks. In this work, we consider the Multicast
Routing Problem (MRP), which concerns finding the spanning tree while optimising the re-
source usage within the network. Due to the increasing development of numerous multicast
network applications including distance learning, E-commerce and video/audio conferenc-
ing, the MRP has become one of the key problems in multimedia telecommunications and
received increasing research attention in operational research.

Real world multicast applications generally have some Quality of Service (QoS) param-
eters or constraints and objectives. For example, an important and common QoS constraint
in multicast routing applications is the bounded end-to-end delay. That is, messages must
be transmitted from the source to destinations via the multicast tree within a certain limited
time; otherwise most customers would cancel their requests. The efficient allocation of net-
work resources to satisfy different QoS requirements, for example, minimising the cost of
transmission via the multicast tree, is the primary goal of QoS-based multicast routing.

It is well known that the Steiner tree problem (Hwang and Richards 1992), the under-
lying model of MRPs, is a NP-hard combinatorial optimisation problem (Garey and John-
son 1979). It has also been proved that finding a feasible multicast tree with two indepen-
dent path constraints is NP-hard (Chen and Nahrestedt 1998). The constrained Steiner tree
problem under various QoS constraints is thus also NP-hard (Kompella et al. 1993). This
makes the complex QoS based MRPs one of the challenging optimisation problems. Over
the past decade, the problem has attracted increasing attention from the meta-heuristic re-
search community in both computer communications and operational research (Diot et al.
1997; Yeo et al. 2004; Oliveira and Pardalos 2005). A large amount of investigations on
meta-heuristic algorithms exist in the literature (Haghighat et al. 2004; Kun et al. 2005;
Skorin-Kapov and Kos 2006; Zahrani et al. 2008; Qu et al. 2009). However, at the early
stage, the MRPs have been mainly defined and solved as a single-objective optimisation
problem subject to certain QoS constraints, i.e. to minimise the tree cost subject to a maxi-
mum end-to-end delay restriction.

With a range of inter-dependent and conflicting multiple QoS objectives and constraints
(e.g. cost, delay, bandwidth, link utilisation, delay variation, packet loss ratio and hop count)
in real world applications, the QoS-based MRPs can be more appropriately defined as multi-
objective optimisation problems. Recent multi-objective optimisation algorithms for MRPs
have been investigated concerning more realistic constraints and objectives.

1.2 Related work

A recent survey in Fabregat et al. (2005) has reviewed a variety of multi-objective multicast
routing algorithms. In Table 1, we categorise meta-heuristic algorithms in the literature ac-
cording to the objectives and constraints considered in problems, where a single multicast
tree is constructed. It can be seen that different meta-heuristics, e.g. genetic algorithm, ant
colony algorithm, artificial immune algorithm and particle swarm optimisation, have been
investigated for multi-objective MRPs with various objectives. Due to the nature of multi-
objective optimisation, where a set of alternative solutions is considered, it is not surprising



Ann Oper Res (2013) 206:527–555 529

to see that genetic algorithms, one of the mostly studied population based algorithms, have
been adapted in most multi-objective multicast routing algorithms.

Roy et al. (2002) adapt the widely studied multi-objective NSGA (Non-dominated Sort-
ing based Genetic Algorithm) (Srinivas and Deb 1994) to simultaneously optimise end-to-
end delay, bandwidth and residential bandwidth utilisation rather than combining them into
a single weighted sum objective function for wireless network routing problems. Due to the
user mobility and uncertainties in wireless cellular networks, Roy and Das (2004) employ
a fast and efficient QoS-based mobile multicast routing protocol based on multi-objective
genetic algorithms for dynamic MRPs. In Crichigno and Baran (2004a, 2004b), two multi-
objective evolutionary algorithms (MOEA) with an external population of Pareto optimal
solutions have been proposed based on the strength Pareto evolutionary algorithm (Zitzler
and Thiele 1999). Experimental analysis shows that MOEA1 with a binary tournament se-
lection outperforms MOEA2 with a roulette wheel selection. Other multi-objective genetic
algorithms include Koyama et al. (2004), which optimise the cost and delay of the multicast
tree and Cui et al. (2003), which develop the algorithm based on Pareto dominance.

A variety of other population based meta-heuristics also appear in the multi-objective
multicast routing literature. Two ant colony optimisation algorithms in Diego and Baran
(2005) have shown to find more non-dominated solutions than the MOEA2 algorithm in
Crichigno and Baran (2004b) on benchmark problems with different features using same
computational expenses. Wang et al. (2006) propose a QoS multicast routing model based
on an artificial immune system with a gene library and a clone search operator to search
for better solutions. The algorithm can effectively identify a set of Pareto optimisation so-
lutions compromising multiple QoS objectives. Particle swarm optimisation has also been
investigated in Li et al. (2007) to enhance selected elite individuals before generating the
next generation within a hybrid multi-objective genetic algorithm.

In the recent multi-objective optimisation research, various simulated annealing (SA) ap-
proaches (Czyzzak and Jaszkiewicz 1998; Ehrgott and Gandibleux 2000; Landa-Silva et al.
2004; Li and Landa-Silva 2008; Martins and Costa 2010; Xu and Qu 2011) have been suc-
cessfully applied for different multi-objective optimisation problems. Annealing is known as
a thermal process, where a solid is melted by increasing its temperature and then followed by
a slow progressive temperature decrease aiming at recovering a solid state of lower energy.
The SA algorithm simulates the physical annealing process to solve optimisation problems,
where a solution corresponds to a state of the physical system and the fitness value of a
solution corresponds to the energy of a state. It has the ability in this process to escape
from local optima by visiting worse neighbouring solutions, and shows to be very effec-
tive when exploring the search space of complex multi-objective optimisation problems.
Meanwhile, genetic local search algorithms (Ishibuchi and Murata 1998; Jaszkiewicz 2002;
Mendoza et al. 2010) have been investigated for different multi-objective optimisation prob-
lems. Due to the ability of local search to find local optima effectively over a relatively small
part of the search space, genetic local search algorithms have shown to be very suitable for
solving complex multi-objective optimisation problems. Refer to Beume et al. (2007), Zhang
and Li (2007), Li and Zhang (2009), Bader and Zitzler (2011), Ishibuchi et al. (2011), etc.,
for some recent multi-objective optimisation algorithms.

To our knowledge, there is no investigation on hybridising SA with genetic local search
algorithms to multi-objective MRPs. The only two recent relevant algorithms that we are
aware of are applied to single objective MRPs. In Zahrani et al. (2008), a genetic local search
utilises a logarithmic simulated annealing in a pre-processing step to analyse the landscape
of a single objective MRP subject to multiple constraints in a group multicast scenario.
Another genetic simulated annealing algorithm has been proposed in Zhang et al. (2009)
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for delay jitter bounded least-cost MRP with bandwidth and delay constraints. Simulated
annealing is used to compute the probability of accepting newly generated solutions. These
two methods have shown to be effective in solving single objective MRPs.

In our recent work (Xu and Qu 2011), simulated annealing strategies have shown to
be effective in driving a population of solutions towards the Pareto front of MRPs with
four objectives. However, together with the variable neighbourhoods specially designed for
MRPs, they have shown to have much less impact on the algorithm performance. In solv-
ing complex problems such as MRPs with special solution structure, specifically designed
neighbourhood operators with regard to problem features have shown to be highly effective
on improving algorithm performance.

In this work, motivated by the efficiency of both the simulated annealing strategies and
genetic local search, we develop the first multi-objective simulated annealing based ge-
netic local search (MOSAGLS) algorithm to solve the multi-objective MRPs. The hybrid
MOSAGLS algorithm aims to combine the strengths of both Simulated Annealing and Ge-
netic Algorithm. On the one hand, genetic algorithms have been widely used for solving
multi-objective optimisation problems in the literature due to their population-based na-
ture and the ability to simultaneously search different regions of a solution space. On the
other hand, Simulated Annealing has the character of escaping from local optima by in-
telligently accepting worse solutions thus addressing the issue of premature convergence
of GAs. In our proposed MOSAGLS, a new genetic local search with genetic operators
which are specially designed for MRPs has been developed to simultaneously minimise five
real life objectives, namely (1) the cost, (2) the maximum end-to-end delay, (3) the maxi-
mum link utilisation, (4) the average delay and (5) the delay variation of the multicast tree.
MOSAGLS evolves by using SA-based strategies within the genetic evolutionary process
to generate non-dominated solutions. A new SA-based adaptive mutation probability is also
used to improve the performance of the hybrid algorithm. The impact of the SA based strate-
gies and the local search within the genetic evolution has been investigated within this new
hybrid algorithm.

The rest of the paper is organised as follows. In Sect. 2, the multi-objective MRP is
formally defined. Sections 3 and 4 present the proposed hybrid algorithm and evaluate its
performance by experimental results. Finally, Sect. 5 concludes the paper.

2 The multi-objective MRP

The multi-objective optimisation problem with n decision variables, k objective functions
and q restrictions can be defined as follows (Deb 2005):

Optimise F(x) = (
f1(x), f2(x), . . . , fk(x)

)

s.t. e(x) = (
e1(x), e2(x), . . . , eq(x)

) ≥ 0
(1)

where

X: the decision space of feasible regions in the solution space.
x: a vector of decision variables or a solution, x = (x1, x2, . . . , xn) ∈ X.
fi(x) (i = 1, . . . , k): objective functions with k objectives to be optimised.
F(x): the image of x in the k-objective space given by the vector of k objective functions
fi(x).

ei(x) (i = 1, . . . , q): the set of restrictions which determines the set of feasible solutions.

Multi-objective optimisation generally concerns a set of trade-off optimal solutions, none
of which can be considered superior to the others in the search space when all objectives
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are taken into consideration. The set of all these Pareto-optimal solutions in X is called the
Pareto-optimal Set.

To model the general MRP, we denote a communication network as a directed graph
G = (V ,E) with |V | = n nodes and |E| = l links. The following notations are used in the
rest of the paper:

(i, j) ∈ E: the link from node i to node j, i, j ∈ V .
cij ∈ R+: the cost of link (i, j).
dij ∈ R+: the delay of link (i, j).
zij ∈ R+: the capacity of link (i, j), measured in Mbps.
tij ∈ R+: the current traffic of link (i, j), measured in Mbps.
s ∈ V : the source node of a multicast group.
R ⊆ V − {s}: the set of destinations of a multicast group.
rd ∈ R: the destinations in a multicast group.
|R|: the cardinality of R, i.e. the number of destinations, also called group size.
φ ∈ R+: the traffic demand (bandwidth requirement) of a multicast request, measured in
Mbps.

T (s,R): the multicast tree with the source node s spanning all destinations rd ∈ R.
pT (s, rd) ⊆ T (s,R): the path connecting the source s and a destination rd ∈ R in the mul-
ticast tree T .

d(pT (s, rd)): the delay of path pT (s, rd), given by d(pT (s, rd)) = ∑
(i,j)∈pT (s,rd ) dij , rd ∈ R.

Based on the above definitions, a multi-objective MRP can then be formulated as a multi-
objective optimisation problem. In this paper, we consider the multi-objective MRP with
more objectives than those defined in our previous work Xu and Qu (2011) and in Crichigno
and Baran (2004a). The problem is to find a multicast tree while minimising the values of
the following five objectives:

• The cost of the multicast tree:

C(T ) = φ ·
∑

(i,j)∈T

cij (2)

• The maximal end-to-end delay of the multicast tree:

DM(T ) = Max
{
d
(
pT (s, rd)

)}
, rd ∈ R (3)

• The maximal link utilisation:

α(T ) = Max

{
φ + tij

zij

}
, (i, j) ∈ T (4)

• The average delay of the multicast tree:

DA(T ) = 1

|R|
∑

rd∈R

d
(
pT (s, rd)

)
(5)

• Delay variation of the multicast tree:

DV(T ) = Max
{
d
(
pT (s, rd)

)} − Min
{
d
(
pT (s, rj )

)}
, rd , rj ∈ R (6)

Objective (2) aims to minimise the cost occurred as the multicast tree T occupies certain
required bandwidth on links in the network. Objective (3) minimises the maximal delay time
of sending the data via the multicast tree so that they arrive all destinations within a shortest
bounded time. Objective (4) tries to minimise the maximal link utilisation, i.e. traffic demand
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over the available bandwidth on the links. Objective (5) minimises the average delay time
of sending the data so they arrive all |R| destinations in the shortest average time. Objective
(6) minimises the delay variation of the multicast tree, which is defined as the difference
between the maximum and minimum delays among all the path delays from the source to
all destinations. Note that objective (3) concerns the maximal delay within the multicast tree,
while objectives (5) and (6) minimise the average delay and the delay variation, respectively,
thus concerning the delay to all destinations in the network. These five objectives have some
correlations. For example, the delay-related objectives (2), (4) and (5) (Eqs. (3), (5) and (6))
which are dependent on the delays from the source to destinations in the tree are strongly
correlated. The cost of the multicast tree, i.e., Objective (1) conflicts with these delay-related
objective (2), (4) and (5), since the decrease of the tree cost normally brings the increment of
delays. The link utilisation conflicts with the tree cost and the delay-related objectives, since
the decrease of the link utilisation causes the increase of the cost and delays. As indicated by
the literature, these objectives represent the most common requirements in communications.
It remains interesting future work to formulate a wider range of various objectives based on
the above defined problem for different applications with specific requirements.

In communication networks, the total bandwidth of datagrams on a link must not exceed
the limited bandwidth available. Hence, the total traffic on link (i, j), i.e. the traffic demand
φ of a multicast request plus the current traffic tij is subject to the link capacity zij :

φ + tij ≤ zij , ∀(i, j) ∈ T (s,R) (7)

Due to the complex real world constraints in multi-objective MRPs, the search space of such
problems becomes highly restricted and unpredictable (Xu and Qu 2012). This demands
more efficient and effective optimisation techniques to traverse the search space of such
problems with many local optimal solutions and disconnected regions of feasible solutions.

3 The simulated annealing based multi-objective genetic local search (MOSAGLS)
algorithm

The proposed multi-objective simulated annealing based genetic local search (MOSAGLS)
evolves by using simulated annealing based strategies within the genetic evolutionary pro-
cess concerning non-dominated solutions with regard to the five objectives defined. Figure 1
shows the flowchart of our proposed MOSAGLS algorithm, details presented in the follow-
ing subsections.

In MOSAGLS, the initial population of multicast trees is randomly generated. During the
evolution, parent solutions are chosen to produce child trees by using the defined crossover
and mutation operators. A local search is then applied to the generated child tree to produce a
new improved tree. An external solution set NDS is maintained to record the non-dominated
solutions obtained during the evolution. The MOSAGLS stops after a certain computational
time, or the temperature in the SA drops to the final temperature. The NDS after the evolution
is finished is output as the final results. More details of the genetic local search algorithm
are given in Sect. 3.2.

The proposed MOSAGLS evolves by using the SA strategies to adaptively set the muta-
tion rate, to guide the search directions and to make decision of solution acceptance. A tem-
perature is defined and decreased through generations. Firstly, after crossover, mutation is
carried out based on an adaptive rate according to both the current temperature and the fit-
ness of the offspring and current population. Secondly, each solution in the population is
associated with a random weight vector. This vector, together with the temperature, takes
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Fig. 1 The flowchart of the
proposed MOSAGLS algorithm

part in the solution acceptance and the tuning of search directions. That is, the newly gen-
erated trees replace the selected parent based on a probability calculated using the weight
vector and the current temperature. When the temperature is decreased to below a threshold,
the weight vector is modified to tune the search directions. More details of the SA strategies
are given in Sect. 3.3.

3.1 The representation of the multicast tree

In the proposed MOSAGLS algorithm, we adopt the encoding method in Fabregat et al.
(2005) to represent the solutions (multicast trees) for MRPs in both the genetic local search
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Fig. 2 The NSF (National
Science Foundation) network. On
each link, dij , cij and tij denote
the delay, the cost and the current
traffic. The traffic demand
φ = 0.2 Mbps, the capacity
zij = 1.5 Mbps. The source node
s = 5, the destinations
R = {0,4,9,10,13}

Fig. 3 An example multicast tree and its representation for the NSF network in Fig. 2

and SA process. In this simple yet effective representation, a multicast tree is represented
by an ordered set of |R| paths from the source node s to each destination rd ∈ R, |R| is
the group size. That is, each solution contains |R| components {g1, g2, . . . , g|R|}, where gi

represents a path between the source node s and the d-th destination node rd, d = 1, . . . |R|.
Given the benchmark NSF (National Science Foundation) network (Cui et al. 2003) in

Fig. 2, an example multicast tree and its representation in MOSAGLS are shown in Fig. 3.
The NSF network is a major part of the early 1990s Internet backbone for mainly academic
uses. It has been tested as a benchmark problem in the existing literature by a number of
researchers (Crichigno and Baran 2004a, 2004b; Xu and Qu 2011).

3.2 The genetic local search in MOSAGLS

Genetic algorithms represent one of the mostly investigated evolutionary algorithms in the
literature. It simulates the evolutionary process of the nature to evolve from a population of
individuals by using genetic operators (Goldberg 1989). Better individuals of higher fitness
have more chance to evolve individuals which inherit good building blocks.

In the evolutionary process of our proposed MOSAGLS, the initial population consists
of a fixed number of random multicast trees. They are generated by starting from the source
node and randomly selecting the next connected node until all the destination nodes have
been added to the tree. In each generation, crossover and mutation operations are carried
out on two randomly selected parents from the current population. A local search is used
to further explore better neighbouring solutions of the generated tree. A non-dominated
set NDS is maintained during the evolution. It stores the newly generated tree if it is not
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dominated by any tree in the current NDS, and removes the trees which are dominated by
the generated tree.

For the multi-objective MRPs being concerned, the strength Pareto based evaluation in
Zitzler and Thiele (1999) is adopted in the genetic algorithm in MOSAGLS to calculate the
fitness of individuals. It is used to maintain and update the NDS set as well as used in the
selection, crossover and mutation operations.

3.2.1 The strength Pareto based evaluation

The value of the five objective functions (2)–(6) defined in Sect. 2 is calculated for each
individual. Based on these values, the fitness of each individual is evaluated by using the
evaluation method of the Strength Pareto EA in Zitzler and Thiele (1999) as follows:

(1) For each non-dominated solution Ti ∈ NDS, a strength qi ∈ [0,1] is calculated. It is the
proportion of the number of solutions Tj which are dominated by Ti to the population
size, i.e. Tj is dominated by Ti , denoted by Ti � Tj :

qi = |Tj |Tj ∈ P ∧ Ti � Tj |/|P | (8)

(2) For each individual Tj in the population, the strength qj ∈ [1,1 + |NDS|] is calculated
by summing the strength of all non-dominated solutions Ti ∈ NDS, where Ti � Tj , plus
one:

qj = 1 +
∑

Ti∈NDS,Ti�Tj

qi (9)

(3) Finally, the fitness of each individual Tj in the population F(Tj ) is calculated as the
inverse of its strength qj :

F(Tj ) = q−1
j (10)

The strength Pareto based evaluation in our algorithm is similar to that is used in MOEA
algorithms in Crichigno and Baran (2004a, 2004b). In this work, we focus on the investiga-
tion of genetic local search with SA strategies, so this simple and effective strength Pareto
based evaluation method in the literature has been adopted. It also enables us to carry out
fair comparisons to evaluate the performance of our proposed hybrid algorithm against the
MOEA algorithms in the experiments in Sect. 4.

3.2.2 The selection method

We employ the binary tournament selection method, also used in the MOEA algorithm in
Crichigno and Baran (2004a), to select parents. Each time two individuals from the popula-
tion are randomly selected. The individual with a higher fitness value defined by the strength
Pareto based evaluation in (10) wins the tournament and is selected as a parent. Two parents
are chosen by applying the tournament selection twice.

3.2.3 The crossover operation

A two-point crossover operator, with a crossover rate of 1, is applied to each selected pair
of parents. Based on the representation of the ordered set of paths in Sect. 3.1, the paths
between two randomly generated points in one parent are selected and replaced by the cor-
responding paths in the other parent. Note that some selected paths may share the same links
with some remaining paths. Such links will not be removed to ensure the tree is connected.
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Fig. 4 An example of the two-point crossover operation

To avoid loops in generating the new multicast tree, the selected path will be replaced by
adding the new path from its destination node until it connects to an on-tree node.

An example of the crossover operation is shown in Fig. 4, where path g3 = (5–4–10–
12–8–7–13–9) between the selected two crossover points in parent 1 is replaced by the new
corresponding path (5–6–1–0–3–10–11–9) of g3 in parent 2. To avoid loops in the generated
multicast tree, the new path (5–6–1–0–3–10–11–9) is added to the tree by starting from the
destination node 9, and adding only the path 9–11–10 until it connects to the on-tree node
10. A new tree is then generated as shown in Fig. 4(c).

The simple representation of multicast trees (see Sect. 3.1) facilitates an easy implemen-
tation of crossover operations. By adding the selected path(s) in parent 2 from the destination
node, the newly generated offspring is guaranteed to be feasible (if the link capacity con-
straint (7) is satisfied). Note that while g3 = (5–4–10–12–8–7–13–9) in parent 1 is being
replaced, the links along the path (5–4–10–12–8–7–13) still remains in the multicast tree as
they also appear in g5 in the original tree of parent 1. In multicast trees, some paths share
common links, especially those near the root of the tree, i.e. links near the source node ap-
pear multiple times in the solution. This is due to the nature of the multicast tree that all
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Fig. 5 An example of the mutation operation

paths must pass a subset of the ds links from the source node, where ds is the degree of the
source node. These (partial) paths in the tree are adaptively selected through the evolution
process of MOSAGLS if they present to be good building blocks in the individuals.

3.2.4 The mutation operation

In our MOSAGLS algorithm, mutation is carried out with an adaptive probability by using
both the evolutionary information and SA strategies. The adaptive probability is calculated
based on not only the fitness of the individual, but also the current temperature. More details
of the SA strategies are given in Sect. 3.3.1.

For a selected individual, the mutation operation randomly replaces a path by using an
alternative path stored in a routing table, which is the same as that is devised in Crichigno
and Baran (2004a). The routing table for the destination rd ∈ R of the selected path gd is
consists of m least cost, m least delay and m least used paths (least utilisation path) generated
by using the k-shortest path algorithm (Eppstein 1998). As objectives (2), (3) and (6) defined
in Sect. 2 are all related to the delay objective, they share the same least delay paths in the
routing table. A new randomly selected path p ∈ {path1, . . . ,path3m} in the routing table
then replaces the original path gd from the source to the destination rd .

An illustration of the mutation operation is given in Fig. 5 for the offspring generated in
Fig. 4(c). Figure 5(a) presents the routing table of destination r1 = 0, listing 5 paths for each
objective, i.e. m = 5 in this example. If a random path (5–4–10–11–9–6–1–0) is selected
from the routing table, a new solution is generated in Fig. 5(b) by replacing the original path
(5–4–10–3–1–0) of g1 in Fig. 4(c).

3.2.5 The local search in MOSAGLS

Instead of reproducing the offspring directly to the next generation, a local search is applied
to further enhance the offspring, simulating the maturing phenomenon in the nature. To
apply the local search, each solution (a multicast tree) is firstly represented by a binary array
of |V | = n bits, each corresponding to a node in the multicast tree. Each bit is assigned a
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Fig. 6 An example solution after the local search on the solution in Fig. 5(b). Objective values: C(T ) = 8.8,
DM(T ) = 53, α(T ) = 0.6, DA(T ) = 27, DV(T ) = 46

value 1 if the corresponding node is on the tree; 0 otherwise. This representation has been
widely used in the literature and shows to be effective for local search and genetic operations
for MRPs (Skorin-Kapov and Kos 2003, 2006).

In our MOSAGLS, the neighbourhood operator of the local search is based on the well-
known Prim’s minimum spanning tree algorithm (Betsekas and Gallager 1992) which finds
a tree with the minimal total weights of the links spanning a subset of nodes in the graph.
The local search repeatedly flips a bit in the binary array which represents a solution until a
new better multicast tree is found or a fixed maximum number of nodes have been flipped.
This local search method can greatly improve the solutions with regard to the five objectives
by using the strength Pareto based evaluation (10). After the local search is applied to the
above solution in Fig. 5(b), a new solution is shown in Fig. 6.

This node-based local search has been applied in our previous work (Qu et al. 2009).
The selection of the neighbourhood operator is based on our previous observation that the
node-based neighbourhood operator is easy to implement and effective for searching better
neighbourhood solutions. In this paper, we just investigate this simple yet effective local
search operator. More efficient and effective local search methods and the choice of starting
solutions for local search (Ishibuchi et al. 2010) may be investigated to reduce the computa-
tional time of the hybrid algorithm in our future work.

Based on the procedure described above, Fig. 7 presents the pseudo-code of the hybrid
MOSAGLS. In order to improve the performance of MOSAGLS, as shown in Fig. 7, several
SA strategies have been applied. We illustrate these strategies in the following subsections.

3.3 Simulated annealing strategies in MOSAGLS

Simulated annealing (Kirkpatrick et al. 1983) is one of the mostly studied probabilistic
meta-heuristics for global optimisation. The basic idea is inspired from the physical an-
nealing process where the heated material is gradually cooled to reduce the defects and
form large size crystals. Based on this physical process, during the search the SA al-
gorithm accepts a non-improved state/solution with a probability depending on the tem-
perature in the cooling schedule at that time. As a result, it is able to escape from lo-
cal optima by intelligently accepting worse solutions and effectively explore the search
space of complex multi-objective optimisation problems (Czyzzak and Jaszkiewicz 1998;
Li and Landa-Silva 2008).

In our MOSAGLS, SA strategies have been adopted to (1) set the adaptive mutation rate,
(2) make decision of the acceptance of the new offspring in the genetic local search, and
(3) guide the search directions at the later stage of the evolution.
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MOSAGLS (G = (V ,E), s,R, k)
{ // G: the network topology; s: the source node; R: the destination set; k: number of objectives

Generate the random initial population P with T1, . . . , T|P | multicast trees;
For T1, . . . , T|P | , produce |P | distinct random weight vectors λ1, . . . , λ|P | , each with a uniform spread;
Select non-dominated solutions with respect to multiple objectives in the population P to form NDS;
Calculate the fitness value of all the solutions in NDS and P by using the strength Pareto based evaluation
in Eq. (10);

g = 0;
while (g < Maxgen ) do {

Current temperature t = tmax .
while t ≥ tmin do {

Randomly select a pair of parent solutions Ti and Tj from P ;
Crossover operation over parents Ti and Tj ;
Mutation with adaptive probability pm to the new solution from crossover; // simulated annealing
strategy
Generate T ′

i
by applying local search to the new solution after mutation; // Sect. 3.2.5

if T ′
i

is not dominated by parents Ti or Tj then
Update NDS;

Replace a selected parent Tc by T ′
i

with the probability P(Tc,T
′
i
, λi , t); // simulated annealing

strategy
Re-calculate the fitness for all solutions in NDS and P

Find the closest solution Tk ∈ P of T ′
i

if (Tk is worse than T ′
i
) then // simulated annealing strategy

Tk = T ′
i

// replace the closest member Tk in P

t = t − tstep // temperature decrement
if (t < tc) then

TuningSearchDirections(t ) // simulated annealing strategy: see Fig. 8
} end of while loop
g++;

}
return NDS;

}

Notes: Maxgen is the maximum of generation; tmax/tmin: the starting/final temperatures; tc : the temperature
threshold for tuning the weight vector λ; tstep: the temperature decrement; P : the current population; NDS:
the non-dominated solution set

Fig. 7 The pseudo-code of the MOSAGLS algorithm

3.3.1 Simulated annealing based adaptive mutation probability

In MOSAGLS, mutation is always applied to an offspring if it is better than the average
of the current population (see more details of the mutation operation in Sect. 3.2.4). For
a worse new offspring, mutation is applied with an adaptive probability pm based on not
only the current temperature but also the difference between the fitness of the new offspring
and the average fitness of the current population. The adaptive mutation probability pm is
defined as follows:

Pm =
{

1 Fnew > Favg

e−|Favg−Fnew|/t Fnew ≤ Favg
(11)

where the average fitness of the current population Favg and the fitness of the new offspring
Fnew are calculated by using the strength Pareto based evaluation function defined in (10);
t : the current temperature.

On the one hand, better offspring near the Pareto front will be given higher chance to
be evolved by the mutation operation, making the evolution more effective by investing
computational time on more promising offspring. On the other hand, the mutation rate is
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higher if the current temperature t is higher. This means at the early stage of the evolution,
worse offspring still has the chance to be mutated, giving the whole population the chance to
explore more areas of the search space. At the later stage when the mutation rate decreases
to a small value along with the temperature decrement, worse solutions are rarely evolved
to encourage the convergence of the algorithm.

3.3.2 Simulated annealing based acceptance probability

To assist the decision making of accepting a new generated offspring, and to tune the search
directions in the later stage (see Sect. 3.3.3), a weighted sum of a convex combination of
different objectives is used. A Pareto-optimal solution is obtained if it is the unique global
minimum of the following scalar optimisation problem:

Minimise g(ws)(x, λ) =
k∑

i=1

λifi(x), x ∈ X (12)

where λ is a weight vector, λi ∈ [0,1], i = 1, . . . , k, k is the number of objectives and∑k

i=1 λi = 1; each λi is associated with an objective function fi(x).
Equation (12) is called the weighted scalarising function, one of the mostly used scalar-

ising functions in multi-objective algorithms in the literature (see more details of other func-
tions in Miettinen 1999). In our MOSAGLS, the probability of a new solution x ′ to replace
a solution x is adopted based on the weighted scalarising function g(ws) in Eq. (12):

P
(
x, x ′, λ, t

) =
{

1 if �g(x, x ′, λ) < 0

e
−�g(x,x′,λ)

t otherwise
(13)

where t > 0 is the current temperature; �g(x, x ′, λ) = g(ws)(x ′, λ) − g(ws)(x, λ) is the dif-
ference between x and x ′ by using the weighted scalarising function in (12).

In the initialisation of our MOSAGLS algorithm, a normalised weight vector λi is ran-
domly generated for each solution Ti . At each generation, a new solution T ′

i is generated
after the local search upon the offspring produced from the chosen pair of parent solutions
Ti and Tj . The parent of lower quality is then replaced by the newly generated tree T ′

i based
on the weight vector and the current temperature, i.e. parent with a higher probability by
comparing P (Ti, T

′
i , λ

i, t) and P (Tj , T
′
i , λ

j , t) in Eq. (13) is replaced.

3.3.3 Simulated annealing based competition and search direction tuning

Simulated annealing strategies have shown to be effective to tune search directions in solving
multi-objective travelling salesman problems (Li and Landa-Silva 2008). To tune the search
directions in our proposed MOSAGLS, two similar adaptation strategies to Li and Landa-
Silva (2008) have been adopted. They are designed to diversify the search directions and
avoid solutions being trapped in local optima during the evolutionary process.

(1) The first strategy is defined concerning the competition between close solutions in the
current population. Euclidean distance, which is widely used in the multi-objective op-
timisation literature, has been used in MOSAGLS to measure the distance between two
solutions. This is calculated upon the differences between all the objectives values in the
two solutions for the problem. After a new solution T ′

i is generated, the closest solution
Tj measured by the Euclidean distance in the current population is chosen as a neighbour
of T ′

i . MOSAGLS then replaces Tj with T ′
i if Tj is worse than T ′

i by comparing their
weighted scalarising function values using Eq. (12), i.e. if g(ws)(T ′

i , λ
j ) < g(Tj , λ

j ).
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TuningSearchDirections (t )
{ // t : current temperature; μ: the constant for tuning the search direction

foreach Ti ∈ P do {
Find the closest non-dominated solution T ′

i
of Ti in the current population

by using the Euclidean distance upon λi′ and λi

foreach obj ∈ {1, . . . , k} do // k: number of objectives {
if fobj(T

′
i
) < fobj(Ti ) then λi

obj = μλi
obj;

else λi
obj = λi

obj/μ;
} end of foreach

Normalise λi by setting λi
obj = λi

obj/
∑k

p=1 λi
p}

}

Fig. 8 The pseudo-code of search directions tuning by using simulated annealing strategies

(2) The second strategy aims to tune the search direction when the search is getting closer to
the Pareto front at the later stage of the evolution. This strategy is similar to that of multi-
objective SA algorithms in Czyzzak and Jaszkiewicz (1998) and Li and Landa-Silva
(2008). It adaptively tunes the weight vector according to the closest non-dominated
neighbouring solution in the current population when the current temperature is de-
creased to below a threshold. The pseudo-code of the search direction tuning is pre-
sented in Fig. 8.

The latter two strategies in Sects. 3.3.2 and 3.3.3 on the solution acceptance and the tun-
ing of search directions have also been investigated in the simulated annealing based multi-
objective algorithm named EMOSA in Xu and Qu (2011) for solving the multi-objective
MRPs, where only four objectives (i.e. Eqs. (2), (3), (4) and (5), except Eq. (6)) have shown
effective to find better non-dominated solutions than other multi-objective evolutionary al-
gorithms (Crichigno and Baran 2004a, 2004b) in the literature. Based on our previous work,
these two SA based strategies have been adopted to in our proposed MOSAGLS hybridised
with the local search operator as the post improvement optimisation strategy for solving the
multi-objective MRPs with more objectives in this paper.

4 Performance evaluation

4.1 Simulation environment and test instances

We have carried out a large amount simulations to test our algorithms on both the benchmark
and random networks with different objectives. Two variants of our multi-objective multicast
routing algorithms have been evaluated in the following experiments:

(1) MOSAGA, the proposed algorithm without local search, and
(2) MOSAGLS, the proposed algorithm with local search.

Both of these algorithms are new in solving multi-objective MRPs. We firstly evaluate dif-
ferent components of these algorithms on a set of random networks with two objectives (cost
and delay, see Sect. 2). Based on the observations obtained, we then compare our algorithms
with the existing algorithms in the literature on two benchmark networks with different num-
ber of objectives. Finally, we demonstrate the effectiveness and efficiency of our algorithms
upon a set of random networks with all the five objectives defined in Sect. 2.

All simulations have been run on a Windows XP computer with PVI 3.4 GHz,
1 GB RAM, and within a multicast routing simulator developed based on Salama’s gen-
erator (Salama et al. 1997). The multicast routing simulator generates random network
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topologies by using the Waxman’s graph generation algorithm (Waxman 1988). The nodes
of the network are located within a simulated rectangle of size 4000 × 4000 km2. The Eu-
clidean metric is used to determine the distance l(i, j) between pairs of nodes i and j . Links
connect nodes (u, v), with a probability

P (i, j) = βe−l(i,j)/αL, α,β ∈ (0,1] (14)

where L is the maximum distance between two nodes; α and β are parameters which can
be set to different values to create desired characteristics in the network. Therefore, a large
value to β creates a high average degree to nodes, and a small value to α creates long
connections between nodes. More details of the simulator can be found in Salama et al.
(1997) and Qu et al. (2009).

In all our simulations, we set α = 0.25 and β = 0.40 to generate random network topolo-
gies. Within the network, the link cost cij is assigned a random value between (0,100] to
define the current total bandwidth reserved on the link. The link delay dij is defined as
the propagation delay depending on the length of the link. The link capacity zij is set as
1.5 Mbps. The current traffic tij is randomly loaded around 50 % of its total link capacity,
which is set the same as that in Diego and Baran 2005. To encourage scientific comparisons,
the detailed information of all the problem instances and the experimental results has been
provided at http://www.cs.nott.ac.uk/~rxq/benchmarks.htm.

4.2 Parameter settings

In the evolutionary process of MOSAGA, the population size is set to 50, the number of
generations is set to 500, and the crossover rate is set to 1. These are the same as those in
the other two evolutionary algorithms MOEA1 (Crichigno and Baran 2004a) and MOEA2
(Crichigno and Baran 2004b) for multi-objective MRPs. Instead of using a fixed mutation
rate 0.3 in MOEA1 and MOEA2, we employ an adaptive mutation rate in MOSAGA. Based
on initial tests, we set m = 25 to generate the routing table of 3 × m alternative paths in the
mutation operation. In the SA process of our MOSAGA, we set the initial temperature tmax =
50, the final temperature tmin = 5, the temperature decrement tstep = 5, and the temperature
threshold tc = 25. The parameters of the SA process are kept the same as those in the SA
based multi-objective algorithm for solving travelling salesman problems (Li and Landa-
Silva 2008). For simplicity and fair comparisons, we keep the same parameter settings for
the proposed algorithms on all the tested instances in this paper unless otherwise stated.

All the parameter values have been also determined after a set of tests to find the balance
between the quality of solutions and the running time. For example, to obtain a proper range
of values for the population size and the starting temperature, a set of initial tests have been
carried on the NSF network shown in Fig. 2 to compare the performance of MOSAGA with
different parameter settings. The optimal Pareto Front (PF) of the NSF benchmark problem
that composes of 16 solutions has been found by an exhaustive search method in Crichigno
and Baran (2004b), where four objectives (2), (3), (4) and (5) have been considered in the
algorithms. We thus considered the same four objectives in our MOSAGA algorithms in
this group of tests. Table 2 presents the maximum, minimum and average number of non-
dominated solutions found by each variant of MOSAGA in 50 runs. The setting of popu-
lation size pop = 50 and the starting temperature tmax = 50 provides the best solutions and
requires less computing time, is thus selected in our algorithms.

4.3 Results on random networks with two objectives

In order to visually analyse the impact of SA strategies, the adaptive mutation and the local
search on the performance of the proposed algorithms, we carry out a series of experiments

http://www.cs.nott.ac.uk/~rxq/benchmarks.htm
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Table 2 Comparison of MOSAGA with different parameter settings for solving the NSF network in Fig. 2.
|NDS|: the number of non-dominated solutions; Running time = 60 seconds in each run

pop tmax Max |NDS| Min |NDS| Average |NDS|

50 50 16 16 16

50 100 16 13 14

100 50 16 12 15

100 100 16 13 14

on random networks with two objectives, namely the cost and the delay as defined in Sect. 2.
Four random networks have been generated with different network sizes (|V | = 50 and
|V | = 100) and group sizes (number of destination nodes |R| = 20 %∗ |V | and |R| = 30 %∗
|V |).
4.3.1 The impact of simulated annealing strategies

In the first group of experiments, we compare MOSAGA with two evolutionary algorithms,
MOEA1 (Crichigno and Baran 2004a) and MOEA2 (Crichigno and Baran 2004b), to iden-
tify the impact of SA strategies to our multi-objective genetic local search. For a fair com-
parison, the same parameter setting in MOEA1 and MOEA2 has been used in the evolution
process in our MOSAGA. The non-dominated solutions found by the three algorithms after
50 runs are shown in Fig. 9, with their average computing time in Table 3.

The experimental results clearly show that the MOSAGA algorithm found a set of better
non-dominated solutions compared with those from the two MOEA algorithms on 3 out of
4 problems, i.e. Fig. 9(a), (c) and (d). For the problem in Fig. 9(b), MOSAGA is able to find
better non-dominated solutions except those three solutions found by MOEA2. However, for
all other three problems, MOEA2 has performed the worst. With regard to the computing
time, MOSAGA requires the least computing time. This demonstrates that the SA strategies
in MOSAGA can guide the search direction of genetic algorithm to find better solutions in
less computing time in comparison with the MOEA algorithms.

4.3.2 The impact of the adaptive mutation

In the second group of experiments, we test the effect of the adaptive mutation by com-
paring it with four fixed mutation rates, i.e. Pm = 0.3, 0.6, 0.9, 1 in MOSAGA. The non-
dominated solutions found by MOSAGA with different mutation rates after 50 runs are
shown in Fig. 10. In general, MOSAGA with the adaptive mutation rate has the best over-
all performance among all the other variants with fixed mutation rates, although the Pareto
fronts found by variants of the algorithm interweave at certain part of the front for some net-
works, i.e. Fig. 10(b) and Fig. 10(d). With the fixed mutation rate, MOSAGA occasionally
finds several better non-dominated solutions, but fails to obtain the majority of solutions at
the Pareto front found by MOSAGA with adaptive mutation rate for all four networks. The
adaptive mutation rate makes the search more effective based on both the temperature and
the fitness of the new solution and the current population.

4.3.3 The impact of the local search

In the third group of experiments, we compare the MOSAGA and MOSAGLS algorithms
to demonstrate the effect of the local search in our proposed algorithms. The local search in
MOSAGLS stops after a number of nodes (set as 10 here) has been flipped.
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Fig. 9 The non-dominated solutions found by MOSAGA, MOEA1 and MOEA2 on random networks with
two objectives in 50 runs

Table 3 Average computing time of MOSAGA, MOEA1 and MOEA2 on random networks with two objec-
tives

Network size Group size Computing time (sec)

MOSAGA MOEA1 MOEA2

50 10 7.068 25.211 25.544

50 15 6.208 34.901 36.703

100 20 13.342 88.411 96.489

100 30 18.338 126.517 132.015

The non-dominated solutions found by both algorithms for the four random networks in
50 runs are shown in Fig. 11, clearly showing the improvement made by the local search in
MOSAGLS. For the small network in Fig. 11(a), MOSAGLS found four non-dominated so-
lutions, while MOSAGA found only two non-dominated solutions. For the same networks
with larger group size and for networks of large size, it is obvious that MOSAGLA out-
performs MOSAGA by finding much better non-dominated solutions. This demonstrates
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Fig. 10 The non-dominated solutions found by MOSAGA with different mutation rates on random networks
with two objectives in 50 runs

Table 4 Average computing time of MOSAGA and MOSAGLS on random networks with two objectives

Network size Group size Computing time (sec)

MOSAGA MOSAGLS

50 10 0.573 4.076

50 15 0.684 5.331

100 20 1.62 22.198

100 30 1.616 36.274

the efficiency of the local search in our proposed MOSAGLS algorithm. Please note the
non-dominated solutions obtained by MOSAGA in Fig. 11 are different from the results of
MOSAGA in Fig. 10 due to the independent runs of experiments on the random networks.

Table 4 presents the average computing time of MOSAGA and MOSAGLS on the four
random networks, showing (not surprisingly) that MOSAGLS finds better solutions at the
expenses of longer computing time compared with the MOSAGA algorithm. In real world
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Fig. 11 The non-dominated solutions found by MOSAGLS and MOSAGA on random networks with two
objectives in 50 runs

applications, the balance of solution quality and the computational time should be concerned
while designing the local search in MOSAGLS. This demonstrates that our proposed local
search is able to improve the search results of MOSAGLS while consuming longer compu-
tational time.

4.4 Results on benchmark and random problems with different objectives

4.4.1 Results on the NSF network with four objectives

Based on the above observations, we compare the performance of the MOSAGLS and
MOSAGA algorithms on the benchmark NSF network with that of MOEA algorithms.
As mentioned in Sect. 4.2, the optimal Pareto front of 16 solutions for the NSF problem
has been found in Crichigno and Baran (2004b), concerning the four objectives (2), (3),
(4) and (5) defined in Sect. 2. We thus consider the same four objectives in this group of
experiments.

The adaptive mutation rate has been applied in MOSAGLS and MOSAGA. To ensure a
fair comparison between algorithms, we have re-implemented the MOEA algorithms, and
compared the results obtained by the four algorithms within 60 seconds instead of defining a
fixed number of generations. Table 5 presents the maximum, minimum and average number
of non-dominated solutions found by each algorithm in 50 runs.
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Table 5 The number of non-dominated solutions found by different algorithms on the NSF network in Fig. 2
with four objectives. Computing time = 60 seconds

Algorithms Max |NDS| Min |NDS| Average |NDS|

MOSAGLS 16 16 16

MOSAGA 16 16 16

MOEA1 16 14 15

MOEA2 16 10 15

Table 6 Two different multicast groups used for the experiments on the NTT network in Fig. 12

Multicast
group

Source Destination set R |R|

Group 1
(small)

5 {0,1,8,10,22,32,38,43,53} 9

Group 2
(large)

4 {0,1,3,5,6,9,10,11,12,17,19,21,22,23,25,33,34,37,41,44,46,47,52,54} 24

For this small NSF problem, our proposed MOSAGLS and MOSAGA algorithms outper-
form the two MOEA algorithms, i.e. always find all 16 solutions in the optimal Pareto front
in 50 runs. This, together with our above observations, indicates that SA based MOSAGA
and MOSAGLS with adaptive mutation rate are more effective than the two conventional
MOEA algorithms for multi-objective MRPs.

4.4.2 Results on the NTT network with five objectives

We also test our algorithms on the NTT (Nippon Telephone Telegraph) network in Fig. 12.
Two different multicast groups have been tested, as shown in Table 6. We set the current
traffic tij of each link as randomly loaded with around 50 % of its total link capacity, which
is the same as that in Diego and Baran (2005). All algorithms have been evaluated with
respect to all the five objectives defined in Sect. 2.

As the optimal Pareto front for the NTT network with all the five objectives defined in
Sect. 2 is not known, we use a six-step procedure devised in Diego and Baran (2005) to
obtain an approximation of the Pareto front for each problem. The six-step procedure in
Diego and Baran (2005) is presented as follows:

(1) Each of the algorithms tested is run 10 times.
(2) For each algorithm, 10 sets of non-dominated solutions Y1, Y2, . . . , Y10 are obtained, one

from each run.
(3) For each algorithm, an aggregate collection of solutions YT is obtained, i.e. YT =⋃10

i=1 Yi .
(4) The non-dominated solutions in YT are stored for each algorithm, denoted by Yalg.
(5) A set of solutions Y ′ is obtained by combining all Yalg, i.e. Y ′ = ⋃

Yalg.
(6) The non-dominated solutions in Y ′ are used as an approximation of the true optimal

Pareto solution set, called YPF .

Based on this approximation of the optimal Pareto solution set YPF , in order to have
an insight of the quality of solutions obtained by each algorithm with regard to YPF , the
following notations are used:
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Fig. 12 The Nippon Telephone Telegraph (NTT) network of Japan with 55 nodes and 142 links. Costs are
shown on each link

– ∈ YPF : the average number of solutions that are in YPF found by each algorithm in all
runs;

– YPF �: the average number of solutions that are dominated by YPF found by each algo-
rithm in all runs;

– |Ȳ |: the average number of any solutions found by each algorithm in all runs;
– % YPF : the average percentage of solutions in YPF found by each algorithm in all runs, i.e.

∈ YPF/|YPF|.
(1) Comparisons of MOSAGLS with MOSAGA on the NTT network

Firstly, to investigate the effectiveness and efficiency of the local search operator in our
proposed MOSAGLS, we compare MOSAGLS with MOSAGA in which no local search
is applied. Table 7 presents the total number non-dominated solutions in YPF obtained by
MOSAGA and MOSAGLS for the NTT network in Fig. 12 with two different multicast
groups in Table 6 by using the above six-step procedure. For a fair comparison, the compu-
tational time for both algorithms for each run is 60 seconds.

Results in both Table 8 and Table 9 show that MOSAGLS found more non-dominated
solutions ∈ YPF than that of MOSAGA, and thus gave a better approximation to the Pareto
Front. This becomes more obvious for the NTT network with the large group size (see
group 2 in Table 6) in Table 9, where MOSAGLS found 17.27 % of the non-dominated
solutions in YPF , compared with 7.27 % of solutions in YPF found by MOSAGA. Better
experimental results obtained by MOSAGLS demonstrate that the local search operator can
improve the performance of MOSAGLS by finding more non-dominated Pareto optimal
solutions for solving the multi-objective MRP with five objectives.

(2) Comparisons of MOSAGLS with MOEA1 and MOEA2 on the NTT network

Secondly, we compare MOSAGLS with other two multi-objective evolutionary algo-
rithms MOEA1 and MOEA2 on the NTT benchmark problem with five objectives. Each
algorithm has been run 10 times on each instance.
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Table 7 Based on the six-step procedure, the total number of non-dominated solutions
YPF obtained by MOSAGLS and MOSAGA for the NTT network with two different
multicast groups with respect to all five objectives

Computational time 60 seconds each run

Multicast group Group 1 Group 2

|YPF | 6 11

Table 8 Comparisons of MOSAGLS and MOSAGA for the NTT network with the small multicast group 1.
Computational time for each run is 60 seconds. The best results are in bold

Algorithms ∈ YPF YPF � |Yalg| % YPF

MOSAGLS 3.86 6.1 9 64.33 %

MOSAGA 3.02 7.52 10 50.33 %

Table 9 Comparisons of MOSAGLS and MOSAGA for solving the NTT network with the large multicast
group 2. Computation time for each run is 60 seconds. The best results are in bold

Algorithms ∈ YPF YPF � |Yalg| % YPF

MOSAGLS 1.9 9.06 10.96 17.27 %

MOSAGA 0.8 10.42 11.22 7.27 %

Table 10 Based on the six-step procedure, the total number of non-dominated solutions in YPF obtained by
MOSAGLS, MOEA1 and MOEA2 for the NTT network with two different multicast groups with respect to
all five objectives

Running time 160 seconds 320 seconds

Multicast group Group 1 Group 2 Group 1 Group 2

|YPF | 44 16 42 17

Table 10 presents the total number non-dominated solutions in YPF obtained by the three
algorithms for the two NTT instances by using the six-step procedure. For a fair and com-
prehensive comparison, all algorithms tested have been given the same computational time,
i.e. 160 seconds and 320 seconds, respectively, for each run.

Tables 11 and 12 present the results obtained for the NTT network with two different
multicast groups. Both tables show that MOSAGLS found more non-dominated solutions
∈ YPF than that of MOEA algorithms. A measurement used in Zitzler and Thiele (1999) is
used here to calculate the coverage of the non-dominated solution set obtained by each algo-
rithm. This is represented by the ratio of the number of non-dominated solutions obtained by
each algorithm to that of another algorithm. Tables 11 and 12 show that the non-dominated
solutions found by MOSAGLS cover the majority of the non-dominated solutions found by
MOEA algorithms. This becomes more obvious for the NTT network with larger group size,
where MOSAGLS found almost all non-dominated solutions, while the MOEA algorithms
found just one or no solution that belongs to MOSAGLS.
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Table 11 Results of different algorithms for solving the NTT network with small multicast group 1 in Table 6

Algorithms ∈ YPF YPF � |Ȳ | % YPF Coverage YMOSAGLS YMOEA1 YMOEA2

Running time = 160 seconds

MOSAGLS 4.1 14.6 18.7 9.32 % YMOSAGLS \ 0.57 0.8

MOEA1 1.4 25.7 27.1 3.18 % YMOEA1 0.33 \ 0.32

MOEA2 1.8 14.1 15.9 4.09 % YMOEA2 0.56 0.5 \
Running time = 320 seconds

MOSAGLS 5 17.1 22.1 12.9 % YMOSAGLS \ 0.57 0.82

MOEA1 4.8 18.6 23.4 11.4 % YMOEA1 0.71 \ 0.96

MOEA2 1.9 13 14.9 4.75 % YMOEA2 0.57 0.49 \

Table 12 Results of different algorithms for solving the NTT network with large multicast group 2 in Table 6

Algorithms ∈ YPF YPF � |Ȳ | % YPF Coverage YMOSAGLS YMOEA1 YMOEA2

Running time = 160 seconds

MOSAGLS 7.3 11.2 18.5 45.63 % YMOSAGLS \ 1 1

MOEA1 0 17.8 17.8 0 YMOEA1 0 \ 0.64

MOEA2 0 10.9 10.9 0 YMOEA2 0 0 \
Running time = 320 seconds

MOSAGLS 6.8 13.5 20.3 40 % YMOSAGLS \ 0.95 1

MOEA1 0.1 16 16.1 0.59 % YMOEA1 0.06 \ 1

MOEA2 0 12.1 12.1 0 YMOEA2 0 0 \

Table 13 The average number of non-dominated solutions on the random networks

Network size |V | = 50 |V | = 100

Group size |R| = 10 |R| = 15 |R| = 20 |R| = 30

|ȲPF | 264.4 196.2 91.4 105.2

4.4.3 Results on random networks with five objectives

Finally, we test the effectiveness and efficiency of our algorithm upon a set of random net-
works of different characteristics with respect to all five objectives defined in Sect. 2. We
generate 10 random graphs for each network size of |V | = 50 and |V | = 100, and with dif-
ferent group sizes (|R| = 20 % ∗ |V | and |R| = 30 % ∗ |V |). Therefore, there are in total 40
instances (10 for each of the four types of networks) tested.

We set the same running time, i.e. 320 seconds for all algorithms in each run. Table 13
presents the average number of non-dominated solutions (|ȲPF|) obtained from 10 runs of
the three algorithms on each of the four types of random networks by using the six-step
procedure in Sect. 4.4.2.

Tables 14 and 15 present results of the three algorithms on the random networks with
different characteristics. Average results from 10 runs on 10 different instances for each type
of networks show that MOSAGLS significantly outperforms the two MOEA algorithms by
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Table 14 Comparison of different algorithms on random networks of |V | = 50 with different group sizes.
Computational time for each run is 320 seconds

Algorithms ∈ YPF YPF � |Ȳ | % YPF Coverage YMOSAGLS YMOEA1 YMOEA2

Group size |R| = 10

MOSAGLS 37.72 66.08 103.8 14.69 % YMOSAGLS \ 0.64 0.82

MOEA1 6.48 110.46 116.94 2.91 % YMOEA1 0.01 \ 0.55

MOEA2 2.76 94.84 97.6 1.16 % YMOEA2 0.01 0.19 \
Group size |R| = 15

MOSAGLS 30.3 61.9 92.2 15.91 % YMOSAGLS \ 0.7 0.84

MOEA1 3.26 95.7 98.96 1.67 % YMOEA1 0.04 \ 0.76

MOEA2 1.38 85.76 87.14 0.54 % YMOEA2 0.02 0.14 \

Table 15 Comparison of different algorithms on random networks of |V | = 100 with different group sizes.
Computational time for each run is 320 seconds

Algorithms ∈ YPF YPF � |Ȳ | % YPF Coverage YMOSAGLS YMOEA1 YMOEA2

Group size |R| = 20

MOSAGLS 2.15 16.36 18.51 2.9 % YMOSAGLS \ 0.9 0.97

MOEA1 0.05 17.60 17.66 0.05 % YMOEA1 0.004 \ 0.71

MOEA2 0.004 14.72 14.72 0.004 % YMOEA2 0.008 0.13 \
Group size |R| = 30

MOSAGLS 0.928 4.146 5.074 0.93 % YMOSAGLS \ 0.9 1

MOEA1 0.13 5.62 5.75 0.08 % YMOEA1 0.002 \ 0.7

MOEA2 0 4.59 4.59 0 YMOEA2 0 0.17 \

finding more non-dominated solutions in YPF . The non-dominated solution set obtained by
MOSAGLS covers most of the non-dominated solutions found by MOEA1 and MOEA2.
This again demonstrates the effectiveness of our proposed MOSAGLS algorithm on the
random networks with all five objectives defined.

To summarise, the large amount of experiments on a range of multi-objective MRPs with
different features demonstrate the efficiency and effectiveness of our proposed simulated an-
nealing based multi-objective genetic local search algorithm MOSAGLS. The SA strategies
improve the performance of the algorithm by finding better non-dominated solutions in less
computing time compared with conventional multi-objective evolutionary algorithms. The
adaptive mutation contributes a better performance than that of fixed mutation rates. The
local search further improves the performance of MOSAGLS, however at a higher compu-
tational time. Comparisons on both the benchmark problems and random networks demon-
strate that the proposed MOSAGLS has the best performance among variants of algorithms,
and show that MOSAGLS is able to find high quality solutions for multi-objective MRPs
with different features.
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5 Conclusions

In this paper, we investigate the first simulated annealing based multi-objective genetic local
search (MOSAGLS) for solving multi-objective MRPs. A new simulated annealing based
adaptive mutation probability is proposed in MOSAGLS, which can adaptively adjust the
mutation rate according to the fitness of the new solution against the average quality of the
current population during the genetic evolution procedure. In addition, two adaptation strate-
gies based on simulated annealing are adopted to tune the search directions in MOSAGLS.
One is the competition between similar members in the current population, another one is
the two-phase strategy for tuning weight vectors. Integrated with these simulated anneal-
ing strategies, the hybrid multi-objective genetic local search is able to efficiently search
towards the Pareto front and diversify the population with regard to the multiple objectives
in the problem.

Due to the complex structure of the multicast tree, an ordered set of paths has been used
to represent solutions. Based on this simple solution representation, the crossover and muta-
tion operators have been specifically designed concerning the network structure to facilitate
efficient and effective operations and improve the objective values of the tree while satisfy-
ing the constraint. Finally, the local search further intensifies the search by exploring more
promising neighbouring solutions based on a binary string solution representation.

Through a large amount of extensive simulations, we evaluate our proposed MOSAGLS
on both benchmarks and a series of random networks with different objectives and differ-
ent features. Experimental results show that the simulated annealing strategies significantly
improve our proposed algorithm compared against another two conventional MOEA algo-
rithms in the literature with respect to both the solution quality and computing time for
the multi-objective MRPs. This demonstrates that better control of the evolution by using
the simulated annealing strategies significantly improves the efficiency and effectiveness
of MOSAGLS. Compared with the simulated annealing based multi-objective genetic al-
gorithm without local search, MOSAGLS obtained significantly better results but at larger
computational expenses.

The proposed MOSAGLS algorithm has shown to be an ideal approach for solving the
multi-objective MRPs, and is flexible to be extended to solve other multi-objective optimi-
sation problems. In our future work, we also intend to investigate the influence of different
selection strategies and adaptive crossover in the hybrid algorithm. More efficient and ef-
fective local search methods and the choice of starting solutions for local search may be
investigated to reduce the computational time of the hybrid algorithm. Other Pareto domi-
nance methods may also be applied to further improve the search towards the Pareto front in
the MOSAGLS algorithm. In addition, some recent powerful multi-objective optimisation
algorithms can be investigated in our future work.
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