
Ann Oper Res (2014) 222:419–438
DOI 10.1007/s10479-012-1287-y

Tailored Lagrangian Relaxation for the open pit block
sequencing problem

W.B. Lambert · A.M. Newman

Published online: 16 January 2013
© Springer Science+Business Media New York 2013

Abstract A common strategic and tactical decision in open pit mining is to determine the
sequence of extraction for notional three-dimensional production blocks so as to maximize
the net present value of the extracted orebody while adhering to precedence and resource
constraints. This problem is commonly formulated as an integer program with a binary vari-
able representing if and when a block is extracted. In practical applications, the number
of blocks can be large and the time horizon can be long, and therefore, instances of this
NP-hard precedence-constrained knapsack problem can be difficult to solve using an exact
approach. The problem is even more challenging to solve when it includes explicit minimum
resource constraints. We employ three methodologies to reduce solution times: (i) we elimi-
nate variables which must assume a value of 0 in the optimal solution; (ii) we use heuristics
to generate an initial integer feasible solution for use by the branch-and-bound algorithm;
and (iii) we employ Lagrangian relaxation, using information obtained while generating the
initial solution to select a dualization scheme for the resource constraints. The combination
of these techniques allows us to determine near-optimal solutions more quickly than solving
the monolith, i.e., the original problem. We demonstrate our techniques to solve instances
containing 25,000 blocks and 10 time periods, and 10,000 blocks and 15 time periods, to
near-optimality.

Keywords Mining · Production scheduling · Integer programming

1 Introduction and background

Mining is a complex, expensive, but potentially lucrative business. Before the first ounces of
metal are recovered for revenue, hundreds of millions of dollars and years of effort may be
required for permitting, financing, site construction, and training. As in all natural resource

W.B. Lambert · A.M. Newman (�)
Division of Economics and Business, Colorado School of Mines, Golden, CO 80401, USA
e-mail: anewman@mines.edu

W.B. Lambert
e-mail: wlambert@mines.edu

mailto:anewman@mines.edu
mailto:wlambert@mines.edu

420 Ann Oper Res (2014) 222:419–438

Fig. 1 Blocks 2–6 must be
mined prior to mining block 1

exploration industries, these investments do not guarantee a profit. Tight margins and volatile
mineral markets necessitate efficient ore removal schemes to maximize the mine’s expected
return on investment, thereby increasing the likelihood of being profitable.

A common method to extract hard-rock minerals from the ground is surface, or open pit,
mining. A block model contains three-dimensional rectangular blocks (e.g., 50′ ×50′ ×100′)
representing the material to be removed. By removing material directly from the surface,
open pit mines benefit from tremendous efficiencies of scale through the use of massive
equipment (e.g., 360-ton trucks that haul material from the pit). These efficiencies are real-
ized in enormous mining operations that may span decades and include tens of thousands to
millions of blocks. This paper focuses on solving the open pit block sequencing (OPBS)
problem, which is that portion of the production scheduling problem specifying which
blocks to extract, and when, to maximize the value of the extracted ore. The difficulty in
solving the OPBS problem depends on both the number of blocks, and on the amount of
detail included in the problem specification (e.g., the number of different resources required
to extract the blocks, whether or not extracted material may be stockpiled, whether or not
the attributes of extracted material must satisfy specific proportions).

Precedence constraints enforce geospatial limitations to ensure that pit walls do not fall in
on themselves (e.g., pit wall slopes may not be inclined more than 45 degrees as measured
from the horizontal). One example of such a constraint precludes removing a lower level
block b prior to removing the blocks above and adjacent to each face of b (see Fig. 1). We
refer to those predecessor blocks b′ in the level directly above b as b’s direct predecessor
set, and the predecessor blocks b′′ in all levels above b as b’s complete predecessor set, or
b’s predecessor pit. Analogously, if we choose not to mine block b, a set of blocks has its
extraction held up by block b. We refer to this set as block b’s complete hold set, and it
includes all other blocks which contain block b in their predecessor sets.

Resource capacities limit the amount of material extracted from the pit and processed at
the mill. The maximum production capacity is a function of the available equipment (e.g.,
shovels and trucks) and the equipment’s ability to access the pit (e.g., road capacities into
and out of the pit). The maximum processing capacity is a function of the mill’s throughput,
where mineral content is separated from waste. The scale and nature of production and
processing operations is such that stopping and re-starting is not always practical, and hence,
minimum resource requirements may also exist. For example, to prevent firing and re-hiring
a highly trained workforce, a mine planner may enforce a minimum production rate in each
period. Some processing operations are self-sustaining, and many mines enter into long-
term delivery contracts, both of which imply a minimum processing rate each period. From
a tractability standpoint, the inclusion of these minimum requirements is challenging, as
they preclude myopic approaches which may be valid when only maximum capacities exist.

The mine planner must develop a schedule specifying if and when to remove each block
from the pit, subject to precedence constraints between blocks, and resource constraints that
dictate minimum and maximum extraction and processing rates. The major challenge is to

Ann Oper Res (2014) 222:419–438 421

select from among numerous feasible sequences one that maximizes the net present value of
the extracted ore. Identifying that sequence requires integer programming, because blocks
may not be partially mined.

2 Literature review

Lerchs and Grossmann (1965) present an efficient method of solving the open pit mine de-
sign problem, with subsequent papers providing insights, algorithmic enhancements, and/or
extensions to robust planning, e.g., Underwood and Tolwinski (1998), Hochbaum and Chen
(2000), and Altner and Ergun (2011). Solving this ultimate pit limit (UPL) problem identi-
fies the most economical subset of blocks to extract from within the entire proposed open
pit mine. However, by ignoring resource requirements and the dimension of time, solving
the UPL problem cannot provide a production schedule.

The sheer size of real-world open pit mine scheduling problems limits the feasibility
of solving the monolith with naive integer programming formulations. Therefore, various
decomposition and aggregation approaches are common in the literature. Johnson (1968)
provides the first published attempt at formulating and solving the open pit production
scheduling monolith, determining extraction times and destinations for individual blocks
while enforcing resource constraints. Dagdelen (1985) improves upon this attempt with La-
grangian relaxation, decomposing the constraint set into two groups: (i) constraints which
form a network (sequencing constraints) and (ii) constraints associated with production and
processing capacities (side constraints). He then dualizes the side constraints to take advan-
tage of the underlying network structure of the sequencing constraints.

Caccetta and Hill (2003) provide an exact approach to solving the open pit production
scheduling problem, explicitly defining variables that represent whether a block is extracted
by time period t , a variable substitution approach first proposed in Johnson (1968), which is
now standard in open pit production scheduling formulations. Ramazan (2007), Boland et al.
(2009), and Gleixner (2008) use block aggregation approaches; while successful, effective
disaggregation remains a challenge. Bley et al. (2010) strengthen the integer formulation of
the open pit mine production scheduling problem by adding valid cutting planes for both
single- and multiple-block sets. They do so considering each attribute of a block, the mine’s
corresponding capacity to handle that attribute, and the combined precedence set of multiple
blocks. Askari-Nasab et al. (2010) present two formulations based on a “mining-cut” con-
struct, which suggests a block aggregation scheme. Their formulations seek to accurately
model pit slopes while increasing tractability relative to unaggregated models.

Kawahata (2006) extends the work of Dagdelen and Johnson (1986) by using aggrega-
tion, pre-determined sequences, and Lagrangian relaxation to reduce the solution time for
large-scale open pit mine production scheduling problems, subject to maximum production
and processing capacities. His results show reductions in solution time, although he does
not consider all constraints in the sub-problem as strict.

Chicoisne et al. (2012) and Moreno et al. (2010) quickly solve the linear programming
(LP) relaxation of the OPBS problem for extremely large sets of blocks. Their TopoSort
algorithm induces a topological sorting of the nodes in the problem’s underlying network
structure, and then uses rounding heuristics to derive integer feasible solutions. Similarly,
Bienstock and Zuckerberg (2010) present an algorithm to quickly generate solutions to the
LP relaxation of the open pit production scheduling problem including constraints on the
maximum amount of resources, for millions of blocks. Both of these are seminal approaches
to solving the LP relaxation of the OPBS problem constrained by maximum resource capac-
ities. The work does not consider minimum resource requirements.

422 Ann Oper Res (2014) 222:419–438

Gaupp (2008) considers both (strict) minimum resource requirements and maximum re-
source capacities in his treatment of the OPBS problem. Specifically, he uses variable reduc-
tion, cutting planes, and Lagrangian relaxation to reduce solution times from those resulting
from direct solution of the monolith. Cullenbine et al. (2011) combine Lagrangian relax-
ation within a sliding time window heuristic (STWH) to find solutions for the same variant
of the OPBS problem. Their approach yields good results for problems containing tens of
thousands of blocks and 15 time periods. However, the procedure is a heuristic, and the au-
thors note that it is possible that no feasible solution could result from the application of said
heuristic. See Newman et al. (2010) for a detailed literature review covering both open pit
and underground mine planning.

Our work continues these efforts towards enhancing an exact approach to solve the OPBS
problem with strict minimum resource requirements and maximum resource capacities. We
incorporate a solution resulting from the ultimate pit limit problem and a sliding time win-
dow heuristic in an algorithm to generate an initial feasible solution for the OPBS problem.
Then, we use information from our algorithm to tailor a Lagrangian relaxation procedure
to a given problem instance. Our contributions lie in the following: (i) we solve as large
instances as have been solved to date containing the detail of both strict minimum resource
requirements and maximum resource capacities; (ii) rather than a heuristic, we provide an
exact, tailored approach for this OPBS problem variant; and (iii) we provide a procedure
to determine initial feasible solutions, which could be used not only in conjunction with
our exact approach, but also with heuristic approaches such as that proposed in Cullenbine
et al. (2011). The second and third contributions may be generalized to integer program-
ming applications beyond those found in open pit mining, or even in production scheduling
in general.

3 Mathematical model

We make the following assumptions in our model: (i) blocks require a single time period to
mine and must be mined in their entirety; (ii) blocks contain a pre-specified, deterministic
amount of ore and waste; (iii) the ratio of valuable mineral to waste dictates a priori whether
the block, if extracted, is sent to the mill for processing or to the dump as waste; (iv) the
mine holds no stockpiles. The first assumption can easily be relaxed by either redefining
time period length or including an appropriate lag parameter in the precedence constraints.
The second, third, and fourth assumptions are stronger; they are appropriate for long-term
models in which the goal is to determine whether or not a deposit is generally economically
viable. Operational schedules would contain the detail of a variable cutoff grade, i.e., the
model would determine whether or not a block is sent to the mill or to a waste dump, and
might also contain several types of stockpiles. It is our intention here to present an approach
for solving large, long-term models with less detail, though arguably, sufficiently detailed
short-term models also provide a viable avenue for future research.

The mathematical formulations of the ultimate pit limit (UPIT) and the constrained pit
limit (CPIT) problems follow. The solution to (UPIT) identifies the most economical sub-
set of blocks to extract from within the entire proposed pit, ignoring resource constraints
and the dimension of time. The solution to (CPIT) identifies an extraction sequence spec-
ifying which blocks to extract and when, while respecting resource constraints. We name
these problems to be consistent with Espinoza et al. (to appear). Our abbreviation conven-
tion identifies formulated problems with italicized capital letters surrounded by parentheses
(e.g., (UPIT)), algorithms with italicized capital letters without parentheses (e.g., STWH),
and acronyms with unitalicized capital letters (e.g., OPBS).

Ann Oper Res (2014) 222:419–438 423

3.1 Mathematical formulation of the Ultimate Pit Limit Problem (UPIT)

The network-based (UPIT) formulation strives to maximize the (undiscounted) value of the
extracted blocks while satisfying precedence constraints. The solution to (UPIT) then is the
highest-valued subset of blocks within the entire pit satisfying block precedences.

Indices and sets:

• b ∈ B: set of all blocks b

• b′ ∈ Bb: set of blocks b′ which must be extracted directly before block b, i.e., b’s direct
predecessors

Data:

• vb: net value generated by extracting block b ($)

Decision variables:

• yb :
{

1 if block b is extracted

0 otherwise

Objective function:

(UPIT) max
∑
b∈B

vbyb (1)

Constraints:

yb ≤ yb′ ∀b ∈ B,b′ ∈ Bb (2)

0 ≤ yb ≤ 1 ∀b ∈ B (3)

The objective function (1) seeks to maximize the undiscounted value of all extracted
blocks. Constraints (2) prevent block b from being mined unless all of its predecessors are
mined. Constraints (3) restrict the decision variables to assume a value between 0 and 1.

(UPIT) includes no time index, which precludes the consideration of discounting; thus,
vb is the net value of removing block b, as opposed to the net present value (NPV) of remov-
ing block b. The precedence constraints (2) collectively form a totally unimodular A matrix,
so that decision variables are guaranteed to assume integer values in an optimal solution.
As such, constraints (3) only restrict yb to continuous values between 0 and 1, avoiding the
integrality requirement and longer solve time associated with an integer formulation.

3.2 Mathematical formulation of the Constrained Pit Limit Problem (CPIT)

We formulate the OPBS problem as a precedence-constrained binary knapsack, with de-
cision variables indicating whether or not to remove a block by a given time period. The
solution provides an NPV-maximizing block extraction sequence which satisfies geospatial
precedences and resource constraints. Additional notation and the (CPIT) formulation are
presented below.

Indices and sets:

• t ∈ T : set of time periods t

• r ∈ R: set of operational resources r (1 = production, 2 = processing)

424 Ann Oper Res (2014) 222:419–438

Data:

• vbt : net present value generated by extracting block b in time period t ($)
• arb: amount of operational resource r used to process block b (tons)
• er/er : per period minimum required usage/maximum usage capacity for operational re-

source r (tons)

Decision variables:

• wbt :
{

1 if block b is extracted by time t

0 otherwise

Objective function:

(CPIT) max
∑
b∈B

∑
t∈T

vbt (wbt − wb,t−1) (4)

Constraints:

wbt ≤ wb′t ∀b ∈ B, b′ ∈ Bb, t ∈ T (5)

er ≤
∑
b∈B

arb(wbt − wb,t−1) ≤ er ∀t ∈ T , r ∈ R (6)

wb,t−1 ≤ wbt ∀b ∈ B, t ∈ T (7)

wbt ∈ {0,1} ∀b ∈ B, t ∈ T ; wb0 ≡ 0 ∀b (8)

The objective function (4) seeks to maximize the NPV of all extracted blocks. Con-
straints (5) ensure that block b is not extracted by time period t unless every block b′ in
b’s direct predecessor set (Bb) is also extracted by time period t . Constraints (6) enforce
minimum resource requirements and maximum resource capacities in each period. Con-
straints (7) enforce the by behavior of the variables wbt , where a block b extracted by period
t − 1 must also be extracted by period t . Constraints (8) restrict all decision variables to be
binary.

Relative to (UPIT), (CPIT) adds the dimension of time, and imposes operational resource
and integrality restrictions. (CPIT)’s resource constraints (6) destroy the underlying network
structure of the precedence constraints (5), thereby requiring integrality restrictions (8) on
the variables.

4 Solution methodologies

(CPIT), which can be thought of as a precedence-constrained knapsack problem, is strongly
NP-hard (see Johnson and Niemi 1983). Solving (to near-optimality) instances of (CPIT)
containing about 10,000 blocks and 10 time periods with a naive integer formulation can
require hours; in some cases, the model can run for days without finding an integer solution.
When (CPIT) includes non-zero minimum resource requirements, the competing demands
of satisfying the minimum processing requirement without exceeding the maximum pro-
duction capacity can be a significant challenge to tractability. Our Maximum Value Feasible
Pit (MVFP) algorithm identifies if this challenge exists for a given problem instance, and
consequently how best to tailor the solution strategy. We suggest three approaches to reduce
solution time: (i) we eliminate variables which must assume a value of 0 in the optimal so-
lution; (ii) we use the MVFP algorithm to generate, and then provide to (CPIT), an initial

Ann Oper Res (2014) 222:419–438 425

integer feasible solution (IIFS), and finally; (iii) we use a Tailored Lagrangian Relaxation
(TLR) in which we dualize various resource constraints (6) according to insights garnered
from the MVFP algorithm.

4.1 Pre-processing for variable elimination

We reduce problem size through pre-processing to eliminate variables whose values must
equal 0 in any feasible solution. Precedence requirements enable us to eliminate variables
a priori, as block b is not accessible until blocks overlying b are removed. Furthermore, this
removal occurs at rates restricted by both maximum production and maximum processing
capacities. This now standard notion of early starts (ES) identifies variables wbt , corre-
sponding to time periods t , such that t < ESb , by which block b may not be extracted due
to maximum resource capacities. ES are used in both open pit models, e.g., Gaupp (2008),
Amaya et al. (2009), and Chicoisne et al. (2012), and also in underground mine planning,
e.g., Martinez and Newman (2011).

Our inclusion of minimum resource requirements gives rise to the concept of enhanced
early starts (EES), introduced in Lambert et al. (to appear), which enable further variable
reductions beyond ES. Just as maximum resource capacities for either production or pro-
cessing may limit the ability to extract certain blocks by certain time periods, the minimum
processing requirement alone forces the extraction of a minimum number of ore blocks in
each period. This then may implicitly preclude the extraction of certain blocks by certain
time periods. For example, consider block b whose complete predecessor set contains no ore
blocks, and contains blocks with a combined total tonnage equal to a single period’s pro-
duction capacity. While the production capacity exists to extract b in the first period, doing
so would violate any non-zero minimum processing requirement. In this case, the variable
wb1 must assume the value of 0 in any feasible solution, and may therefore be eliminated
from the model. More generally, EES identify additional variables wbt , corresponding to
time periods t , such that t < EESb and EESb > ESb , by which block b may not be extracted
due to minimum resource requirements. All computations in this paper are performed after
variable elimination based on EES.

The analogous concept of late starts (LSb) introduced in Gaupp (2008) suggests fixing
variable values to 1 for those block-time period combinations in which block b must have
already been extracted. Late starts rely on the fact that block b must be extracted prior to
extracting any blocks b′ within b’s hold set. Extracting all blocks other than b and those in
b’s hold set at a rate satisfying the minimum resource requirement implies there is a latest
period t ′ by which b must be extracted. That period t ′ is block b’s late start, LSb . We find
that late start times do not fix a sufficient number of variables in our problem instances to
significantly impact performance, and we therefore do not include them.

4.2 Finding an Initial Integer Feasible Solution (IIFS)

(CPIT) is a maximization problem, and therefore, providing the optimizer with an initial
lower bound enables early fathoming of dominated branches during the branch-and-bound
algorithm. Providing this bound’s associated solution (variable values) enables aggressive
use of the optimizer’s local search heuristics, as the solution establishes a neighborhood
within which the heuristic may explore (IBM 2010). The IIFS must satisfy all constraints,
and therefore, the difficulty in generating an IIFS depends on the problem instance.

For problem specifications in which resources are only constrained by maximum capac-
ities (i.e., there are no minimum requirements), greedy algorithms can quickly identify an

426 Ann Oper Res (2014) 222:419–438

initial solution. For example, one method would be to sort all blocks, descending by profit,
and then proceed through the list, scheduling blocks and their predecessors for extraction as
long as sufficient resources exist. Chicoisne et al. (2012) and Moreno et al. (2010) extend
this concept by exploiting the underlying network structure of (CPIT) to find solutions to the
LP relaxation, and then derive integer solutions with a rounding heuristic. Both approaches
work well on OPBS problem instances constrained by maximum resource capacities.

Imposing minimum resource requirements in addition to maximum capacities may make
finding an IIFS more challenging. To illustrate, consider as an example the case of deriving
an IIFS for a time horizon of τ with a minimum processing requirement of e2 in each pe-
riod. Suppose a solution exists for periods {1..t}, t < τ , but none of the un-extracted blocks
accessible in period t + 1 are ore blocks. In this case, the existence of a feasible solution
depends on whether or not the ore blocks already scheduled for extraction in periods {1..t}
may be re-sequenced in such a way as to provide sufficient ore in period t + 1, while not
violating the minimum requirements in periods {1..t}. Even if such a sequence is found,
there is no guarantee that this same dilemma will not occur in period t + 2.

4.2.1 Sliding Time Window Heuristic (STWH)

A Sliding Time Window Heuristic (STWH), as described in Pochet and Wolsey (2006) and
Cullenbine et al. (2011), may be more likely to determine an integer feasible solution than a
simple greedy approach, for problems which include minimum resource requirements. With
the STWH, a sub-problem is formed by partitioning the set of time periods in the horizon
(T) into windows (T ≡ T Fix ∪T Int ∪T Rlx), within which variables are fixed to integer values
(T Fix), or their integrality is either relaxed (T Rlx) or enforced (T Int). Solving this sub-problem
produces a partial solution which is integer feasible for variables in T Int. Then, a subsequent
sub-problem is formed by changing the partition of T (i.e., sliding the window) to enforce
integrality in an adjacent set of time periods, and the procedure is repeated. Finally, linking
the partial, integer feasible solutions from each sub-problem creates a complete solution.
While this approach does not guarantee an integer feasible solution for a monolith with
minimum resource requirements, the integer feasible solutions for each window may assist
in this endeavor. In Table 5 of Lambert et al. (to appear), we show that a STWH finds an
IIFS, within a time limit, for 10 of the 12 data sets presented in the results section of this
paper, and that providing this IIFS to (CPIT) reduces overall solution time. In the other 2 of
12 data sets, the STWH reaches a time limit prior to finding an IIFS.

Additional notation for the STWH Indices and sets:

• φ ∈ Φ: set of time windows φ

• tφ , tφ : first, and last, periods in window φ during which integrality is enforced
• T Fix

φ : set of periods t , in time window φ, in which values are fixed for variables w̄bt

T Fix
φ ≡ {1..tφ − 1}; For φ = 1, t1 = 1 ⇒ T Fix

φ ≡ ∅
• T Int

φ : set of periods t , in time window φ, in which integrality is enforced on variable wbt

T Int
φ ≡ {tφ..tφ}

• T Rlx
φ : set of periods t , in time window φ, in which integrality is relaxed for variables w̃bt

T Rlx
φ ≡ {tφ + 1..τ }

• T ≡ T Fix
φ ∪ T Int

φ ∪ T Rlx
φ , ∀φ ∈ Φ

Both solution time and quality are impacted by the trade-off between the number of
windows, |Φ|, and the number of time periods in each window within which to enforce

Ann Oper Res (2014) 222:419–438 427

The STWH algorithm
DESCRIPTION: An algorithm to generate an initial integer feasible solution (IIFS)
INPUT: τ , tφ , tφ ∀φ ∈ Φ , er , er ∀r ∈ R, and vbt , arb , Bb ∀b ∈ B , r ∈ R, t ∈ T . Note that the

only restrictions on tφ and tφ are that in the first window, t1 ≡ 1, and in the final window,
t |Φ| ≡ τ .

OUTPUT: W̄ , set of variable values wbt forming an IIFS for (CPIT)
{

for φ ∈ Φ {
if φ = 1 then {

T Fix
1 ← ∅

}
else {

T Fix
φ ← {1..tφ − 1}

}
T Int

φ ≡ {tφ..tφ}
T Rlx

φ ≡ {tφ + 1..τ }
Solve (CPITSTWH)

W̄ ← w∗
bt � t ∈ T Fix

φ

} next φ

}

integrality, |T Int
φ |. For example, two possible implementations of the above STWH for a ten-

time period problem might be (i) ten windows with integrality enforced in a single period
for each window, or (ii) five windows with integrality enforced in two consecutive periods
for each window. The STWH algorithm presented above incorporates a mutually exclusive,
collectively exhaustive distribution of the subsets across the windows (i.e., T = ⋃

Φ T Int
φ),

although this is not required. Another implementation of the STWH could contain overlap
between the subsets T Int

φ and T Int
φ+1. For example, in window φ, we might enforce integrality

in two periods (T Int
φ = {1,2}), and then in window φ + 1, fix variables from the first period

to their integer values while again enforcing integrality in the second period (T Fix
φ+1 = {1}

and T Int
φ+1 = {2,3}). The fastest solution times for our data sets result from the mutually

exclusive, collectively exhaustive subsets shown above, with |Φ| = 5, |T Int
φ | = 2 for τ = 10,

and |Φ| = 5, |T Int
φ | = 3 for τ = 15.

4.2.2 Maximum Value Feasible Pit (MVFP) algorithm

A new approach to generating an IIFS for (CPIT) is an algorithm we term the Maximum
Value Feasible Pit (MVFP) algorithm. For a given time horizon of length τ , we use a three-
phased approach to determine a maximum-value subset of blocks, M , and then search within
M for an integer-feasible block extraction sequence (IFBES) which satisfies (CPIT) con-
straints (5)–(8). The blocks of M must form a sub-pit in which precedence constraints are
satisfied. Also, the blocks in M collectively possess the maximum undiscounted value of
extracted blocks possible (e.g., see Eq. (1)) for any set containing |M| blocks, because we
find M using (UPIT). If a feasible sequence exists within M , then the variable values cor-
responding to that sequence may be used as an initial solution when solving (CPIT) for all

428 Ann Oper Res (2014) 222:419–438

the blocks in B . For the case in which M does not contain a feasible sequence, the MVFP
can be re-run with modified resource requirements to produce a larger set, M ′. Although the
MVFP does not guarantee an integer feasible sequence, for each of the data sets we test, the
MVFP produces such a sequence.

For example, consider a pit of 1,000 equally weighted blocks, where, in each period, the
schedule requires extracting ten to fifteen blocks, five to seven of which are ore. Over a ten-
period time horizon, any feasible sequence must include 100–150 blocks, of which 50–70
are ore. It should be faster to find an IFBES from within a sub-pit of 150 blocks than from
within the full pit of 1,000 blocks. Therefore, in this example, the MVFP algorithm attempts
to (i) find the smallest, highest valued sub-pit containing 50–70 ore blocks, (ii) expand that
sub-pit if it contains fewer than 100 total blocks, and (iii) find an IFBES, if one exists. While
a sub-pit with more than 150 total blocks and 70 ore blocks may contain an IFBES (e.g.,
the trivial example is the original pit), our goal with the MVFP algorithm is to reduce the
decision space over which to search for a feasible sequence.

The three phases of the MVFP algorithm to generate an IIFS are:

Phase I: Repeatedly solve (UPIT), with varying ore price, to find a subset of blocks con-
taining sufficient ore to satisfy the total processing requirement for time horizon τ .

Phase II: If M does not require sufficient production resources to satisfy minimum produc-
tion requirements over the entire time horizon, solve an integer program to expand the set
of blocks contained in M .

Phase III: Either solve (CPIT) or implement a STWH to find an integer-feasible extraction
sequence within the modified subset of blocks.

Phase I leverages (UPIT)’s relatively fast solution time to quickly find a small sub-pit
containing sufficient ore to meet the total processing requirement for time horizon τ . Phase II
is only executed if the aggregate material of all blocks in the Phase I sub-pit does not satisfy
the production requirements for τ , in which case we use an integer program to expand the
sub-pit. Finally, in Phase III, we either use a STWH or solve (CPIT) for the sub-pit to find
an IFBES satisfying both processing and production requirements for each period in τ (i.e.,
1,2,3, . . . , τ).

Phase I—Find a reduced set of blocks containing sufficient ore to meet processing con-
straints A challenge to finding an IIFS for the entire pit is knowing where within the entire
pit to search. The MVFP approach first quickly identifies a subset of blocks likely to contain
an IFBES, thereby reducing the search space. We commence with a time horizon τ , which,
in conjunction with the minimum and maximum per period processing limits (e2, e2), deter-
mines the processing limits for the entire horizon (τ ∗ e2 ≡ eτ

2 and τ ∗ e2 ≡ eτ
2). Our Iterative

Ultimate Pit Limit (IUPL) algorithm repeatedly solves (UPIT), varying the ore price to gen-
erate pits containing different quantities of ore (i.e., ei

2 for iteration i), until we find a pit
containing a total ore weight (ef

2 in the final iteration) within the aggregate processing limits
(eτ

2 ≤ e
f

2 ≤ eτ
2). The IUPL is not guaranteed to find such a sub-pit, as there exist situations

in which no ore price used in solving (UPIT) will produce a pit containing eτ
2 ≤ e

f

2 ≤ eτ
2 .

(This is the well known mine planning problem of “gaps.”) If this occurs, Phase I returns the
smallest pit found by IUPL such that eτ

2 < e
f

2 .

Additional notation for phase I—IUPL algorithm Indices and sets:

• i ∈ {1..I }: iteration i from 1 to maximum number of iterations I

• bi ∈ Ui : set of blocks in the (UPIT) solution, for iteration i, where Uf is the final set

Ann Oper Res (2014) 222:419–438 429

Data:

• pi : per unit price of ore in iteration i, where p0 is an initial price ($/ounce)
• θi : positive price adjustment factor for iteration i, where θ0 is an initial price adjustment

factor ($)
• gb: average grade of block b (ounces, tons, percentage)
• cb: cost of extracting block b ($)
• vbi : net value of extracting block b in iteration i ($)

vbi :
{

pi ∗ gb − cb if gb > cutoff grade

−cb otherwise

• ei
r : total tonnage of r in the (UPIT) solution for iteration i, where e

f
r is the tonnage for

the final iteration (tons)
• eτ

r , eτ
r : minimum and maximum acceptable tonnage, respectively, in a (UPIT) solution for

a time horizon of τ periods (tons)
• I : maximum number of iterations

Variables:

• y∗
b : value of yb for block b in the solution of (UPIT)

The IUPL algorithm
DESCRIPTION: An algorithm, which varies the pseudo-price of ore, to produce a

maximum-value sub-pit containing sufficient ore weight to satisfy processing require-
ments for a given time horizon of τ .

INPUT: τ , B , I , p0, θ0, er and er ∀r ∈ R, and gb , arb, cb ∀b ∈ B , r ∈ R

OUTPUT: Uf , set of blocks which form a maximum-value pit satisfying precedence and
processing constraints, for time horizon τ .

Algorithm formulation
{

eτ
r ← er ∗ τ and eτ

r ← er ∗ τ

while i ≤ I {
/* Compute block values based on price, solve (UPIT), and sum resources
in solution */

vbi ←
{

pi ∗ gb − cb if gb > cutoff grade

−cb otherwise
Solve (UPIT) ∀b ∈ B

Ui ← b ∈ B � y∗
b = 1

ei
r ←

∑
bi∈Ui

arbi ∀r ∈ R

/* If pit satisfies processing requirements or at max iterations, exit,
otherwise adjust price */
If eτ

2 ≤ ei
2 ≤ eτ

2 or i = I then {
exit while

}

430 Ann Oper Res (2014) 222:419–438

else {
if eτ

2 < ei
2 then {

pi+1 ← pi − θi

}
else if ei

2 < eτ
2 then {

pi+1 ← pi + θi

}
}
i ← i + 1

} repeat
/* Save set of blocks as the max value pit for τ and calculate pit resources */
Uf ← Ui

e
f
r ←

∑
b∈Uf

arb ∀r ∈ R

}

Phase II—Find additional blocks outside of Uf to satisfy minimum production Modifying
the ore price in the Phase I IUPL algorithm produces sub-pits of varying size, and with the
exception of the “gap” problem described above, allows us to find a sub-pit satisfying the
processing constraints. However, the resulting sub-pit may violate production requirements,
either by containing excessive (eτ

1 < e
f

1), or by possessing insufficient (e
f

1 < eτ
1), material.

A sub-pit Uf containing material in excess of the maximum production capacity (eτ
1 < e

f

1)
may be larger than necessary to find a feasible sequence. A sub-pit Uf containing insuf-
ficient material to satisfy the minimum processing requirement, however, cannot possibly
contain a feasible sequence. Therefore, if the sub-pit Uf resulting from Phase I does not
contain at least eτ

1 tons of material, then we solve the Pit Expansion integer program (PEIP)

in Phase II, finding additional blocks to supplement Uf .

Additional notation for phase II—Pit Expansion integer program (PEIP) Indices and sets:

• b ∈ U
f

: subset of blocks b in B and not in Uf (i.e., b ∈ B ∧ b /∈ Uf)
• b ∈ U+: subset of blocks b in the (PEIP) solution

Data:

• ẽ1: residual production required to meet eτ
1 , (ẽ1 = eτ

1 − e
f

1), where e
f

1 results from the
IUPL algorithm

• ẽ2: residual processing capacity available, (ẽ2 = eτ
2 − e

f

2), where e
f

2 results from the IUPL
algorithm

Objective function: (
PEIP

)
max

∑
b∈U

f

vbyb (9)

Constraints:

yb = 1 ∀b ∈ Uf (10)

yb ≤ yb′ ∀b ∈ U
f
,b′ ∈ Bb (11)∑

b∈Ūf

a1byb ≥ ẽ1 (12)

Ann Oper Res (2014) 222:419–438 431

∑
b∈Ūf

a2byb ≤ ẽ2 (13)

yb ∈ {0,1} ∀b ∈ B (14)

The objective function (9) seeks to maximize the value of blocks extracted from U
f

.
Constraints (10) enforce extraction of all blocks from the Phase I sub-pit Uf . Constraints

(11) ensure block b in U
f

is not extracted unless every block b′ in b’s direct predecessor set
(Bb) is extracted. Constraints (12) ensure sufficient material is extracted to exceed ẽ1, while
constraints (13) ensure additional processing does not exceed ẽ2. (PEIP) selects mostly waste
blocks for the sake of feasibility, and so the objective of maximizing present value minimizes
the number of costly waste blocks extracted. Finally, constraints (14) restrict all decision
variables to be binary.

Combining the blocks from the Phase II solution (U+) with those from Phase I (Uf)
yields the set of blocks M in which to search for a feasible sequence. For the situation in
which Phase II is not performed, then M ← Uf .

Phase III—Find an integer feasible block extraction sequence within M Given the reduced
set of blocks, M , we consider two approaches for finding an integer feasible extraction
sequence. The naive approach is to simply solve (CPIT) for the blocks contained within
the subset M , which we refer to as a sub-pit sequencing integer program (SPSIP). Solv-
ing (SPSIP) produces an integer feasible block extraction sequence, if one exists. Because
|M| � |B|, solving (SPSIP) should require less time than solving (CPIT) for all blocks in B .
Alternatively, we may implement the previously described STWH over the blocks in M ,
which we refer to as the sub-pit sequencing sliding time window heuristic (SPSSTWH).

Using the solution from Phase III as an IIFS when solving (CPIT) for the entire pit We let
W be the set of variable values in the solution from Phase III. If the corresponding solution
forms a feasible sequence to (CPIT) in M , it is guaranteed to form an IIFS to (CPIT) in B ,
because M ⊂ B . If the solution does not form a feasible sequence to (CPIT) in M , the set
of variable values W may still be of value to the optimizer when solving (CPIT) in B . This
is because the optimizer heuristics may be able to derive an integer feasible solution by
“repairing” the infeasible solution formed by the variable values in W (IBM 2010).

4.3 Tailored Lagrangian Relaxation (TLR)

In the open pit block sequencing problem (CPIT), resource constraints (6) destroy the un-
derlying network structure formed by the precedence constraints (5). Dualizing one or more
of these resource constraints and solving the problem via Lagrangian relaxation may reduce
solution times. (For a detailed treatment of Lagrangian relaxation, see Fisher 1981.) Dual-
izing all resource constraints and solving the resulting Lagrangian subproblem provides an
objective function value no lower, i.e., an upper bound on the original problem no tighter,
than that achieved by solving the original problem’s linear programming relaxation (Ahuja
et al. 1993). Therefore, we selectively dualize resource constraints to achieve faster perfor-
mance through tightening the upper bound on (CPIT)’s optimal objective function value,
and finding solutions likely to be feasible in (CPIT). The common approach to formulating
a Lagrangian relaxation problem is to dualize those constraints which are likely to be “dif-
ficult” to satisfy. Our method takes the opposite approach; it strictly enforces those same
“difficult” constraints with the rationale that if a constraint is likely to be difficult to satisfy,
then we should not permit the optimization model to consider its violation.

432 Ann Oper Res (2014) 222:419–438

Gaupp (2008) obtains the fastest solution times for his data sets by dualizing the maxi-
mum processing constraints. However, this may not be the best dualization scheme for all
data sets, as ore is distributed differently in every deposit, suggesting different constraints
may be “difficult” to satisfy depending on the problem instance. The challenge is to iden-
tify these likely troublesome resource constraints, and to derive an associated dualization
scheme prior to solving the problem. We present a methodology to identify an appropriate
dualization scheme based on the particular data set, without having to first test all possible
combinations.

Our approach relies on information garnered during the execution of the MVFP algo-
rithm. Specifically, we use three guidelines based upon MVFP performance: (i) whether or
not the Phase I sub-pit contains sufficient ore to satisfy processing constraints, (ii) whether
or not Phase II is executed, and (iii) if Phase II is not executed, whether or not the Phase I
sub-pit contains material in excess of the maximum production capacity.

If the IUPL algorithm in Phase I is not able to find a pit containing sufficient ore to satisfy
processing constraints, then a “gap” problem exists. In this case, the Phase I sub-pit contains
the fewest blocks possible while still exceeding processing requirements (i.e., eτ

2 < e
f

2), and
we can make no conjecture as to which constraints may be difficult to satisfy when solving
(CPIT). This occurs in only one of our data sets, and additional testing is required to identify
the best dualization strategy.

If Phase II is executed, then the Phase I sub-pit contains sufficient ore to satisfy pro-
cessing, but contains insufficient material to satisfy minimum production (i.e., eτ

2 ≤ e
f

2 ≤ eτ
2

and e
f

1 < eτ
1). (UPIT) maximizes value and extracting waste blocks is costly; hence, (UPIT)

minimizes the number of waste blocks required to extract underlying ore blocks. If (UPIT)
is able to find a sub-pit of sufficient ore and minimal waste, this implies that it should not
be difficult to find a solution to (CPIT) which satisfies minimum processing. This, in turn,
suggests a Lagrangian formulation strategy of dualizing both minimum resource constraints,
as minimum processing should be easy to satisfy, and the Lagrange multiplier may prevent
a minimum production violation. In the event that the Lagrangian sub-problem solution vio-
lates minimum production, then solving a smaller integer program (analogous to Phase II of
MVFP) to add more blocks to the solution may make the current iteration’s solution feasible,
while increasing the Lagrange multiplier value may prevent violations in future iterations.

If the Phase I sub-pit contains sufficient ore to satisfy processing constraints and suffi-
cient material to satisfy production constraints (eτ

2 ≤ e
f

2 ≤ eτ
2 and eτ

1 ≤ e
f

1 ≤ eτ
1), this implies

that ore is distributed throughout the deposit such that it should not be difficult to find a solu-
tion to (CPIT) which satisfies all production and processing constraints. This then suggests
adopting a strategy of dualizing both minimum resource constraints, for the same reasons as
outlined in the case directly above.

If, however, the Phase I sub-pit contains sufficient ore to satisfy processing constraints
and the total material exceeds the maximum production constraint (eτ

1 ≤ e
f

1), this implies
that the distribution of ore in the deposit is relatively sparse. In this case, it may be difficult
to find a solution to (CPIT) containing sufficient ore to satisfy minimum processing with-
out exceeding maximum production. However, satisfying the opposite bounds of maximum
processing and minimum production in (CPIT) should not be difficult, suggesting a strategy
of dualizing these two constraints, while maintaining minimum processing and maximum
production as explicit constraints.

4.3.1 Tailored Lagrangian Relaxation (TLR) formulation

We tailor a Lagrangian relaxation formulation to allow for specified resource constraints to
be dualized while others are explicitly maintained.

Ann Oper Res (2014) 222:419–438 433

Additional notation for the Tailored Lagrangian Relaxation (TLR) formulation

• λrt/λrt = Lagrange multiplier for minimum requirement/maximum capacity constraint
on resource r in period t

• D/D = set of resources r for which minimum requirement/maximum capacity constraint
is dualized

• N/N = set of resources r for which minimum requirement/maximum capacity constraint
is not dualized and maintained as an explicit constraint

• D ∪ N ≡ R and D ∪ N ≡ R

Objective function:

(TLR) max
∑
b,t

cbt (wbt − wb,t−1) −
∑
t,r∈D

λrt

(
er −

∑
b

arb(wbt − wb,t−1)

)

−
∑
t,r∈D

λrt

(∑
b

arb(wbt − wb,t−1) − er

)
(15)

Constraints:

wbt ≤ wb′t ∀b ∈ B,b′ ∈ Bb, t ∈ T (16)

er ≤
∑
b∈B

arb(wbt − wb,t−1) ∀r ∈ N, t ∈ T (17)

∑
b∈B

arb(wbt − wb,t−1) ≤ er ∀r ∈ N, t ∈ T (18)

wb,t−1 ≤ wbt ∀b ∈ B, t ∈ T (19)

wbt ∈ {0,1} ∀b ∈ B, t ∈ T ; wb0 ≡ 0 ∀b (20)

λrt ≥ 0 ∀r ∈ D, t ∈ T (21)

λrt ≥ 0 ∀r ∈ D, t ∈ T (22)

Constraints (16), (19), and (20) enforce precedences, the relationship between by vari-
ables for block b, and integrality in (TLR), similar to (5), (7), and (8), respectively, in (CPIT).
Constraints (17) and (18) in (TLR) explicitly enforce minimum requirements and maximum
capacities, for resources in N and N , respectively, replacing constraints (6) in (CPIT). Con-
straints (21) and (22) require the Lagrangian multipliers to be non-negative. When we pro-
vide (TLR) an IIFS, we use that generated by the MVFP algorithm because the IUPL portion
of the MVFP algorithm provides the dualization strategy with which to tailor the Lagrangian
procedure.

To implement the Lagrangian relaxation algorithm, we do the following: (i) solve the
linear programming relaxation of the monolith (CPITLP) to establish an initial upper bound
and to initialize the Lagrange multiplier values (λrt , λrt) to the dual variable values from
(CPITLP); (ii) solve (TLR); (iii) if the best bound of (TLR) is better (lower) than the incum-
bent, then update the upper bound; (iv) if the (TLR) solution is infeasible for (CPIT) due to
a violation of e1, solve an integer program to add blocks to the solution; (v) if the resulting
solution is feasible in (CPIT) and better (higher) than the incumbent, then update the lower
bound; (vi) update the Lagrange multipliers using the subgradient method, and resolve the
Lagrangian. Iterate in this fashion until an optimality gap (the difference between the lower
and upper bounds) is less than 2 %.

434 Ann Oper Res (2014) 222:419–438

5 Results

To test our methodologies, we solve instances of the OPBS problem for twelve block models
derived from two data sets. The first data set is a 10,819 block model which we refer to as
10k. To generate additional instances, we perturb the mineral content of each block in 10k
by ±5 %, yielding seven models we refer to as 10kA, 10kB, . . . , 10kG. Collectively, we
refer to these eight model instances as the 10k data sets.

The second data set comes from the Whittle software test data set known as “Marvin,”
and contains 53,668 blocks, composed of 17 levels, with each level containing up to 3,660
blocks (61 × 60). From this “Marvin” data set we extract four smaller models, two each
containing five levels (18,300 blocks), and seven levels (25,620 blocks), designated 18kA,
18kB, 25kA, and 25kB, respectively. Collectively, we refer to these four models as the Mrv
data sets.

Lambert et al. (to appear) utilize a time horizon of τ = 10 for both the 10k and Mrv data
sets to demonstrate the effect of EES, the STWH, and an IIFS. Here, we utilize a time hori-
zon of τ = 15 for the 10k, and τ = 10 for the Mrv, data sets, respectively, to demonstrate
the effect of the MVFP algorithm and (TLR) formulation. Some practitioners question the
viability of techniques demonstrated on block models of this magnitude, citing the existence
of realistic instances with millions of blocks. We note that there also exist realistic instances
with tens or hundreds of thousands of blocks, occurring for cases in which blocks are ag-
gregated (e.g., in a flat mine) and/or block content is similar for geographically close blocks
(Brickey 2012). Table 1 displays summary characteristics of all twelve data sets, with the
number of variables and constraints included in the problem instance solved, after variable
reductions from EES.

While EES reduce a greater percentage of variables for the 10k data set than for the
larger Marvin data sets, this is not simply attributable to the number of blocks (i.e., it is
incorrect to assume that the effectiveness of EES decreases with an increase in the number
of blocks). Instead, the effectiveness of EES is dependent on the production and processing
requirements (er , er) and the shape and characteristics of the deposit. For example, EES are
likely to produce greater variable reductions for deposits which are relatively deep and/or
contain a heterogeneous distribution of ore, as opposed to deposits which are flat and/or
contain a homogeneous distribution of ore. Additional discussions regarding the EES impact
are presented in Lambert et al. (to appear).

We perform all data pre-processing in Java, and formulate all optimization models (in-
cluding the MVFP algorithm) in AMPL, version 11.11 (AMPL 2009). From AMPL, we pass
formulations to the CPLEX solver, version 12.2.0 (IBM 2009). We use a Sun X4150 with 2
× 2.83 GHz processors and 16 GB RAM.

Our test results are shown in Table 2. The first two columns list each data set and its
associated time horizon τ . Columns three through six display the time required, in seconds,
for the MVFP algorithm to generate an IIFS, for each phase, and overall. For Phase II,
the (SPSSTWH) dominates the (SPSIP) for all data sets, in the time required for both MVFP
Phase II and for solving the follow-on (CPITIIFS), and hence, we only report the (SPSSTWH)

results. Columns seven through ten display the times required to solve (CPITIIFS) and
(TLRIIFS), to within 2 % of optimality, and the reductions attributable to (TLR).

5.1 Generating an IIFS with the MVFP algorithm

The MVFP algorithm phases require different proportions of time for the 10k and Mrv data
sets. For all the 10k data sets, the MVFP algorithm requires approximately 1,600 seconds

Ann Oper Res (2014) 222:419–438 435

Table 1 Data sets and their characteristics

Data set Number of blocks Tonnage (Mtons) Instance solved
(after EES reductions)

Total Ore Waste
∑

b∈B a1b

∑
b∈B a2b τ Variables Constraints

10k 10,819 1,423 9,396 60.57 7.92 15 72,286 374,101

10kA 10,819 1,423 9,396 60.57 7.92 15 72,270 374,012

10kB 10,819 1,414 9,405 60.57 7.87 15 72,279 374,059

10kC 10,819 1,414 9,405 60.57 7.87 15 72,291 374,128

10kD 10,819 1,410 9,409 60.57 7.85 15 72,258 373,957

10kE 10,819 1,418 9,401 60.57 7.89 15 72,292 374,137

10kF 10,819 1,423 9,396 60.57 7.92 15 72,306 374,215

10kG 10,819 1,420 9,399 60.57 7.90 15 72,283 374,095

10k Avg 10,819 1,418 9,401 60.57 7.89 15 72,283 374,070

18kA 18,300 2,032 16,268 1,145.47 146.62 10 172,113 822,440

18kB 18,300 1,436 16,864 1,137.42 103.39 10 172,129 822,536

25kA 25,620 2,248 23,372 1,595.62 162.03 10 216,586 1,078,320

25kB 25,620 2,805 22,815 1,601.13 199.95 10 216,634 1,078,594

Mrv Avg 21,960 2,130 19,830 1,369.91 153.00 10 194,366 950,473

to find a sub-pit in Phase I with the IUPL, and bypasses the Phase II pit expansion because
production exceeds eτ

1 . Phase III requires approximately twice as long as Phase I to find an
IFBES using the (SPSSTWH). Overall, the MVFP requires roughly 5,000 seconds, on average,
to produce an IIFS for a τ = 15, for each of the 10k data sets.

The Mrv data sets are as much as three times the size of the 10k, as measured by the
number of variables and constraints. Considering all four Mrv data sets, the MVFP algorithm
requires, on average, 2,080 seconds to find a sub-pit in Phase I with the IUPL. The 18kA,
18kB, and 25kA data sets require 591 seconds, on average, to expand the sub-pit in Phase II.
Again considering all four Mrv data sets, finding an initial sequence requires, on average,
102 seconds using the (SPSSTWH) in Phase III. Overall, the MVFP requires roughly 2,773
seconds, on average, to produce an IIFS for a τ = 10, for each of the Mrv data sets. The 25kB
data set experiences the “gap” problem, in which the IUPL algorithm alternates between
producing a pit with no blocks, and producing a pit with resource requirements exceeding
both eτ

1 and eτ
2 . Therefore, although Phase II pit expansion is not required, we cannot make

any conjectures about which specific constraints are difficult to satisfy in this case. For
25kB, we dualize e2 and e1 in the (TLR), but further testing with data sets including “gaps”
is required before we can recommend any particular dualization strategy for this case.

5.2 Using the IIFS with (CPIT) and (TLR)

CPLEX is unable to find an integer solution to (CPIT) within a ten hour (36,000 second)
time limit for all but two of our twelve data sets. For the Mrv data sets 18kA and 18kB,
CPLEX is able find a solution to within 2 % of optimality in under the ten hour time limit.
Providing (CPIT) with the IIFS from the MVFP algorithm enables CPLEX to find solutions
within 2 % of optimality for all but the two largest data sets, 25kA and 25kB, in which case
(CPITIIFS) is still able to establish an optimality gap. Solution times are then significantly

436 Ann Oper Res (2014) 222:419–438

Table 2 Empirical results for each data set and time horizon. Columns three through six list solution time (s)
for the individual MVFP phases and their sum. Columns seven through nine display solution time (s) for
(CPIT), (CPITIIFS), and (TLRIIFS), solved to within 2 % of optimality. The final column is the percentage
reduction in solution time attributable to the (TLR)

1 2 3 4 5 6 7 8 9 10

Data set τ MVFP
solution time (s)

(CPIT) and (TLR) solution time (s)a

and reductions due to (TLR) (%)

Ph. I
IUPL

Ph. II
(PEIP)

Ph. III
(SPSSTWH)

MVFP (CPIT) (CPITIIFS) (TLRIIFS) (TLR)
% Reduction

10k 15 1,589 0 3,631 5,220 ‡ 27,316 6,417 77 %

10kA 15 1,588 0 3,423 5,011 ‡ 11,110 5,191 53 %

10kB 15 1,587 0 3,563 5,150 ‡ 20,454 7,853 62 %

10kC 15 1,587 0 3,637 5,224 ‡ 12,323 7,392 40 %

10kD 15 1,576 0 3,348 4,924 ‡ 15,016 6,537 56 %

10kE 15 1,574 0 2,888 4,462 ‡ –b –b �

10kF 15 1,572 0 4,113 5,685 ‡ 14,854 5,531 63 %

10kG 15 1,573 0 3,648 5,221 ‡ 12,953 7,609 41 %

10k Avg 15 1,581 0 3,531 5,112 – 16,289 6,647 59 %

18kA 10 1,283 515 2 1,800 35,449 31,379 28,649 9 %

18kB 10 1,283 495 1 1,779 26,553 4,415 2,899c 34 %

25kA 10 2,165 1,355 3 3,523 ‡ 11.00 %d 8,792c �

25kB 10 3,589 0 401 3,990 ‡ 5.25 %d 6.38 %d �

Mrv Avg 10 2,080 591 102 2,773 31,001 17,897 15,774 22 %

aTimes do not include the time required to generate the IIFS with MVFP

bSolution from MVFP within 2 % of (CPIT) LP relaxation value
c(TLR) solution made feasible for (CPIT) by adding blocks to satisfy e1
dTime limit of 36,000 seconds reached and mipgap reported

‡ Time limit of 36,000 seconds reached with no integer solution
� Unable to calculate due to lack of solution time values

reduced by providing (TLR) with the IIFS. For the 10k data sets, (TLR) reduces solution
times by 59 %, on average, from those of (CPITIIFS). For the 18kA and 18kB data sets,
(TLR) reduces solution times by 22 %, on average, from those of (CPITIIFS).

6 Conclusions

Mining engineers and operations researchers have sought to effectively model and “solve”
the OPBS problem for over 40 years. One of the major challenges lies in the size of real-
world instances and the resulting number of block-sequence combinations which must be
evaluated in an exact approach. The pioneering work of Johnson (1968) and Dagdelen
(1985) establishes what was, and continues to be, a basis for holistically solving the OPBS
problem with mixed-integer approaches.

Ann Oper Res (2014) 222:419–438 437

Effectively modeling large-scale, difficult optimization problems, such as those encoun-
tered in the mining industry, requires leveraging “knowledge of the problem” to effectively
tailor the techniques and formulations (Klotz and Newman to appear). The challenges lie
in identifying both an initial solution, and problem information useful in tailoring the for-
mulation, prior to solving the problem. We demonstrate an algorithm to generate an IIFS
and the benefit of using that solution when solving the OPBS problem. When formulating
a Lagrangian relaxation model for an instance of the OPBS problem, knowing which of the
resource constraints to dualize, and which to maintain as explicit, is not a trivial task. In-
sights from our MVFP algorithm provide guidance in this regard, and lead to formulations
which yield substantial reductions in solution time over that from solving either the original
problem outright (monolith), or the original problem with an IIFS.

These approaches for (i) identifying an IIFS, and (ii) utilizing insights to tailor a formula-
tion specific to the problem instance, should help expedite solutions for instances of any size.
These techniques are scalable and can be applied to instances with either more blocks and/or
more time periods than those we present here, as long as the underlying model of interest has
the same format as (CPIT), or is a relaxation of (CPIT). As hardware and software capabili-
ties increase, so should the size of instances which will benefit from the direct application of
our methodologies. For these larger instances, the method presented to determine an initial
feasible solution may yield a feasible solution for the monolith. However, even if it does
not, some sophisticated commercial solvers, e.g., CPLEX, can still “repair” an infeasible
solution, i.e., render the solution feasible with its heuristics for use in the branch-and-bound
algorithm.

Future research might extend the techniques we present here to directly determine ini-
tial feasible solutions for more complicated open pit block sequencing models. Although
it is possible that future research might identify procedures more efficient than our (TLR)
approach for solving instances of (CPIT), or even more detailed versions of open pit produc-
tion scheduling problems, our ideas may lend themselves to other applications with similar
problem structure for which a (nonstandard implementation of) Lagrangian relaxation is
suitable. Conversely, it may be possible to use an extension of our approach for more de-
tailed versions of open pit production scheduling problems.

References

Ahuja, R., Magnanti, T., & Orlin, J. (1993). Network flows: theory, algorithms, and applications. Upper
Saddle River: Prentice-Hall

Altner, D., & Ergun, O. (2011). Rapidly computing robust minimum capacity s-t cuts: a case study in solving
a sequence of maximum flow problems. Annals of Operations Research, 184, 3–26.

Amaya, J., Espinoza, D., Goycoolea, M., Moreno, E., Prevost, T., & Rubio, E. (2009). A scalable approach to
optimal block scheduling. In 35th internat. appl. comput. oper. res. in mineral indust. (APCOM) sympos.
proc. (pp. 567–571). Vancouver, Canada: CIM.

AMPL (2009). AMPL optimization LLC.
Askari-Nasab, H., Awuah-Offei, K., & Eivazy, H. (2010). Large-scale open pit production scheduling using

mixed integer linear programming. International Journal of Mining and Mineral Engineering, 2, 185–
214.

Bienstock, D., & Zuckerberg, M. (2010). Solving LP relaxations of large-scale precedence constrained prob-
lems. In F. Eisenbrand & F. B. Shepherd (Eds.), Lecture notes in computer science: Vol. 6080. Integer
programming and combinatorial optimization, 14th international conference, IPCO 2010, Proceedings
(pp. 1–14). Lausanne, Switzerland, June 9–11, 2010. Berlin: Springer.

Bley, A., Boland, N., Fricke, C., & Froyland, G. (2010). A strengthened formulation and cutting planes for the
open pit mine production scheduling problem. Computers & Operations Research, 37(9), 1641–1647.

Boland, N., Dumitrescu, I., Froyland, G., & Gleixner, A. (2009). LP-based disaggregation approaches to
solving the open pit mining production scheduling problem with block processing selectivity. Computers
& Operations Research, 36(4), 1064–1089.

438 Ann Oper Res (2014) 222:419–438

Brickey, A. (2012). Personal communication.
Caccetta, L., & Hill, S. (2003). An application of branch and cut to open pit mine scheduling. Journal of

Global Optimization, 27(2), 349–365.
Chicoisne, R., Espinoza, D., Goycoolea, M., Moreno, E., & Rubio, E. (2012). A new algorithm for the open-

pit mine scheduling problem. Operations Research, 60(3), 517–528.
Cullenbine, C., Wood, R., & Newman, A. (2011). A sliding time window heuristic for open pit mine block

sequencing. Optimization Letters, 5(3), 365–377.
Dagdelen, K. (1985). Optimum multi period open pit mine production scheduling. PhD thesis, Colorado

School of Mines, Golden, CO.
Dagdelen, K., & Johnson, T. (1986). Optimum open pit mine production scheduling by Lagrangian parame-

terization. In 19th internat. appl. comput. oper. res. in mineral indust. (APCOM) sympos. proc. (pp. 127–
141). University Park: Society of Mining Engineers.

Espinoza, D., Goycoolea, M., Moreno, E., & Newman, A. (to appear). MineLib: a library of open pit mining
problems. Annals of Operations Research.

Fisher, M. (1981). The Lagrangian relaxation method for solving integer programming problems. Manage-
ment Science, 27(1), 1–18.

Gaupp, M. (2008). Methods for improving the tractability of the block sequencing problem for open pit
mining. PhD thesis, Colorado School of Mines, Golden, CO.

Gleixner, A. (2008). Solving large-scale open pit mining production scheduling problems by integer program-
ming. Master’s thesis, Technische Universität Berlin.

Hochbaum, D., & Chen, A. (2000). Performance analysis and best implementations of old and new algorithms
for the open-pit mining problem. Operations Research, 48(6), 894–914.

IBM (2009). ILOG CPLEX, Incline Village, NV.
IBM (2010). IBM ILOG AMPL version 12.2 user’s guide. Incline Village, NV.
Johnson, D., & Niemi, K. (1983). On knapsacks, partitions, and a new dynamic programming technique for

trees. Mathematics of Operations Research, 8(1), 1–14.
Johnson, T. (1968). Optimum open pit mine production scheduling. PhD thesis, University of California,

Berkeley, CA.
Kawahata, K. (2006). A new algorithm to solve large scale mine production scheduling problems by using

the Lagrangian relaxation method. PhD thesis, Colorado School of Mines, Golden, CO.
Klotz, E., & Newman, A. (to appear). Practical guidelines for solving difficult mixed integer programs. Sur-

veys in Operations Research and Management Science.
Lambert, W., Brickey, A., Newman, A., & Eurek, K. (to appear). Open pit block sequencing formulations:

a tutorial. Interfaces.
Lerchs, H., & Grossmann, I. (1965). Optimum design of open-pit mines. Canadian Mining and Metallurgical

Bulletin, 58(633), 47–54.
Martinez, M., & Newman, A. (2011). Using decomposition to optimize long- and short-term production

scheduling at LKAB’s Kiruna mine. European Journal of Operational Research, 211(1), 184–197.
Moreno, E., Espinoza, D., & Goycoolea, M. (2010). Large-scale multi-period precedence constrained knap-

sack problem: a mining application. In M. Haouari & A. Mahjoub (Eds.), Electronic notes in discrete
mathematics: Vol. 36. Internat. sympos. on combinatorial optimization (ISCO) (pp. 407–414). Ham-
mamet, Tunisia

Newman, A., Rubio, E., Caro, R., Weintraub, A., & Eurek, K. (2010). A review of operations research in
mine planning. Interfaces, 40(3), 222–245.

Pochet, Y., & Wolsey, L. (2006). Production planning by mixed integer programming. New York: Springer.
Ramazan, S. (2007). The new fundamental tree algorithm for production scheduling of open pit mines. Euro-

pean Journal of Operational Research, 177(2), 1153–1166.
Underwood, R., & Tolwinski, B. (1998). A mathematical programming viewpoint for solving the ultimate pit

problem. European Journal of Operational Research, 107(1), 96–107.

	Tailored Lagrangian Relaxation for the open pit block sequencing problem
	Abstract
	Introduction and background
	Literature review
	Mathematical model
	Mathematical formulation of the Ultimate Pit Limit Problem (UPIT)
	Mathematical formulation of the Constrained Pit Limit Problem (CPIT)

	Solution methodologies
	Pre-processing for variable elimination
	Finding an Initial Integer Feasible Solution (IIFS)
	Sliding Time Window Heuristic (STWH)
	Additional notation for the STWH

	Maximum Value Feasible Pit (MVFP) algorithm
	Phase I-Find a reduced set of blocks containing sufficient ore to meet processing constraints
	Additional notation for phase I-IUPL algorithm
	Phase II-Find additional blocks outside of Uf to satisfy minimum production
	Additional notation for phase II-Pit Expansion integer program (PEIP)
	Phase III-Find an integer feasible block extraction sequence within M
	Using the solution from Phase III as an IIFS when solving (CPIT) for the entire pit

	Tailored Lagrangian Relaxation (TLR)
	Tailored Lagrangian Relaxation (TLR) formulation
	Additional notation for the Tailored Lagrangian Relaxation (TLR) formulation

	Results
	Generating an IIFS with the MVFP algorithm
	Using the IIFS with (CPIT) and (TLR)

	Conclusions
	References

