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Abstract This paper introduces a Value-at-Risk (VaR) model to generate route choices for
a hazmat shipment based on a specified risk confidence level. VaR is a threshold value such
that the probability of the loss exceeding the VaR value is less than a given probability
level. The objective is to determine a route which minimizes the likelihood that the risk
will be greater than a set threshold. Several properties of the VaR model are established. An
exact solution procedure is proposed and tested to solve the single-trip problem. To test the
applicability of the approach, routes obtained from the VaR model are compared with those
obtained from other hazmat objectives, on a numerical example as well as a hazmat routing
scenario derived from the Albany district of New York State. Depending on the choice of the
confidence level, the VaR model gives different paths from which we conclude that the route
choice is a function of the level of risk tolerance of the decision-maker. Further refinements
of the VaR model are also discussed.

Keywords Hazardous materials transportation · Value-at-Risk · Social risk mitigation

1 Introduction

Risk assessment and hazmat shipment planning are two main fields widely researched in
hazmat transportation. Researchers assess the risk by modeling probability distribution over
given areas regarding the commodities, the transport modality (Abkowitz et al. 1984) and the
environmental conditions (Patel and Horowitz 1994). Hazmat shipment planning involves
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two primary routing problems: the local route planning—the selection among alternative
paths for a single-trip shipment of a single hazmat type from an origin to a destination, and
the global route planning—the planning of multiple trips among multiple origin-destination
pairs (O-D pairs) to mitigate and equalize the social risk of the whole road network. The
former is mostly of interest to carriers, while the latter is usually the main concern of gov-
ernment and environmentalists. In this paper, we focus on the modeling of the risk of hazmat
transportation and the minimization of the risk brought by a single-trip hazmat shipment.

Hazmat accidents are featured by their low probability and high consequence (LPHC).
It is estimated that average 10−6 accidents occur on a trip along each kilometer (Harwood
et al. 1993), which means it is hard for analysts to collect sufficient and precise data, or
to assess the long-term environmental impact. The transit phase of hazmat transportation
results in 3,885 accidents/incidents with damages costing $104,674,760 in 2011 (US De-
partment of Transportation Pipeline and Materials Safety Administration 2012). Shifts of
the road conditions and population over time further increase the uncertainty of the histor-
ical data sources of hazmat accidents. Hazmat accidents can, however, result in disastrous
damage to the population and the environment. Decision-makers desire to consider both
objective and subjective factors to make flexible route choices so that various uncertainty
can be accommodated within the same decision-making framework. This requires flexible
decision-making based on the current risk preference that provides the motivation for the
work presented in this paper. Our model generates a route choice such that the probability
of experiencing a greater risk than a specified cutoff value is less than a certain threshold. In
order to obtain an appropriate formulation for our model, we utilize the Value-at-Risk (VaR)
concept.

VaR is a powerful risk measurement tool that is widely applied in finance mathematics
and financial risk management. It emerged in 1993 (McNeil et al. 2005), and has been estab-
lished in the past 20 years as a standard benchmark to measure the potential loss in financial
risk management given a certain confidence level (Linsmeier and Pearson 1996).

Many methodologies have been developed regarding VaR applications in finance and
economics, such as historic, parametric or Monte Carlo methods. Though these method-
ologies are largely different from each other (Beder 1995), they share the same procedure
to calculate VaR by estimating the combination and distribution of portfolio returns and
computing the VaR value of the portfolio. Another common basis is the assumption of the
leptokurtic financial return distribution, negatively skewed equity returns, and quasi-stable
market volatilities (Mandelbrot 1963; Fama 1965). Variants of VaR models are designed to
address various market units. The Component Value at Risk is proposed by Hallerbach and
Menkveld (2004) based on the conventional VaR measure to compute the risk exposure of
the breaking down of a firm to different market risks. The Conditional Value at Risk (Larsen
et al. 2001) measures the possible losses in the tail of the distribution, to reduce the problem
caused by the excessive risk measured in VaR. Cashflow at Risk (CFaR) (Stein et al. 2001)
extends the measure to cover metrics other than value. In general, these methodologies are
dependent on the distribution assumption of portfolio returns, given a certain confidence
level, rather than a point estimate that may never actually occur.

In the last decade, VaR has ever begun to find acceptance in non-financial applica-
tions (Offutt et al. 2006) applied VaR and a distortion function to measure the risk of
catastrophic events with low probability from shortfalls of military or security capabili-
ties. In industrial and service areas, VaR is witnessed with its utilization everywhere. The
former includes agricultural industry (Manfredo and Leuthold 1998) and power industry
(Shebl and Berleant 2002). The latter involves IT services (Kauffman and Sougstad 2007,
2008) and supply chain planning (Sanders and Manfredo 2002; Lu et al. 2010). Addition-
ally many large enterprises apply VaR in enterprise risk management system to qualify
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and derive aggregate risks (Nocco and Stulz 2006). As far as transportation application,
some literatures discuss risk management in transportation investment (dePalma et al. 2012;
Lu et al. 2010), market risk in freight rates (Angelidis and Skiadopoulos 2008), or shipping
credit risk (Alizadeh and Nomikos 2009). But those models mainly focus on the risk or loss
brought by financial or economic activities. Take Ju et al. (2002) as example, he introduced
a VaR model for the revenue management of seat rates in civil aviation transportation, which
belongs to the risk of operations. So far there is neither application of VaR in risk measure-
ment or risk management pertaining to shipments or commodities yet, nor research has ever
been done on measuring and controlling of consequence or loss caused by commodities to
the neighborhood once accidents occur during the shipment.

Applying the VaR concept to hazmat routing allows us to measure a cut-off value for the
risk of hazmat shipments. However, it’s helpful to keep in mind the differences between the
model we proposed and those in finance. First of all, the VaR models in finance focus on
the profit loss measurement faced by the investment and, the measurement units of both the
investment and the measurement object are the same; our model focuses on the risk mea-
surement of taking a certain route. The input is a candidate route, and risk brought by this
route is the object to be measured. Because of this inconsistency of the measurement units,
we could not directly apply the classic risk measurement methods of finance VaR. Secondly,
the calculation of a path’s VaR value and the algorithm to solve the VaR model for hazmat
transport risk is quite different from, and more complicated than those methodologies to
solve VaR models in financial and economical problems.

In the next section, we collect nine popular risk models in hazmat transport. Section 3
presents the mathematical formulation of the VaR model for hazmat transport and develops
several properties of the model. Section 4 develops an exact solution procedure to solve
single-trip hazmat shipment problems. A numerical example is presented in Sect. 5 to com-
pare the VaR model with the nine common risk models discussed in our literature review.
In Sect. 6, we present our computational experience with a scenario around the Albany dis-
trict of New York state. In the end, Sect. 7 concludes the meaning of our model to decision
makers and discusses our solution method and future research suggestions.

2 Review of models to evaluate risk of hazardous material transportation

As stated earlier, the route planning element of hazmat transportation problems can be cate-
gorized into two groups: local and global. From the carrier’s perspective, a single-shipment
hazmat routing problem can be classified as a local route planning problem. But governors
care more about the entire road network, which belongs to the global route planning prob-
lem, mitigating the accumulative risk brought by multiple shipments between different O-D
pairs. Literature on the subject proposes the formulation of the risk evaluation function of a
hazmat shipment from different perspectives.

A transportation network can be defined as G = (N , A), consisting of a node set N to
represent the road interactions, and a link set A to represent the road segments. For each
link (i, j) ∈ A, there are two attributes, accident probability pij and accident consequence
Cij . Table 1 summarizes the mathematical notation used in this paper.

Suppose a path l consists of an ordered set of links Al = {(ik, jk)|i, j ∈ N , k =
1,2, . . . ,ml} where (ik, jk) represents the k-th link in path l; the risk that this path gen-
erates can be measured using different kinds of indicators. It can be measured by single or
multiple attributes, and formulated with additive or productive objective functions according
to the definition of the problem and the assumption of the model.
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Table 1 Mathematical notation table

Notation Explanation

Sets

G(N , A) a graph of road network

N set of nodes, |N | = n

A set of links, |A| = m

P set of available paths for shipment s

C set of ascending-order sorted link consequences in G, |A| = m̄

Al link set for path l ∈ P , |Al | = ml

Cl set of ascending-order sorted link consequences for path l ∈ P , |Cl | = ml

Parameters

pij accident probability on link (i, j) ∈ A
cij cost on link (i, j) ∈ A
wij usage probability of link (i, j) ∈ A
Cij accident consequence on link (i, j) ∈ A
α confidence level to control the worst risk brought by hazmat transportation

ᾱ 1 − α

pij modified accident probability on link (i, j) according to its consequence level compared with βα

ml number of sorted link consequences of link l ∈ P
mP number of sorted link consequences for all paths in path set P

Variables

Rl measure of risk in path l ∈ P
xij binary decision variable indicating whether link (i, j) selected for shipment s or not

VaRl
α VaR value for a path l ∈ P given confidence level α

VaR∗
α optimal VaR value given confidence level α

βα maximum cutoff risks under confidence level α

βl
α maximum cutoff risks for a path l ∈ P under confidence level α

Alp (1995) proposed a Traditional Risk (TR) model to minimize the expected value of
the consequence of a hazmat vehicle traveling along path l:

Rl =
∑

(ik ,jk)∈Al

∏

(ih,jh)∈Al

h<k

(1 − pihjh )pikjkCikjk (1)

which assumes that the shipment terminates once an accident happens on a link (i, j). Us-
ing this objective, Alp (1995) formulated the choice of the best route as a non-linear binary
integer program. Furthermore, (1) can be approximated as an additive function and, further,
a tractable shortest path problem formulation (Erkut and Verter 1998). According to North
American data on hazmat transportation accident statistics, accident probabilities are gen-
erally extremely small, usually in the range of 10−8 and 10−6 per mile traveled (Abkowitz
and Cheng 1988), which means that

∏
(ih,jh)∈Al

h<k

(1 − pihjh ) ≈ 1. Consequently, (1) can be

approximated as follows (Jin and Batta 1997):

Rl =
∑

(i,j)∈Al

pijCij (2)
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The approximation (2) is easier to optimize than the function (1), with the resultant problem
a shortest path problem with the cost of traversing a link (i, j) being set to the value pijCij .

Several other models have been developed by focusing on two link attributes. The In-
cident Probability (IP) model (Saccomanno and Chan 1985) and the Population Exposure
(PE) model (ReVelle et al. 1991) can be viewed as two extreme cases of the Traditional Risk
model. The former focuses on reducing the accident probability, and the latter focuses on the
total consequence on the impacted region, measuring the consequence by how many people
are exposed to risks during a transport activity. A similar model is the Perceived Risk (PR)
model (Abkowitz et al. 1992), which uses alternative criteria and criteria weighting for route
selection to balance safety and operating efficiency. A noticeable drawback of the TR model
is its risk-neutral attitude, which might not appropriately reflect the public attitude towards
hazmat transportation. The Perceived Risk model has taken this concern into consideration
and adds a weight parameter on consequences to reflect the public preference on the risk.
Both Traditional Risk model and Perceived Risk model can be viewed as single-attribute
models though both of them contain two attributes probability and consequence. The two
attributes have been preprocessed into a replaced risk attribute defined on each edge.

These four models are all single-attribute models with an additive objective function. In
contrast with these four models, the Conditional Risk (CR) model is a multiplicative multi-
attribute model with two attributes: expected risk and accident probability (Sivakumar et al.
1993a, 1993b, 1995). This model evaluates the expected consequence conditional on the
occurrence of the first accident and it is suggested for the case of a necessary suspension of
a path between an O-D pair after a catastrophic accident.

Erkut and Ingolfsson (2000) discuss three more catastrophe-avoidance modeling meth-
ods for hazmat transportation. The first model is the Maximum Risk (MM) model, which
tries to avoid catastrophes by using a minimax objective instead of the minisum objective in
the Traditional Risk model (i.e., its focus is to minimize the population exposure that is at
risk on any link along the path rather than that on the entire trip). A similar maximin way
to define risk is called a maximum capacity path problem, which is introduced in Pollack
(1960). The Maximum Risk model measures the extensity of the tail of the consequence
distribution. The second model, the Mean-Variance (MV) model, is widely used by finan-
cial analysts and researchers as the quantitative tradeoffs between return of an investment
portfolio and the corresponding risk brought by it. Borrowing the term variance, this model
assumes that the link attributes are stochastic and tries to find paths with minimal means
and variances. The third model applies utility theory on hazmat transportation to model the
risk problem and develops a Disutility (DU) model in the form of U(C) = exp(λC) where
λ > 0. This function assumes that the (i + 1)-st life lost is more costly than the i-th life lost,
for all i.

These models assume that the risk parameters, both the link accident probabilities and
consequences, are already known. The Mean-Variance model includes the variances of those
parameters in the model to simulate the stochastic risk attribute but assumes that the vari-
ances are already known. However, there may be some situations where no accident data is
available at all, such as on a newly developed road. To address such situations, Bell (2007)
proposes a mixed-route model (MM2) under completely uncertain accident probability. It
aims to reduce the maximum risk by sharing shipments between routes. As an output, it
generates the potential link usage probabilities and link accident probabilities utilizing game
theory, assuming usage probabilities and accident probabilities are two non-cooperative and
zero-sum players in the mixed strategy Nash equilibrium game.

Table 2 summarizes the risk evaluation models in our literature review. The first six
models—TR, PE, IP, PR, MV and DU—can all be reduced to a shortest path problem with
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additive link attributes. The seventh model, MM, can be handled with different variant al-
gorithms based upon the shortest path algorithms (Erkut and Ingolfsson 2000), while the
MM2 model from Bell (2007) is basically a mixed route MM problem and can be converted
to an additive linear program. The last risk model in our literature review, CR, is the most
complex model to optimize due to its non-additive objective function.

Having discussed their properties, let us discuss the validity of these models on the appli-
cation of the hazmat transport problem. The TR model has been criticized as inappropriate
for hazmat transportation due to its risk-neutral attitude. In hazmat transportation, as we will
see in Eq. (6), the distribution of accident consequence has a large probability for zero and
very small probabilities for large consequences. Therefore the risk-neutral model puts too
much weights in ‘zero’ consequence. Both the PE and IP models take only one parameter
into consideration and might generate a biased output. The PR model has considered the
issue of risk aversion and added a weight parameter q on the link consequence Cij , aiming
to direct the shipment to those road segments of less populated areas so as to reduce the
consequences caused by an accident. However, it cannot truly reflect the risk preference by
simply adjusting the risk weight q on consequences. Besides, there is no specific mecha-
nism as far how to select this weight parameter, and there is no obvious pattern to reflect
the relationship between q and optimal solution. The same issue occurs in the DU model,
which also measures the catastrophe aversion with a constant k > 0. By contrast, the MV
model tries to simulate the stochastic risk attribute by involving both the mean and variance
of the risk parameters into the model. But it assumes that those means and variances are
already known, which depend on large quantities of reliable and consistent data. However,
since hazmat risk is a low-probability event, the data collection is usually a long-period
effort, and the collected data are usually inconsistent because the road situation and popu-
lation structure are inevitably subject to change. It is appropriate to apply the MM method
when accident probabilities are unknown. But this method is too pessimistic, only taking an
avoidance measure when accidents are very likely to occur. Bell assumes that the accident
probability is completely uncertain and focuses on estimating the link accident probabilities
with mixed routing strategies. It is quite a novel idea and is highly applicable in the situation
when there is no reference to the accident probability, such as a newly constructed road seg-
ment. From another perspective, the CR model points out the necessity of reevaluating the
routing policy after a catastrophic accident. Because this model is multi-attribute and has a
multiplicative objective function, the problem takes much more effort to solve in comparison
with the other models.

As Table 2 illustrates, different researchers quantify hazmat transport risk from different
perspectives. These models focus on different scenarios of the hazmat transport problem.
But they share a common objective—to find an optimal route for the hazmat shipment to
maximally reduce its impact on society. Generally speaking, those models can be character-
ized using the following six dimensions of problem definition and formulation:

1. Probability-known or probability-unknown problem. Most classic models assume that
the accident probability has been determined according to the historical statistics. How-
ever, recently, more and more researchers have recognized the deficiency of this assump-
tion because of the difficulty to obtain accurate hazmat accident data. Some researchers
like Bell (2007) began to work on the situation when accident probabilities are com-
pletely unknown.

2. Single-attribute or multiple-attribute model. Researchers usually express the real-life
problem in mathematical models with a limited number of factors and study the effect
of single factor to the model objective. Models with more factors are usually more real-
istic but more complicated and difficult to solve. TR, IP and PE models tend to research
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hazmat problems of single risk attributes, i.e., accident probability or consequence or ex-
pected value of consequence. CR and MM2 consider multiple attributes that affect the
decision of route choice.

3. Single-route or mixed-route strategy. Most classic models in our current literature aims
to generate a single optimal route. PR and DU attempt to adjust the “perceived” conse-
quences via a weight parameter q or k. By applying a different strategy, MM2 generates
solutions of mixed route.

4. Risk-neutral or risk-averse attitude. Different models reflect the different risk preferences
of decision makers toward the risk evaluation. For example, TR is a risk-neutral decision
model. But because hazmat accidents cause severe consequences, decision makers usu-
ally tend to be risk-averse. Such kinds of models include MV, MM, DU and CR.

5. Minisum or minimax objective. According to the model objectives, the hazmat problems
can be expressed with different forms of mathematical formulations. Generally speaking,
the classic hazmat models in our literature can be summarized into two kinds, minisum
or minimax problem.

6. Additive or non-additive objective function. TR, IP and PE models consider only single
risk factors and have additive objective functions. PR, MV, MM and DU models have
more complicated expressions of hazmat risk, but they can be preprocessed into deter-
mined single parameters. All those models can be converted into shortest path problem
and solved with corresponding algorithms. But because CR has multiple attributes con-
sidered and own multiplicative objective function, it is more complicated to solve than
other models.

Each of those models evaluates risk values from different aspects. But most of them
rely greatly on the historical data sources of one or two risk parameters—probability and
consequence—and often lead to the recommendation of a single route. However, in this pa-
per, we prove that none of the models in Table 2 is absolutely valid under all confidence
levels. When confidence level α is sufficiently small, each of above models is valid within
a certain confidence level. Especially when α is sufficiently large (close to 1), MM model
is valid more than any others. According to our analysis in later chapters, the valid confi-
dence level of each model is associated with its probability of bringing the shipment safely
to the target node. However, there are always certain confidence intervals that none of these
models can guarantee an absolutely safe path for shipment. In that case, none of the models
can provide a valid solution. Subsequently, a single-route solution generated by historical
data is usually biased and easily criticized due to its lack of scalability and representation
for real-time decision making. The purpose of the VaR model is to provide a more flexible
and reliable alternative modeling approach for routing a hazmat shipment. Decision makers
of different attitudes to risk can choose different routing decisions corresponding to their
risk preferences. Again, rather than a single-route output, this is a two-dimensional deci-
sion framework with different solutions generated given different confidence levels. But the
introduction of the other decision factor α causes the model to be more complicated and dif-
ficult to solve. Because the link parameters along a path are not independent from each other,
we cannot measure the VaR value of a path by simply summing all the link parameters.

3 Value-at-Risk (VaR) modeling of hazmat transportation

This section aims to formulate a VaR risk model for hazmat transportation. We explain in
detail the formulation of the VaR model and analyze its properties.
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3.1 VaR definition of hazmat route

In finance and economics, VaR is defined as a threshold value to measure the maximum
mark-to-market loss on an investment from normal market risk within a given time horizon
and with a pre-set probability level (Jorion 2007).

We consider a single-trip risk optimization problem. Suppose that we are given a hazmat
shipment with an origin (O) and a destination (D) in a transportation network G = (N , A).
This paper proposes a Value-at-Risk (VaR) framework based on a set of alternative paths for
this shipment, denoted by P . Each path l ∈ P stands for a choice to the carrier for routing a
certain hazmat between an O-D pair. For a given risk probability level α ∈ (0,1) and a given
path l ∈ P , we define the VaR as the minimal level β such that the probability that the risk
Rl exceeds β is less than or equal to 1 − α:

VaRl
α = min

{
β : Pr

{
Rl > β

} ≤ 1 − α
}

(3)

Given a set of candidate paths P , the corresponding hazmat shipment optimization problem
is to solve:

VaR∗
α = min

{
VaRl

α : l ∈ P
}

(4)

The problem (4) will generate an optimal path with the minimum value-at-risk among all
available paths. For instance, we can use α = 0.99 for the 99-percent confidence level. Then,
VaR is the cutoff risk such that the probability that shipment s experiences a greater risk
from the candidate route l is less than 1 percent. Naturally, the lower the VaR value of the
candidate l, the more desirable the path is since it brings less “worst-case” risk compared
with other routes with the same confidence level α. Here, we can see that VaR model is
a multiple-attribute model. The route choice generated by HazMat VaR model depends on
both objective and subjective risk factors and preferences. The route choice varies under
different confidence levels α ∈ (0,1).

3.2 Modeling of hazmat VaR problem

There are many ways to measure the extensity of the tail of the consequence distribu-
tion. One available measure is the maximum accident consequence along a path l, i.e.,
Cmax(P ) ≡ max{Cij : (i, j) ∈ Al}. In this method, we consider only a kind of hazmat and
assume that every accident on link (i, j) has the same accident consequence Cij . While we
discuss the accident consequence on each link, our model is general enough to consider any
type of consequence as long as it is constant and known. Since this model only measures
the situation when the accidents are most likely to happen, it is too pessimistic and does not
account for the low probability of accidents.

Suppose we assume a confidence level of the accident probability. On the basis of this
probability, we can measure how far the tail of the cutoff risk distribution extends under this
confidence level α, i.e., Cmax(P ) ≡ max{Cij : Cij ≤ VaRα, (i, j) ∈ Al}.

The key to the problem is the derivation of the cutoff risk—VaR, under a given confidence
level α. As we analyzed in Sect. 2, a transportation route is composed of a set of ordered
links; therefore, the risk parameters, pij and Cij , are not additive. Jin and Batta (1997) have
explained that hazmat shipment can be viewed as a sequence of independent Bernoulli trials.
We start by developing some results related to the properties of the VaR model.

Lemma 1 Suppose each path l consists of an ordered set of links Al in which each link
(i, j) ∈ Al has accident probability pij and consequence Cij . Let Cl

(k) denote the k-th
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smallest value among {Cij : (i, j) ∈ Al}. Let ml denote the cardinality of the collection
Cl = {Cl

(k) : Cl
(k) < Cl

(h), k < h}. Here, ml is not necessarily equal to ml—the size of Al .
Then, we have:

VaRl
α =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 < α ≤ 1 − ∑ml

i=1 πl
(i)

Cl
(1), 1 − ∑ml

i=1 πl
(i) < α ≤ 1 − ∑ml

i=2 πl
(i)

...

Cl
(k), 1 − ∑ml

i=k π l
(i) < α ≤ 1 − ∑ml

i=k+1 πl
(i)

...

Cl

(ml)
, 1 − πl

(ml)
< α < 1

(5)

where α is the confidence level, and πl
(k) = Pr(Rl = Cl

(k)).

Proof We first note that the risk will have a value from the set {0,Cl
1,C

l
2, . . . ,C

l

ml } with the
corresponding probability. In particular, we have:

Rl =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, w.p. 1 − ∑ml

i=1 pl
i

Cl
1, w.p. pl

1

...

Cl

ml , w.p. pl

ml

(6)

Given Rl in (6), the cumulative distribution function (CDF) of Rl can be derived as follows:

FRl (r) = Pr
(
Rl ≤ r

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − ∑ml

i=1 πl
(i), r ≤ 0

1 − ∑ml

i=2 πl
(i), 0 < r ≤ Cl

(1)

...

1 − ∑ml

i=k+1 πl
(i), Cl

(k−1) < r ≤ Cl
(k)

...

1, Cl

(ml)
< r

(7)

where πl
(k) = Pr(Rl = Cl

(k)).
Since Pr(Rl ≤ V aRl) > α, and based on the above CDF of Rl , we get:

VaRl
α =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 < α ≤ 1 − ∑ml

i=1 πl
(i)

Cl
(1), 1 − ∑ml

i=1 πl
(i) < α ≤ 1 − ∑ml

i=2 πl
(i)

...

Cl
(k), 1 − ∑ml

i=k π l
(i) < α ≤ 1 − ∑ml

i=k+1 πl
(i)

...

Cl

(ml)
, 1 − πl

(ml)
< α < 1

which completes the proof. �
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Based on Lemma 1, we can provide a reformulation of the VaR problem. Lemma 1
gives us a set of probability segments: (0, αl

1], (αl
1, α

l
2], . . . , (αl

k, α
l
k+1], . . . , (αl

ml ,1), where

αl
k = 1 − ∑ml

i=k π l
(i). If we let βl

α denote the value of the cutoff risk (VaR) and ᾱ ≡ 1 − α,
then we get from (5) that βl

α = Cl
(k) if and only if:

ml∑

i=k+1

πl
(i) ≤ ᾱ <

ml∑

i=k

π l
(i) (8)

Then, from the definition of πl , we have:

ml∑

i=k+1

πl
(i) =

ml∑

i=k+1

Pr
(
Rl = Cl

(i)

) =
∑

(i,j)∈Al

Cij >Cl
(k)

pij (9)

ml∑

i=k

π l
(i) =

ml∑

i=k

Pr
(
Rl = Cl

(i)

) =
∑

(i,j)∈Al

Cij ≥Cl
(k)

pij (10)

and consequently, the inequalities in (8) become:
∑

(i,j)∈Al

Cij >Cl
(k)

pij ≤ ᾱ <
∑

(i,j)∈Al

Cij ≥Cl
(k)

pij (11)

Thus, the following conclusion can be reached.

Corollary 1 Under the same assumptions of Lemma 1, βl is the solution of the VaR model
(3), i.e., βl

α = V aRl
α if and only if βl satisfies the following two conditions:

∑

(i,j)∈Al

Cij >βl
α

pij ≤ ᾱ

∑

(i,j)∈Al

Cij ≥βl
α

pij > ᾱ

Therefore, the original problem (4) is equivalent to solve:

min
l

βl
α (12)

subject to:
∑

(i,j)∈Al ,Cij >βl
α

pij ≤ ᾱ ∀i, j ∈ N ∀l ∈ P (13)

∑

(i,j)∈Al ,Cij ≥βl
α

pij > ᾱ ∀i, j ∈ N ∀l ∈ P (14)

where ᾱ = 1 − α. The objective of the model (12) is to find a path l ∈ P to minimize the
cutoff risk βl

α over the trip while keeping the cumulative probabilities of the cutoff risks
within a certain threshold ᾱ.
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3.3 Reformulation of hazmat VaR model

Obviously, the hazmat VaR model (12) is unsolvable for exact solutions since the constraints
are non-linear. However, we know that the VaR value β∗

α is located between the smallest and
largest link consequences. Supposing we can find β∗

α = C∗
(k), then we have the following

conclusions:

1. For optimal path l∗, the sum of the probabilities corresponding to links with link conse-
quences greater than β∗

α is less than or equal to 1 − α.
2. For any other path lt where βt

α > β∗
α , the sum of the probabilities corresponding to links

with link consequences greater than β∗
α is greater than 1 − α.

Let us assume that we have sorted the links of the network G according to the ascending
order of the link consequences: C = {0,C(1), . . . ,C(m̄) : C(1) < C(2) < · · · < C(m̄)}. The value
of β∗

α should exist among the set C . Then, searching from the lowest consequence upwards,
we can find the optimal VaR path by repetitively evaluating a least probability model at each
consequence level. Furthermore, we convert this problem into a bi-level formulation and
solve it with a two-staged solution procedure.

Before we reformulate this problem, we need to do a series of preprocesses. First, given
each consequence level βα , we modify the link probabilities according to the corresponding
link consequences:

pij =
{

pij , if Cij > βα

0, if Cij ≤ βα

(15)

for all (i, j) ∈ A. Here, βα ∈ C . Second, suppose that for consequence level βα , we solve a
least probability model with the objective function value f . Then, let us define an indicator
function:

X (ᾱ, f ) =
{

0, f < ᾱ

1, f ≥ ᾱ
(16)

Let xij be a binary decision variable equal to 1 if link (i, j) is used on the shipment s

and 0 otherwise. Given a confidence level α, the VaR model is equivalent to solving the
following mathematical program:

min
βα

X (ᾱ, f ) · βα (17)

subject to:

βα ∈ C (18)

f = min
x∈Ω

∑

(i,j)∈A

pijxij (19)

where:

Ω =
{
x :

∑

j

xij = 1 for i = O,
∑

j

xji = 1 for i = D,

∑

j

xji −
∑

j

xij = 0 ∀i /∈ {O,D}, xij ∈ {0,1} ∀i, j ∈ N
}

(20)

The problem (17)–(18) represents the outer problem—a gap closing function. The con-
straint (18) restricts that the expected maximum cutoff risk βα comes from the sorted con-
sequence set C . The cumulative probabilities f must be an optimal function value of the
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inner problem (19). Here, we need to note that the inner problem generates a least accident
probability path in which only links with consequences Cij > βα have regular cost while
links with consequences Cij ≤ βα have zero cost. The modification of pij ensures that the
links with lower consequences than βα are being considered in the route choice with higher
priority than others with consequences more than βα . Coming back to the outer problem,
we compare the value of f with the set threshold ᾱ and then close the gap between f and α

gradually until f falls within the set threshold ᾱ. At this point, we found the desired optimal
solution under the given confidence level α. The constraints in the set (20) are flow-balance
constraints on the binary variables xij . Together, they ensure that the solution describes a
path from origin (O) to destination (D).

3.4 VaR model properties analysis

We now establish a series of properties for the VaR model with extreme values of α.

Theorem 1 There exists a scalar αmin such that VaR∗
α = 0 for all α ∈ (0, αmin].

Proof First, we have observed that for each path l ∈ P , there exists a scalar αl such that

VaRl
α = 0 ∀α ∈ (0, αl]. To show this, let αl = 1 − ∑ml

i=1 πl
(i) in Lemma 1. It is obvious that

VaRl
α = 0 ∀α ∈ (0, αl]. Therefore, for all l ∈ P , there exists a scalar αl such that VaRl

α = 0
∀α ∈ (0, αl]. Let αmin = minl∈P αl . Then, we can see VaRl

α = 0 ∀α ∈ (0, αmin], ∀l ∈ P .
Therefore, VaR∗

α = minl∈P VaRl
α = 0, ∀α ∈ (0, αmin]. The theorem follows. �

Theorem 1 illustrates that when α is very small, the VaR values at all paths are zero.
Therefore, in this case, one may choose the path based on another criterion such as minimum
transportation cost.

Theorem 2 There exists a scalar αMM
max, such that l∗(α−VaR) ≡ l∗MM for all α ∈ (αMM

max,1), where
l∗MM is the optimal path determined by the Maximum Risk model.

Proof First, we have observed that for each path l ∈ P , there exists a scalar αl such
that VaRl

α = max(i,j)∈Al Cij ∀α ∈ (αl,1). To show it, let αl = 1 − πl

(ml)
in Lemma 1. It

is obvious that VaRl
α = max(i,j)∈Al Cij ∀α ∈ (αl,1). Consequently, ∀l ∈ P , there exists

a αl such that VaRl
α = max(i,j)∈Al Cij ∀α ∈ (αl,1). Let αMM

max = maxl∈P αl , and we can
see VaRl

α = maxαl
i
Cl

i ∀α ∈ (αMM
max,1), ∀l ∈ P . Further, we have VaR∗

α = minl∈P VaRl
α =

minl∈P max(i,j)∈Al Cij ∀α ∈ (αMM
max,1). Therefore, l∗(α−V aR) ≡ l∗MM . The theorem follows. �

Theorem 2 says that for a sufficiently large α level close to 1, especially α ∈ (αMM
max,1),

the optimal VaR path is the same as the optimal MM risk path. This reflects the extreme
risk-averse attitude of the Maximum Risk model.

Theorem 3 For any interval (αkP , αkP +1] ⊂ (0,1), the optimal path determined by the VaR
model (17)–(18) remains the same within the interval.

Proof Suppose that a shipment has a set of candidate paths P . Each candidate path l ∈ P
has a set of consequences Cl .

Furthermore, suppose that there are mP sorted consequences for all paths in set P . Let
CP

(k) denote the k-th smallest value among {Cij : (i, j) ∈ Al , l ∈ P}. That is, we assume:

CP
(1) < CP

(2) < · · · < CP
(k) < · · · < CP

(mP )
, with π P

(k) = Pr
(
R = CP

(k)

)
.
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Then, the optimal VaR is:

VaR∗
α =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 < α ≤ 1 − ∑mP

i=1 π P
(i)

CP
(1), 1 − ∑mP

i=1 π P
(i) < α ≤ 1 − ∑mP

i=2 π P
(i)

· · ·
CP

(k), 1 − ∑mP

i=k π P
(i) < α ≤ 1 − ∑mP

i=k+1 π P
(i)

· · ·
CP

(mP )
, 1 − π P

(mP )
< α < 1

(21)

The function (21) shows that for each confidence interval:

(
αP

k , αP
k+1

] =
(

1 −
mP∑

i=k

π P
(i),1 −

mP∑

i=k+1

π P
(i)

]

there exists the same optimal VaR∗
α ; therefore, the optimal route choice is the same in this

confidence interval. The theorem follows. �

Theorem 3 uncovers an important property of the VaR model. No matter how the con-
fidence level α varies, we can always find the ranges of confidence intervals so that within
each confidence range there is only one optimal solution. In fact, the function (21) tells us
other important information about hazmat shipment. From Lemma 1, we know that each
candidate path in P may have different risk value when α falls into different confidence
intervals labeled:

(
1 −

mP∑

i=k

π P
(i),1 −

mP∑

i=k+1

π P
(i)

]

Therefore, under different confidence intervals, there may be a different least risk path.
Thus, in a realistic size network (with many available route choices), a shipment is likely to
have different optimal solutions when the α level changes.

The theorems dictate that for most networks, no shipment follows the same optimal path
under all confidence levels α ∈ (0,1). But because a road network has a finite number of
links, the possible risk values of a path are finite, too. Consequently, the confidence levels
can be segmented into a series of traceable intervals, each with an optimal solution. Once
we determine the thresholds of these solutions, i.e., the upper and lower limits of the corre-
sponding confidence intervals, we can generate a decision matrix of route choices. Later, in
Numerical Example Sect. 5, we illustrate that when α varies among (0,1), the VaR value for
each candidate path varies too, subsequently with the corresponding route choice, as shown
in Fig. 3. No paths bring any risk to the neighborhood especially when confidence level α

is extremely small and close to 0. In such a case, we can decide the optimal path according
to other criteria like transportation cost. When α becomes larger, different risk preference
generates different route choices. The VaR model equals to MM model especially when α

becomes extremely large and close to 1.

4 Solution procedure

In this section, we provide an algorithm for solving the reformulation (17) and its computa-
tional complexity.
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Algorithm 1 VaRHazmat
Step 0: (Initialization) Sort all the link consequences in ascending order, C =
{0,C(1), . . . ,C(m̄)}, and set n ← 0;

Step 1: (Solving the Subproblem) Let βn
α = C(n) and update p̄ij . Solve the inner prob-

lem (19) to obtain the solution path ln and the objective value f n, using a shortest path
algorithm like Dijkstra’s algorithm.

Step 2: (Stopping Test) If f n ≤ ᾱ or n = m̄, we are done; the current path ln is the optimal
VaR path under the confidence level α.

Step 3: (Update) If f n > ᾱ and n < m̄, and set n ← n + 1, go to Step 1.

4.1 Description of the algorithm

In formulation (17)–(18), the inner problem is a typical shortest path problem with modified
link costs. The outer problem is a loop procedure to select the minimal βα from the ordered
consequence set C that satisfies the condition that the objective function value of the inner
problem reaches the given confidence level α.

We propose an exact solution procedure for the model (17)–(20) as follows. We first
sort the link consequences in ascending order. We then search βα from the lowest value
of C upwards. For each consequence level βα , we modify the link properties pij according
to Cij , and solve the sub problem with the corresponding objective function value f . Next,
we compare the values of f and ᾱ. If f ≤ ᾱ, we are done; otherwise, we raise βα to the next
lowest value of C , and solve the sub problem again to get a new f . We repeatedly compare
the value of f and ᾱ until f ≤ ᾱ, or all links in the network G have been visited.

Let us explain the validity of Algorithm 1. At iteration n, the modified link probabilities
with βn

α are

pij =
{

pij , if Cij > βn
α

0, if Cij ≤ βn
α

(22)

for all (i, j) ∈ A. Then we obtain the following equivalence

f n =
∑

(i,j)∈A

pijxij =
∑

(i,j)∈An

Cij >βn
α

pij (23)

where An is the set of links in the solution path ln of the subproblem at iteration n. The
right-hand-side of (23) is the sum of link probabilities on this path with consequence greater
than βn

α . Further, if the value of βn
α is same as the k-th smallest consequence in the path ln,

i.e., βn
α = Cln

(k), then from (9) we can express (23) as

f n =
∑

(i,j)∈An

Cij >βn
α

pij =
mln∑

i=k+1

πln

(i) (24)
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To show the validity of the stopping test in Algorithm 1, let VaR∗
α denote the solution. If

the current βn
α is the solution, i.e., βn

α = VaR∗
α = Cln

(k), we have from (8)

mln∑

i=k

π ln

(i) > ᾱ ≥
mln∑

i=k+1

πln

(i)

and consequently, from (24), f n ≤ ᾱ. On the other hand, if the current βn
α is not the solution,

i.e., βn
α < VaR∗

α , we obtain f n > ᾱ. To show this, suppose βn
α = Cln

(h) where C(h) < C(k).
Then we have

mln∑

i=h+1

πln

(i) ≥
k−1∑

i=h+1

πln

(i) +
mln∑

i=k

π ln

(i) ≥
mln∑

i=k

π ln

(i) > ᾱ

therefore f n = ∑mln

i=h+1 πln

(i) > ᾱ. We can apply the same argument to all other paths to show
the validity of the stopping test.

4.2 Complexity of the algorithm

Now let us analyze the complexity of this algorithm. The prerequisite problem is a sorting
problem. There are many popular sorting algorithms. The typical ones like Mergesort and
Heapsort algorithms (Knuth 1998) provide average O(|A| log |A|) time complexity. Other
sorting algorithms are also developed with better time complexity with additional constraints
like algorithms of Han (2004) and Thorup (2002). The best case for a sort so far is MSD
RadixSort (McIlroy et al. 1993) which is specialized for strings, with O(|A|) time linearly
proportional to the number of items.

Subsequently, the main body of our algorithm is composed of two steps. The outer loop
body takes O(|A|) runs. As for the inner shortest path problem, it can be solved by search
algorithms. Currently no “best” algorithm exists for every kind of transportation problem,
but several algorithms focus on finding the optimal path with either efficiency or accuracy
in mind. The enumeration algorithm searches the shortest path by scanning all possible so-
lutions. It ensures to get the exact solution within a constant computational time. However
the computational effort and required space increases exponentially with the growth of the
size of the input data. The Dijkstra’s labeling method (Dijkstra 1959) is a classic solution in
most shortest path algorithms. It generates the shortest path from origin (O) to destination
(D) by iteratively constructing the shortest out-tree originating from (O) to a set of perma-
nently labeled nodes. This algorithm terminates when D is permanently labeled and does not
need to search all the nodes within a road network. However, since its search space relies
on the depth of the optimal path and the branching size, the search speed increases expo-
nentially in the number of nodes explored. This is the main obstacle for shortest path search
in large networks. To overcome this effect, Pohl (1971) proposes a bi-directional method by
searching from both forward and backward. This method decreases the size of the search
space effectively. Hart et al. (1968) also formalized a heuristic named the A∗ Algorithm,
choosing nodes based on the cost from the start node (O) with a likely proximity to the des-
tination (D). This method effectively reduces the search space by reducing the number of
node expansions, and reduces the effect of combinatorial exploration by reducing the size
of the base in the complexity term. But the most efficient way till now to eliminate or min-
imize the effects of the combinatorial explosion in a large-scale network, is a Hierarchical
Search method suggested in Smith et al. (1998), which works by classifying and exploring
the roads in the network into smaller, more manageable networks. This Hierarchical method
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Fig. 1 A test network for
hazmat VaR problems

Table 3 Candidate paths
Path Route

P 1 {1 → 2 → 3 → 6 → 9}
P 2 {1 → 2 → 5 → 6 → 9}
P 3 {1 → 2 → 5 → 8 → 9}
P 4 {1 → 4 → 5 → 6 → 9}
P 5 {1 → 4 → 5 → 8 → 9}
P 6 {1 → 4 → 7 → 8 → 9}

offers the prospect of greatly reducing the size and complexity of any search by simplifying
the search through a series of levels. There is an empirical time/performance trade-off be-
tween these algorithms. Dijkstra’s and Pohl’s Symmetric algorithms guarantee optimality,
which are suitable for small-sized road networks. While for a large-scale road network, the
A∗ Algorithm, and especially the Hierarchical algorithm can significantly reduce the search
time while sacrificing accuracy.

For our model, if we employ Dijkstra’s algorithm, the whole procedure has a
O(|A|2 log(|A|)) time requirement. This is reasonable for hazmat shipments as they are
usually transported on national highway systems, like U.S. and interstate routes. According
to the statistics from the Federal Highway Administration, there are altogether 499 Inter-
state routes (Federal Highway Administration 2007) and 1001 US routes (Droz 2009) for all
states, with an average of 30 national highways traversing each State. So the road network
for hazmat transportation is relatively sparse. For small and middle sized networks, we can
apply the Dijkstra’s algorithm or Pohl’s algorithms in our procedure to find the optimal
VaR solutions. For large-scale networks, the Hierarchical algorithm provides an efficient
heuristic route choice method.

5 Numerical example

Take the network shown in Fig. 1 as example. It consists of 9 nodes and 12 arcs, offering 6
available paths from Origin 1 to Destination 9 (see Table 3).
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Fig. 2 VaR path choices under
different confidence level α

Table 4 VaRs under confidence
level 95 % Path l1 l2 l3 l4 l5 l6

VaRl
0.95 3 6 8 6 8 4

Let us take l1, for example; we have the CDF of risk as follows:

FR(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, r < 0

0.3, 0 ≤ r < 1

0.8, 1 ≤ r < 3

1, 3 ≤ r

The corresponding VaR of path l1 is:

VaRl
α =

⎧
⎪⎨

⎪⎩

0, if 0 < α ≤ 0.3

1, if 0.3 < α ≤ 0.8

3, if 0.8 < α < 1

If we set confidence level α = 95 %, the corresponding VaR value is 3. That means, we
have at least 95 % probability to control the consequence brought by path l1 under value 3
once an accident occurs. Or, in other words, the possibility of the path risk being larger than
3 is less than 0.5 %. But under α = 50 %, the corresponding VaR value for path 1 is 1.

Similarly, we can get the different VaR values for each of the 6 paths under different
confidence levels. The corresponding VaR values of each candidate path are as displayed in
Fig. 2. For α = 95 %, with the VaR values of paths displayed in Table 4, we see that path l1

gives the optimal solution for O-D pair (1,9) at confidence level 95 %.
Table 5 generates the VaR decision matrix for the six candidate routes under different α

levels. We can see that under different confidence levels, the worst risk route varies too. This
is different from the MM2 model proposed in Bell (2007), which gives a one-dimensional
route choice vector using the random sampling principle. Table 6 gives the optimal paths
generated by the nine classic risk models collected in our literature review.

The results of this numerical example illustrate that the optimal path choice should vary
according to different confidence levels, as shown in Fig. 3. Actually VaR turns out to be a
function of α and varies with different α values as displayed in Fig. 2. Therefore, the optimal
route solution varies under different α values too. This provides the shipment dispatchers
broader route choices according to their risk preferences, which may vary according to their
judgment to the up-to-date road situation as well as the public risk allowance. A risk-averse
decision maker would prefer a high confidence level, however, an optimistic decision maker
may consider it good enough to control risk within allowable confidence level. Speaking
from a more strictly practical point of view, the confidence level should respect the up-to-
date road situation and public preference. This is another problem of multi-discipline views
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Table 5 VaR decision matrix for the six routes under different α levels

α

≤ 0.3 ≤ 0.4 ≤ 0.55 ≤ 0.6 ≤ 0.65 ≤ 0.7 ≤ 0.8 ≤ 0.9 < 1

P 1 0 1 1 1 1 1 1 3 3

P 2 0 1 1 1 3 3 3 4 6

P 3 0 0 1 1 1 1 2 6 8

P 4 0 0 0 1 3 3 3 4 6

P 5 0 0 0 0 0 1 2 6 8

P 6 0 0 0 0 0 1 2 4 4

l∗ l1, l2, l3, l4, l5, l6 l3, l4, l5, l6 l4, l5, l6 l5, l6 l5, l6 l1, l3, l5, l6 l1 l1 l1

Table 6 Alternative risk model comparison for the six routes

Path lTR lPE lIP lPR lMM lMV lDU lCR lMM2

l1 1.1 6 0.7 0.84 3 4.1 0.0055 1.57 3.36

l2 1.9 14 0.7 1.09 6 17.4 0.0095 2.71 2.86

l3 1.9 17 0.6 0.97 8 28.15 0.0096 3.17 2.86

l4 1.65 14 0.45 0.84 6 17.15 0.0083 3.67 2.14

l5 1.65 17 0.35 0.72 8 27.90 0.0084 4.71 2.14

l6 1.05 11 0.35 0.59 4 10.30 0.0053 3.00 2.64

l∗ l6 l1 l5, l6 l1 l1 l1 l6 l1 l4, l5

Fig. 3 Path choice under different α values

involving social science, humanities, environmental science, etc. In our problem, we suppose
that a rational confidence level can be determined by dispatchers or governors when making
routing decisions.
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Fig. 4 Albany area highway roadmap

6 Case study

We develop a case study in a transportation network around Albany and its nearby highway
(Fig. 4). Albany, New York connects many major interstates and is a heavy hub for hazmat
transportation. There are eight major interstate and US routes traversing the Albany area
and its neighborhoods: I-90, I-890, I-87, I-88, I-787, US-20, US-9 and US-9W. 304,204
residents are located in the 10 towns, 3 cities and 6 villages (US Census Bureau 2010) with
variant population density. All those form a dense transportation network along those routes.

We built a transportation network composed of 90 intersections and 148 road segments.
The link accident probabilities are calculated according to road segment lengths. The func-
tion (25) refers to the investigation summary of Abkowitz and Cheng (1988):

p = 10−6 × l. (25)

The link consequences are calculated according to population density within the neighbor-
hood around the links. Assuming the radius λ of spread of HM is 1 mile, the endangered
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Table 7 A representative run of hazmat VaR model for a given value of confidence level, α—round 1

Round 1: α = 0, O-D pair (1,22)

Model Optimal path OFV VaRl
α

TR [1,70,45,13,14,15,55,56,60,61,16,17,18,19,20,21,10,22] 0.16 0.0

PE [1,70,45,13,14,15,55,56,60,61,16,17,18,19,20,21,10,22] 3050.84 0.0

IP [1,74,78,42,82,27,20,21,10,22] 2.10E–5 0.0

PR [1,70,45,13,14,15,55,56,60,61,16,17,18,19,20,21,10,22] 129188.02 0.0

MV [1,70,45,13,14,15,55,56,60,61,16,17,18,19,20,21,10,22] 1525.58 0.0

DU [1,74,75,76,77,79,23,24,25,33,34,7,8,9,84,21,10,22] 17449.37 0.0

MM [1,74,75,76,80,23,24,25,26,34,7,8,9,10,22] 22617.61 0.0

CR [1,70,45,13,14,15,55,56,60,61,16,17,18,19,20,21,10,22] 6377.27 0.0

VaR [1,74,78,42,82,27,20,21,10,22] Pr[R(1,22) > 0]
≤ 1 − α = 0.00 %

Pr[R(1,22) ≤ 0] > α = 100 %

OFV: the corresponding optimal Objective Function Value

area can be described with a whole λ-neighborhood which is a concept developed by Batta
and Chiu (1988). Here the link consequence is calculated according to the function 26:

C = (
πλ2 + 2 × λ × l

) × ρ, (26)

where ρ represents the population density in the neighborhood along the road segment (per-
sons per mile-sq). We collect the population data of the town where the road segment is
located and distribute the risk uniformly to the area. The road lengths and population statis-
tics come from Department of Transportation and Department of Commerce websites.

Based on Dijkstra’s algorithms, our two-stage solution is coded in Java 1.6.16 and run on
a Intel Core2 Quad CPU Q6600 2.40 GHz computer system. Our computational experience
reveals that our procedure is of high efficiency and the computing time is within 5 seconds.
We now discuss our results.

We take O-D pair (1,22) as an example to illustrate the VaR model and compare its
difference from classic models. The same data sets are collected and tested under different
confidence levels to verify the accuracy of the classic models compared with the VaR model
and to illustrate the effectiveness of our algorithm. Tables 7, 8 and 9 contain results from
three representative runs; they each provide a comparison with the eight hazmat risk models
contained in our literature review section. Here in our example, we only display the result
of PR model with parameter q = 2, and MV model with parameter k = 0.5, and DU model
with parameter k = 0.001. As shown in our result, TR, PE, PR, MV, and CR models generate
routes along Route US-20; while the IP model chooses a less accident probability route
along NY-5; by contrast, the extremely risk-averse MM model generates a least consequence
route far from I-90 and US-20.

Round 1 proves that for a certain small confidence level α = 0.00, no risk models are
effective since all paths are risk-indifferent paths. The VaR values for all paths in Table 7
are zero, and the algorithm for the VaR model happened to choose the same path as the IP
model. In this case, we can ignore the risk factor considered and follow other criteria such
as population exposure, economic loss, effects on commerce, and delays in transportation,
for route choice. Another phenomenon that caught our eyes is that, when confidence level
α is relatively small, the VaR solution tends to generate the similar result as the risk-neutral
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Table 8 Representative run—round 2

Round 2: α = 0.999982, O-D pair (1,22)

Model Optimal path OFV VaRl
α

TR [1,70,45,13,14,15,55,56,60,61,16,17,18,19,20,21,10,22] 0.16 1266.82

PE [1,70,45,13,14,15,55,56,60,61,16,17,18,19,20,21,10,22] 3050.84 1266.82

IP [1,74,78,42,82,27,20,21,10,22] 2.10E–5 10683.22

PR [1,70,45,13,14,15,55,56,60,61,16,17,18,19,20,21,10,22] 129188.02 1266.82

MV [1,70,45,13,14,15,55,56,60,61,16,17,18,19,20,21,10,22] 1525.58 1266.82

DU [1,74,75,76,77,79,23,24,25,33,34,7,8,9,84,21,10,22] 17449.37 6001.57

MM [1,74,75,76,80,23,24,25,26,34,7,8,9,10,22] 22617.61 8354.95

CR [1,70,45,13,14,15,55,56,60,61,16,17,18,19,20,21,10,22] 6377.27 1266.82

VaR [1,70,45,71,58,59,4,5,17,18,19,20,21,10,22] Pr[R(1,22) > 837.14]
≤ 1 − α = 0.0018 %

Pr[R(1,22) ≤ 837.14]
> α = 99.9982 %

OFV: the corresponding optimal Objective Function Value

Table 9 Representative run—round 3

Round 3: α = 0.9999999, O-D pair (1,22)

Model Optimal path OFV VaRl
α

TR [1,70,45,13,14,15,55,56,60,61,16,17,18,19,20,21,10,22] 0.16 37263.97

PE [1,70,45,13,14,15,55,56,60,61,16,17,18,19,20,21,10,22] 3050.84 37263.97

IP [1,74,78,42,82,27,20,21,10,22] 2.10E–5 69302.89

PR [1,70,45,13,14,15,55,56,60,61,16,17,18,19,20,21,10,22] 129188.02 37263.97

MV [1,70,45,13,14,15,55,56,60,61,16,17,18,19,20,21,10,22] 1525.58 37263.97

DU [1,74,75,76,77,79,23,24,25,33,34,7,8,9,84,21,10,22] 17449.37 22518.80

MM [1,74,75,76,80,23,24,32,33,34,7,8,9,10,22] 22617.61 22617.61

CR [1,70,45,13,14,15,55,56,60,61,16,17,18,19,20,21,10,22] 6377.27 37263.97

VaR [1,74,75,76,77,79,23,24,25,26,34,7,8,9,10,22] Pr[R(1,22) > 22617.61]
≤ 1 − α = 0.00001 %

Pr[R(1,22) ≤ 22617.61]
> α = 99.99999 %

OFV: the corresponding optimal Objective Function Value

model like TR model. It accords to our expectation that the decision maker intends to be op-
timistic and have more risk tolerance. With stricter α, it is witnessed that our solution begins
to predict the more risk-averse preference. The solutions from the VaR model are compara-
tive to the risk-averse models like PE, MV, and DU. When confidence level α approaches to
1, our VaR model simulates the MM model, which represents the extreme risk-averse pref-
erence. For the OD pair (1,22), while the confidence level α = 0.9999999, our VaR model
solution has the same risk as that of the MM model.

Another noticeable phenomenon is that, combining considerations of both risk analysis
and confidence level, the VaR model can generate different routes which represent the risk
preference of decision makers. Take Round 2 as example, where α = 0.999982, our VaR
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Fig. 5 Route comparison from origin 1 to destination 22

model generates a route detour from the major routes I-90, I-890 and US-20, and the Albany
City, to avoid the high population density area. At the same time, it does not detour too
much like the DU and MM model which consume the transportation cost to an extent hardly
acceptable for carriers. It turns out to be a more reasonable route with less cutoff risks than
other risk models under α = 0.999982. The result of Round 3 is illustrated in Fig. 5.

Subsequently, we output the difference between VaR and the classic models under all
confidence intervals. The VaR performances of the classic models for the OD pair (1,22)

are provided in Table 10. Each of the above models predicts a certain risk preference under
a certain confidence level. As Table 10 displays, when the confidence level α is sufficiently
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Table 10 VaR comparison between α—VaR model and classic models

α VaRTR VaRPE VaRIP VaRPR VaRMV VaRDU VaRMM VaRCR VaRVaR

≤ 0.999965 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

≤ 0.999966 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

≤ 0.999967 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

≤ 0.999968 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

≤ 0.999969 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

≤ 0.999970 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

≤ 0.999971 0.00 0.00 0.00 0.00 0.00 2968.83 0.00 0.00 0.00

≤ 0.999972 0.00 0.00 0.00 0.00 0.00 3330.57 974.83 0.00 0.00

≤ 0.999973 0.00 0.00 0.00 0.00 0.00 4062.92 4800.82 0.00 0.00

≤ 0.999974 0.00 0.00 0.00 0.00 0.00 4735.00 4800.82 0.00 0.00

≤ 0.999975 0.00 0.00 0.00 0.00 0.00 4735.00 5141.34 0.00 0.00

≤ 0.999976 360.91 360.91 0.00 360.91 360.91 4735.00 5141.34 360.91 0.00

≤ 0.999977 824.10 824.10 0.00 824.10 824.10 5141.34 5141.34 824.10 0.00

≤ 0.999978 824.10 824.10 0.00 824.10 824.10 5141.34 5141.34 824.10 0.00

≤ 0.999979 824.10 824.10 0.00 824.10 824.10 5141.34 5141.34 824.10 0.00

≤ 0.999980 974.83 974.83 974.83 974.83 974.83 5141.34 6571.05 974.83 824.10

≤ 0.999981 1266.82 1266.82 3330.57 1266.82 1266.82 5141.34 6571.05 1266.82 837.14

≤ 0.999982 1266.82 1266.82 10683.22 1266.82 1266.82 6001.57 6899.79 1266.82 837.14

≤ 0.999983 1301.19 1301.19 13282.16 1301.19 1301.19 6899.79 10395.42 1301.19 1301.19

≤ 0.999984 1301.19 1301.19 13282.16 1301.19 1301.19 10395.42 10395.42 1301.19 1301.19

≤ 0.999985 1301.19 1301.19 15464.28 1301.19 1301.19 10395.42 10395.42 1301.19 1301.19

≤ 0.999986 2768.16 2768.16 21553.67 2768.16 2768.16 10395.42 10395.42 2768.16 2768.16

≤ 0.999987 3330.57 3330.57 21553.67 3330.57 3330.57 10395.42 10395.42 3330.57 3330.57

≤ 0.999988 3536.70 3536.70 21830.92 3536.70 3536.70 10395.42 11334.86 3536.70 3536.70

≤ 0.999989 3536.70 3536.70 21830.92 3536.70 3536.70 11226.24 11334.86 3536.70 3536.70

≤ 0.999990 3536.70 3536.70 21830.92 3536.70 3536.70 11226.24 11541.78 3536.70 3536.70

≤ 0.999991 3743.38 3743.38 21830.92 3743.38 3743.38 11226.24 11541.78 3743.38 3743.38

≤ 0.999992 4230.99 4230.99 21830.92 4230.99 4230.99 11334.86 11541.78 4230.99 4230.99

≤ 0.999993 4840.50 4840.50 21830.92 4840.50 4840.50 11334.86 12877.03 4840.50 4840.50

≤ 0.999994 5571.92 5571.92 21830.92 5571.92 5571.92 11541.78 12877.03 5571.92 5571.92

≤ 0.999995 5571.92 5571.92 21830.92 5571.92 5571.92 11541.78 12877.03 5571.92 5571.92

≤ 0.999996 13282.16 13282.16 60670.63 13282.16 13282.16 11541.78 12877.03 13282.16 11541.78

≤ 0.999997 13282.16 13282.16 69302.89 13282.16 13282.16 15464.28 15464.28 13282.16 13282.16

≤ 0.999998 21951.35 21951.35 69302.89 21951.35 21951.35 22518.80 22518.80 21951.35 16404.19

≤ 0.999999 37263.97 37263.97 69302.89 37263.97 37263.97 22518.80 22518.80 37263.97 21804.07

≤ 0.9999991 37263.97 37263.97 69302.89 37263.97 37263.97 22518.80 22518.80 37263.97 22518.80

≤ 0.9999992 37263.97 37263.97 69302.89 37263.97 37263.97 22518.80 22518.80 37263.97 22518.80

≤ 0.9999993 37263.97 37263.97 69302.89 37263.97 37263.97 22518.80 22518.80 37263.97 22518.80

≤ 0.9999994 37263.97 37263.97 69302.89 37263.97 37263.97 22518.80 22518.80 37263.97 22518.80

≤ 0.9999995 37263.97 37263.97 69302.89 37263.97 37263.97 22518.80 22518.80 37263.97 22518.80

≤ 0.9999996 37263.97 37263.97 69302.89 37263.97 37263.97 22617.61 22617.61 37263.97 22617.61

≤ 0.9999997 37263.97 37263.97 69302.89 37263.97 37263.97 22617.61 22617.61 37263.97 22617.61

≤ 0.9999998 37263.97 37263.97 69302.89 37263.97 37263.97 22617.61 22617.61 37263.97 22617.61

≤ 0.9999999 37263.97 37263.97 69302.89 37263.97 37263.97 22617.61 22617.61 37263.97 22617.61
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small, all risk models behave similar since the circumstance is optimistic enough to cause
no risk at all to the shipment. But when α > 0.9999706, those routes tend to bring various
risk levels to the neighborhood. In the LPHC case like Hazmat transport when historical
data can not be totally relied on, we take advantage of the uncertainty tolerance of the VaR
model to simulate the various risk preferences and generate flexible and valid route choices
for decision makers.

7 Conclusions and future research

This paper proposes a new hazardous material transportation model based on the risk mea-
surement commonly used in financial application, Value-at-Risk (VaR). This model is de-
veloped on a strategy that controls the social risk carried by the shipment. It is more general
than the traditional deterministic risk models. The VaR model introduces a new factor of
confidence level α which represents the decision maker’s risk preference. The objective of
the VaR model is to control the worst risk experienced by a shipment within a certain con-
fidence interval. The optimal VaR path varies under different α and is not necessarily the
optimal expected risk path. The VaR calculation method and the optimal path algorithm are
provided and demonstrated in this paper.

For each shipment, the decision maker can find the upper and lower bounds of a series
of confidence intervals (αk,αk+1] ⊆ (0,1), and create a decision matrix for route choices.
The VaR values become zero for all paths when the confidence level α is close to 0, and
the maximum risk model when α is close to 1. This model provides decision makers a
more flexible tool to decide the optimal path according to their judgment of the real-time
road situation and its subsequent risk level by adjusting the confidence level α. Further the
VaR model may be used in combination with other models. One may list several paths with
better VaR values, and choose a path satisfying a certain criteria based on other hazmat
routing models. We will provide an algorithm to provide such better paths based on VaR in
our subsequent research article.

While this paper emphasizes the single-trip hazmat shipment problem, further develop-
ment of the VaR model should consider the mitigation of the social risk for the multiple-trip
hazmat transportation problem, combined with broader decision factors like costs or sched-
ules of shipments, or constraints like risk equity among different geographical zones.
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