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Abstract This research investigates the traffic police routine patrol vehicle (RPV) assign-
ment problem on an interurban road network through a series of integer linear programs.
The traffic police RPV’s main task, like other emergency services, is to handle calls-for-
service. Emergency services allocation models are generally based on the shortest path al-
gorithm however, the traffic police RPV also handles other roles, namely patrolling to create
a presence that acts as a deterrence, and issuing tickets to offenders. The RPVs need to be
located dynamically on both hazardous sections and on roads with heavy traffic in order
to increase their presence and conspicuousness, in an attempt to prevent or reduce traffic
offences, road accidents and traffic congestion. Due to the importance of the traffic patrol
vehicle’s location with regard to their additional roles, allocation of the RPVs adheres to
an exogenous, legal, time-to-arrival constraint. We develop location-allocation models and
apply them to a case study of the road network in northern Israel. The results of the four
models are compared to each other and in relation to the current chosen locations. The
multiple formulations provide alternatives that jointly account for road safety and policing
objectives which aid decision-makers in the selection of their preferred RPV assignments.
The results of the models present a location-allocation configuration per RPV per shift with
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full call-for-service coverage whilst maximizing police presence and conspicuousness as a
proxy for road safety.

Keywords Location · Allocation · Network · Emergency services · Traffic police

1 Introduction

Emergency services must provide reasonable service levels in order to ensure public safety
and security as stipulated in the laws and practices of the relevant country. These emer-
gency services are typically provided by vehicles based at fixed or dynamic locations, and
the number and placement of vehicles generally influences the quality of services offered.
Increasing the number of vehicles is often limited by capital and manpower constraints, and
the efficient deployment of emergency service vehicles therefore becomes a crucial issue
(Araz et al. 2007). The general aim of the emergency service vehicle location formulation
is to determine the most appropriate base locations for vehicles in order to meet specific
service level objectives. The routine patrol vehicle (RPV) assignment problem is different
from that of other emergency services because of the multi-criteria nature of the issues in-
volved. Traffic police fulfill two major functions: enforcing traffic laws and assisting road
users. These are accomplished by maintaining presence and conspicuousness, issuing traffic
violation tickets, handling vehicle accidents and other calls-for-services, directing traffic and
accompanying special convoys. In general, interurban patrol vehicles are allocated to rou-
tine work and separately to special operations. The special operation vehicles are involved
in both accompanying convoys and enforcing the traffic laws through a concentration of
forces in a specific area or time or concentrating on specific offences, whilst the routine
patrols perform all other tasks. In this research, we focus on the RPVs assignment problem
because this topic has not been covered in the academic literature to date (Elvik and Vaa
2004; Hakkert et al. 2001). According to a pre-planned timetable, each vehicle is located to
an enforcement-stretch where it is stationed for the length of a shift and enforces the law
by issuing traffic tickets as well as showing a presence. Each patrol vehicle is also allocated
an extended area of responsibility defined as an operating area. When a call-for-service is
received, the control room dispatches an appropriate vehicle. The total time span for a call-
for-service includes the time taken to drive to the call from the enforcement-stretch, the time
spent dealing with the problem and the time required to return to the original location. In
general, a protocol (legal requirement) specifies the maximum time permitted to reach an
event location.

The location-allocation planning models for the interurban traffic police RPVs devel-
oped in this research are based on the existing working policy of the Israeli Police Force.
The models are based on the decision makers’ preference for dividing the budget among
automatic enforcement, concentrated force, and RPVs. We focus on the interurban traffic
police because it is organized as a single unit and 40 % of severe accidents in Israel oc-
cur on the interurban road network. Note that for interurban roads, traffic data is available
which supports the rational allocation of enforcement effort. The objectives considered in
the models include the optimization of the benefits (presence and conspicuousness) based
on the traffic police vehicles’ locations, and the allocation of vehicles based on legal and
other stipulations. The models determine the optimal, temporary, base locations for a lim-
ited number of vehicles in such a way that service-level objectives are achieved under the
constraint of complete network coverage. We develop integer linear programs and apply
them to a case study of the northern part of Israel’s interurban roads. We demonstrate the
applicability of the results of the models in comparison to the currently chosen locations.
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Four models were developed in this study, progressing from the basic model address-
ing maximized presence and conspicuousness based on traffic flow, to gradually handling
additional objectives and constraints. The second formulation addresses the location and dis-
tribution of the likelihood of calls-for-service. The third formulation changes the coverage
requirements such that pre-determined sections of roads may be served more quickly than
others in order to better deal with the problems of congestion and their effect on subsequent
accidents. The fourth formulation maximizes presence and conspicuousness dynamically
over varying locations, accounting for multiple shifts and considering the halo effects iden-
tified in the literature (Elvik and Vaa 2004; Newsread et al. 2001).

This is the first study that plans the locations of traffic police RPVs so as to maximize
their availability for handling road events and concurrently enforce road regulations. Po-
lice force planning has been analyzed as a maximum covering location problem (MCLP)
(Church and Revelle 1974; Curtin et al. 2005, 2010), balancing deployment over beats in
an urban area (Chaiken and Dormont 1978a, 1978b; Church et al. 2001; Green and Kolesar
1989, 2004; Larson 1974; Sacks 2000; Simpson and Hancock 2009) or serving a rural re-
gion, where travel time is a major component of the total service time (Birge and Pollock
1989). While the literature has focused on rescue services, there has been no discussion on
the joint role of traffic police as a rescue service that also combines their effectiveness in
reducing road accidents. For example, rescue service location has a specific, clearly defined
objective function, namely to cover a given network within the budget limitations. In the
case of RPVs, network coverage is a legal constraint and the objective function is better
defined in terms of the need for a dynamic presence and conspicuousness. The interurban
traffic RPVs location-allocation problem is different in some aspects from the other emer-
gency services described in the literature. First, there are more than the minimum number of
vehicles required to cover demand therefore coverage of the network becomes a constraint
and the objectives are derived from the public benefit of safety and security in the form of
multi-objective functions. Second, the interurban traffic police differs from the urban patrol
police because the RPVs’ locations ought to change dynamically to obtain a “halo effect” for
improved deterrence, whereas the patrol beat in urban areas is mostly fixed. Workload bal-
ancing across patrol vehicles is less important for the RPVs because the workload (handling
calls-for-service and issuing traffic tickets) is generally a small proportion of the RPVs’
tasks. The RPVs should be located on road accident and traffic offence “blackspots” to re-
duce the number and severity of accidents through deterrence and enforcement.

We have thus developed a set of models that combines an incident-response dispatch
system from depots, similar to that of ambulances, together with location choices over a
road network in order to detect and prevent offenses and respond to incidents in a timely
fashion when necessary. The new formulations combine two domains: traffic enforcement
and operational research. The mathematical formulations are based on theories of hazardous
road identification (Elvik 1997; Hauer 2005) and the halo effect of enforcement (Elvik and
Vaa 2004; Newstead et al. 2001). The allocation solution covering calls-for-service thus not
only considers the closest RPV, as in other rescue services, but also a behavioral cost-benefit
evaluation.

The paper is organized as follows. Section 2 is devoted to a literature review and a discus-
sion of existing models published in the literature. Section 3 describes the methodology and
the formulation of the proposed models we implemented. Section 4 describes the case study
with the current locations chosen by the existing police traffic model and the solutions from
the four proposed models. The computational results of the proposed models with respect
to the case study demonstrate the effectiveness of the solution. The final section presents
conclusions and suggestions for future research.
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2 Literature review

In this section we discuss the modeling approaches developed in the literature with regard
to location and allocation problems, as well as the literature on traffic law enforcement.

2.1 Location literature

Optimal location-allocation is important in both the private sector (location of plants, ware-
houses, stores, allocation of customers, etc.), and the public sector (location of schools,
waste sites, allocation of students, housing etc.). Typically, the private sector deals with
cost-benefit objectives, whereas in the public sector the objective is the social bene-
fit that must be defined by each public sector according to its goals (Daskin 1995;
ReVelle and Eiselt 2005).

Within the location-allocation literature, there is a special focus on the location of stations
and emergency services vehicles (Church et al. 2001; Curtin et al. 2005, 2010; Daskin 1982;
Green and Kolesar 2004; Larson 1974; Larson and McKnew 1982; Peleg 2000; Toregas et
al. 1971; Simpson and Hancock 2009; Wright et al. 2006). The first major research project
involving fire department deployment was the New York City Rand Project in the 1970s
(Walker et al. 1979). Most of the research carried out on police force resource allocation ap-
plies to urban public safety, where the solution generates an optimal beat balanced workload.
Allocations are seldom changed unless new stations are added, moved or closed (Curtin et
al. 2005; Larson 1974; Ma 2003). Recent work by Yin (2006) discusses freeway service
patrol (FSP) location on pre-designed beats for faster response and the reduction of the
impact of traffic incidents. The number and location of the FSP is defined in terms of the
economic value of delay, fuel savings and improved road safety. It should be noted that FSP
systems operate differently to incident-response dispatch systems, since the former sponta-
neously detect, respond to and clear incidents, whereas the latter locate trucks at specific
depots whilst waiting for dispatch commands. In the RPV location-allocation problem, the
objectives and constraints are different, as described in the methodology section (Sect. 3).

In many emergency facility location problems, the objective is to “cover” demand within
a pre-defined timeframe (Berman et al. 2010; ReVelle and Eiselt 2005). A number of strate-
gic location models have been developed in the literature (see Owen and Daskin 1998
for a survey). The coverage formulations deal mainly with two types of problems: the
set-covering model and the maximum covering location model. The set-covering problem
(SCP), originally proposed in this context by Toregas et al. (1971), evaluates the minimum
number of facility sites needed to cover all demand within a pre-specified time limit. The
mathematical formulation of this problem is:

Notations

I set of demand sites
J set of potential facility sites
i index of demand sites i ∈ I

j index of potential facility site j ∈ J

cj fixed cost of locating a facility at node j

dij the distance between node i and j

S maximum acceptable service distance
Ni set of facility sites j within acceptable distance of node i, i.e. Ni = {j ∈ J |dij ≤ S}
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Decision variables

xj =
{

1 if a facility is located at potential site j

0 otherwise

The set-covering problem is represented by the following integer program:

Minimize
∑
j∈J

cj xj

subject to
∑
j∈Ni

xj ≥ 1 ∀i ∈ I

xj ∈ {0,1} ∀j ∈ J

The objective function minimizes the cost of facility location. In many cases, the costs cj

are assumed to be equal for all potential facility sites j , implying an objective equivalent to
minimizing the number of facilities located. The constraints require that all demand nodes
i have at least one facility located within an acceptable service distance. Distances in net-
work location problems are measured on the network itself, typically as the shortest route
on the network of arcs connecting two points. Although the SCP is an NP-hard problem,
some instances of large network-based location set-covering problems have been solved rel-
atively easily, achieving integer solutions when combining linear formulations with solution-
derived cutting plane constraints (ReVelle and Eiselt 2005). Toregas and ReVelle (1973)
describe logical constraints that significantly reduce the problem size. For the majority of
problems, several repetitions of the reduction rules applying the principles of row and col-
umn dominance rapidly reduce the size of the facility location problem. When the sequence
of rules fails to reduce the size of the problem such that an integer solution is found in rea-
sonable time, the remaining matrix is termed cyclic and an integer solution may be found
either with additional constraints or by applying the branch and bound algorithm.

The maximum covering location problem (MCLP), originally formulated by Church and
Revelle (1974), locates a fixed number of facilities (P ) such that the number of demand
nodes that can be covered in a pre-specified time limit are maximized. For example, the
legal standard may be defined as the requirement to respond to 90 % of emergency medical
service calls within 8 minutes (Church et al. 2001). The formulation of this problem is:

Additional notation

P fixed number of facilities
hi positive weight on the demand node (e.g. importance, profit, traffic flow etc.)

Additional decision variables

zi =
{

1 if demand node i is covered

0 otherwise

Maximize
∑
i∈I

hizi

subject to
∑
j∈Ni

xj ≥ zi ∀i ∈ I

∑
j∈J

xj ≤ P

xj ∈ {0,1} ∀j ∈ J

zi ∈ {0,1} ∀i ∈ I

In the basic MCLP formulation the objective function maximizes demand covered accord-
ing to weight hi . The first constraints determine which demand nodes are covered within
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the acceptable service distance by node j . Each node i can only be considered covered
(with zi = 1) if there is at least one facility located at some site j which is within S of
node i (i.e. xj = 1 for some j ∈ Ni ). In order to account for limited resources, the sec-
ond constraint limits the solution to at most P facilities. The last two sets of constraints
limit the decision variables to integral values. Although the MCLP is an NP-hard problem,
some large-dimension instances have been solved using commercial IP-solvers (Berman et
al. 2010).

In the case of multiple optimal solutions, alternative solutions can be found using an
additional constraint:∑

j∈M

xj −
∑
j∈N

xj ≤ |M| − 1, M = {j |xj = 1}, N = {j |xj = 0}.

This constraint, used interactively, enables the development of a dynamic formulation
for the integer linear program, consisting solely of binary variables (Tsai et al. 2008;
Balas and Jeroslow 1972). According to this constraint, only M − 1 locations from the first
iteration may be included in the solution to the subsequent iteration, consequently permitting
a continued search (M and N represent subsets of facility sites for set j ).

Location problems are likely to have other operational objectives such as location-routing
(ReVelle and Eiselt 2005), location-scheduling (Church 2001), location-inventory (Daskin
2002) or location and backup (Curtin et al. 2010). These problems are solved in stages or by
combining objective functions within the linear programming formulation using mathemat-
ical approaches such as goal programming which require the decision makers to set goals
for each objective. The objective function minimizes the deviations from each goal, subject
to the goal constraints and the system constraints (Araz et al. 2007).

To overcome the relatively large amount of input data, aggregation methods have been
applied. Aggregation often decreases data collection, modeling and computing costs, confi-
dentiality concerns and statistical uncertainty but increases the issue of errors (Francis et al.
2005; Plastria and Vanhaverbeke 2007). In our research, both aggregated and more detailed
data were applied, enabling a comparison of their impact on the results.

2.2 Traffic law enforcement literature

In the accident prevention literature it is argued that police enforcement is an important road
safety factor in reducing accidents and deterring driving offences (Bester 2001; Chang and
Chen 2005; Christensen and Elvik 2007; Elvik and Vaa 2004). The main objective of traffic
law enforcement is to increase road safety, achieved mainly by deterring road users from
committing offences proven to be related to road accidents and injuries (ETSC 1999). How-
ever, it is very difficult to measure road safety levels (Bester 2001). Beenstock and Gafni
(2000), for example, found that the accident rate varies inversely with road quality and po-
lice enforcement and directly with the proportion of old vehicles on the road. Hakkert et
al. (2001) hypothesized that increased police activity leads to increased enforcement on the
roads, which implies a growth in the real risk of being detected when violating traffic rules
that, together with the accompanying publicity, raises a driver’s perceived subjective prob-
ability of being apprehended. The subjective probability of apprehension, together with the
expected punishment for violators meted out by the judicial process, constitute the deter-
rent effect. Ultimately, deterrence and detection, in combination with proper education and
training, may cause positive changes in driving norms and tangible traffic behavior, which
will manifest themselves in a reduction in the number and severity of accidents. The major
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factors influencing the optimal level of enforcement are the costs of apprehending and con-
victing traffic offenders, the nature of the punishment, e.g. fines, license revocation or prison
terms, and traffic offenders’ responses to changes in enforcement (Becker 1968).

The OECD (1974) defined traffic law enforcement as “the area of activity aimed at con-
trolling road user behavior by preventative, persuasive and punitive measures in order to
encourage the safe and efficient movement of traffic”. Police work encompasses two as-
pects: prevention and enforcement. Prevention aims at increasing drivers’ perceptions of the
probability of detection through a lack of predictability in terms of time and space (ETSC
1999; Fell et al. 2003). The enforcement aspect, namely the repression approach, involves
targeting times and places where the largest number of offenders is anticipated. Rather than
attempting to affect the subjective chance of being caught, this approach seeks to increase
the objective likelihood of being caught (Vanlaar 2008). Elvik and Vaa (2004) summarized
over 100 papers and found relationships between different types of enforcement and the
time and distance halo effects of offences. A time halo effect of anything between 2 days up
to 10 weeks was found between the enforcement and some effect on behavior. The distance
halo effect varies between 1 km and 22 km (Newsread et al. 2001). Typical values of the
distance halo effect lie in the region of 1.6 to 3.5 km downstream from the enforcement site
and 0.5 km upstream (ETSC 1999). The results vary depending on the type of speeding en-
forcement (patrol or camera), police car (marked or unmarked), working method (stationary
or mobile) and location (covert or open). It is highly unlikely that the police would ever be
able to detect every delinquent driver on the road. It is therefore important for enforcement
strategies to increase the perceived risk of being caught in order to deter dangerous driv-
ing (Fell et al. 2003). Enforcement programs in Australia and New Zealand, for example,
have demonstrated a substantial reduction in road accident rates as a result of random police
deployment (Newstead et al. 2001). It is generally agreed that good enforcement practices
should be based on accident analysis and on scientifically supported insight into enforce-
ment effectiveness (Hakkert et al. 2001). It is also important to analyze the effectiveness and
efficiency of the police officers’ work (Hurley et al. 2009; Tillyer et al. 2010).

In this study we develop four formulations that produce differing locations and alloca-
tions for RPVs in order to maximize effectiveness with regard to the measured time and
distance halo effects. The models developed in this research are different to those published
in the emergency services operations research literature because the benefits derived from
the location choice were previously ignored. The law enforcement literature, on the other
hand, has focused their attention only on the RPV locations thus ignoring the covering prob-
lem. Consequently, this research combines the two areas in order to produce a complete
schedule that accounts for all RPV functional tasks.

3 Methodology

The RPV location-allocation problem is derived from the emergency, road safety and public
security disciplines. The RPVs are located on an interurban road network, which is rep-
resented as an undirected graph, G = (V ,E). The network comprises a set V of vertices
representing road intersections together with a set E of edges representing roads that con-
nect the intersections. Each RPV is located on an enforcement-stretch, which is a section
of road. The RPV graph is defined as G′ = (V ′,E′) where the set V ′ of vertices represents
potential enforcement-stretches, and the set E′ of edges represents the shortest distances
between the enforcement-stretches.
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The RPVs are located dynamically in order to maximize presence and conspicuousness
while the allocation is defined as a covering problem, considering legally set upper bound
service times. The RPVs location problem uses a fixed number of RPVs derived from a
budget constraint. Solving the SCP problem for the case study of Northern Israel identified
the minimum number of vehicles required for full network coverage. Since the resources
were greater than the lower bound required, we could add further constraints to model the
traffic police operational procedures. First we develop a location-allocation formulation to
distinguish the operating area for each RPV. The objective function (1) maximizes police
conspicuousness measured in terms of traffic volume (number of vehicles per time period)
per location. Hence the size of the operating areas was chosen in order to maximize the
conspicuousness of the RPV locations rather than minimize the shortest route to the likely
calls-for-service.

Model 1: Conspicuous-coverage trade-off model
Notation

I set of “enforcement-stretches” on network
i, j indices representing enforcement-stretches where i, j ∈ I

P number of Routine Police Vehicles

Data

dij shortest distance between enforcement-stretch i and j

D maximum acceptable service distance
Ni set of enforcement-stretches j within acceptable distance of enforcement-stretch i, i.e.
Ni = {j ∈ I |dij ≤ D}

Uj number of vehicles per hour passing an RPV on enforcement-stretch j

Decision variables

xj =
{

1 if RPV is located at candidate enforcement-stretch j

0 otherwise

zij =
{

1 if enforcement-stretch i is covered by RPV on enforcement-stretch j

0 otherwise

Maximize
∑
j∈I

Ujxj (1) (1)

subject to∑
j∈I

xj = P (1a)

∑
j∈Ni

zij = 1 ∀i ∈ I (1b)

zij ≤ xj ∀i, j ∈ Ni (1c)

xj ∈ {0,1} ∀j ∈ I (1d)

zij ∈ {0,1} ∀i, j ∈ I (1e)

Constraint (1a) requires the solution to locate exactly P RPVs. Constraints (1b) require
that each enforcement-stretch i is covered by exactly one RPV located from enforcement-
stretch j , thus allocating the operating areas with respect to calls-for-service. Although the
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solution delineates the operating areas for each RPV, a back-up scenario for each potential
enforcement-stretch can be calculated for a second RPV according to the shortest covering
distance. This constraint implicitly assumes that there are sufficient RPVs to cover all po-
tential enforcement-stretches otherwise alternative constraints should be formulated to ob-
tain the maximum coverage available. Constraints (1c) require that potential enforcement-
stretch i may only be covered by an RPV at location j if an RPV has been located at
enforcement-stretch j .

Model 1 is an extension of the SCP problem with an additional constraint on the number
of RPVs. Therefore it could be formulated with a single set of one dimensional decision
variables. However, we decided to add a set of allocation variables zij in order to facilitate
more complex constraints on the allocation in the extensions presented below.

Model 2: Maximum conspicuousness accounting for calls-for-service model
Additional notation

H shift in hours

Additional data

tij travel times between i and j and back (in hours)
Ei time handling events on node i in a shift (in hours)

max
∑
j∈I

(
HUjxj −

∑
i∈I

(tij + Ei)Ujzij

)
(2)

subject to constraints (1a) to (1e).

The objective function maximizes the number of passing vehicles encountered by the
RPVs in the allotted enforcement-stretches. Note that the first term in the summation rep-
resents the total number of drivers that encounter the RPVs were the vehicles to remain on
their enforcement stretches throughout the shift. The second term detracts the number of
passing vehicles that are missed because the RPVs need to leave the enforcement-stretch in
order to handle incidents within their allocated areas.

In the third model (Model 3: Maximize conspicuousness with varying time coverage) we
set a priority for each section on the network. Events cause congestion, delays and accidents
on the roads. The impact of events on a particular section of road is a function of specific
parameters, for example, a road with a relatively low capacity but high traffic flow will be
more affected by a traffic event for a longer period of time than a relatively minor road.
The assumption is that shortening the response time of the police vehicle on problematic
roads dissipates potential congestion more quickly. The implementation of this priority was
translated into varying the required response time according to road type. For the third model
we define Di as the maximal acceptable distance of an RPV from stretch i and redefine Ni

as Ni = {j ∈ I |dij ≤ Di}.
The fourth model diversifies the location of the RPVs over a period of time in order

to maximize utility. As specified in the literature, there is a halo effect of a few days dur-
ing which drivers recall the location of the RPV and accordingly slow down (Newsread
et al. 2001; Elvik and Vaa 2004). Developing solutions with multiple, changing locations
will add to the likelihood that drivers pass an RPV on their route, thus increasing their
awareness and potentially their behavior. For safety reasons, certain locations may be im-
portant RPV locations, due to specific problems such as failed traffic lights, obstacles, or
roadwork. Furthermore, for economic and road safety reasons, a specific location may prove
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consistently more important, e.g. to clear an event from the road immediately after it occurs
because congestion may prove problematic leading to a chain reaction of accidents. The
utility of a specific location may be based on different functions e.g. traffic volume, number
and likelihood of offences and type of road or drivers.

Formulation (4) draws on the objective function of Model 2 (maximum utility accounting
for calls-for-service) and the constraints from Model 3 (conspicuous-coverage trade-off). In
addition, we define a strong constraint that each location, once chosen, may not be chosen
in any other shift (constraint (4d)). All other constraints and the objective function remain
as before, except for the addition of an index, f , representing the different shifts.

Model 4: Multiple shift model
Additional notation

F number of scheduled shifts
f index representing shift where f ∈ F

Decision variables

xjf =
{

1 if RPV is located at enforcement-stretch j on shift f

0 otherwise

zijf =
⎧⎨
⎩

1 if enforcement-stretch i is covered by RPV on enforcement-stretch j

on shift f

0 otherwise

max
∑
j∈I

∑
f ∈F

(
HUjxjf −

∑
i∈I

(tij + Ei)Ujzijf

)
(4)

s.t. ∑
j∈I

xjf = P∀f ∈ F (4a)

∑
j∈Ni

zijf = 1 ∀i ∈ I ; f ∈ F (4b)

zijf ≤ xjf ∀j ∈ I ; i ∈ Ni; f ∈ F (4c)∑
f ∈F

xjf ≤ 1 ∀j ∈ I (4d)

xjf ∈ {0,1} ∀i ∈ I ; f ∈ F (4e)

zijf ∈ {0,1} ∀i, j ∈ I ; f ∈ F (4f)

We note that the various versions of RPV location-allocation problems are strongly NP-
Hard and demonstrate this by proving the hardness of Model 1 by reduction from the vertex
cover problem (Garey and Johnson 1979).

Proposition The RPV location-allocation problem defined by Model 1 is strongly NP-Hard.

Proof We carry out the proof by a reduction from the vertex-cover decision problem that
is known to be NP-Complete. The vertex-cover problem is defined as follows: given an
undirected graph G = (V ,E) decide whether a subset C ⊂ V with cardinality k that includes
at least one end vertex of each edge e ⊂ E exists. Given an instance of vertex cover, we
construct the RPV location/allocation problem with the same node (vertex) set, V , and define
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Ni = {j : {i, j} ∈ E}, Ui = 1 for all i ∈ V and P = k. Model 1 admits a feasible solution if
and only if a vertex cover with k vertices exists. To see this consider a feasible solution of
model 1, then a vertex cover of cardinality k is obtained by C = {j : xj = 1}. The cardinality
of this set is P = k by constraint (1a) and every vertex j is covered because by constraint
(1b) there is one pair (i, j) such that zij = 1 and hence by constraint (1c) there must be
a vertex i adjacent to j that is included in C. Conversely, the existence of a cover C of
cardinality k for G implies the existence of a feasible solution of Model 1, with xi = 1 if
i ∈ C and zij = 1 if i ∈ C and j ∈ Ni . In case the former holds for more than one vertex j ,
the variable i with minimal index in C is selected. The rest of the decision variables are set
to zero. This shows that the problem is strongly NP-Hard since the numerical values of all
the parameters in the reduced problem are small relative to the input size of the vertex cover
problem (Ui = 1 and P = k ≤ |V |). �

We note that other variants of the RPV location/allocation can be shown to be NP-Hard
by similar arguments. Although our problems proved to be strongly NP-Hard, fairly large
instances can be solved to optimality with a commercial mixed integer solver due to the spe-
cial structure of the model. Indeed, once the values of x variables are selected, the remain-
ing variables and constraints in all four models form a Totally Unimodular Matrix (TUM).
Therefore, the dimension of these integer programs in terms of integer co-ordinates is much
smaller than initially appears. We demonstrate this claim for Model 1 and Model 2 (that
share the same constraints) and note that the proofs for Model 3 and 4 are very similar.

Proposition The coefficient matrix of Model 1 and Model 2 with the values of the x vari-
ables fixed is totally unimodular.

Proof First note that constraint (1a) contains only x variables hence vanishes once the values
of these variables are fixed. Each column of the remaining matrix is indexed by an (i, j) pair,
for each variable zij = 1. The number of “1” coefficients in each column is exactly two while
the rest are zeros. To see this note that each variable zij appears once in the constraint set
(1b) and one in the set (1c). Therefore, the coefficient matrix is TUM. �

Recall that a TUM is a matrix for which every square sub matrix admits a determinant of
−1, 1 or 0. Any feasible basic solution of a linear program whose constraints are defined by
a TUM, is an integer. This follows directly from a classical result in linear algebra, namely
Cramer’s rule. As a result, an integer linear program defined by a TUM can be solved in poly-
nomial time by any polynomial time algorithm for linear programming (Schrijver 1998). In
our case, a subset of the column of the coefficient matrices forms a TUM. Integer program-
ming solvers, such as ILOG’s CPLEX, identify and exploit this structure by branching first
on decision variables that correspond to the columns that do not belong to the TUM. Once
the integer values of these variables are set, the remaining linear programming relaxations
at the nodes are tight which reduces the depth of the branch and bound tree and the time
required to solve the model.

These four models were applied to a case study of the Northern Israel interurban road
network which is discussed in Sect. 4.

4 Case study: Northern Israel interurban road network

The interurban road network in Northern Israel can be defined as a sparse graph with 49 in-
tersections (V = 49) and 73 road sections (E = 73) covering approximately 600 km of
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Fig. 1 The interurban road
network of Northern Israel with
222 digitized nodes

roads. The roads that connect the intersections were divided into 222 sections. Each section
(generally about 2.5 km long) is an enforcement-stretch (Fig. 1). In addition, V ′ = 222 and
E′ = 243. For undirected simple graphs, the graph density is defined as: A = 2|E|

|V |(|V |−1)
. The

maximum number of edges is 1
2 |V |(|V | − 1), so the maximal density is 1 (for complete

graphs) and the minimal density is 0 (Coleman and Moré 1983). In our case study, in the
original network A = 0.062 and in the digitized network A = 0.001, therefore it is a sparse
network.

Alternative types of digitization could be applied and this form was chosen so that each
node would be sufficiently long to allow the RPV to find an appropriate parking place but not
too long such that the allocation area is inaccurate. Figure 2 highlights the major and minor
roads. Location on major roads is likely to provide greater benefits from the RPVs because
the traffic volume is generally higher, so presence and conspicuousness will be greater.

In Sect. 4.1 we describe the current operation and its failure to fully cover the network.
In Sect. 4.2 we present and discuss the solutions to the four routine patrol vehicle location-
allocation models developed in Sect. 3 using the case study data.

4.1 Case study: current operations

In Israel, patrol vehicles are assigned to enforcement-stretches according to a “traffic
model”. The assumptions of the model are that presence and conspicuousness ought to be
greater where traffic volume and car accidents occur more frequently, acting as a deterrent
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Fig. 2 The interurban road
network of Northern Israel
showing road type designation

and reducing the likelihood of traffic offences, in turn leading to a reduction in the number
of car accidents and their severity. Furthermore, the presence of police on the roads with
statistically the most accidents reduces the time of arrival of the police car to these kinds of
calls-for-service. Therefore, the model weights the enforcement-stretches based on histori-
cal data including the number and severity of accidents and the traffic volume. The output
of the traffic model is a ranked list of enforcement-stretches (Hakkert et al. 1990).

The current police protocol calls for a maximum arrival time of 20 minutes after a call-
for-service has been received. This is translated into 27 km (driving at a speed of 80 km/h
on average) for the cover constraint. The six cars in Fig. 3 present the enforcement-stretches
(nodes on the network) where the traffic police are currently located. The pale sections repre-
sent roads covered according to the police protocol, whereas the bold sections are currently
not covered. As highlighted in Fig. 3, the six RPVs are located on major arteries covering
the majority of the traffic volume, car accidents and other events (roads 90, 85, 65). The
coverage percentage today is 80 % because the eastern part of the network is not accessible
within the pre-specified legal time limit. Currently, the value of the traffic volume is 5,648
representing the number of vehicles that drive past the six RPVs in an 8-hour shift, given the
chosen locations and ignoring the lost time during which the RPVs leave their location to
handle traffic events within their allocated area. This represents 85 % of the maximum traffic
volume value that can be achieved with six RPVs on this road network, considering traffic
volume data alone. If we deduct the lost time based on historical data, during which the
RPVs are busy responding to calls-for-service, the objective function value drops to 5,356
which corresponds to 81 % of the maximum attainable.
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Fig. 3 Current police patrol
vehicle location-allocation
solution

4.2 The routine patrol vehicle location-allocation models

In this case study we applied the maximum covering location problem (MCLP) and set-
covering problem (SCP) defined in the literature survey. Then we solved the four models
described in Sect. 3, namely (1) the conspicuous-coverage trade-off model, (2) the maximum
conspicuousness accounting for calls-for-service, (3) the maximizing conspicuousness with
varying time coverage and (4) the multiple shift model.

4.2.1 The maximum covering location problem and set-covering problem

The maximum covering location problem (MCLP) was applied to our case study with six
RPV’s using CPLEX 7.0. A pre-processing stage was undertaken to compute the parame-
ters of the model. The shortest-path Dijkstra algorithm (Dijkstra 1959) computed Ni , the set
of nodes within acceptable distance of node i, for all 222 nodes. The result of the MCLP
achieved 100 % coverage, suggesting that fewer RPVs could be used to ensure complete
coverage within the legal limits. Application of the set-covering problem (SCP) showed that
four RPV’s were sufficient to cover the network in this case study. The SCP and MCLP
solutions for P = 4 RPVs provided several optimal solutions. The SCP solution located
four RPVs on nodes 41, 70, 187 and 195, denoted as triangles in Fig. 4, of which three of
the locations correspond to main roads. The MCLP solution covered four different nodes
(36, 60, 141 and 200) denoted as octagons in Fig. 4 in which two of the nodes cover main
roads. Comparing the police force’s current choices with those of the models (Figs. 3 and
4), it is clear that two RPVs are located to the west of the region and two are located to
the east in order to ensure coverage that is not currently achieved. Since the two modeling
approaches, SCP and MCLP, arrived at different solutions, we applied the additional con-
straints described in Sect. 2.1 interactively with P = 4 and identified 19 potential solutions.
Utilizing these solutions by adjusting locations on a regular basis may be useful in light of
the halo effect identified in the literature.



Ann Oper Res (2014) 221:9–31 23

Fig. 4 The set-covering problem
and the maximum covering
location problem solutions (with
four routine patrol vehicles)

The SCP and MCLP models do not differentiate between types of road, traffic volume,
calls-for-service etc. (cj = hi = 1 respectively). Given that four RPVs could cover the net-
work and that the police currently possess six RPVs in the region of the case study, it may be
possible to increase police presence in an attempt to affect driving behavior and ultimately
reduce the number of road accidents and offences. All the models were formulated as in-
teger linear programs and were solved using CPLEX Version 7. The conspicuous-coverage
trade-off model (Model 1) was applied using traffic volume data as a proxy to maximize
police conspicuousness. The maximum conspicuousness accounting for calls-for-service
(Model 2) expanded the first model by taking into consideration the total time required
to handle calls-for-service based on historical data. The maximizing conspicuousness with
varying time coverage (Model 3) differentiates between enforcement-stretches (nodes on
the network) such that higher priority roads receive shorter response times. The multiple
shift model (Model 4) scheduled RPVs over the planning horizon such that the halo effect
is taken into account.

4.2.2 Model 1: The conspicuous-coverage trade-off model

In Model 1 the objective function maximizes police conspicuousness as a function of traffic
volume on each node (the data of average annual daily traffic was collected by the Israeli
Central Bureau of Statistics 2006). We use average flow data although flow is often peaked,
which should be considered once data is available. The assumption is that traffic volume is
a reasonable proxy for presence and conspicuousness of the RPV.

In this case study there are 14,310 zij allocation variables and 222 xj location variables,
leading to a total of 14,532 binary decision variables. The solution to this model locates
five RPVs on main roads covering the major traffic volumes (nodes: 91, 120, 172, 194,
202, roads: 89, 90 and 98) and the last RPV is located on a minor road (node 24, road
989), mostly for purposes of coverage (represented by octagons on Fig. 5). Again, there
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Fig. 5 The solution maximizing
presence given six routine patrol
vehicles

are multiple optimal solutions over locations depending on the quality and precision of the
traffic volume data. If traffic volumes are ignored i.e. Uj = 1, the locations of RPVs are
much more spread out and only one high traffic volume node is directly covered (nodes: 22,
86, 121, 123, 165 and 215 represented as triangles on Fig. 5).

Comparing the current police solution (Fig. 3) and the results of the conspicuous-
coverage model (Fig. 5), one can see that two RPVs have been located to the east in the
latter solution because of the coverage constraint. When applying the conspicuous-coverage
model whereby traffic volume is ignored (i.e. Uj = 1), the results are spatially much more
spread out than the alternative solution (with traffic volume data) such that the more heav-
ily congested road 90 has significantly greater coverage, in a similar manner to that of the
current police solution.

4.2.3 Model 2: Maximum conspicuousness accounting for calls-for-service

Model 2 considers the total time required to handle calls-for-service. In order to adapt the
objective function, we defined the length of a shift (H) as eight hours. The time spent han-
dling events on section i during an eight-hour shift includes the average event time (half an
hour), multiplied by the average number of calls at node i that was collected from calls-for-
service data over the case study network during a 2-month period from April to May 2007
(Ei), and the travel time between nodes, tij , which can be drawn from the Dijkstra solution
based on the network structure and the 27 km legal restriction. The integer linear program
thus consists of objective function (2) and constraints (1a to 1e).

Figure 6 presents the solution to Model 2 in which benefit is maximized and the time
spent handling events is also taken into account within the objective function. Four locations
are on main roads (roads 90 and 89) and the other two are for purposes of coverage on side
roads to the east of the area (roads 989 and 808). The solution is similar to that presented
in Fig. 5 because there are relatively few events in this rural area. The difference is that the
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Fig. 6 Maximizing presence
given calls-for-service

Fig. 7 Maximizing presence
given calls-for-service and
varying time coverage
requirements

locations are more spread out on the western side once we account for the time required
to reach events. The objective function value equals 4,320 representing the average number
of vehicles that will drive past six RPVs in an 8-hour shift, given the locations chosen and
the average “lost” time during which the RPVs leave their location to handle traffic events
within their pre-allocated area. This value represents 65 % of the maximum value attainable.
It is less than the current police solution (5,356 with 81 % of the maximum value attainable)
but ensures complete coverage of the network.

4.2.4 Model 3: Maximize conspicuousness with varying time coverage model

For purposes of demonstration, we assume that the first enforcement-stretch receives a
higher priority than all others. Consequently, we set D1 ≤ 3 km resulting in N1 containing
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Fig. 8 Two-shift solution

two enforcement-stretches, namely 1 and 2, instead of the 36 stretches previously. Since one
of the locations must be either stretch 1 or 2, all remaining locations change, as presented
in Fig. 7. The results allocate two additional nodes (127, 162) for coverage purposes on the
eastern section and the three remaining locations cover high traffic volume roads (nodes:
65,124, 194).

4.2.5 Model 4: The multiple shift model

Out of the possible 222 nodes available in the case study network, only six nodes can be
allocated per shift due to resource restrictions, therefore, for deterrence purposes, dynami-
cally determined location sets on the nodes are required. In this study, a strong constraint
is defined: once a location (node) is chosen, it may not be chosen in any other shift (con-
straint (4d)). Current computer capabilities (Pentium(R) quad core 3.40 GHz, 3.24 GB of
RAM) are able to solve a maximum of two shifts (F = 2). The two shift formulation con-
tains approximately 30,000 binary variables (444 Xjf and 28,620 Zijf ). The traffic volume
that flowed via the RPVs was 4,315 on average per shift, 65 % of the maximum utility
achievable. Since it is known that the halo effect lasts over some period of time, it is prefer-
able to continually change the location of RPVs, certainly across two adjacent shifts. Total
capture may be lower as a result, leading to a lower objective function value, however in
this case dynamic locations are strictly preferable. The solutions of formulation (4) over two
shifts can be compared to that of formulation (2) for a single shift. All locations chosen for
a single shift appear in the two shift solution, but the additional six locations are all very
close to the original single shift solution, with most of them on the same main roads (roads
99, 90 and 89) suggesting that this outcome is strongly preferable to alternative, spatially
different outcomes in this case study. Figure 8 demonstrates the six RPVs location regions
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Table 1 Objective function value and computation time in seconds per formulation

# shifts 1 2 3 4 5 6 7

Solving interactively
per shift

Obj. fn. value 4,377 8,704 12,798 16,742 20,349 23,627 26,207

Seconds 0.37 0.73 1.10 1.46 1.85 2.44 3.31

Solving aggregate
formulation

Obj. fn. value 4,377 8,727 12,981 17,105 20,682 23,950 26,702

Seconds 0.37 1.45 3.05 6.91 30.33 524.1 3,029.2

Objective fn. value Difference 0 −23 −183 −363 −333 −324 −496

% 0 % 0.26 % 1.43 % 2.17 % 1.64 % 1.37 % 1.89 %

(encircled) for the two shifts, within which the double locations of each RPV are located.
If strictly different solutions are required, it would be possible to restrict the proximity of
solution locations according to the distance-halo effect.

In order to locate seven shifts, representing a working week, we subsequently aggregated
the nodes. In this case study we chose 111 nodes (out of the 222 nodes) by simply summing
every two nodes so that each node now represents approximately 5 km of road. The number
of events per node (Ci) has been defined as the summation of the two nodes, based on
historical data. With 111 Xj and 3,481 Zij per day, the maximum number of shifts solvable
was 7 (F = 7), which consists of approximately 25,000 variables. The same six regions
are chosen over the seven shifts, with the radius around each region widening due to the
additional locations.

Table 1 demonstrates the total objective function values for the aggregate problem per
number of shifts. The average objective function values per single shift decrease with the
addition of shifts because of the additional constraints and the lack of multiple optimal
solutions. For example, for 7 shifts, the average objective function value is 95.6 % of the
objective function value of a single shift (3,815 out of 4,377). However, the advantage of
dynamic location each day increases the halo effect.

Given the computer’s limitations (a maximum of seven shifts i.e. 30,000 variables could
be solved without running out of memory) and the time-consuming calculations of multiple
shifts, we tested the difference between the aggregated model (formulation (4)) and running
the original model over a single shift (formulation (2)) with recursive constraints over the
location choices (we solved for one shift, then constrained the subsequent shifts by not
permitting the previous solutions). Table 1 compares the two approaches according to the
objective function values, average objective function levels (Fig. 9) and the computer time
required to solve the formulations.

As demonstrated in Table 1 and Fig. 9, the objective function value is always higher
in the aggregate solution, however the difference in the values between the two modeling
approaches is at most 2.17 % (in the four shift solution).

The computation time (Table 1) suggested for the iterative approach requires 3.3 seconds
at most for 7 shifts, as opposed to the aggregate approach in which the computation time
rises exponentially as the number of shifts increases linearly (from 0.37 seconds for a single
shift to 3,000 seconds for seven shifts). For planning purposes this may not be an issue, but
if the problem is to be solved online after an event has occurred in order to reconfigure the
locations, the computation time is likely to become more of an issue.
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Fig. 9 The effect of the iterative
and aggregative models on the
value of the objective function

Table 2 Comparison of results

# RPVs % Coverage # Main roads (2 digits)

Current solution 6 80 % 6

SCP 4 100 % 3

MCLP 4 100 % 2

Model 1: Utility maximization 6 100 % 5

Model 2: Utility maximization
with calls-for-service

6 100 % 4

Model 3: Utility maximization
with calls-for-service &
varying coverage

5 100 % 4

Model 4: Multiple shifts 6 (*7 shifts) 100 % 3 (on average)

5 Conclusions and future directions

This study focuses on the traffic police routine patrol vehicle (RPV) location-allocation
problem on an interurban road network. The aim is to locate the RPVs and generate beats
such that all areas are covered within a pre-specified time limit whilst maximizing the utility
drawn from the locations themselves. The benefit can be measured for example in terms
of traffic flow captured in order to deter poor driving behavior and reduce the number and
severity of road accidents.

The main results (coverage percentage and locations on main roads) for each model are
summarized in Table 2. The current police location choices produce different results com-
pared with the other formulations, because the current practice does not fully cover the
eastern region (mostly lightly travelled roads) but on the other hand all six RPVs are located
on main roads. We then demonstrated through the application of two basic covering models
(SCP and MCLP) that it was possible to legally cover the network with less than the existing
resources. Covering the network with the minimum requirement of four RPVs, and locating
the remaining RPVs on main roads, results in a total of five RPVs located on main roads.
This is the same result as that found in the first formulation that maximized utility defined in
terms of presence and conspicuousness, utilizing traffic flow data given legal requirements.
The second formulation, in addition to accounting for traffic flow, also considered the like-
lihood of handling calls-for-service, and the time spent doing so. In analyzing the results of



Ann Oper Res (2014) 221:9–31 29

the different formulations, it became apparent that accounting for calls-for-service leads to
more widely spread solutions across the network. On the other hand, the models capturing
traffic flow locate the RPVs on major roads with higher traffic volume because of the ben-
efits accruing from visibility. The third formulation permitted the police planners to change
the coverage requirements, such that certain roads may be served more quickly than others
in order to better account for the problems of congestion and their effect on subsequent ac-
cidents. The results of the third formulation with respect to locations on main roads depend
on the prioritization rule. The fourth formulation maximized presence and conspicuousness
dynamically, accounting for multiple shifts and considering the halo effects identified in the
literature.

When searching for multiple-shift solutions, in a further attempt to capture the different
flows, the traffic flow objective function value drops, but herein lies the trade-off between
encouraging good behavior mainly on arterial roads or maximizing the halo effect across
the network.

This research has analyzed various approaches to the basic question of how to optimize
the traffic police’s resources with the ultimate aim of combatting fatalities and casualties
on the roads. The different solutions analyze alternative operational methods, such as flow
capture via location on roads with high traffic volume, maximizing presence with regard
to calls-for-service distribution, ensuring presence according to varying levels of service
coverage and maximizing the halo effect based on dynamic locations. We provide a basis
for building the traffic police force according to preferred operational methods. Furthermore,
given these modeling approaches, the police will be better able to analyze their influence on
drivers’ behavior, car accidents, calls-for-service and traffic problems.

The solutions to the traffic police, interurban network, multi-purpose, emergency service,
RPV location-allocation models produce increased public security and safety over current
choices. The proposed models maximize presence and consciousness in order to increase
deterrence and prevention, which in conjunction with complete coverage, differ from exist-
ing models in the literature. However, the constraints of the models could also be adapted
according to new policy initiatives. For example, automatic enforcement could be further
developed leading to a reduction in the number of RPVs available and their usage.

Further research could be directed in several directions. First, the results of implementa-
tion of our models could be analyzed, helping the decision-makers to increase road safety
with the limited budget at their disposal. Second, we intend to analyze a multi-objective
location-allocation problem. Analyzing the traffic volume, road accident, calls for service
and traffic offence data together with the decision-makers’ priorities, we find multiple, con-
flicting objectives which cannot be summarized by a single parameter. Finally, we intend
to develop an enforcement model for traffic ticket issuance. The objective function would
maximize road safety subject to the RPV location-allocation constraints and the limitation
on the number and distribution of the traffic tickets to be issued.
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