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Abstract Similar to the mixed-integer programming library (MIPLIB), we present a library
of publicly available test problem instances for three classical types of open pit mining
problems: the ultimate pit limit problem and two variants of open pit production schedul-
ing problems. The ultimate pit limit problem determines a set of notional three-dimensional
blocks containing ore and/or waste material to extract to maximize value subject to geospa-
tial precedence constraints. Open pit production scheduling problems seek to determine
when, if ever, a block is extracted from an open pit mine. A typical objective is to maximize
the net present value of the extracted ore; constraints include precedence and upper bounds
on operational resource usage. Extensions of this problem can include (i) lower bounds
on operational resource usage, (ii) the determination of whether a block is sent to a waste
dump, i.e., discarded, or to a processing plant, i.e., to a facility that derives salable mineral
from the block, (iii) average grade constraints at the processing plant, and (iv) inventories
of extracted but unprocessed material. Although open pit mining problems have appeared
in academic literature dating back to the 1960s, no standard representations exist, and there
are no commonly available corresponding data sets. We describe some representative open
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pit mining problems, briefly mention related literature, and provide a library consisting of
mathematical models and sets of instances, available on the Internet. We conclude with di-
rections for use of this newly established mining library. The library serves not only as a
suggestion of standard expressions of and available data for open pit mining problems, but
also as encouragement for the development of increasingly sophisticated algorithms.

Keywords Mine scheduling · Mine planning · Open pit production scheduling · Surface
mine production scheduling · Problem libraries · Open pit mining library

1 Introduction

Mining is the process of extracting a naturally occurring material from the earth to derive
profit. Operations research has been used extensively in mining to plan when and how to
perform both surface and underground extraction; decisions entail how to recover and treat
the extracted material, which is (i) metallic ores such as iron and copper, (ii) nonmetallic
minerals such as sand and gravel, and (iii) fossil fuels such as coal.

Mining has five stages: (i) prospecting, or discovering a mineral deposit; (ii) exploration
(including resource modeling), or determining the value of the deposit via estimation and
simulation techniques, e.g., Krige (1951) and Deutsch (2004); (iii) development, i.e., ob-
taining land rights and stripping topsoil from the deposit; (iv) exploitation, i.e., extracting
the material; and (v) reclamation, i.e., restoring the mined area to an environmentally ac-
ceptable state. Operations research has been used in mining, primarily for the development
and exploitation stages. Studies evaluate the economic potential of a project, considering
factors such as the size, shape, and location of the deposit, the mining method (e.g., open pit
or underground), the deposit’s estimated ore content, estimated market prices, and the rate
of ore extraction. Near-optimal long-range operational mine plans improve the economic
viability of the project, or allow prospectors to turn their attention to more economical de-
posits as soon as possible (Lee 1984). If the project progresses, more detailed operational
designs provide mine planners with specific extraction schedules at various levels of detail,
e.g., monthly or yearly.

These operational plans suggest the sequence of extraction for notional three-dimensional
blocks containing estimated (deterministic) amounts of ore and waste. Large excavators and
haul trucks extract and subsequently transport the material to a processing plant or to an
intermediate site (e.g., a mill, a leachpad, a stockpile), or to a waste dump, depending on
the expected profitability of the material and processing-plant capacity. The rate at which
the material is excavated and processed depends on initial capital expenditure decisions
regarding purchasing equipment such as haul trucks, loaders, and processing plants, and
installing infrastructure such as roads and rail lines. Processed ore can be sold according to
long-term contracts or on the spot market. Waste is left in piles, which must ultimately be
reclaimed when the deposit is closed. The rate at which material can be extracted from the
deposit is governed by production constraints, while the rate at which it can be sent through
a processing plant is governed by processing constraints.

Figure 1 depicts a deep surface mine that is typical of hardrock-metal deposits containing
copper or fossil fuel deposits containing coal. Overburden (i.e., waste) must be removed
before extraction can begin. Haul roads wind up through the mine from the bottom of the
pit to the surface. Extraction occurs from benches, which are the floors from which material
is mined.

The purpose of our paper is three-fold: (i) to introduce the reader to classical operational
mine planning problems whose solutions support design and scheduling in the development
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Fig. 1 Schematic illustration of an open-pit mine (Source: http://visual.merriam-webster.com/energy/
geothermal-fossil-energy/coal-mine/open-pit-mine.php)

and exploitation phases of an open pit mining project; (ii) to describe and provide data sets
for variants of these problems on which researchers can test existing and new algorithms
using open-source data; and (iii) to encourage researchers to develop new, more accurate
models and increasingly sophisticated algorithms to solve three types of open pit mining
problems: the ultimate pit limit problem and two kinds of open pit block sequencing prob-
lems. This paper follows in the tradition of publicly available problem instances, beginning
with NETLIB (Gay 1985), OR-Library (Beasley 1990), TSPLIB (Reinelt 1991), and MI-
PLIB (Bixby et al. 1992), all of which have spurred research interest in their respective
fields.

In the remainder of this section, we give background on open pit mining operations, and
explain constructs relevant for the optimization models we pose in our paper; we then de-
scribe the purpose of our mining library. The subsequent sections of this paper are organized
as follows: In Sect. 2, we provide a brief overview of academic work on open pit mining
problems. We give a mathematical description of three types of open pit mining problems
in Sect. 3. Section 4 details data instances, including the format for numerical values used.
Section 5 concludes with current numerical results for open pit production scheduling prob-
lems. We give the file format specifications in Appendix A.

1.1 Background

A common construct in open pit mining problems is the notion of spatial reference points
called blocks. Geometric sequencing constraints (see Figs. 2 and 3) ensure that the pit walls
are stable and that the equipment can access the areas to be mined. These precedence con-
straints ensure that blocks immediately affecting a given block’s ability to be mined are
extracted before the given block is extracted. The relationship between block precedences
is clearly transitive, i.e., if block a requires block b to be extracted, and block b requires
block c to be extracted, then block a also requires block c to be extracted; this transitivity
is implied by the original precedences. We can use this transitivity property to describe a

http://visual.merriam-webster.com/energy/geothermal-fossil-energy/coal-mine/open-pit-mine.php
http://visual.merriam-webster.com/energy/geothermal-fossil-energy/coal-mine/open-pit-mine.php
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Fig. 2 Sequencing rules can be
based, for example, on the
removal of five blocks above a
given block, block 6 (left) or on
the removal of nine blocks above
a given block, block 10 (right)

Fig. 3 Sequencing approximation based on the removal of all blocks at a 45-degree angle above a given
block, for three, eight and thirty levels

precedence relationship as immediate if it is not implied by any other pair of precedences,
allowing us to model precedence constraints simply by enforcing immediate precedences in
our models.

These sequencing rules can be thought of as approximations in strategic planning mod-
els to those used for tactical production scheduling. For example, if all the blocks on top of
block number 10 in Fig. 2 are removed, block 10 could be still surrounded by eight blocks on
its level, rendering the extraction of block 10 either extremely costly or impossible. In fact,
“blocks” do not exist in practical mining operations. They simply serve as modeling tools to
discretize the orebody. The units, sometimes termed “smallest mining units,” that are used
for scheduling purposes, must be representative of the mining operation being modeled.
(See, for example, Askari-Nasab et al. (2011) who present descriptions of and formulations
for suitable block sizes.) For production scheduling at the tactical level, one may more real-
istically use aggregated blocks to fit the geology of the operation and the time fidelity of the
model; Tabesh and Askari-Nasab (2011) present a clustering algorithm based on a similar-
ity index to aggregate blocks into these smallest mining units. While Fig. 2 may adequately
represent sequencing in a “flat” mine such as a limestone quarry or a bauxite mine, very
complex sequencing rules may be required, especially in underground operations (see, e.g.,
O’Sullivan and Newman 2012) (Brickey 2012). Ultimately, we present the precedence for-
mat in our library in a very general way such that the user may specify any set of blocks as
predecessors of a given block.

The open pit production scheduling problem, whose variants we subsequently mathemat-
ically define as (CPIT) and (PCPSP), seeks to determine when, if ever, to mine each block
in the deposit and what to do with each block that is extracted, i.e., send it to a particu-
lar type of processing plant or to the dump. The objective is to maximize the net present
value gained from the extracted material subject to spatial precedence constraints, and to
various operational constraints. The simplest variant of this problem might only contain a
single (upper bound) operational resource constraint, i.e., a production (or extraction) upper
bound. More complicated variants possess multiple operational resource constraints, e.g.,
processing limits, lower bound operational resource constraints, inventory balance, and/or
blending requirements.
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We introduce a simplified version of the production scheduling problem that details the
shape of the final pit, or part of the mine design. The ultimate pit limit problem, which
we later mathematically define as (UPIT), takes as given an undiscounted value for each
block in a deposit; this value is based on a selling price, an estimated quantity of ore and
waste contained in each block, the corresponding costs associated with block extraction,
and, if applicable, processing. The model then determines the pit boundary to maximize
undiscounted ore value. This problem balances the ore-to-waste (stripping) ratio with the
cumulative value of blocks in the pit boundaries. The ultimate pit limit problem ignores
the dimension of time, and, hence, the time value of money. Omissions due to the lack of
a temporal aspect include operational resource constraints, ore blending constraints, and
stockpiling considerations. The problem also assumes that the cutoff grade, i.e., the grade
that separates ore from waste, is fixed. The assumption is that blocks above a threshold ratio
of ore to total tonnage are sent to a processing plant, whereupon value (based on selling
price less extraction and processing costs) is derived from the block, while those whose
ratio falls below the threshold are sent to the dump, whereupon a cost is incurred from
having extracted the block. Open-pit mine design, in design problems more general than
(UPIT), also includes the location and type of haulage ramps and additional infrastructure,
as well as long-term decisions regarding the size and location of production and processing
facilities.

1.2 Traditional and current solution methodologies

The solution of various instances of the ultimate pit limit problem, differentiated by price,
results in a series of nested pits; a given (notional) selling price for the ore defines the
smallest pit and increasing ore prices define larger, economically viable pits. Traditional
open-pit production scheduling groups the nested pits within the ultimate (or largest) pit into
pushbacks, where a single pushback is often associated with similar operational resource
usage, e.g., extraction equipment. Within each pushback (which contains only a small subset
of the overall number of blocks within the block model), an extraction sequence is then
determined. Among pushbacks, an extraction sequence is also delineated. Depending on
the homogeneity of the material being extracted and the time fidelity of the model, blocks
in some pushbacks may be extracted before all blocks in a previously started pushback
have been mined. The basic premise of this approach is that one can determine a cutoff
grade policy to maximize net present value (NPV) subject to capacity and other operational
constraints. Higher cutoff grades in the initial years of the project lead to higher overall
NPVs; over the life of the mine, the tendency is to reduce the cutoff grade to a break-even
level. Lane (1988), Fytas et al. (1987), and Kim and Zhao (1994), among others, address
cutoff grades.

Three problematic aspects of this approach can be (i) the assumption of a fixed cutoff
grade, which depends on an arbitrary delineation between ore and waste; (ii) the use of
notional (and monotonically increasing) prices to construct arbitrarily defined nested pits
or pushbacks; and (iii) the piecemeal approach to the entire optimization problem, which
disregards the temporal interaction of operational resource requirements. Naturally, this can
lead to suboptimal solutions to the production scheduling problem.

More recently, hardware, software, and algorithmic developments have allowed instances
of (CPIT) and (PCPSP) to be solved as a monolithic problem. The corresponding models
possess binary variables that determine whether or not a given block is mined in a certain
time period. In some cases, additional (continuous) variables indicate the amount of a block
sent to a particular destination in a certain time period. The objective maximizes net present
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value. The constraints, generally linear, reflect the definition of the production scheduling
problem.

Many open pit mines are discretized into tens of thousands, or even millions of blocks.
The ultimate pit limit problem can be viewed as a maximum closure problem (Lerchs and
Grossmann 1965), and fast solution techniques currently solve even the largest instances
well. However, the open pit production scheduling problem and its variants possess only an
underlying network structure, i.e., they are not network flow problems in and of themselves.
This problem and its variants not only account for time, which increases the number of
variables dramatically, but also possess complicating side constraints to incorporate restric-
tions such as minimum and maximum operational resource usage per time period; model
instances usually contain between 10 and 20 time periods although some instances, e.g.,
those that consider time fidelity finer than a year, can contain as many as 100 time periods.
Corresponding problem instances contain millions or tens of millions of binary variables
and hundreds of thousands, or even millions, of constraints.

2 Literature review

The seminal work of Lerchs and Grossmann (1965) provides an exact and computationally
tractable (network-based) method for solving the ultimate pit limit problem; Underwood
and Tolwinski (1998) and Hochbaum and Chen (2000), Hochbaum (2001), and Chandran
and Hochbaum (2009), among others, extend this work. However, a solution to the ultimate
pit limit problem specifies only the economic envelope of profitable blocks given pit-slope
requirements, and necessitates that the revenue associated with the extraction of a block is
fixed a priori. Furthermore, the problem ignores the time aspect of the production schedul-
ing problem, and, hence, the associated operational resource constraints. The ultimate pit
limit problem is fairly well defined. However, the production scheduling problem has many
variants, all of which contain precedence constraints, as the ultimate pit limit model does.
In addition to these constraints, production scheduling problem variants possess at least one
upper limit on an operational resource constraint, and may accommodate one or more of the
following considerations: (i) blending, (ii) lower bounds on production, (iii) lower bounds
on processing, (iv) upper bounds on production, (v) upper bounds on processing, (vi) inven-
tory, and/or (vii) variable cutoff grade. (Note that this terminology is a misnomer: A variable
cutoff grade implies that the grade at which a block is classified as ore is allowed to vary
based on the block and time period; however, this situation is better expressed as “no cutoff
grade.”) In describing the open pit production scheduling models below, we mention those
aspects that the models include.

The earliest work that addresses sequencing together with operational resource con-
straints, i.e., the production scheduling problem, is perhaps found in Johnson (1969), who
proposes a very general linear program to maximize net present value subject to sequenc-
ing and operational resource constraints; he allows for a variable cutoff grade and proposes
Dantzig-Wolfe decomposition to solve model instances. Because of the state of hardware
and software at the time, he illustrates only small examples. Early computational work re-
lies on the following simplifications: (i) blocks are aggregated into strata, e.g., Busnach et al.
(1985), Klingman and Phillips (1988), and Gershon and Murphy (1989); (ii) binary block
extraction decisions are relaxed to be continuous, e.g., Tan and Ramani (1992), Fytas et al.
(1993); and/or (iii) the monolithic problem is addressed in stages, e.g., Sundar and Acharya
(1995), Sevim and Lei (1998). Heuristics, e.g., genetic algorithms, also appear in the lit-
erature, e.g., Denby and Schofield (1994), Zhang (2006), though the examples tested are
small.
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Caccetta and Hill (2003) provide an exact approach to solving a monolithic production
scheduling problem by defining variables representing whether a block is mined by time
period t . The model contains precedence constraints, as well as operational resource con-
straints, processing plant grade constraints, and inventory balance constraints; they use a
fixed cutoff grade. The authors use a branch-and-cut strategy combined with a heuristic to
solve model instances. Ramazan (2007) assumes a fixed cutoff grade, and includes upper
and lower bounds on processing, and upper bounds on production. He also includes a grade
constraint. The author constructs aggregate “fundamental trees” to reduce the size of his
production scheduling problem.

Researchers have used Lagrangian Relaxation, e.g., Dagdelen and Johnson (1986), in
order to maximize net present value subject to constraints on production and processing.
Akaike and Dagdelen (1999) extend this work by iteratively altering the values of the La-
grangian multipliers until the solution to the relaxed problem meets the original side con-
straints, if possible. Kawahata (2006) includes a variable cutoff grade. This research has
been successful at solving some instances, though authors also report difficulty in obtaining
convergence, or even determining a feasible solution for the monolithic problem. In addi-
tion to Lagrangian Relaxation, authors develop heuristics to generate good, feasible integer
solutions. Amaya et al. (2009) assume a fixed cutoff grade and impose upper bound con-
straints on production and processing. The authors develop a random, local search heuristic
that seeks to improve on an incumbent solution by iteratively fixing and relaxing part of
the solution, and that produces solutions for the largest model instances solved to date, i.e.,
containing as many as four million blocks and 15 time periods.

Given the size and complexity of production scheduling problems, researchers realize
that the ability to solve the associated linear programming relaxation without the use of the
simplex method is fundamental to solving corresponding large-scale integer programs. The
following authors exploit this idea: Boland et al. (2009) propose an aggregation scheme for
their production scheduling model, which assumes a variable cutoff grade and possesses
upper bound constraints on production and processing. The authors introduce aggregates of
blocks grouped by precedence and use this construct to approximate a solution for the orig-
inal, mixed integer program. Gleixner (2008) extends results from this model variant with a
different type of aggregation and also presents ideas for using Lagrangian Relaxation in this
context. Askari-Nasab et al. (2010) present two formulations which rely on the construct of
a “mining-cut”; this construct helps to aggregate blocks appropriately. While one of the au-
thors’ formulations relies solely on mining-cuts, the other uses both blocks and mining-cuts.
The advantage of the latter formulation is more accurate modeling of pit slopes, while the
former formulation contains fewer variables and is therefore more tractable. Chicoisne et al.
(2012) propose a new algorithm to solve linear programming relaxations of large instances
of the same problem, and a set of heuristics to solve the corresponding integer program.
The related algorithms of Bienstock and Zuckerberg (2010) include the decision of whether
the extracted material should be sent to a processing plant or to the waste dump, i.e., they
include a variable cutoff grade.

Osanloo et al. (2008) review optimization models for long-term, open-pit scheduling.
See Newman et al. (2010) for a detailed literature review covering both open pit and under-
ground mine planning. In this paper, we focus specifically on mining applications. However,
the structure of our problem variants is related to that of other network models with side con-
straints, e.g., generalized assignment, multi-commodity flow, and constrained shortest path.
See, e.g., Ahuja et al. (1993), Carlyle et al. (2008), and the references contained therein.
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3 Model description

We proceed to set forth three mathematical models relevant to open pit mining. In Sect. 3.1,
we give notation for all three models. Script letters represent set names, while upper- and
lower-case letters in Roman font denote parameters; standard lower-case letters of x and
y serve as our variables. Parameter and variable names decorated with hats or tildes cor-
respond to related notation that differs by index depending on the model formulation in
which it is used. Section 3.2 describes the ultimate pit limit problem. Section 3.3 gives the
constrained pit limit problem. Finally, Sect. 3.4 introduces the precedence constrained pro-
duction scheduling problem. Sections 3.5 and 3.6 provide a discussion regarding the strength
of the formulation and modeling implications for the three models we set forth, respectively.

3.1 Notation

• Indices and sets:
� t ∈ T : set of time periods t in the horizon.
� b ∈ B: set of blocks b.
� b′ ∈ Bb: set of blocks b′ that are predecessor blocks for block b.
� r ∈ R: set of operational resource types r .
� d ∈ D: set of destinations d .

• Parameters:
� pb (p̂bt , p̌bd , p̃bdt ): profit obtained from extracting (and processing) block b (at time

period t and/or sending it to destination d) ($).
� α: discount rate used in computing the objective function (profit) coefficients.
� qbr (q̂brd ): the amount of operational resource r used to extract and, if applicable, pro-

cess, block b (when sent to destination d) (tons).
� Rrt : minimum availability of operational resource r in time period t (tons).
� Rrt : maximum availability of operational resource r in time period t (tons).
� A: arbitrary constraint coefficients on general side constraints.
� a, ā: arbitrary lower and upper bounds, respectively, on general side constraints (vec-

tors with the number of rows equal to that in A).
• Variables:

� x̂b = 1 if block b is in the final pit design, 0 otherwise.
� xbt : 1 if we extract block b in time period t , 0 otherwise.
� ybdt : the amount of block b sent to destination d in time period t (%).

3.2 The ultimate pit problem

The simplest model we consider is known as the ultimate pit limit problem, (UPIT), or
the maximum-weight closure problem (Ahuja et al. 1993). The problem entails determining
only the envelope of profitable blocks within the orebody and, hence, there is no tempo-
ral dimension and there are no operational resource constraints. The constraint set consists
merely of precedences between blocks; the corresponding matrix of left-hand-side coeffi-
cients is totally unimodular, rendering this problem a network flow problem. In essence,
given the value of each block and no constraints on operational resources required to re-
trieve a block, this problem seeks to determine the instantaneous profit of an open pit, and,
correspondingly, which blocks must be extracted, as dictated by precedence constraints, to
realize this profit.
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(UPIT) max
∑

b∈B

pbx̂b

subject to x̂b ≤ x̂b′ ∀b ∈ B, b′ ∈ Bb (1)

x̂b ∈ {0,1} ∀b ∈ B (2)

The objective maximizes the undiscounted value of all extracted blocks. Constraints (1)
ensure that each block is extracted only if its predecessor blocks are extracted. The set of
predecessor blocks appropriately defines the slopes to support the ultimate pit design. Note
that variables need not be restricted to be binary because of the total unimodularity of the
constraint matrix (see, for example, Ahuja et al. 1993 for a reduction of (UPIT) to network
flow). Hochbaum and Chen (2000) provide a fast algorithm for this problem; Hochbaum
(2001), and Chandran and Hochbaum (2009) provide updates. The solution to (UPIT) de-
termines only the design of a pit, i.e., its boundaries. The solution to this problem can, in
fact, be used to eliminate blocks from consideration in more complicated variants; see, e.g.,
(CPIT). We discuss this in Sect. 3.3.

3.3 The constrained pit limit problem

The constrained pit limit problem, (CPIT), generalizes the ultimate pit limit problem above
by introducing a time dimension, and associated constraints, into the model. The underly-
ing assumption regarding the time fidelity in both this model and the one presented in the
subsequent subsection is that a block can be mined in its entirety in a single time period. In
(CPIT), not only are precedence constraints considered, but per-period operational resource
restrictions are present as well. (CPIT) takes as inputs (i) a profit per block, (ii) minimum
and maximum operational resource requirements per time period, and (iii) a set of prece-
dences for each block. With these inputs, a solution to (CPIT) suggests a profit-maximizing
schedule subject to operational resource constraints and constraints regarding precedences
between blocks. (CPIT) does not account for details such as stockpiling.

(CPIT) max
∑

b∈B

∑

t∈T

p̂bt xbt

subject to
∑

τ≤t

xbτ ≤
∑

τ≤t

xb′τ ∀b ∈ B, b′ ∈ Bb, t ∈ T (3)

∑

t∈T

xbt ≤ 1 ∀b ∈ B (4)

Rrt ≤
∑

b∈B

qbrxbt ≤ Rrt ∀t ∈ T , r ∈ R (5)

xbt ∈ {0,1} ∀b ∈ B, t ∈ T (6)

(CPIT) maximizes net present value of the extracted blocks over the life of the mine.
Note that p̂bt is computed as pb

(1+α)t
. Constraints (3) impose precedence. That is, if block b′

is an immediate predecessor of block b, then b′ must be extracted in the same time period
as or prior to b. Constraints (4) require that each block can be extracted no more than once.
Constraints (5) ensure that the minimum and maximum operational resource constraints are
satisfied each period. We assume here that qbr > 0, which is a commonly used in practice
and permits feasible solutions more readily than without it; as such, the formulation only
contains lower and upper bounds but omits constructs that would lend themselves to blend-
ing. (See 3.4.) All variables are binary.
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Chicoisne et al. (2012) treat a special case of this model (to which they also refer as
(CPIT)) in which Rrt = 0 and Rrt = Rr ∀t . Because of the structure of their problem and
because of the assumption that qbr > 0, the authors are able to eliminate blocks from con-
sideration in their optimization model if they are not included in the corresponding solution
of (UPIT). Note that (CPIT) and (UPIT) are related through the following fact, which we
state without proof:

Fact For the constrained pit limit problem in which we maximize net present value, elimi-
nating constraints (5) and solving the resulting (relaxed) problem yields an optimal solution
with xbt = 0 for all t ≥ 2, i.e., we obtain the solution corresponding to that provided by
solving (UPIT).

Note that unlike (UPIT), (CPIT) is strongly NP-hard (see Johnson and Niemi 1983 for
a proof of this). Cullenbine et al. (2011) solves instances of (CPIT) with Rrt = Rr �= 0 ∀t

and Rrt = Rr ∀t . However, these instances are smaller than those considered in Chicoisne
et al. (2012). Note also that Cullenbine et al. (2011) cannot reduce the size of their models
a priori by considering only those blocks present in the corresponding solution of (UPIT).
This is because, for example, a lower bound on processing might require a non-economical
block to be sent to the processing plant in order to preserve feasibility of the instance.

3.4 The precedence constrained production scheduling problem

A generalization of (CPIT) determines whether a block, if extracted, is sent to the process-
ing plant or to the waste dump. In this case, in addition to our variable xbt which equals 1
if we extract block b in time period t , and 0 otherwise, we employ a second variable, ybdt ,
which equals the amount of block b we send to destination d , e.g., a processing facility, in
time period t . We must ensure that a block is only sent to a processing facility if it is ex-
tracted. In essence, we are determining a profit-maximizing extraction sequence of blocks
subject to operational resource constraints, as before, but we are also now determining the
location to which these blocks are sent. Correspondingly, we record the associated profit (or
cost), which is no longer determined a priori, and also the corresponding amount of oper-
ational resource usage, which can differ depending on the destination to which a block is
sent. We also allow for side constraints more general than upper and lower bounds on oper-
ational resource consumption. The precedence constrained production scheduling problem,
(PCPSP), consists of solving:

(PCPSP) max
∑

b∈B

∑

d∈D

∑

t∈T

p̃bdtybdt

subject to
∑

τ≤t

xbτ ≤
∑

τ≤t

xb′τ ∀b ∈ B, b′ ∈ Bb, t ∈ T (7)

xbt =
∑

d∈D

ybdt ∀b ∈ B, t ∈ T (8)

∑

t∈T

xbt ≤ 1 ∀b ∈ B (9)

Rrt ≤
∑

b∈B

∑

d∈D

q̂brdybdt ≤ Rrt r ∈ R, ∀t ∈ T (10)

a ≤ Ay ≤ ā (11)



Ann Oper Res (2013) 206:93–114 103

ybdt ∈ [0,1] ∀b ∈ B, d ∈ D, t ∈ T (12)

xbt ∈ {0,1} ∀b ∈ B, t ∈ T (13)

(PCPSP) maximizes net present value of the extracted blocks over the life of the mine.
Note that p̃bdt is computed as p̌bd

(1+α)t
. Constraints (7) enforce precedence requirements for all

blocks and time periods. Constraints (8) require that the extraction and processing variable
values are consistent. That is, if a block is not extracted, its contents cannot be sent to any
destination, and if a block is extracted, the entirety of its contents must be sent somewhere.
Constraints (9) restrict a block to be extracted at most once over the horizon. Constraints
(10) require that no more operational resource than available is used for extraction purposes.
Constraints (11) represent general side constraints, discussed in more detail immediately be-
low. Note that because x can be written as a function of y (see (8)), we do not include the
former variable in this constraint. Variables that determine the amount of a block sent to a
particular destination in a given time period are restricted to be between 0 and 1. Variables
representing whether or not a block is extracted in a given time period are restricted to be
binary. In a perhaps more realistic setting, the above formulation would contain y variables
that would also be restricted to be binary. That is, blocks are, generally speaking, indivisible
entities, and therefore the entire block would be sent to a single destination. Bienstock and
Zuckerberg (2009, 2010) present the formulation, (PCPSP), as given above. Caccetta and
Hill (2003) present a special case of this problem in which the cutoff grade is fixed at ex-
traction but variable when ore is taken from the stockpile, and the lower bounds on resource
consumption are equal to zero.

Relating (CPIT), see Sect. 3.3, to (PCPSP), we can now state the following:

Observation For the special case in which we remove constraints (11) and fix the desti-
nation for each block b to the value of the index db such that xbt = yb,db,t ∀b, t , (PCPSP)

reduces to (CPIT). In other words, in the absence of constraints (11), (PCPSP) can be
thought of as a relaxation of (CPIT) in which the destination of each block is not deter-
mined a priori.

The side constraints we mention above (see constraints (11)) can model cases in which
mining operations are governed by more than simply “common sense,” sequencing, and
operational resource constraints in the form of knapsacks. For example, these constraints
might represent a minimum grade constraint:

Letting:

• M: set of mineral types.
• gbm: the amount of mineral m contained in block b (tons).
• Gm: minimum acceptable average amount of mineral m in any single time period (tons).
• Gm: maximum acceptable average amount of mineral m in any single time period (tons).

we state such a grade constraint as follows:

Gm

∑

b∈B

ybdt ≤
∑

b∈B

gbmybdt ≤ Gm

∑

b∈B

ybdt ∀d ∈ D, m ∈ M, t ∈ T (14)

This ensures that minimum and maximum grade constraints for all relevant types of ore
(m ∈ M) processed at the corresponding processing plants (d ∈ D) are adhered to in each
time period. Note that “mineral” could loosely be interpreted as a contaminant. So, for ex-
ample, a processing plant might only accept a collection of blocks in a given time period
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with a minimum level of copper and a maximum level of arsenic. It is possible to spec-
ify both a non-zero minimum and a finite maximum for the same mineral, and the above
formulation allows for this.

Constraint (14) can also be thought of as a special case of constraints (10) with the right
hand side equal to zero. Other examples of constraints (11) would include (i) a minimum
number of blocks must be extracted on a given level; (ii) ore is allowed to be stockpiled;
(iii) the production and/or processing rate is variable, e.g., it is possible to purchase ex-
traction equipment and/or increase the capacity of the processing plant(s); (iv) the bottom
of the pit must contain a certain number of blocks; (v) sequencing constraints of the type
“one of the following n blocks must be extracted”; and (vi) the number of areas that can be
simultaneously mined is limited due to geotechnics and equipment availability.

As explained above, (CPIT) relates to (PCPSP) in that the former is a fixed cutoff grade
equivalent problem of the latter (if constraints (11) are not present). (UPIT) relates to
(CPIT) in that it is a relaxed, single time period problem version of (CPIT). Although
we have not encountered models of such type in the literature, one could consider a variant
(UPCPSP), i.e., (PCPSP) without constraints (10) and (11) and reduced to one time period.
This allows for the following classification:

Relationship (UPIT) and (CPIT) are fixed cutoff grade variants of (PCPSP) and
(U -PCPSP), respectively, where, on one hand, (UPIT) and (U -PCPSP) are solvable in
polynomial time, and (CPIT) and (PCPSP) are strongly NP-hard.

3.5 Strong formulation

We have presented a “strong” formulation of (CPIT) and (PCPSP) in that we have repre-
sented the precedence constraints as the sum on time periods t of the extraction variables on
the left hand side of the inequality. Equivalently, we could have expressed (3) and (7) as:

xbt ≤
∑

τ≤t

xb′τ ∀b ∈ B, b′ ∈ Bb, t ∈ T

In fact, this leads to a much weaker linear programming relaxation objective function value
(Lambert et al. 2012). However, the weaker formulation appears frequently in the literature,
e.g., Dagdelen and Johnson (1986), Ramazan (2007), and Osanloo et al. (2008).

3.6 Model assumptions and extensions

Johnson (1969) poses a general model, yet issues caveats regarding the assumptions under
which the model is valid. These caveats apply to (UPIT), (CPIT), and (PCPSP), and can
be stated as follows: (i) the deposit in question can be characterized by three-dimensional
notional blocks, and all requirements, e.g., production and processing constraints, can be
represented as a function of the characteristics of these blocks; (ii) the spatial precedence
constraints, in particular, can be characterized as a function of the position of the blocks, and
the spatial precedence relationships do not change over time or as a function of the material
removed from the pit; (iii) all model restrictions are linear or can be expressed as linear
functions; and (iv) the data given are accurate representations of the true values.

Let us examine these assumptions in turn. Our optimization models require the discretiza-
tion of blocks, as stated in (i), and precludes dynamically evolving “rules” (assumption (ii))
such as redefining precedences depending on the material removed; at best, dynamic rules
could only be incorporated in a decision space so large that current algorithms and hardware
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could not solve problem instances of a practical size. Not all functional forms are linear
(assumption (iii)); in particular, blending constraints can introduce nonlinearities. However,
current software capabilities of solving nonlinear integer models fall far short of what is nec-
essary for realistic instances. Regarding assumption (iv), the data are usually not known with
certainty. Specifically, there is a finite number of samples taken to assess the content of any
block, and, correspondingly, these samples are not completely accurate. Therefore, the ore
content in a block cannot be known with accuracy. It is possible to model a distribution of
ore content. However, the models we present do not accommodate this. Stochastic models,
although more realistic, yield instances orders of magnitude larger than their deterministic
counterparts, and present the corresponding tractability issues associated with them. Finally,
we limit the scope of our models to consider only the mine sequencing operation. We do not
consider the strategic planning questions of locating facilities or haulage roads, for example,
nor the downstream activities of the ore, i.e., we do not consider the entire supply chain.

Some of our assumptions are necessary for the scope of the models we consider, and/or
for our modeling paradigm, and are appropriate for long-term, undetailed models. However,
other assumptions can be unrealistic for mining operations. Therefore, the goal of presenting
the three models as we have done is not only to provide background on existing models
with a view to encouraging researchers to make them more tractable, but also to promote
researchers to develop better models in general, relaxing the assumptions we set forth in
the previous paragraph. In the latter endeavor, our models become obsolete, but the data we
provide should help design and test these improved models.

Among the most interesting and pressing unaddressed challenges, in addition to solving
large instances of the production scheduling variants we discuss in this paper, we propose
incorporating the following aspects within a large-scale production schedule:

1. Optimal phase design: Rather than scheduling the mine for extraction in its entirety,
a mine may be divided into phases for operational feasibility. The design of each phase
might be determined, together with a corresponding extraction schedule for each phase.

2. Optimal haul road construction: The location of haul roads affects the costs of ex-
traction and even the accessibility of blocks. Determining the location of the haul roads
might shorten extraction time while preserving the most profitable blocks.

3. Imposition of pit bottom size restrictions: Equipment maneuverability may dictate
that the bottom of the pit must be at least a certain size. Enforcing this size may be
necessary for safety considerations.

4. Imposition of maximum number of active area restrictions: Many active areas are
difficult to maintain because of equipment availability and its ability to transit to remote
areas of the pit. Maintaining the number of active areas below a certain number lowers
costs and allows for practical considerations of transit time in the pit.

5. Optimal inventory management policies: Stockpiling ore allows for its future sale and
buffers against shortfalls, but requires that the material be rehandled. Determining opti-
mal amounts of ore to stockpile may increase profits, depending on market conditions.

6. Optimal fleet sizing: Considering the number and type of trucks and other transport
systems by accounting for haul road restrictions, inter alia, dictates a mine’s production
capacity and ability to access ore in early time periods. Depending on market condi-
tions, extracting and selling more material sooner may be more profitable, if processing
capabilities are adequately matched.

7. Optimal processing capabilities: Given sufficient extraction capacity, a mine may wish
to consider expanding its processing capabilities to make available more salable mate-
rial sooner. Conversely, a mine may wish to downsize, limiting its capital expenditures.
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8. Incorporation of stochastic data: Neither price and cost data nor ore grade data are
known with certainty. A stochastic mathematical program in which various price and/or
ore grade scenarios are considered could yield a more accurate model and corresponding
results.

9. Determination of the optimal point of transition between an open pit and un-
derground operation: Open pit mines can transition underground when the pit be-
comes deep enough because it becomes increasingly expensive to maintain pit slopes
flat enough to avoid wall failure. Carefully considering the depth of transition might
avoid suboptimally prolonging surface extraction.

10. Incorporation of mine-level decisions into the entire supply chain: The output of a
mine is only one aspect of the mineral supply chain in which raw materials must arrive
at mine sites to enable operations to proceed, and final product must reach markets to
yield timely profits or to meet long-term contracts. Considering sources upstream from
a mine and destinations downstream from a mine together with extraction decisions
might enhance a system larger than the mine itself.

4 Using MineLib

We characterize data for model instances of the above problem variants as follows: Funda-
mental to each instance is a geometric block model, which gives x-, y- and z-coordinates for
each block in the deposit. Correspondingly, we require the following characteristics: (i) the
amount of ore contained in the block, differentiated, if applicable, by type; (ii) if applicable,
the total amount of contaminant in the block; and (iii) the total tonnage of the block.

We also require characteristics of the mining operation: the minimum and maximum
bounds on all operational resources, e.g., extraction equipment (for bounds on production),
and/or processing equipment (for bounds on processing). For variable cutoff grades, we re-
quire acceptable minimum and maximum grades to be passed through the processing plant,
while for a fixed cutoff grade, we require the cutoff above which the material is ore and
below which the material is waste. Correspondingly, we must specify the costs and/or prof-
its associated with sending a given block to a particular destination. Finally, we require the
horizon over which we plan extraction, and the discount factor which we apply to the value
of each block.

To this end, we separate the data into the following:

1. The block-model descriptor file containing the block’s identifier, i.e., location, followed
by various block characteristic values.

2. The block-precedence descriptor file containing immediate precedence relationships for
each block in the model.

3. The optimization-model descriptor file containing the necessary data to populate the
models (UPIT), (CPIT), and (PCPSP).

The exact specifications of each of these descriptors are given in Appendix A. We pre-
liminarily provide some data sets to populate instances of (UPIT), (CPIT), and (PCPSP) at
http://mansci.uai.cl/minelib. We plan to add data sets to this library as they become available
to us for public use.

Each data set is given, along with the corresponding name of the data set, the number
of blocks (which ranges from 1,000 to 6,000,000), the number of immediate precedences
(which ranges from about 4,000 to 73,000,000), the number of time periods (which ranges
from 6 to 30), the number of operational resource constraints of the type given in (CPIT)

http://mansci.uai.cl/minelib
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Table 1 Characteristics of instances

Name # blocks # precedences # periods

Newman1 1,060 3,922 6

Zuck small 9,400 145,640 20

D 14,153 219,778 12

Zuck medium 29,277 1,271,207 15

P4HD 40,947 738,609 10

Marvin 53,271 650,631 20

W23 74,260 764,786 12

Zuck large 96,821 1,053,105 30

SM2 99,014 96,642 30

McLaughlin limit 112,687 3,035,483 15

McLaughlin 2,140,342 73,143,770 20

(which ranges from 1 to 4), the number of operational resource constraints of the type given
in (PCPSP) (which ranges from 2 to 4), the number of destinations of the type given in
(PCPSP) (which ranges from 2 to 4), and the number of general constraints of the type
given in (PCPSP). These files may be downloaded for academic purposes.

5 Current results

Table 1 lists the mine instances currently included in our database, along with their problem
sizes given as the number of blocks, precedences and time periods for each instance. Note
that in determining the number of time periods for each instance, we ensure that the time
horizon length is sufficient to extract all blocks in the mine for the LP relaxation variant
of the problem, which includes all operational resource constraints given for a particular
instance. We list the instances, increasing by the number of blocks. Newman1 is a small,
academic data set. Zuck small, medium and large are fictitious mines (Zucker-
berg 2011). D is a copper deposit located in North America. P4HD is a gold and copper
mine located in North America (Somrit 2011). Marvin is a well known test mine that is
provided with the Whittle software (Whittle 2009). W23 consists of phases 2 and 3 of a gold
mine located in North America. SM2 is fictional, and is based on a nickel mine located in
Brazil. McLaughlin is a defunct gold mine in California, and McLaughlin limit is
its final pit computed by the providers; these data sets appear in Somrit (2011).

Table 2 presents details regarding (UPIT) and (CPIT) instances corresponding to the data
sets in Table 1. Each block has a predefined destination and a corresponding block value.
The block values do not differ between instances of (UPIT) and (CPIT). For (UPIT), we
present the optimal objective function value for each instance. For (CPIT), we first present
the number of operational resource constraints per period (|R|). In most of the cases, there
are two capacity constraints per period: one on the total tonnage extracted, and another on
the total tonnage processed. In some cases, an operational resource constraint includes both
lower and upper bounds though in others, the constraint only consists of an upper bound.
Many bounds are time-invariant, although our file format allows for time-varying bounds.
In the next column, we present the optimal value of the LP relaxation for each instance of
(CPIT), that is, the optimal value obtained after relaxing integrality on the variables. We note
that this value provides a valid upper bound on the optimal objective function value of the
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Table 2 (UPIT) objective function value, (CPIT) LP upper bound and the objective function value corre-
sponding to the best-known integer-feasible solution for each instance

Name (UPIT)

objective value
(CPIT)

|R|
(CPIT) LP
upper bound

(CPIT) Best
known objective

Gap
(%)

Newman1 26,086,899 2 24,486,184 23,483,671 4.1 %

Zuck small 1,422,726,898 2 854,182,396 788,652,600 7.7 %

D 652,195,037 2 409,498,555 396,858,193 3.1 %

Zuck medium 1,075,124,490 2 710,641,410 615,411,415 13.4 %

P4HD 293,373,256 2 247,415,730 246,138,696 0.5 %

Marvin 1,415,655,436 2 863,916,131 820,726,048 5.0 %

W23 510,973,998 3 400,653,199 392,226,063 2.1 %

Zuck large 122,220,280 2 57,389,094 56,777,190 1.1 %

SM2 2,743,603,730 2 1,648,051,083 1,645,242,774 0.2 %

McLaughlin limit 1,495,726,474 1 1,078,979,501 1,073,327,197 0.5 %

McLaughlin 1,495,886,962 1 1,079,024,268 1,073,530,279 0.5 %

Table 3 (PCPSP) details, LP bound and objective function value corresponding to the best-known feasible
solution for each instance

Name |D| |R| LP upper
bound

Best known
objective

Gap
(%)

Newman1 2 2 24,486,549 23,658,230 3.4 %

Zuck small 2 2 905,878,172 872,372,967 3.7 %

D 2 2 410,891,003 406,871,207 1.0 %

Zuck medium 2 2 750,519,109 675,931,038 9.9 %

Marvin 2 2 911,704,665 885,968,070 2.8 %

W23 4 7 387,693,394 0 100 %

Zuck large 2 2 57,938,790 57,334,014 1.0 %

SM2 2 2 1,652,394,327 1,650,439,213 0.1 %

McLaughlin limit 2 1 1,324,829,727 1,321,662,551 0.2 %

McLaughlin 2 1 1,512,971,680 1,510,126,435 0.2 %

corresponding instance. Moreover, this value appears to provide a tight bound (Cullenbine
et al. 2011; Chicoisne et al. 2012). We include, in the last two columns, the objective value
corresponding to the current best-known integer-feasible solution for each instance, and
the gap of this solution computed as the relative difference between this feasible solution,
obtained using a modified version of the TopoSort heuristic (Munoz 2012), and the LP upper
bound, computed using a modified version of Bienstock-Zuckerberg’s algorithm (Bienstock
and Zuckerberg 2010). We provide details regarding how to obtain these solutions on the
website.

Finally, Table 3 presents details about our (PCPSP) instances. We provide the num-
ber of destinations (|D|), the number of operational resource constraints per period (|R|),
the optimal value of the LP relaxation of each problem and the objective function value
corresponding to the best-known integer-feasible solution. All these instances have more
than one destination. In most cases, there are two destinations (i.e., extract and send to the
waste dump, or extract and process). The only exception occurs for the instance W23, which
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contains three additional blending constraints with lower and upper bounds. The opera-
tional resource constraints per period are the same as those in the (CPIT) instances. None
of these instances includes general side constraints (see constraint (11)). As expected, LP
upper bounds for PCPSP (variable cutoff grade) are slightly higher than LP upper bounds
of CPIT (fixed cutoff grade), except for W23 which has additional constraints. We also note
that mine P4HD does not have a (PCPSP) instance because data are only available for the
case of a fixed cutoff grade. Similar to the (UPIT) and (CPIT) instances, LP values were
computed using a modified version of Bienstock-Zuckerberg’s algorithm, and feasible so-
lutions were obtained with a modified version of the TopoSort heuristic. Because instance
W23 has blending constraints, TopoSort could not find a feasible solution for this problem.
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Appendix A: File format specifications

A.1 General assumptions

All files are ASCII, and lines beginning with the character ‘%’ are assumed to be comments.
Each line contains fields delimited (separated) by a space, a horizontal tabular character, or
a colon character (ASCII codes 32, 9 and 58, respectively). All separators at the beginning
of a line are discarded. Multiple contiguous separators are treated as a single separator.

All entries are of the form <keyword> : <parameter_type>, or simply, a sequence of
<parameter_type> definitions. <keyword> is an alphanumerical name used to identify
certain entries, and <parameter_type> defines a variable or data of a certain type. The types
<str>, <int>, <char> and <dbl> correspond to a string (not containing a separator), an
integer, a character, or a double type, as in C and other popular programming languages. We
assume that all entries are given in the order specified in this document.

We introduce a flexible format, because this is the way in which many practitioners trans-
fer information about block models at the time of this writing. By maintaining the status quo,
we hope that the mining community will contribute to and use the library. Additionally, in
practice, not all mines use the same information. For example, in some mines, the blocks
have information on three different concentrations of minerals; some information might
pertain to contaminants, while other information might pertain to sub-products. Having that
information is essential to compute correct values for the block depending on the processing
technology used.

A.2 The block-model descriptor file

The Block-Model Descriptor File stores model information at a block-by-block level. Each
line in the file corresponds to a block in the model. All lines have the same number of
columns. These columns are organized as follows:

<int id> <int x> <int y> <int z> <str1> · · · <strk>

Each row contains the following information about a block:
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• id stores a unique identifier for the block, where the block identifiers are numbered, start-
ing with zero.

• x, y, z represent the coordinates of the block, where a zero z-coordinate corresponds to
the bottom-most shelf in the orebody and the z-axis points in the upwards direction. The
y-axis points directly towards the viewer while the x-axis points to the left of the viewer.

• str1, . . . , strk represent optional user-specified fields that may represent, e.g., tonnage, ore
grade, or information about impurities. These values can be of any pure type declared
before and must comply with our delimiter rules for parsing. This flexibility is allowed to
match the usual formats used in the industry.

A.3 The block-precedence descriptor file

The Block-Precedence Descriptor File articulates precedence relationships between blocks
in the model. Information is represented at a block-by-block level. Each line in the file
corresponds to a block in the model and its corresponding set of predecessors. Precedence
relationships are described as follows:

<int b> <int n> <int p1> · · · <int pn>

Each row gives the following precedence information:

• b stores the unique identifier of a block.
• n stores the number of predecessors specified for block b.
• p1, . . . , pn store the identifiers of the n predecessors of block b.

In general, we assume that p1, . . . , pn are immediate predecessors of block b, but this is
not a strict requirement. We assume that no two entries in the file can begin with the same
identifier. If a block b has no predecessors, then the corresponding value n is set to 0 and no
values pi are specified in the line.

A.4 Optimization-model descriptor file

The Optimization-Model Descriptor File is used to store the necessary information to for-
mulate (UPIT), (CPIT), and (PCPSP).

A.4.1 The file format

NAME: <str s> Identifies the data file.

TYPE: <str s> Specifies the problem type. The value of s must be (UP IT ), (CP IT ),
or (PCPSP ).

NBLOCKS: <int n> Gives the number of blocks in the problem.

NPERIODS: <int tmax> Identifies the number of time periods for the problem; this field
is valid for formulating problems of type (CPIT) and (PCPSP).

NDESTINATIONS: <int dmax> Specifies the number of possible processing alternatives
for each block; this field is valid for formulating problems of type (PCPSP).
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NRESOURCE_SIDE_CONSTRAINTS: <int rmax> Identifies the number of operational
resource constraints per time period; this field is valid for problems of type (CPIT) and
(PCPSP).

NGENERAL_SIDE_CONSTRAINTS: <int m> Identifies the number of general side-
constraints for the problem, or equivalently, the number of rows in matrix A. This field
is valid for problems of type (PCPSP).

DISCOUNT_RATE: <dbl α> This specifies the discount rate used in computing the ob-
jective function. That is, p̂bt = pb

(1+α)t
and p̃bdt = pbd

(1+α)t
, where pb and pbd are quantities

defined subsequently in the file.

OBJECTIVE_FUNCTION The objective function is given by one row for each block.
Thus, this section has NBLOCKS lines. If the problem-type is either (UPIT) or (CPIT), the
number of destinations is assumed to be one, i.e., NDESTINATIONS = 1. In this case,
pb = pb1. Each line is of the form:

<int b> <dbl pb1> · · · <dbl pbdmax >

That is, the first value (b) defines the block, and the next dmax values describe the objec-
tive function values associated with each destination. No two lines can begin with the same
identifier.

RESOURCE_CONSTRAINT_COEFFICIENTS Here, we define the coefficients qbr and
q̂brd , corresponding to constraints (5) and (10) in (CPIT) and (PCPSP). This entry consists
of n lines, where n is at most the total number of non-zero coefficients in the aforementioned
constraints. Specifically, each of these lines has the form:

<int b> <int r> <dbl v>

or

<int b> <int d> <int r> <dbl v>

The values of b, d , and r indicate the block, the destination, and the operational resource,
respectively. The value of v represents the coefficient qbr or q̂brd . All coefficients that are
not defined in this way have value zero.

RESOURCE_CONSTRAINT_LIMITS Here, we define the limits Rrt and R̄rt correspond-
ing to constraints (5) and (10) in (CPIT) and (PCPSP), respectively. This entry consists of
NRESOURCE_CONSTRAINTS lines, each having the form:

<int r> <int t> <char c> <dbl v1>

or

<int r> <int t> <char c> <dbl v1> <dbl v2>

The value of r indicates the operational resource and the value of t indicates the time
period in which the operational resource constraint holds. The value of c can be L (less-
than-or-equal-to), G (greater-than-or-equal-to) or I (within an interval). If c has value L,
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then Rrt = −∞ and R̄rt is equal to the value of v1. In this case, v2 is not defined. If c has
value G, then R̄rt = ∞ and the value of Rrt is equal to v1. In this case, v2 is not defined. If
c has value I , then v1 has value Rrt and v2 has value R̄rt . No default value is assumed for
these limits. Thus, if an operational resource constraint has no specific type and limits, the
instance is not well defined.

GENERAL_CONSTRAINT_COEFFICIENTS Here, we define the coefficients Abdtj of
matrix A, corresponding to constraints (11) in (PCPSP), where b is a block identifier, d a
destination identifier, t a time period, and j a number between 0 and m − 1, where m is the
number of rows in A. This entry consists of n lines, where n is at most the total number of
non-zero coefficients in matrix A. Specifically, each of these lines has the form:

<int b> <int d> <int t> <int j> <dbl v>

The values of b, d , t , j , and v indicate the block, the destination, the time period, the row,
and the coefficient Abdrj in the matrix A, respectively. All coefficients that are not defined
in this way have value zero.

GENERAL_CONSTRAINT_LIMITS Here, we define the limits corresponding to con-
straints (11) in (PCPSP). This entry consists of NGENERAL_SIDE_CONSTRAINTS lines,
each having the form:

<int m> <char c> <dbl v1>

or

<int m> <char c> <dbl v1> <dbl v2>

The value of m indicates the row number of A. The value of c can be L, G or I . If c has
value L, then am = −∞ and ām is equal to the value of v1. In this case, v2 is not defined. If
c has value G, then ām = ∞ and the value of am is equal to v1. In this case, v2 is not defined.
If c has value I , then v1 has value am and v2 has value ām. No default value is assumed for
these limits. Thus, if an operational resource constraint has no specific type and limits, the
instance is not well defined.
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