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Abstract This paper presents the multiple instance classification problem that can be used
for drug and molecular activity prediction, text categorization, image annotation, and ob-
ject recognition. In order to model a more robust representation of outliers, hard margin
loss formulations that minimize the number of misclassified instances are proposed. Al-
though the problem is N P -hard, computational studies show that medium sized problems
can be solved to optimality in reasonable time using integer programming and constraint
programming formulations. A three-phase heuristic algorithm is proposed for larger prob-
lems. Furthermore, different loss functions such as hinge loss, ramp loss, and hard mar-
gin loss are empirically compared in the context of multiple instance classification. The
proposed heuristic and robust support vector machines with hard margin loss demonstrate
superior generalization performance compared to other approaches for multiple instance
learning.

Keywords Support vector machines · Multiple instance learning · Constraint
programming · Robust classification

1 Introduction

Multiple Instance Learning (MIL) is a supervised machine learning problem, where class
labels are defined on the sets, referred to as bags, instead of individual data instances. Each
instance in a negative bag is negative, whereas positive bags may contain false positives. This
notion of bags makes multiple instance learning particularly useful for numerous interesting
applications. For instance, in drug activity prediction, unless there is at least one effective
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ingredient (actual positive instance), a drug (bag) is ineffective (negative labeled). Similarly,
in molecular activity prediction, in order to observe a particular activity (positive labeled)
for a molecule (bag), there has to be at least one conformation (instance) that exhibits the
desired behavior (actual positive). Text categorization deals with matching a document (bag)
with a topic of interest (positive label) based on a set of keywords that have been frequently
used in the same concept (actual positive instances). In image annotation, pictures with
an object of interest (positive labeled bags) are not expected to include that object in all
segments, but only in subsets (actual positive instances).

A number of different approaches have been proposed to perform classification for MIL
data. Employed methods include diverse density, decision trees, nearest neighbor algorithm,
and support vector machines. In this paper, we propose a robust approach for MIL based
on hard margin Support Vector Machine (SVM) formulations. Cross validation results show
that our approach provides more accurate predictions than a traditional SVM approach to
MIL. In general, the term robustness implies a non-drastic change in performance under
different settings such as noisy environment or worst case scenario depending on the context.
In the context of classification, we use robustness to indicate minimal influence of outliers
on the classifier, thus better generalization performance.

The remainder of this paper is organized as follows: In Sect. 2, we provide basics of
SVM with different loss functions, MIL, and a brief literature survey. Section 3 defines the
problem and presents exact integer programing and constraint programming formulations.
In Sect. 4, we propose a three-phase heuristic to be used for larger problems for both linear
and nonlinear classification. Section 5 presents the optimality performance of our heuristic
and cross validation results for the proposed approach on linear and nonlinear classification
of publicly available data sets. In order to show the hard margin loss is of the essence for
robustness, we also demonstrate cross validation results for linear classification using hinge
loss, ramp loss, and hard margin loss on randomly generated data sets. We provide brief
concluding remarks and directions for future research in Sect. 6.

2 Background

2.1 Support vector machines

SVMs are supervised machine learning methods that are originally used to classify pattern
vectors which belong to two linearly separable sets from two different classes (Vapnik 1995).
The classification is achieved by a hyperplane that maximizes the distance between the
convex hulls of both classes. Although extensions are proposed for regression and multi-
class classification, SVMs are particularly useful for binary (2-class) classification due to
strong fundamentals from the statistical learning theory, implementation advantages (e.g.,
sparsity), and generalization performance. When misclassified instances are penalized in
the linear form, SVM classifiers are proven to be universally consistent (Steinwart 2002).
A classifier is consistent if the probability of misclassification (in expectation) converges to
a Bayes’ optimal rule when the number of data instances increase. A classifier is universally
consistent if it is consistent for all distributions of data. SVMs can also perform nonlinear
classification utilizing separating curves by implicitly embedding original data in a nonlinear
space using kernel functions. SVMs have a wide range of applications including pattern
recognition (Byun and Lee 2002), text categorization (Joachims 1998), biomedicine (Brown
et al. 2000; Lal et al. 2004; Noble 2004), brain-computer interface (Molina et al. 2003;
Lal et al. 2004), and financial applications (Trafalis and Ince 2000; Huang et al. 2004).

In a typical binary classification problem, class S+ and S− are composed of pattern
vectors xi ∈ R

d , i = 1, . . . , n. If xi ∈ S+, it is given the label yi = 1; if xi ∈ S−, then it is
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given the label yi = −1. The ultimate goal is to determine which class a new pattern vector
xi /∈ {S+ ∪S−} belongs to. SVM classifiers solve this problem by finding a hyperplane (w, b)

that separates instances in classes S+ and S− with the maximum interclass margin. The
original hinge loss 2-class SVM problem is as follows:

min
w,b,ξ

1

2
‖w‖2 + C

∑

i

ξi (1a)

subject to yi

(〈w,xi〉 + b
) ≥ 1 − ξi ∀i (1b)

ξi ≥ 0 ∀i. (1c)

In this formulation, w is the normal vector and b is the offset parameter for the separating
hyperplane. ξi are slack variables for misclassified pattern vectors. The goal is to maximize
the interclass margin1 and minimize misclassification. The role of scalar C in the objective
function is to control the trade-off between margin violation and regularization. It should be
noted that parameter C might differ for positive and negative class (e.g., C1 and C2) to cover
unbalanced classification problems.

Lagrangian dual formulation for (1a)–(1c) leads to an optimization problem where input
vectors only appear in the form of dot products and a suitable kernel function can be intro-
duced for nonlinear classification (Cristianini and Shawe-Taylor 2000). This dual problem
is a concave maximization problem, which can be solved efficiently. The dual for hinge loss
formulation in (1a)–(1c) is given as

max
α,b

∑

i

αi − 1

2

∑

i

∑

j

yiyjαiαj 〈xi ,xj 〉 (2a)

subject to
∑

i

yiαi = 0 (2b)

0 ≤ αi ≤ C ∀i. (2c)

Using a hinge loss function for ξi as in (1a) or a quadratic loss function results in an
increased sensitivity to outliers due to penalization of continuous measure of misclassifi-
cation (Brooks 2011; Trafalis and Gilbert 2006; Xu et al. 2006). Different loss functions
are proposed in the literature to model a better representation of the outliers that leads to
more robust classifiers. These functions ensure that the distance from the hyperplane has a
limited (if any) effect on the quality of the solution for misclassified instances. For instance,
hard margin loss considers the number of misclassifications instead of their distances to the
hyperplane (Brooks 2011). Minimizing the number of misclassified points is proven to be
N P -hard (Chen and Mangasarian 1996). Orsenigo and Vercellis (2003) use a similar ap-
proach called discrete SVM (DSVM), and propose a heuristic algorithm to generate local
optimum decision trees. Recently, Brooks (2011) formulate the hard margin loss formulation
using a set of binary variables vi , which are equal to one if the instance is misclassified.

min
w,b,v

1

2
‖w‖2 + C

∑

i

vi (3a)

subject to yi

(〈w,xi〉 + b
) ≥ 1, if vi = 0 ∀i (3b)

vi ∈ {0,1} ∀i. (3c)

1Maximizing interclass margin is identical to minimizing ‖w‖ when functional distance 〈w,xi 〉 + b is
bounded as in (1b). See Vapnik (1995) for details.
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Constraints (3b) can be linearized using a sufficiently large constant M as follows:

min
w,b,v

1

2
‖w‖2 + C

∑

i

vi (4a)

subject to yi

(〈w,xi〉 + b
) ≥ 1 − Mvi ∀i (4b)

vi ∈ {0,1} ∀i. (4c)

In SVM classifiers, functional distance (i.e., 〈w,xi〉+b) is expected to be equal to 1 (−1)
for correctly classified positive (negative) labeled instances that provide support. Therefore,
a positive and a negative labeled instance can be on the desired sides of the hyperplane
yet incur misclassification penalties when functional distances are in (0,1) and (−1,0),
respectively. In order to smooth out this effect, an approach is to penalize misclassified
instances with a functional distance in (−1,1) based on their distance and incur a fixed
penalty for those out of (−1,1) range (Brooks 2011; Mason et al. 2000). This approach is
called ramp loss or robust hinge loss, which can be formulated as

min
w,b,ξ ,v

1

2
‖w‖2 + C

(∑

i

ξi + 2
∑

i

vi

)
(5a)

subject to yi

(〈w,xi〉 + b
) ≥ 1 − ξi, if vi = 0 ∀i (5b)

vi ∈ {0,1} ∀i (5c)

0 ≤ ξi ≤ 2 ∀i, (5d)

where the conditional constraint (5b) can be linearized using M as follows:

min
w,b,ξ ,v

1

2
‖w‖2 + C

(∑

i

ξi + 2
∑

i

vi

)
(6a)

subject to yi

(〈w,xi〉 + b
) ≥ 1 − ξi − Mvi ∀i (6b)

vi ∈ {0,1} ∀i (6c)

0 ≤ ξi ≤ 2 ∀i. (6d)

Shen et al. (2003) use optimization with ramp loss but the solution method does not guar-
antee global optimality. Xu et al. (2006) solve the non-convex optimization problem using
semi-definite programming techniques but state that the procedure works inefficiently. Wang
et al. (2008) propose a concave-convex procedure (CCCP) to transform the associated non-
convex optimization problem into a convex problem and use Newton optimization technique
in the primal space.

Next, we focus on MIL and present methods that are employed highlighting a set of SVM
studies.

2.2 Multiple instance learning

The MIL setting is introduced by Dietterich et al. (1997) for the task of drug activity predic-
tion and design. Same setting has also been studied for applications such as identification
of proteins (Tao et al. 2004), content based image retrieval (Zhang et al. 2002), object de-
tection (Viola et al. 2006), prediction of failures in hard drives (Murray et al. 2006) and
text categorization (Andrews et al. 2003). In contrast to a typical classification setting where
instance labels are known with certainty, MIL deals with uncertainty in labels. In multiple
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instance binary classification, a positive bag label shows that there is at least one actual pos-
itive instance in the bag which is a witness for the label. On the other hand, all instances in a
negative bag must belong to the negative class so there is no uncertainty on negative labeled
bags.

Several methods have been applied to solve MIL problems, from expectation maximiza-
tion methods with diverse density (EM-DD) (Chen and Wang 2004; Zhang and Goldman
2002), to deterministic annealing (Gehler and Chapelle 2007), to extensions of k − NN ,
citation k − NN , and diverse density methods (Dooly et al. 2003), to kernel based SVM
methods (Andrews et al. 2003).

SVM methods have first been employed by Andrews et al. (2003) for MIL. In this study,
integer variables are used to indicate witness status of points in positive bags. Witness point
has to be placed on the positive side of the decision boundary, otherwise a penalty is in-
curred. Selecting each of these representations leads to a heuristic for solving the resulting
mixed-integer program approximately. In contrast, Mangasarian and Wild (2008) introduce
continuous variables to represent the convex combination of each positive bag, which must
be placed on the positive side of the separating plane. This representation leads to an op-
timization problem that contains both linear and bilinear constraints, which is solved to a
local optimum solution through a linear programming algorithm. An integer programming
formulation that penalizes negative labeled instances without a bag notion is proposed in
Kundakcioglu et al. (2010). The setting leads to a maximum margin hyperplane between a
selection of instances from positive bags and all instances from negative bags. This problem
is proven to be N P -hard and a branch and bound algorithm is proposed.

Next, we introduce our robust classification approach through different hard margin loss
formulations for MIL.

3 Mathematical modeling

Despite the large number of approaches for MIL, to the best of our knowledge, our study is
the first one that utilizes a robust SVM classifier for MIL. Instead of a continuous measure
for misclassification, we use a hard margin loss formulation and minimize the number of
misclassified instances to overcome the aforementioned outlier sensitivity issue.

The data consists of pattern vectors (instances) xi ∈ R
d , i = 1, . . . , n and bags j =

1, . . . ,m. Each data instance belongs to one bag. Bags are labeled positive or negative
and sets of positive and negative bags are represented as J+ = {j : yj = 1} and J− = {j :
yj = −1}, respectively. Note that, labels yj are associated with bags, rather than instances.
Next, we introduce instances in positive and negative bags as I+ = {i : i ∈ Ij ∧ j ∈ J+},
I− = {i : i ∈ Ij ∧ j ∈ J−}, respectively. The goal in our robust SVM model is to maximize
the interclass margin where a fixed penalty (independent from the distance) is incurred for
a bag if

• the bag is positive labeled and all instances in the bag are misclassified (on the negative
side),

• the bag is negative labeled and at least one instance in the bag is misclassified (on the
positive side).

Here we present three integer programming and two constraint programming formula-
tions for the described model.
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3.1 Integer programming formulations

In order to use hard margin loss for multiple instance data, we define a set of variables ηi to
indicate actual positive instances from each positive bag. ηi is one when we select positive
instance i (as witness) and zero otherwise. We consider one selected instance from each
positive bag as the witness of all instances in that bag. In order to incorporate the effect of
misclassifying a bag in the objective function, we introduce two sets of variables v+

j , v−
j

that indicate misclassification of positive and negative bags, respectively. A positive bag is
misclassified (v+

j = 1) if all the instances in that positive bag is misclassified (vi = 1 ∀i ∈
Ij , j ∈ J+). A negative bag is misclassified (v−

j = 1) if at least one instance in that bag is
misclassified (∃i ∈ Ij , j ∈ J−|vi = 1). Therefore, the multiple instance hard margin SVM
(MIHMSVM) can be formulated as follows:

MIHMSVM min
w,b,η,v,v−

1

2
‖w‖2 + C

∑

j∈J−
v−

j + C
∑

i∈I+
vi (7a)

subject to − (〈w,xi〉 + b
) ≥ 1 − Mvi ∀i ∈ I− (7b)

〈w,xi〉 + b ≥ 1 − Mvi − M(1 − ηi) ∀i ∈ I+ (7c)∑

i∈Ij

ηi = 1 ∀j ∈ J+ (7d)

vi ≤ v−
j ∀j ∈ J−, i ∈ Ij (7e)

0 ≤ v−
j ≤ 1 ∀j ∈ J− (7f)

vi ∈ {0,1} ∀i (7g)

ηi ∈ {0,1} ∀i ∈ I+. (7h)

In this formulation, (7c) is always satisfied for all positive instances that are not witnesses
(i.e., ηi = 0), which sets vi = 0 due to nature of the objective function. Therefore, only the
witness of a positive bag with ηi = 1 might deteriorate the objective function. This ensures
that a positive bag does not incur any penalty if at least one instance is correctly classified.
On the other hand, vi values for negative instances are calculated as in a typical classifica-
tion problem. However, (7e) ensures that the maximum of these values are penalized in the
objective function and a negative bag does not incur a penalty if all instances are correctly
classified. It should be noted that MIHMSVM is N P -hard since a special case with a single
instance in each bag is proven to be N P -hard (Mangasarian and Wild 2008).

This formulation utilizes 2|I+|+|I−| binary variables and |J−| continuous variables. In-
stead of using constraints (7e), we can use the binaries inside separation constraints directly.
This will not only reduce the number of binary variables, but eliminate the need for contin-
uous variables as well. We obtain a simpler formulation with 2|I+| + |J−| binary variables
as follows:

IP1 min
w,b,η,v,v−

1

2
‖w‖2 + C

∑

j∈J−
v−

j + C
∑

i∈I+
vi (8a)

subject to − (〈w,xi〉 + b
) ≥ 1 − Mv−

j ∀j ∈ J−, i ∈ Ij (8b)

〈w,xi〉 + b ≥ 1 − Mvi − M(1 − ηi) ∀i ∈ I+ (8c)∑

i∈Ij

ηi = 1 ∀j ∈ J+ (8d)

vi, ηi ∈ {0,1} ∀i ∈ I+ (8e)

v−
j ∈ {0,1} ∀j ∈ J−. (8f)
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Next formulation, influenced by Mangasarian and Wild (2008), considers the fact that it
is enough to select the instances with minimum misclassification from positive bags. There-
fore, we utilize variables v+

j , for positive bags that shows the minimum misclassification
associated with that bag. By penalizing this variable in the objective function, we obtain

min
w,b,η,v,v+,v−

1

2
‖w‖2 + C

∑

j∈J−
v−

j + C
∑

j∈J+
v+

j (9a)

subject to −(〈w,xi〉 + b
) ≥ 1 − Mv−

j ∀j ∈ J−, i ∈ Ij (9b)

〈w,xi〉 + b ≥ 1 − Mvi ∀i ∈ I+ (9c)

v+
j =

∑

i∈Ij

ηivi ∀j ∈ J+ (9d)

∑

i∈Ij

ηi = 1 ∀j ∈ J+ (9e)

v+
j ∈ {0,1} ∀j ∈ J+ (9f)

v−
j ∈ {0,1} ∀j ∈ J− (9g)

vi, ηi ∈ {0,1} ∀i ∈ I+. (9h)

In order to linearize (9d), we introduce new variables ẑi that should be equal to ηivi .
We relax the integrality of ηi and v+

i and come up with the following formulation with
|I+| + |J−| binary variables:

IP2 min
w,b,η,v,v+,v−,ẑ

1

2
‖w‖2 + C

∑

j∈J−
v−

j + C
∑

j∈J+
v+

j (10a)

subject to −(〈w,xi〉 + b
) ≥ 1 − Mv−

j ∀j ∈ J−, i ∈ Ij (10b)

〈w,xi〉 + b ≥ 1 − Mvi ∀i ∈ I+ (10c)

v+
j =

∑

i∈Ij

ẑi ∀j ∈ J+ (10d)

ẑi ≥ −1 + ηi + vi ∀i ∈ I+ (10e)

ẑi ≤ vi ∀i ∈ I+ (10f)

ẑi ≤ ηi ∀i ∈ I+ (10g)
∑

i∈Ij

ηi = 1 ∀j ∈ J+ (10h)

0 ≤ v+
j ≤ 1 ∀j ∈ J+ (10i)

0 ≤ ẑi ≤ 1 ∀i ∈ I+ (10j)

0 ≤ ηi ≤ 1 ∀i ∈ I+ (10k)

v−
j ∈ {0,1} ∀j ∈ J− (10l)

vi ∈ {0,1} ∀i ∈ I+. (10m)

It should be noted that constraints (10f) and (10g) are redundant since the summation of
ẑi is to be minimized.

Next, we obtain a novel formulation using the number of instances in positive bags to
identify positive bag witnesses. Our experience with the following formulation is that it is
far superior compared to IP1 and IP2. We use the fact that, a positive bag is misclassified if
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all instances in that bag are misclassified, i.e.,
∑

i∈Ij
vi = |Ij |. We also relax the integrality

of v+
i and obtain a formulation with |I+| + |J−| binary variables:

IP3 min
w,b,v,v+,v−

1

2
‖w‖2 + C

∑

j∈J−
v−

j + C
∑

j∈J+
v+

j (11a)

subject to −(〈w,xi〉 + b
) ≥ 1 − Mv−

j ∀j ∈ J−, i ∈ Ij (11b)

〈w,xi〉 + b ≥ 1 − Mvi ∀i ∈ I+ (11c)

v+
j ≥

∑

i∈Ij

vi − |Ij | + 1 ∀j ∈ J+ (11d)

0 ≤ v+
j ≤ 1 ∀j ∈ J+ (11e)

v−
j ∈ {0,1} ∀j ∈ J− (11f)

vi ∈ {0,1} ∀i ∈ I+. (11g)

Suppose j ′ is a positive bag with |Ij ′ | instances. When all of the instances in the bag are
misclassified (i.e., vi = 1,∀i ∈ Ij ′ ) then

∑
i∈Ij ′ vi = |Ij ′ | and v+

i = 1 is forced. Otherwise,
∑

i∈Ij ′ vi ≤ |Ij ′ | + 1 and v+
i will be free and set to 0 due to the objective function.

Next, we present two constraint programming formulations for benchmarking purposes.
In contrast to integer programming approaches, constraint programming prioritize ex-
ploiting special functions and finding a feasible solution during the computational proce-
dure.

3.2 Constraint programming formulations

In order to evaluate the performance of IP formulations and take advantage of the spe-
cial structure of the problem, we introduce two constraint programming formulations. IBM
ILOG CPLEX CP Optimizer (2011) is employed that utilize robust constraint propagation
and search algorithms.

Our first constraint programming formulation is as follows:

CP1 min
w,b,v+,v−

1

2
‖w‖2 + C

∑

j∈J−
v−

j + C
∑

j∈J+
v+

j (12a)

subject to −(〈w,xi〉 + b
) ≥ 1 ∨ v−

j ≥ 1 ∀j ∈ J−, i ∈ Ij (12b)
∨

i∈Ij

〈w,xi〉 + b ≥ 1 ∨ v+
j ≥ 1 ∀j ∈ J+ (12c)

0 ≤ v−
j ≤ 1 ∀j ∈ J− (12d)

0 ≤ v+
j ≤ 1 ∀j ∈ J+. (12e)

In CP1, (12b) is defined for all negative labeled instances and ensures that each nega-
tive labeled instance is correctly classified OR its corresponding bag is misclassified (i.e.,
v−

j = 1). On the other hand, (12c) is defined for all positive bags and forces either one
of the instances in the bag to be correctly classified OR the bag is misclassified (i.e.,
v+

j = 1).
Next, we propose a hybrid approach using constraint programming with the constraint

set from a fast IP implementation, IP3. The formulation is as follows:
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CP2 min
w,b,v,v+,v−

1

2
‖w‖2 + C

∑

j∈J−
v−

j + C
∑

j∈J+
v+

j (13a)

subject to −(〈w,xi〉 + b
) ≥ 1 ∨ v−

j ≥ 1 ∀j ∈ J−, i ∈ Ij (13b)

〈w,xi〉 + b ≥ 1 ∨ vi ≥ 1 ∀i ∈ I+ (13c)

v+
j ≥

∑

i∈Ij

vi − |Ij | + 1 ∀j ∈ J+ (13d)

0 ≤ v−
j ≤ 1 ∀j ∈ J− (13e)

0 ≤ v+
j ≤ 1 ∀j ∈ J+ (13f)

0 ≤ vi ≤ 1 ∀i ∈ I+. (13g)

In CP2, constraints on bag misclassification are partially adapted from CP1 and IP3.
Next, we present the nonlinear hard margin loss formulation for MIL.

3.3 Nonlinear classification

By making the substitution w = ∑n

i=1 yixiαi with nonnegative αi variables for i = 1, . . . , n

in (7a)–(7h), we obtain the following nonlinear classification formulation for multiple in-
stance hard margin SVM:

NLMIHMSVM min
α,b,η,v,v−

1

2

n∑

i=1

n∑

j=1

yiyj 〈xi ,xj 〉αiαj + C
∑

j∈J−
v−

j + C
∑

i∈I+
vi (14a)

subject to −
n∑

j=1

yj 〈xj ,xi〉αj − b ≥ 1 − Mvi ∀i ∈ I− (14b)

n∑

j=1

yj 〈xj ,xi〉αj + b ≥ 1 − Mvi − M(1 − ηi) ∀i ∈ I+

(14c)

αi ≥ 0 ∀i (14d)

αi ≤ Mηi ∀i (14e)
∑

i∈Ij

ηi = 1 ∀j ∈ J+ (14f)

vi ≤ v−
j ∀j ∈ J−, i ∈ Ij (14g)

vi ∈ {0,1} ∀i (14h)

0 ≤ v−
j ≤ 1 ∀j ∈ J− (14i)

ηi ∈ {0,1} ∀i ∈ I+. (14j)

The use of (14a)–(14j) is that the original data can be embedded in a nonlinear space
by replacing the dot products with a suitable kernel function K in (14a), (14b), and (14c).
It should be noted that (14e) ensures instances that are not selected do not play a role on
the hyperplane. Therefore, for a given set of η values, the formulation reduces to the hard
margin loss formulation in Brooks (2011).

Note that, both linear and nonlinear formulations presented in this section can utilize
different penalty terms to solve unbalanced classification problems. Next, we present for-
mulations for different loss functions for the multiple instance classification problem.
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3.4 Multiple instance classification with hinge and ramp loss

In this section, we develop formulations for multiple instance hinge loss support vector ma-
chines and multiple instance ramp loss support vector machines for benchmarking purposes.

In order to incorporate bags in the objective function of hinge loss SVM, i.e., formula-
tion (1a)–(1c), two sets of new variables ξ+

j , ξ−
j are introduced that incorporate the positive

and negative bag misclassification, respectively. ξ+
j should be equal to minimum ξi in each

positive bag to select the actual positive of that bag. For negative bags, ξ−
j should be greater

than or equal to each instance’s ξi in that bag. Therefore, the problem can be formulated as

min
w,b,ξ ,ξ+,ξ−,η

1

2
‖w‖2 + C

( ∑

j∈J−
ξ−
j +

∑

j∈J+
ξ+
j

)
(15a)

subject to −(〈w,xi〉 + b
) ≥ 1 − ξi ∀i ∈ I− (15b)

〈w,xi〉 + b ≥ 1 − ξi ∀i ∈ I+ (15c)

ξ+
j =

∑

i∈Ij

ηiξi ∀j ∈ J+ (15d)

∑

i∈Ij

ηi = 1 ∀j ∈ J+ (15e)

ξi ≤ ξ−
j ∀j ∈ J−, i ∈ Ij (15f)

ηi ∈ {0,1} ∀i ∈ I+ (15g)

ξi ≥ 0 ∀i, (15h)

which can be linearized as

MIHLSVM min
w,b,ξ ,ξ+,ξ−,η,z

1

2
‖w‖2 + C

( ∑

j∈J−
ξ−
j +

∑

j∈J+
ξ+
j

)
(16a)

subject to −(〈w,xi〉 + b
) ≥ 1 − ξi ∀i ∈ I− (16b)

〈w,xi〉 + b ≥ 1 − ξi ∀i ∈ I+ (16c)

ξ+
j =

∑

i∈Ij

zi ∀j ∈ J+ (16d)

zi ≥ ξi − M(1 − ηi) ∀i ∈ I+ (16e)

zi ≤ ξi ∀i ∈ I+ (16f)

zi ≤ Mηi ∀i ∈ I+ (16g)
∑

i∈Ij

ηi = 1 ∀j ∈ J+ (16h)

ξi ≤ ξ−
j ∀j ∈ J−, i ∈ Ij (16i)

ηi ∈ {0,1} ∀i ∈ I+ (16j)

zi ≥ 0 ∀i ∈ I+ (16k)

ξi ≥ 0 ∀i. (16l)

Next, we formulate ramp loss for MIL. Similar to the previous formulations, variables
ξ+
j , ξ−

j , v+
j , v−

j are defined to incorporate the misclassification of positive and negative bags
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with the ramp loss definition discussed in Sect. 2. The resulting formulation for ramp loss
SVM for MIL data is

min
w,b,ξ ,ξ+,ξ−,v+,v−,v,η

1

2
‖w‖2 + C

( ∑

j∈J−
ξ−
j +

∑

j∈J+
ξ+
j + 2

∑

j∈J−
v−

j + 2
∑

j∈J+
v+

j

)
(17a)

subject to −(〈w,xi〉 + b
) ≥ 1 − ξi − Mv−

j ∀j ∈ J−, i ∈ Ij (17b)

〈w,xi〉 + b ≥ 1 − ξi − Mvi ∀i ∈ I+ (17c)

ξ+
j =

∑

i∈Ij

ηiξi ∀j ∈ J+ (17d)

v+
j =

∑

i∈Ij

ηivi ∀j ∈ J+ (17e)

∑

i∈Ij

ηi = 1 ∀j ∈ J+ (17f)

ξi ≤ ξ−
j ∀j ∈ J−, i ∈ Ij (17g)

vi, ηi ∈ {0,1} ∀i ∈ I+ (17h)

v+
j ∈ {0,1} ∀j ∈ J+ (17i)

v−
j ∈ {0,1} ∀j ∈ J− (17j)

0 ≤ ξi ≤ 2 ∀i, (17k)

which can be linearized using two sets of variables,

γ +
j = ξ+

j + 2v+
j ∀j ∈ J+

γ −
j = ξ−

j + 2v−
j ∀j ∈ J−,

as follows:

MIRLSVM min
w,b,ξ ,γ +,γ −,v−,v,η,z

1

2
‖w‖2 + C

( ∑

j∈J−
γ −

j +
∑

j∈J+
γ +

j

)
(18a)

subject to −(〈w,xi〉 + b
) ≥ 1 − ξi − Mv−

j ∀j ∈ J−, i ∈ Ij

(18b)

〈w,xi〉 + b ≥ 1 − ξi − Mvi ∀i ∈ I+ (18c)

γ +
j =

∑

i∈Ij

zi ∀j ∈ J+ (18d)

zi ≥ (ξi + 2vi) − M(1 − ηi) ∀i ∈ I+ (18e)

zi ≤ (ξi + 2vi) ∀i ∈ I+ (18f)

zi ≤ Mηi ∀i ∈ I+ (18g)∑

i∈Ij

ηi = 1 ∀j ∈ J+ (18h)

2v−
i + ξi ≤ γ −

j ∀j ∈ J−, i ∈ Ij (18i)

vi, ηi ∈ {0,1} ∀i ∈ I+ (18j)

v−
j ∈ {0,1} ∀j ∈ J− (18k)

0 ≤ ξi ≤ 2 ∀i (18l)

zi ≥ 0 ∀i ∈ I+. (18m)
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Next section presents a heuristic algorithm for larger problems to be solved using hard
margin loss formulation, which is N P -hard and exact methods may be computationally
intractable.

4 Three-phase heuristic algorithm

In this section, we develop a three-phase heuristic for the proposed MIHMSVM model. First,
we explore the details of the algorithm for linear classification and present the pseudocode.
Next, we highlight the modifications needed to perform nonlinear classification.

4.1 Linear classification

The idea of our algorithm is to start with a feasible hyperplane and fine tune the orientation
considering MIL restrictions. Instead of starting with a random hyperplane, we take advan-
tage of the efficiency of SVM on a typical classification problem. Therefore, the first phase
of the algorithm consists of applying hinge loss SVM classifier on all instances considering
their labels regardless of their bags. We use LIBSVM (Chang and Lin 2011) since a fast clas-
sification of the data set is needed. The optimal separating hyperplane in this step (w1, b1)
gives a rough idea on positioning of bags. Next, we select a representative for each bag.
Bag representatives may be interpreted as witnesses for positive bags. Although MIL set-
ting does not entail negative bag witnesses, the reason we select representatives for negative
bags is to keep the number of positive and negative labeled instances balanced and avoid
biased classifications for the next step. The choice of bag representatives is based on the
maximum functional distance from the hyperplane, which is in line with margin maximiza-
tion objective considering MIL setting. This approach provides furthest correctly classified
(or least misclassified) instances in positive bags and closest correctly classified (or most
misclassified) instances in negative bags as representatives. Next, we use hinge loss SVM
classifier for selected instances from all bags. The optimal separating hyperplane of this step
is (w2, b2) that supposedly gives a better representation of data. This classifier will be used
to find the correctly classified negative bags (where all instances are on negative side) and
positive bags (where at least one instance is on positive side) as an initial solution at the end
of the first phase.

In the second phase, a hard separation problem is solved. The instance with maximum
functional distance from (w2, b2) in each correctly classified positive bag constitute the pos-
itive labeled training set. On the other hand, all instances in correctly classified negative
bags are included in the negative labeled training set. Note that, a hard separation problem
(i.e., formulation (3a)–(3c) where vi = 0, ∀i) is polynomially solvable, and the resulting so-
lution from phase one assures there will be no misclassification at this step. Since there are
no misclassification terms for instances, an imbalance (possibly large number of negative
labeled instances) does not imply a biased classifier. Let (w3, b3) be the optimal separat-
ing hyperplane at the end of this step. Next, we search for fast inclusion of misclassified
bags while maintaining feasibility of the hard separation problem by fixing (w3, b3). Finally,
we compute current objective function value of MIHMSVM using ‖w3‖2 and number of
misclassified bags. This hyperplane also becomes the current best solution.

In the third (improvement) phase, we employ a more rigorous inclusion process. Misclas-
sified bags are sorted in ascending order of their distance from their corresponding support
hyperplane and considered as candidates to be correctly classified one by one. Distance
between a positive bag and the support hyperplane is defined as the distance between clos-
est instance and the positive support hyperplane (i.e., 〈w,xi〉 + b = 1). On the other hand,
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distance between a negative bag and the support hyperplane is defined as the distance be-
tween furthest instance and the negative support hyperplane (i.e., 〈w,xi〉 + b = −1). This
approach is in line with our model assumptions in Sect. 3. If a positive bag is considered,
instance with the smallest distance will be temporarily added to the training set. If a negative
bag is selected, all instances in the bag will be temporarily added to the training set. Next,
training set is examined for feasibility and if the problem is feasible, hyperplane (w4, b4)
is obtained. If hard margin loss objective function is less than the current best objective,
candidate bag will be added to the solution and best hyperplane is updated. The objective
functions are compared based on the fact that by adding a bag, we decrease the misclassi-
fication by one in trade of a change in the norm of the hyperplane. Thus, in an iteration,
if (‖w4‖2 − ‖wbest‖2)/2 is less than C, then we conclude the overall objective is reduced.
The search will continue until no improvement is possible and the final best solution is the
heuristic solution for the problem. The pseudocode is presented in Algorithm 1.

4.2 Nonlinear classification

Nonlinear extension of Algorithm 1 utilizes a number of modifications. In the first phase,
regular hinge loss SVM is substituted with nonlinear SVM with a kernel function to
obtain (α1, b1). Next, in the construction of P and N , 〈w1, xi〉 are substituted with∑n

j=1 yj K(xj ,xi )α1j to calculate the distances. At the last step of the first phase, nonlin-
ear SVM with kernel is employed again to obtain (α2, b2). Likewise, in the second phase,
〈w2, xi〉 are substituted with

∑n

j=1 yj K(xj ,xi )α2j .
In order to obtain a nonlinear hard separation in Phase II, we used the following formu-

lation based on Brooks (2011):

min
α,b

1

2

∑

i∈P∪N

∑

j∈P∪N

yiyj K(xi ,xj )αiαj (19a)

subject to
∑

j∈P∪N

yj K(xj ,xi )αj + b ≥ 1 ∀i ∈ P (19b)

−
∑

j∈P∪N

yj K(xj ,xi )αj − b ≥ 1 ∀i ∈ N (19c)

αi ≥ 0 ∀i ∈ P ∪ N. (19d)

Optimal solution to (19a)–(19d) provides (α3, b3) that is used for fast inclusion. For
distance calculation and in order to ensure hard separability, 〈w3, xi〉 are substituted with∑n

j=1 yj K(xj ,xi )α3j . At the last step of Phase II, ‖w3‖2 is substituted with the optimal
objective function value of (19a)–(19d), i.e., 1/2

∑
i∈P∪N

∑
j∈P∪N yiyj K(xi ,xj )α3iα3j .

As expected, in the third phase, instead of working with w, we keep considering α vec-
tors. Decision of candidate instance for inclusion is performed by substituting dot prod-
ucts 〈wbest, xi〉 with

∑n

j=1 yj K(xj ,xi )αbestj . Hard separation with (w4, b4) is also substituted
with (α4, b4) which gets the optimal solution for formulation (19a)–(19d).

Next, we report computational performance for the proposed algorithm. We also show
hard margin loss is virtually more robust and better in terms of generalization performance
compared to other loss functions.

5 Computational results

In this section, we first present the superior performance of hard margin loss in practice
compared to ramp and hinge loss functions using randomly generated data sets. Next, we
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evaluate the performance of our heuristic in terms of time and proximity to the optimal so-
lution. Finally, we show the cross validation performance of the proposed heuristic on the
publicly available data sets. All computations are performed on a 2.93 GHz Intel Core 2 Duo
computer with 4.0 GB RAM. The algorithms are implemented in C++ and used in conjunc-
tion with MATLAB 7.11.0 R2010b (2011) environment in which the data resides.

We use MUSK1 and MUSK2 data set from UCI Machine Learning Repository (Frank
and Asuncion 2012). MUSK1 data set consists of descriptions of 92 molecules (bags) with
different shapes or conformations. Among them 47 of molecules judged by human experts
are labeled as musks (positive bags) and remaining 45 molecules are labeled as non-musks
(negative bags). The total number of conformations (instances) are 476 that gives an average

Algorithm 1 Three-phase heuristic algorithm (linear classification)
INPUT: x1, . . . ,xn , J+ , J− , I+ , I− , C

OUTPUT: wbest, bbest,Objective

{PHASE I}
P ← I+
N ← I−
w1, b1 ← regular hinge-loss SVM hyperplane that separates P and N
Empty P and N
for all j ∈ J+ do

P ← P ∪ arg maxi∈Ij
〈w1, xi 〉 + b1

end for
for all j ∈ J− do

N ← N ∪ arg maxi∈Ij
〈w1, xi 〉 + b1

end for
w2, b2 ← regular hinge-loss SVM hyperplane that separates P and N

{PHASE II}
Empty P and N
number of misclassified bags ← 0
for all j ∈ J+ do

if maxi∈Ij
〈w2, xi 〉 + b2 > 0 then

P ← P ∪ arg maxi∈Ij
〈w2, xi 〉 + b2

else
number of misclassified bags ← number of misclassified bags + 1

end if
end for
for all j ∈ J− do

if maxi∈Ij
〈w2, xi 〉 + b2 < 0 then

N ← N ∪ Ij
else

number of misclassified bags ← number of misclassified bags + 1
end if

end for
w3, b3 ← hard separation SVM hyperplane that separates P and N
{Fast Inclusion}
for all j ∈ J+ do

if Ij ∩ P = ∅ AND maxi∈Ij
〈w3, xi 〉 + b3 > 1 then

P ← P ∪ arg maxi∈Ij
〈w3, xi 〉 + b3

number of misclassified bags ← number of misclassified bags − 1
end if

end for
for all j ∈ J− do

if Ij ∩ N = ∅ AND maxi∈Ij
〈w3, xi 〉 + b3 < −1 then

N ← N ∪ Ij
number of misclassified bags ← number of misclassified bags − 1

end if
end for
Objective ← 1

2 ‖w3‖2 + C × number of misclassified bags
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{PHASE III}
active_set ← ∅
wbest ← w3
bbest ← b3
for all j ∈ (J+ ∪ J−) do

if Ij ∩ (P ∪ N) �= ∅ then
active_set ← active_ set ∪ j

end if
end for
while active_set �= ∅ do

if min
j∈(active_set∩J+)

[−maxi∈Ij
(〈wbest, xi 〉+bbest −1)] < min

j∈(active_set∩J−)
[maxi∈Ij

(〈wbest, xi 〉+bbest +1)]
then

candidate ← arg min
j∈(active_set∩J+)

[−maxi∈Ij
(〈wbest, xi 〉 + bbest − 1)]

P ← P ∪ arg maxi∈Icandidate
(〈wbest, xi 〉 + bbest − 1)

else
candidate ← arg min

j∈(active_set∩J−)
[maxi∈Ij

(〈wbest, xi 〉 + bbest + 1)]
N ← N ∪ Icandidate

end if
active_set ← active_ set \ candidate
if hard separation for P and N is feasible then

w4, b4 ← hard separation SVM hyperplane that separates P and N
if 1

2 ‖w4‖2 − 1
2 ‖wbest‖2 < C then

wbest ← w4
bbest ← b4
Objective ← Objective + 1

2 ‖w4‖2 − 1
2 ‖wbest‖2 − C

else
P ← P \ Icandidate
N ← N \ Icandidate

end if
else

P ← P \ Icandidate
N ← N \ Icandidate

end if
end while

of 5.2 conformations for each molecule (bag). MUSK2 data set consists of descriptions of
102 molecules in which 39 of molecules are labeled as musks and remaining 63 molecules
are labeled as non-musks. Total number of conformations is 6,598 which gives an average
of 64.7 conformations for each molecule. Each conformation in data sets is represented with
a vector of 166 features extracted from surface properties.

Leave one bag out cross validation: Traditional cross validation methods (e.g., leave one
out, n-fold) cannot reflect a fair assessment of multiple instance approaches due to ambi-
guity with actual instance labels. Therefore, we employ an extension that we refer to as
leave one bag out cross validation (LOBOCV), which uses one bag from the original data
set for validation (test data) and remaining instances as training data. After the separating
hyperplane is obtained, label of the test bag is predicted and compared with its actual label.
This routine is repeated until each bag in the sample is validated once and the percentage of
correctly classified bags is reported.

5.1 Robustness of MIHMSVM

The robustness of the objectives will be discussed based on randomly generated data and
the results obtained using IBM ILOG CPLEX Optimization Studio 12.2 (2011). Table 1
shows the cross validation results for three loss functions presented, namely hard margin
loss (MIHMSVM) in (7a)–(7h), ramp loss (MIRLSVM) in (18a)–(18m), and hinge loss
(MIHLSVM) in (16a)–(16l). In our computational studies, we consider a number of different
C values. Small values result in a larger number of misclassified bags, which is not desired.
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Table 1 Leave-one-bag-out cross validation results for randomly generated multiple instance learning prob-
lems using different loss functions

Testbed # of bags # of features Hard margin loss
(MIHMSVM)

Ramp loss
(MIRLSVM)

Hinge loss
(MIHLSVM)

TB1 15 60 60.00 % 60.00 % 60.00 %

TB2 15 60 80.00 % 80.00 % 80.00 %

TB3 15 60 46.67 % 53.33 % 53.33 %

TB3 15 60 80.00 % 80.00 % 80.00 %

TB3 15 60 66.67 % 66.67 % 66.67 %

TB1 20 80 50.00 % 50.00 % 50.00 %

TB2 20 80 55.00 % 55.00 % 55.00 %

TB3 20 80 65.00 % 50.00 % 50.00 %

TB3 20 80 45.00 % 40.00 % 40.00 %

TB3 20 80 40.00 % 35.00 % 35.00 %

TB1 25 80 80.00 % 80.00 % 80.00 %

TB2 25 80 88.00 % 88.00 % 88.00 %

TB3 25 80 56.00 % 36.00 % 40.00 %

TB3 25 80 64.00 % 44.00 % 40.00 %

TB3 25 80 56.00 % 36.00 % 40.00 %

On the other hand, values greater than 1 do not lead to a drastic decrease in the number
of misclassifications (see Brooks 2011). Therefore, we set C = 1 for our experiments in
this section. This penalty parameter also provides the best generalization performance for
larger data sets, as shown in Sect. 5.3. Problem instances are generated using predetermined
number of bags and features and the following pattern vector distributions:

TB1 Normal distribution: Features for instances in negative bags are normally distributed
with mean 0, standard deviation 1. The mean of features for a positive bag are normally
distributed with mean 1, standard deviation 5, and instances within each positive bag
are offset using a normal distribution with mean 0, standard deviation 1. There are 4
instances in each positive and negative bag.

TB2 Uniform distribution: Features for instances in negative bags are uniformly distributed
between −1 and 2. The mean of features for a positive bag are uniformly distributed
between −2 and 4, and instances within each positive bag are offset uniformly between
−1 and 1. There are 4 instances in each positive and negative bag.

TB3 Randomly selected features and bags from MUSK1 data set.

The results shows hard margin loss is usually superior in practice compared to other loss
functions. Loss functions would have minimal effect on classifiers for easy problems where
a clean separation is possible. This can be observed in Table 1 when the ratio of number
of instances to number of features is relatively low. In fact, for all cases created using TB1
and TB2, we observe the same accuracy for all three loss functions, which are not presented
due to space considerations. This behavior changes for (i) odd distributions with outliers,
(ii) when there are bags with small number of instances, and (iii) when the ratio of number
of instances to number of features is higher. This directly points to MUSK1 data set with
larger number of instances as can be seen in the last few rows of Table 1. In order to show
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Table 2 Leave-one-bag-out cross validation results for randomly generated multiple instance learning prob-
lems with outliers using different loss functions

Testbed # of bags # of features Hard margin loss
(MIHMSVM)

Ramp loss
(MIRLSVM)

Hinge loss
(MIHLSVM)

TB1o 15 5 86.67 % 86.67 % 13.33 %

TB1o 15 5 80.00 % 80.00 % 60.00 %

TB1o 15 5 93.33 % 93.33 % 33.33 %

TB2o 15 5 53.33 % 46.67 % 66.67 %

TB2o 15 5 53.33 % 53.33 % 40.00 %

TB2o 15 5 86.67 % 86.67 % 33.33 %

TB1o 20 10 65.00 % 65.00 % 65.00 %

TB1o 20 10 45.00 % 45.00 % 45.00 %

TB1o 20 10 30.00 % 30.00 % 30.00 %

TB2o 20 10 40.00 % 40.00 % 40.00 %

TB2o 20 10 40.00 % 40.00 % 40.00 %

TB2o 20 10 35.00 % 35.00 % 35.00 %

TB1o 25 10 84.00 % 84.00 % 40.00 %

TB1o 25 10 96.00 % 96.00 % 36.00 %

TB1o 25 10 64.00 % 64.00 % 60.00 %

TB2o 25 10 72.00 % 68.00 % 56.00 %

TB2o 25 10 76.00 % 76.00 % 36.00 %

TB2o 25 10 76.00 % 76.00 % 76.00 %

this effect on relatively smaller instances, we generate the following instances by injecting
outliers:

TB1o Normal distribution: Features for instances in negative bags are normally distributed
with mean 0, standard deviation 4. The mean of features for a positive bag are nor-
mally distributed with mean 5, standard deviation 4. There are 4 instances in each
positive and negative bag. One out of five negative bags are injected one noisy in-
stance that is normally distributed with mean ±90 and standard deviation 2.

TB2o Uniform distribution: Features for instances in negative bags are uniformly dis-
tributed between −10 and 10. The mean of features for a positive bag are uniformly
distributed between −5 and 15. There are 4 instances in each positive and negative
bag. One out of five negative bags are injected one noisy instance that is uniformly
distributed between ±(80,100).

Table 2 highlights accuracy differences for the three loss functions. Although separating
hyperplanes are different, accuracies are the same in cases with 20 bags and 10 features.
When the number of bags increase or the number of features decrease, accuracies tend to
change, hard margin usually performing the best among the three. This is more apparent
for larger and fuzzier data sets that are presented in Sect. 5.3. It should be noted ramp loss
formulation takes significantly more time that hinge and hard margin loss in all test cases,
thus it is omitted from further benchmark problems. The complexity of ramp loss SVM for
conventional data is an open problem but we conjecture that multiple instance learning with
ramp loss is N P -hard.
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5.2 Heuristic performance: optimal solution and time

In order to assess the capabilities of different formulations, we employ principal component
analysis (PCA) on the MUSK1 data set so variability of data can be controlled by choosing a
subset of features. When controlling the size of the problems, features with larger (smaller)
weights in the first few principal components can be selected to create data sets with more
(less) variability. This is a naive process that sheds a light on the analysis since data with less
variability is typically harder to separate with a separating hyperplane. We use IBM ILOG
CPLEX Optimization Studio 12.2 (2011) for all exact formulations and set the time limit
to 30 minutes. As values greater than 1 do not lead to a significant decrease in the number
of misclassifications but an artificial increase in the optimality gap for our heuristic, we set
C = 1 for our experiments in this section as well.

Tables 3, 4, and 5 show that formulations IP3 and CP2 perform the best. In fact, IP3
is superior to other formulations in a majority of test instances but CP2 is particularly suc-
cessful when number of features increase, which makes separation relatively easier. Our
results show that, although we consider a harder generalization of an N P -hard problem
in MIL context, medium sized problems can be solved in reasonable time using effective
formulations.

Our heuristic also performs well compared to the optimal solution in terms of objective
function value. It can be observed that the largest difference in objective function value be-
tween the heuristic and optimal solution in harder data sets is close to 9, when the total
number of instances are 320 and the number of features was 10, which is a difficult separa-
tion problem. Although the optimality gap seems to be large, it should be noted that 8 or less
additional bags are misclassified (among more than 60 bags) compared to the optimal solu-
tion with significant time savings. Furthermore, we expect proximity of heuristic hyperplane
to the optimal hyperplane, thus a subtle difference in cross validation results.

5.3 Robust classification performance for larger data sets: cross validation results

5.3.1 Linear classification

In this section, we present leave one bag out cross validation results for linear classification
using the three-phase heuristic. All instances and features of MUSK1 data are used in com-
puting these results. We also use a set of C values to observe the effect on the performance
of our algorithm. As Table 6 shows, highest cross validation accuracy of 79.35 % is achieved
for C = 1.

Table 6 also shows the performance of our algorithm against hinge loss formulation
(i.e., MIHLSVM) that is solved using CPLEX. Accuracy of our heuristic algorithm for
MIHMSVM is consistently higher than MIHLSVM. It should be noted that the time re-
ported in the table is for validation of 92 bags. For a given C value, it usually takes more
than 20 days to perform cross validation using hinge loss formulation on CPLEX, whereas
our heuristic takes less than 6 minutes.

5.3.2 Nonlinear classification

In order to assess the performance of our heuristic for nonlinear classification, MUSK2
data is considered with a Gaussian radial basis function. Formally, the Gaussian kernel is
represented as

K(xj ,xi ) = e
− ‖xj −xi ‖2

2σ2 .
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Table 3 Computational results for harder data sets (i.e., subset of MUSK1 with less variability)

# of
inst.

# of
feat.

CPU time (sec.) Objective value
IP1 IP2 IP3 CP1 CP2 3-phase

heuristic
3-phase
heuristic

OPT

40 10 1.08 0.41 0.28 2.65 1.48 0.01 3.86 3.58
40 20 0.11 0.22 0.11 0.26 0.10 0.01 2.00 1.41
40 40 0.11 0.17 0.10 0.07 0.05 0.01 0.26 0.24
40 80 0.21 0.21 0.19 0.21 0.19 0.01 0.13 0.12

80 10 0.09 0.08 0.06 0.48 0.11 0.01 1.00 1.00
80 20 2.12 1.18 1.17 5.01 3.15 0.02 3.86 2.12
80 40 8.81 3.54 3.44 6.31 5.02 0.03 1.97 1.66
80 80 6.12 4.67 20.07 3.35 3.27 0.02 0.32 0.26

120 10 156.59 3.17 3.27 N/A 475.74 0.03 7.13 7.10
120 20 3.91 3.27 2.21 N/A 16.30 0.02 4.68 3.25
120 40 1218.48 30.51 21.95 N/A N/A 0.07 6.83 4.72
120 80 4.01 5.71 3.94 8.56 3.38 0.06 1.37 0.79

160 10 N/A 15.58 13.10 N/A N/A 0.10 11.25 9.75
160 20 N/A 444.97 295.91 N/A N/A 0.05 14.39 10.58
160 40 N/A 47.55 52.09 N/A N/A 0.06 5.04 4.26
160 80 N/A 29.01 21.06 72.51 54.76 0.12 2.38 1.59

200 10 N/A 47.39 43.43 N/A N/A 0.08 12.85 11.75
200 20 N/A 49.63 38.06 N/A N/A 0.05 9.21 7.70
200 40 N/A 123.63 132.15 N/A N/A 0.07 4.83 3.79
200 80 N/A 15.83 17.11 301.97 47.35 0.15 1.48 1.26

240 10 142.76 6.12 4.10 N/A N/A 0.13 9.16 9.01
240 20 N/A 464.55 291.64 N/A N/A 0.08 11.07 10.49
240 40 N/A 173.80 205.40 N/A N/A 0.14 6.74 5.25
240 80 N/A 1768.32 N/A N/A N/A 0.21 5.14 3.60

280 10 N/A 20.90 8.76 N/A N/A 0.13 11.95 11.00
280 20 N/A N/A N/A N/A N/A 0.13 20.65 N/A
280 40 N/A N/A N/A N/A N/A 0.20 11.92 N/A
280 80 N/A 1510.73 899.54 N/A N/A 0.41 5.28 3.49

320 10 N/A 885.57 559.06 N/A N/A 0.22 25.57 16.88
320 20 N/A N/A N/A N/A N/A 0.22 46.24 N/A
320 40 N/A N/A N/A N/A N/A 0.24 14.51 N/A
320 80 N/A 1602.74 N/A N/A N/A 0.56 6.62 3.71

360 10 N/A N/A N/A N/A N/A 0.33 32.99 N/A
360 20 N/A N/A N/A N/A N/A 0.20 23.22 N/A
360 40 N/A N/A N/A N/A N/A 0.29 12.77 N/A
360 80 N/A 1529.58 1116.26 N/A N/A 0.68 9.23 3.93

400 10 N/A N/A N/A N/A N/A 0.37 25.41 N/A
400 20 N/A N/A N/A N/A N/A 0.19 34.42 N/A
400 40 N/A N/A N/A N/A N/A 0.38 14.98 N/A
400 80 N/A N/A N/A N/A N/A 0.39 6.24 N/A
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Table 4 Computational results for easier data sets (i.e., subset of MUSK1 with more variability)

# of
inst.

# of
feat.

CPU time (sec.) Objective value
IP1 IP2 IP3 CP1 CP2 3-phase

heuristic
3-phase
heuristic

OPT

40 10 0.33 0.12 0.07 0.45 0.40 0.02 4.20 4.00
40 20 0.06 0.05 0.05 0.11 0.05 0.01 1.00 1.00
40 40 0.06 0.08 0.10 0.26 0.30 0.01 1.00 1.00
40 80 0.36 0.43 0.29 0.55 0.38 0.02 0.75 0.49

80 10 0.11 0.16 0.07 1.66 4.63 0.03 3.24 3.21
80 20 97.21 2.08 1.07 78.36 18.54 0.04 7.36 5.87
80 40 1.76 1.71 1.12 3.91 1.13 0.03 2.72 1.94
80 80 4.44 6.34 4.86 9.51 6.74 0.02 1.31 1.19

120 10 N/A 2.82 1.57 139.29 79.87 0.04 11.11 9.05
120 20 N/A 7.23 4.12 N/A 639.66 0.04 11.02 9.13
120 40 N/A 47.67 31.89 N/A N/A 0.05 11.90 6.71
120 80 8.11 3.51 9.58 6.21 5.75 0.06 0.85 0.85

160 10 N/A 2.75 1.38 N/A 997.12 0.09 11.34 10.38
160 20 N/A 67.07 35.90 N/A N/A 0.06 15.94 12.05
160 40 N/A 90.21 91.23 N/A N/A 0.07 8.76 6.37
160 80 1666.50 23.87 29.74 N/A N/A 0.09 4.29 3.54

200 10 N/A 9.11 5.59 N/A 347.75 0.12 14.25 14.22
200 20 N/A 19.19 14.87 N/A N/A 0.06 10.12 9.73
200 40 N/A 103.92 134.32 N/A N/A 0.08 15.16 9.70
200 80 N/A 185.59 194.51 N/A N/A 0.20 7.82 3.93

240 10 55.55 2.87 1.35 N/A N/A 0.13 8.77 8.77
240 20 N/A 449.23 413.07 N/A N/A 0.12 18.67 15.95
240 40 N/A 787.16 1034.43 N/A N/A 0.09 15.50 11.75
240 80 464.77 420.30 203.53 N/A N/A 0.11 5.33 4.37

280 10 N/A 11.63 7.09 N/A N/A 0.21 14.27 14.25
280 20 N/A 217.74 218.41 N/A N/A 0.13 16.67 16.19
280 40 N/A 482.76 397.70 N/A N/A 0.19 13.51 10.90
280 80 N/A 249.66 434.33 N/A N/A 0.21 7.54 4.30

320 10 N/A 1257.40 790.38 N/A N/A 0.29 31.59 30.38
320 20 N/A 372.36 207.43 N/A N/A 0.24 17.75 17.49
320 40 N/A N/A N/A N/A N/A 0.24 30.91 N/A
320 80 N/A N/A N/A N/A N/A 0.39 11.77 N/A

360 10 N/A 94.62 68.36 N/A N/A 0.30 21.43 21.38
360 20 N/A 744.08 562.85 N/A N/A 0.31 20.13 18.96
360 40 N/A N/A N/A N/A N/A 0.40 30.69 N/A
360 80 N/A N/A N/A N/A N/A 0.31 8.52 N/A

400 10 N/A 301.65 205.37 N/A N/A 0.41 26.29 26.25
400 20 N/A 949.36 1155.72 N/A N/A 0.20 25.67 22.00
400 40 N/A N/A N/A N/A N/A 0.24 19.56 N/A
400 80 N/A N/A N/A N/A N/A 0.71 13.79 N/A
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Table 5 Computational results for a subset of instances in MUSK1 data set with all features

# of
inst.

# of
feat.

CPU time (sec.) Objective value

IP1 IP2 IP3 CP1 CP2 3-phase
heuristic

3-phase
heuristic

OPT

80 166 10.92 9.32 10.28 4.37 2.37 0.03 0.34 0.30

120 166 222.70 37.73 306.04 67.37 19.84 0.09 0.34 0.29

160 166 63.78 49.33 173.77 25.59 17.98 0.14 0.51 0.45

200 166 N/A 138.59 105.19 798.40 195.55 0.31 1.42 0.99

240 166 N/A 945.99 464.65 N/A 838.98 0.71 1.45 1.20

280 166 N/A 659.91 373.44 N/A 353.75 0.36 0.91 0.79

320 166 N/A 655.65 414.72 N/A 478.25 0.61 1.72 1.04

360 166 N/A N/A N/A N/A N/A 1.36 3.06 N/A

400 166 N/A N/A N/A N/A N/A 1.37 3.53 N/A

Table 6 Leave-one-bag-out cross validation results for MUSK1 data with 476 instances in 92 bags and 166
features

C Hard margin loss (heuristic) Hinge loss (CPLEX)

LOBOCV CPU time (sec.) LOBOCV CPU time (sec.)

0.1 75.00 % 147.30 51.09 % 16.34

1 79.35 % 217.43 76.09 % 1,818,460.63

10 73.91 % 321.21 63.04 % 1,816,458.85

100 77.17 % 312.66 70.65 % 1,819,085.86

Table 7 Leave-one-bag-out cross validation and CPU time (in seconds) results for MUSK2 data with 6,598
instances in 102 bags and 166 features

2σ 2 C = 0.5 C = 1 C = 10 C = 100

LOBOCV CPU time LOBOCV CPU time LOBOCV CPU time LOBOCV CPU time

10 60.78 % 22,639.80 63.73 % 25,304.07 63.73 % 23,736.96 63.73 % 23,696.82

25 72.55 % 25,804.41 79.41 % 12,254.31 81.37 % 11,228.20 81.37 % 11,834.13

50 57.84 % 18,956.22 84.31 % 3,913.35 80.39 % 3,461.50 81.37 % 3,397.65

100 56.86 % 13,245.11 79.41 % 2,180.79 82.35 % 1,926.41 81.37 % 1,956.40

166 52.94 % 13,083.71 76.47 % 1,899.21 80.39 % 1,559.36 79.41 % 1,540.54

200 51.96 % 12,998.93 79.41 % 1,924.97 78.43 % 1,507.11 79.41 % 1,409.86

500 49.02 % 12,837.94 75.49 % 2,138.56 77.45 % 1,416.91 79.41 % 1,199.26

1000 49.02 % 12,831.96 44.12 % 9,764.32 47.06 % 9,287.45 47.06 % 9,221.11

Different C and σ values are compared and the results are presented in Table 7. The
default selection in Chang and Lin (2011) is also considered that sets 2σ 2 equal to the
number of features. The best accuracy achieved is 84.31 % for C = 1 and σ = 5. It should
be noted that C = 0.1 is not presented in Table 7 because the regularization term outweighs
the misclassification term in the objective function and the same cross validation accuracy
of 38.24 % is obtained for all values of σ . Our results show that the accuracy tends to
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decrease when σ increases as this converges to a linear separation. The total time spent for
cross validation of 102 bags for our heuristic rarely exceeds an hour for nonextreme values
of parameters. It is also noteworthy to mention that the time spent usually reduces with
increased C since the misclassification penalty outweighs the quadratic regularization term
in the objective function, providing a relatively more tractable problem.

6 Concluding remarks

In this paper, we propose a robust support vector machine classifier for multiple instance
learning. We show that hard margin loss classifiers provide remarkably better generalization
performance for multiple instance data in practice, which is in line with theory. We develop
three integer programs and two constraint programs and compare their time performance in
achieving optimal solutions. Furthermore, we develop a heuristic that can handle even large
problem instances within seconds. Our heuristic provides higher cross validation accuracy
for MIL data compared to conventional hinge loss based SVMs in significantly less time.

In this study, we observe that ramp loss classifiers are slow in practice. Alternative for-
mulations can be developed and problem complexity can be studied for ramp loss SVM for
conventional and multiple instance data. Another important future study is a comparison of
approaches highlighted in Sect. 2.2 using a fair cross validation scheme (e.g., leave one bag
out), instead of random validation schemes that generate varying results in different runs.
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