
Ann Oper Res (2013) 210:5–31
DOI 10.1007/s10479-012-1191-5

A branch-and-bound method for discretely-constrained
mathematical programs with equilibrium constraints

Yohan Shim · Marte Fodstad · Steven A. Gabriel ·
Asgeir Tomasgard

Published online: 28 July 2012
© Springer Science+Business Media, LLC 2012

Abstract We present a branch-and-bound algorithm for discretely-constrained mathemati-
cal programs with equilibrium constraints (DC-MPEC). This is a class of bilevel programs
with an integer program in the upper-level and a complementarity problem in the lower-
level. The algorithm builds on the work by Gabriel et al. (Journal of the Operational Re-
search Society 61(9):1404–1419, 2010) and uses Benders decomposition to form a master
problem and a subproblem. The new dynamic partition scheme that we present ensures that
the algorithm converges to the global optimum. Partitioning is done to overcome the non-
convexity of the Benders subproblem. In addition Lagrangean relaxation provides bounds
that enable fathoming in the branching tree and warm-starting the Benders algorithm. Nu-
merical tests show significantly reduced solution times compared to the original algorithm.
When the lower level problem is stochastic our algorithm can easily be further decomposed
using scenario decomposition. This is demonstrated on a realistic case.

Keywords Mathematical program with equilibrium constraints · Bilevel programming ·
Discrete planning and decision making · Optimization · Branch-and-bound method ·
Global optimization

1 Introduction

In this paper, we focus on bilevel programming problems where the upper-level deals with
discrete decisions and the lower-level is a mixed complementarity problem (MCP). It is a
variant of the traditional mathematical program with equilibrium constraints (MPEC) where
the leader is only allowed to make discrete decisions. We call the whole formulation DC-
MPEC (Gabriel et al. 2010).

Y. Shim · S.A. Gabriel
University of Maryland, College Park, MD 20742, USA

M. Fodstad (�) · A. Tomasgard
The Norwegian University of Science and Technology, 7491 Trondheim, Norway
e-mail: martefo@iot.ntnu.no

mailto:martefo@iot.ntnu.no

6 Ann Oper Res (2013) 210:5–31

Gabriel et al. (2010) propose a heuristic to solve the DC-MPEC problem based on Ben-
ders decomposition. They rephrase the problem as a mixed integer linear problem (MILP)
and decompose the problem by placing all constraints and objective elements containing
lower-level variables in the Benders subproblem. The master problem domain is a priori
heuristically partitioned into subdomains of x with the aim of finding subdomains where
the lower level objective is convex. Afterwards each subdomain is solved by Benders de-
composition method. It is shown that the heuristic can give a sub-optimal solution unless all
subdomains are convex.

In our new approach we develop an idea mentioned in Gabriel et al. (2010) with a dy-
namic branching procedure that partitions the subdomains as the algorithm proceeds. We
branch until the subdomains which have candidates for the global solution are convex and
thereby guarantee to find the optimal solution. As opposed to the branching on single vari-
ables as employed in many branch-and-bound approaches, we use intersection of Benders
cuts to partition the upper-level decision domain. The branching procedure is supported by
lower bounding based on Lagrangean relaxation, which makes it possible to cut off parts of
the master problem domain and thereby increase the efficiency of the algorithm compared to
the static version. Using LR to accelerate the branch-and-bound procedure was introduced
in both Geoffrion (1974) for MILPs and Falk (1969) for non-convex programs.

Several papers contribute on how to improve the convergence properties of Benders de-
composition, for a nice review see Saharidis and Ierapetritou (2010). One common approach
is to add cuts to the relaxed master problem, as for instance Saharidis et al. (2011) do. Simi-
larly we utilize the solution value from the Lagrangean relaxation as a bound in the Benders
decomposition somewhat inspired by cross decomposition (van Roy 1983,1986). To the best
of our knowledge this is a new way of utilizing Lagrangean relaxation results in bilevel pro-
gramming: using it both in the lower bounding in the branch-and-bound procedure and to
accelerate the Benders decomposition used to find the upper bound.

We also show how the addition of strong duality constraints, enabled by the Benders
decomposition, increases the robustness of the transformation from DC-MPEC to MILP.
When the lower-level is a two-stage stochastic MCP, we show how the lower bounding
method can be adapted using scenario decomposition (Carøe and Schultz 1999) to achieve
further decomposition, and test this on a natural gas application.

Our computational results show that using the dynamic partitioning algorithm supported
by the strong duality constraints considerably reduces the partitioning work needed com-
pared to the static version of the algorithm.

Even the continuous linear bilevel programming problem has been shown to be NP-
hard (Hansen et al. 1992) and the discrete nature of upper-level variables and their related
constraints would make the DC-MPEC problem even more intractable. A substantial amount
of contributions exists for the different problem classes within bilevel programming, and we
will point out the ones closest related to our DC-MPEC problem. For a broader overview see
for instance Dempe (2002) or Colson et al. (2007) on bilevel programming and Luo et al.
(1996), Outrata et al. (1998) or Fukushima and Lin (2004) on MPEC.

Gabriel and Leuthold (2010) formulate a Stackelberg game within the electric power mar-
ket as a DC-MPEC and provide exact solutions with standard branch-and-bound after refor-
mulating to a MILP. On the contrary most solution procedures for DC-MPEC are heuristics.
Meng et al. (2009) and Meng and Wang (2011) use genetic algorithms supplemented with
suitable procedures for solving lower level parametric VIs for facility location and service
network design applications, respectively. Another DC-MPEC application is presented by
Wang and Lo (2008) who transforms their problem into a mixed integer nonlinear program
solved with an application specific heuristic.

Ann Oper Res (2013) 210:5–31 7

Mesbah et al. (2011) use generalized Benders decomposition to solve a bilevel problem
on transportation network design. Their upper level has binary variables and a non-linear
objective function. Lower level consists of three parts, two optimization problems and an
equilibrium problem. Lagrangean relaxation is used to solve the optimization lower-level
problems.

Saharidis and Ierapetritou (2009) propose Benders decomposition for problems closely
related to our DC-MPEC, but with lower level limited to LP. They decompose the prob-
lem into a master problem containing all integer variables and pure integer constraints and
a bilevel subproblem. The subproblem is transformed into a single level problem by KKT
conditions and provides a feasibility cut or optimality cut for the master problem in each
iteration. The integrality conditions are handled by adding integer exclusion cuts to the mas-
ter problem. This work differs from ours in different ways of decomposing the problem and
different ways of treating the integrality requirements.

Wen and Yang (1990) also solve DC-MPEC with the lower level limited to LP. They do
not use the common reformulation to MILP based on KKT conditions, but develop valid
bounds adapted to the bilevel structure and apply these in branch-and-bound. A similar
strategy is used by Moore and Bard (1990) for bilevel problem with integrality constraints
in both upper and lower level, and they also point out why standard bounding and fathoming
rules for branch-and-bound in integer programming do not apply for their problem.

The rest of this paper is organized as follows: First we present the basic ideas of the
algorithm, with lower bounding, upper bounding and dynamic partitioning. Then follows
a pseudocode overview of the total algorithm and proofs for the validity of bounds and
overall convergence. The section ends with a description on how to adapt the lower bounding
method to stochastic programs. Next follows numerical results on general problems with
randomly generated data and on a natural gas supply chain problem before we conclude.

2 Dynamic algorithm

The overall discretely-constrained mathematical program with equilibrium constraints (DC-
MPEC) is given as follows:

min
x,y

cTx + dTy

s.t. Qx ≤ q

Ax + By ≥ a

y ∈ S(x)

(1)

where x ∈ Znx and y ∈ Rny are integer upper-level variables and continuous lower-level
variables, respectively. The constraints Qx ≤ q contain the bounds on the x’s and other
linear constraints with only x variables; Ax + By ≥ a are the joint linear constraints of x

and y. The solution set of the lower-level MCP is given by

S(x) =
⎧
⎨

⎩
(y, z,w)

0 ≤ y ⊥ Ey + e − MTz − DTw ≥ 0
0 ≤ z ⊥ My + Nx − k ≥ 0
Dy + Fx = g

⎫
⎬

⎭
(2)

where z ∈ Rnz , z ≥ 0 and w ∈ Rnw . z and w are lower-level variables that typically corre-
spond to dual variables of a underlying optimization problem. It is assumed that the dimen-
sion of each data element (i.e. c, d , Q, q , A, B , a, E, e, M , N , k, D, F , g) agrees with

8 Ann Oper Res (2013) 210:5–31

its associated variables. E is a symmetric and positive semi-definite matrix of the convex
quadratic function 1

2yTEy + eTy so that the KKT conditions are necessary and sufficient
optimality conditions. Note that the lower-level problem also covers linear problems (LP)
and quadratic convex problems (QP) since the KKT optimality conditions of these problem
classes are MCP problems. We assume that a solution to Problem (1) exists.

As previously shown by amongst others (Fortuny-Amat and McCarl 1981) an MPEC can
be rephrased to an MILP through replacing the lower-level complementarity conditions by
disjunctive constraints, binary variables and a large constant C. This reformulation implies
an optimistic view on the lower-level in the sense that if multiple equilibria exist in lower-
level the most favorable according to the upper-level objective is chosen. We denote the
problem resulting from this reformulation (MILP).

We decompose (MILP) with Benders decomposition into a master problem:

(B-MILP)

min
x

zB-MILP = cTx + α(x)

s.t. Qx ≤ q

Q̆x ≤ q̆

(3)

and a subproblem:

α(x) = min
y,z,w,b̄,b̃

dTy

s.t. a ≤ Ax + By

0 ≤ y ≤ C(1 − b̄)

0 ≤ Ey + e − MTz − DTw ≤ Cb̄

0 ≤ z ≤ C(1 − b̃)

0 ≤ My + (Nx − k) ≤ Cb̃

Dy + Fx = g

b̄, b̃ : binary

y, z ≥ 0

(4)

Only x variables are placed in the master problem and the other variables are in the
subproblem. Because of the disjunctive variables b̄ and b̃ the function α(x) is piecewise
linear but not in general convex in x (Gabriel et al. 2010). The non-convexity means Benders
decomposition method is not guaranteed to converge to an optimal solution for (MILP)
(Benders 1962). The main idea of the dynamic partitioning algorithm is to partition the
domain of X = {x ∈ Znx |Qx ≤ q} into subdomains where α(x) is convex, as illustrated in
Fig. 1. The partitioning is controlled by upper and lower bounds that will converge as the
non-convexities are removed in exchange for an increasing number of subdomains. Q̆x ≤ q̆

is a set of linear partitioning constraints defining a subdomain. An overview of the problems
used in this paper and their relations is given in Fig. 2.

2.1 Lower bounding

Traditionally the LP relaxation is used for bounding in branch-and-bound, but the MILP
reformulation with binary variables and large constants gives weak LP bounds. Instead we
apply the Lagrangean relaxation algorithm (LR) as lower bound of (MILP) relaxing Qx ≤

Ann Oper Res (2013) 210:5–31 9

Fig. 1 Illustration of how partitioning transforms a domain with a non-convex function into two subdomains
with convex functions

q with μ as the Lagrangean multiplier. The mathematical formulation of the Lagrangean
subproblem (MILP(μ)) is given as Problem (5) and its dual problem is defined as zLD =
maxμ{φ(μ)|μ ≥ 0}. (MILP(μ)) is a relaxation of (MILP) as proved in Geoffrion (1974).

(
MILP(μ)

)

φ(μ) = min
x,y,z,w,b̄,b̃

zMILP(μ) = cTx + dTy + μT(Qx − q)

s.t. Q̆x ≤ q̆

a ≤ Ax + By

0 ≤ y ≤ C(1 − b̄)

0 ≤ Ey + e − MTz − DTw ≤ Cb̄

0 ≤ z ≤ C(1 − b̃)

0 ≤ My + (Nx − k) ≤ Cb̃

Dy + Fx = g

x : integer

b̄, b̃ : binary

y, z ≥ 0

(5)

(MILP(μ)) is a mixed integer linear program that usually will be solved repeatedly to
make the Lagrangean process converge. This means (MILP(μ)) needs to be significantly
simpler than (MILP) to solve to make the lower bounding worthwhile. Generally that means
there should be a substantial number of constraints Qx ≤ q or these constraints should have
a complicating structure (see Conejo et al. 2006) as in the example of stochastic program-
ming in Sect. 3.2.

In our implementation of LR, the Lagrangean multipliers (μ) are updated by a cutting
plane method (Conejo et al. 2006). The Lagrangean iterations are stopped whenever the gap
between the cutting plane problem (relaxed Lagrangean dual problem) and the Lagrangean
subproblem (MILP(μ)) are sufficiently small. Also a limit on the number of iterations is im-
plemented to avoid any cycling. A duality gap can occur because the Lagrangean subprob-
lem has integral variables, as shown in Geoffrion (1974). This represents a non-convexity
domain for α(x) that will cause further partitioning.

10 Ann Oper Res (2013) 210:5–31

Fig. 2 Problem and subproblem overview

2.2 Upper bounding

We apply Benders decomposition method (BD) as described in Conejo et al. (2006) to mea-
sure the upper bound (UB) of (MILP). The function α(x) in master problem (3) is relaxed,
and through the solution procedure rebuilt by iteratively solving the relaxed master problem
(MP) and subproblem (SP) below.

(MP)

min
x

cTx + α

s.t. Qx ≤ q

Q̆x ≤ q̆

α ≥ α
(
x(k)

) + λT
(
x − x(k)

)

α ≥ αdown

k = 1, . . . , v − 1

(6)

Ann Oper Res (2013) 210:5–31 11

Fig. 3 Illustration of non-convex
α(x) and a single Benders cut
(broken line)

(SP)

α(x) = min
y,z,w,b̄,b̃

dTy

s.t. a ≤ Ax + By

0 ≤ y ≤ C(1 − b̄)

0 ≤ Ey + e − MTz − DTw ≤ Cb̄

0 ≤ z ≤ C(1 − b̃)

0 ≤ My + (Nx − k) ≤ Cb̃

Dy + Fx = g

b̄, b̃ : binary

y, z ≥ 0

x(v) : (λ : free)

(7)

In each Benders iteration, k, the solution of (SP) for a given x(k) gives a new Benders cut
α ≥ α(x(k)) + λT(x − x(k)) that is added to (MP) to approximate α(x). Let zdown(x(v)) =
cTx(v) + α(x(v)) and zup(x(v)) = cTx(v) + dTy(v). Figure 3 illustrates a non-convex α(x)

function and a master problem approximation based on a single Benders cut (broken line).

– If α(x) is convex for a given subdomain, Benders cuts create a lower envelope of α(x).
In each iteration v, (MP) and (SP) provide lower and upper bound on zB-MILP, respec-
tively, zdown(x(v)) ≤ zB-MILP ≤ zup(x(v)) and these bounds iteratively converge (Conejo
et al. 2006).

– If α(x) is non-convex for a given subdomain, the Benders cuts may overestimate α(x)

and eliminate a true optimum in the subdomain. This implies that either zdown(x(v)) and
zup(x(v)) converge to a value greater than the true optimum or zdown(x(v)) > zup(x(v))

which stops the iterations. These situations are illustrated in Fig. 3 for x = 2 and x = 5,
respectively.

12 Ann Oper Res (2013) 210:5–31

Table 1 Numerical results: Speeding up UB measure by warm-starting with LB solution. The left part gives
the dimensions of (MP) and (SP), where dim(b) = dim(b̄)+dim(b̃). C is the value of the disjunctive constant.
The right part gives the number of iterations and solution time in seconds for computing UB without and with
warm-start (ws)

MP
x

SP C UB without ws UB with ws

y z b Iter Time Iter Time

20 100 100 200 1E5 14 18 6 7

20 100 100 200 1E5 14 17 6 7

20 100 100 200 1E5 14 18 5 6

20 100 100 200 1E5 10 12 4 5

20 100 100 200 1E5 10 12 4 5

20 1000 1000 2000 1E6 130 938 74 470

20 1000 1000 2000 1E6 77 508 46 307

20 1000 1000 2000 1E6 14 87 3 18

20 1000 1000 2000 1E6 23 144 3 19

20 1000 1000 2000 1E6 118 854 37 251

In either case zup(x(v)) gives a valid upper bound, which is justified by the proof in
the Appendix. Because of assumption (A2) that follows in Sect. 2.5, we do not consider
feasibility cuts.

2.2.1 Accelerating the Benders decomposition by including the lower bound

We could utilize the solution from (MILP(μ)) to warm-start the Benders iterations seeking
to reduce the number of Benders iterations. The solution of x from (MILP(μ)) are set as the
initial solution of (MP) and the objective value of (MILP(μ)) forms a lower bound for (MP),
expressed by the optimality cut cTx +α ≥ LB. The optimality cut removes solutions inferior
to the incumbent in the current iteration of the Benders decomposition, thereby reducing
the search space and potentially producing faster convergence of the algorithm. Table 1
compares the number of iterations and computation time of BD for two cases: without and
with the warm-start (ws). Ten test problems were solved. All data were generated from the
intervals [0,100] with uniform distributions. The upper-level decision variables were all
binary; the lower-level problems are built by deriving the KKT conditions of LP problems.
Matlab (ver. 7.0) and Xpress-MP (ver. 2006) were used to implement both BD and LR
algorithms. LB and UB converged to the same value for all instances. As can be seen from
the last two columns, the warm-start greatly reduced the number of iterations as well as the
computation time.

2.2.2 Strong duality constraint

The complementarity constraints in the lower-level problem were linearized with disjunctive
binaries and big constant C in Gabriel et al. (2010), Gabriel and Leuthold (2010), Labbé
et al. (1998), Hu et al. (2008), Mitsos (2010), Saharidis and Ierapetritou (2009) and DeNegre
and Ralphs (2009), where their common question was the value of C for which the feasible
region formed by complementarity constraints is not altered. Hu et al. (2008) proposed a
solution method which does not require knowing the big constants, but the method is limited
to linear programs with linear complementarity constraints (LPCC). Gabriel et al. (2010)

Ann Oper Res (2013) 210:5–31 13

Table 2 The working range for C increases when strong duality constraints are added.
For each instance the objective value, shape of the α(x)-function and working range within
[1E4, 1E10] for (B-MILP) with strong duality constraints and (MILP) is given. The inte-
ger upper-level variable is limited to [−10,10], all model parameters are in [0,10] and
dim(x) = 1, dim(y) = 10, dim(z) = 5, dim(b̄) + dim(b̃) = 15

show that C can be chosen by a sensitivity analysis or when the matrix M has a specific
property the constants can be chosen analytically.

For lower-level problems with E = 0 (defined in Problem (2)), which for instance
correspond to the KKT conditions of an LP, we impose the strong duality constraint
(eT − wTD)y = zT(k − Nx) to (B-MILP). The constraint was induced from the two com-
plementarity constraints yT(e − MTz − DTw) = 0 and zT(My + Nx − k) = 0. A similar
strong duality constraint cannot be imposed when E �= 0 since that would give a non-linear
constraint. This constraint is also not applicable if the lower-level problem does not con-
tain the pair of complementarity constraints, which may be the situation if the problem has
equilibriums that are not derived from an underlying optimization problem.

Tables 2 and 3 contain results from testing the use of the strong duality constraint. We
compare the valid range of C in (B-MILP) with strong duality constraint and (MILP) without

14 Ann Oper Res (2013) 210:5–31

Table 3 The working range for C increases when strong duality constraints are
added. For each instance the objective value, shape of the α(x)-function and working
range within [1E4, 1E10] for (B-MILP) with strong duality constraints and (MILP) is
given. The integer upper-level variables are limited to [−10,10], all model parameters
are in [0,100] and dim(x) = 2, dim(y) = 400, dim(z) = 200, dim(b̄) + dim(b̃) = 600

this constraint. The valid range is the range where the optimal objective value of the original
bilevel problem is reproduced. GAMS (ver. 23.0) and Xpress-MP (ver. 2006) were used to
compute the solutions by enumeration. The bar graphs in the tables represent the effective
range of C for each test problem. The strong duality constraint played a major role in making
(B-MILP) almost insensitive to the choice of C.

The single-level approach in Gabriel and Leuthold (2010) and Audet et al. (2007), which
corresponds to (MILP) may not use the strong duality constraint since it would make the
problem non-linear and non-convex because x variables in the constraint cannot be fixed.
Hence the working range of C for the single level approach would be narrow compared to
the decomposed problem.

2.3 Branch-and-bound

Each node in the branch-and-bound tree represents a subdomain for the upper-level vari-
ables x. The literature shows several ways to do branching of the subdomains, for instance
in Bard and Moore (1990), Hansen et al. (1992) and Gabriel et al. (2010). We have chosen
to follow Gabriel et al. (2010). Two sample points si (for i = 1,2) are picked and Benders
cuts, α(x) ≥ α(si) + λT

i (x − si), are calculated for each point. λi is the dual variable vector
to the linear constraint x = si of (SP). Two planes are obtained by changing the inequality
symbols of the Benders cuts to equality, that is, α(x) = α(si) + λT

i (x − si), and where these
planes intersect, α(s1) + λT

1 (x − s1) = α(s2) + λT
2 (x − s2), the domain is partitioned. Since

Ann Oper Res (2013) 210:5–31 15

Algorithm 1 Main
1: L := {0}
2: D(0) := X

3: Incumbent := ∞
4: while L �= ∅ do
5: N := SelectNextNode(L)
6: L := L \ {N}
7: (Decision, Incumbent) := SolveAndBound(N,D(N), Incumbent)
8: if Decision = BRANCHING then
9: (N + 1,N + 2,D(N + 1),D(N + 2)) := DecomposeDomain(N,D(N))

10: L := L ∪ {N + 1,N + 2}
11: end if
12: end while
13: return (Incumbent, (x∗, y∗, z∗, b̄∗, b̃∗))

Subroutine 1 ComputeBounds(N,D(N))
1: Compute LB with Lagrangean relaxation algorithm by solving MILP(μ)
2: Compute UB with the Benders decomposition algorithm by iteratively solving (MP) and

(SP). Include the strong duality constraint (eT − wTD)y = zT(k − Nx) to (MP) if valid
for the problem. Warm-start with the optimal solution from Step 1 as the initial starting
point and lower bound for (MP) if it exists

3: return (UB,LB)

α(x) can be non-convex, the two Benders cuts might not partition the domain into two non-
empty subdomains. In that case new sample points are chosen a limited number of times,
and if proper branching is still not achieved an arbitrary partition of the subdomain into two
non-empty subdomains is chosen.

We use the following branching and fathoming rules:

• Branch if |(UB − LB)/LB| > TOL and LB < Incumbent
• Pruning by optimality if |(UB − LB)/LB| ≤ TOL
• Pruning by bound if LB ≥ Incumbent

Here Incumbent is the value of the best solution found so far and TOL is a user-specific
tolerance.

2.4 Pseudocode for the algorithm

Algorithm 1 is a pseudocode that describes the overall algorithm. The main workload is the
branch-and-bound process, where N refers to the index of current node, L is the list of active
nodes in the partitioning tree and D(N) refers to the subdomain defined by node N . Three
subroutines are used for solving the subproblems, making bounding decisions and branching
and these are described in Subroutines 1–3. SelectNextNode(L) is a subroutine that
selects next node from L. In our tests SelectNextNode(L) has applied the depth-first
principle.

2.5 Convergence of the dynamic algorithm

To prove that the algorithm in Sect. 2.4 converges, we make the following assumptions:

16 Ann Oper Res (2013) 210:5–31

Subroutine 2 SolveAndBound(N,D(N), Incumbent)
1: (UB,LB) := ComputeBounds(N,D(N))

2: if UB < Incumbent then
3: Incumbent := UB
4: Record Incumbent and the optimal solution (x∗, y∗, z∗, b̄∗, b̃∗) of BD
5: end if
6: if |UB−LB

LB | > TOL and LB < Incumbent then
7: Decision := BRANCHING
8: else
9: Decision := FATHOMING

10: end if
11: return (Decision, Incumbent)

Subroutine 3 DecomposeDomain(N,D(N))
1: Count := 0
2: Branched := false
3: while not Branched and Count < CountLimit do
4: Get two sample points s1 and s2 from D(N) and compute their associated (λT

i , b̄
T
i , b̃T

i)

values (i = 1,2). The two sample points can be chosen randomly within D(N) for in-
stance by solving the problems {x|minx c0x s.t. x ∈ D(N)} and {x|maxx c0x s.t. x ∈
D(N)}, where c0 is a random cost vector

5: Compute their intersection hyperplane as α(s1) + λT
1 (x − s1) = α(s2) + λT

2 (x − s2)

6: D(N + 1) := D(N) ∩ {x|α(s1) + λT
1 (x − s1) ≤ α(s2) + λT

2 (x − s2)} and
D(N + 2) := D(N) ∩ {x|α(s1) + λT

1 (x − s1) ≥ α(s2) + λT
2 (x − s2) + TOL}

7: if D(N + 1) �= ∅ and D(N + 2) �= ∅ then
8: Branched := true
9: else

10: Count+ = 1
11: end if
12: end while
13: if Branched = false then
14: Select arbitrary intersecting hyperplane within D(N) and define D(N + 1) and

D(N + 2) accordingly
15: end if
16: return (N + 1,N + 2,D(N + 1),D(N + 2))

Assumption 1 (A1) The feasible region of (MP), X = {x ∈ Znx |Qx ≤ q}, is a bounded,
non-empty set.

Assumption 2 (A2) The feasible region of (SP) for a given x, ΩSP(x) �= ∅ when x ∈ X.

Theorem 1 Suppose that assumptions (A1) and (A2) hold and we are able to solve all sub
problems within tolerance TOL. Then, the above dynamic DC-MPEC algorithm converges
to a global optimum of problem (MILP), within the accuracy TOL, in a finite number of
iterations.

Proof This theorem is proved in two steps. First, we prove that we cannot prune the subdo-
main containing the optimal solution. Next, we prove that the algorithm in a finite number of

Ann Oper Res (2013) 210:5–31 17

iterations will be able to partition in such a way that the optimal solution is in a subdomain
with convex α(x).

1. We prune by bound when the solution of the Lagrangean subproblem zMILP(μ) ≤
Incumbent. Geoffrion (1974) proves in Theorem 1(a) that the Lagrangean subproblem is
a valid lower bound for (MILP) which means no optimal solution can be lost by pruning.

2. Since we have a limit on the number of Lagrange iterations, the computation of lower
bound from (MILP(μ)) ends in a finite number of iterations. The computation of the
upper bound zB-MILP using Benders decomposition also terminates in a finite number
of steps according to Benders (1962). By assumption (A1) there are a finite number of
points in the domain X and each branching is forced to leave at least one point in each
subdomain, which means branch-and-bound can reach subdomains containing single
points within a finite number of partitions. By definition α(x) is convex in subdomains
containing a single point.

From the following three observations, we know that the algorithm will find the global
optimal solution: (i) the subdomain containing the global optimal solution cannot be pruned
by 1; (ii) we can find the subdomain containing the global optimal solution where α(x)

is convex by 2; and (iii) according to Benders (1962), Benders decomposition algorithm
provides the global solution for a convex α(x). �

2.6 Scenario decomposition

In the setting where the lower-level is a two-stage stochastic complementarity program
the structure of the problem can be utilized when solving the Lagrangean subproblem
(MILP(μ)) using scenario decomposition (Carøe and Schultz 1999).

The uncertainty is described by a set of scenarios j with the probability pj , j = 1, . . . , J ,
where

∑J

j=1 pj = 1. For a problem with a two-stage stochastic program in the lower-level,
Problem (1) can be written as:

min
x,y

J∑

j=1

pj

(
cTxj + ďTy̌j + d̂T

j ŷj

)

s.t. Qxj ≤ q for j = 1, . . . , J

Q̆xj ≤ q̆ for j = 1, . . . , J

Ajxj + B̌j y̌j + B̂j ŷj ≥ aj for j = 1, . . . , J

xj = xj−1 for j = 2, . . . , J

(y̌1, . . . , y̌J , ŷ1, . . . , ŷJ) ∈ S(x1, . . . , xJ)

(8)

where xj ∈ Znx , y̌j ∈ Rny̌ and ŷj ∈ Rnŷ for j = 1, . . . , J and

S(x1, . . . , xJ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(y̌1, . . . , y̌J ,

ŷ1, . . . , ŷJ ,

ž1, . . . , žJ ,

ẑ1, . . . , ẑJ ,

ŵ1, . . . , ŵJ)

0 ≤ Ěy̌j + ě − MTžj − ∑J

j=1 M̌Tẑj ⊥ y̌j ≥ 0
0 ≤ pj Êj ŷj + pj êj − M̂T

j ẑj − DT
j ŵj ⊥ ŷj ≥ 0

0 ≤ k − Nxj − MTy̌j ⊥ ž ≥ 0
0 ≤ MTy̌j − M̂T

j ŷj − k̂j + N̂j xj ⊥ ẑj ≥ 0
Dŷj + Fxj = g

for j = 1, . . . , J

y̌j = y̌j−1

žj = žj−1

for j = 2, . . . , J

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

18 Ann Oper Res (2013) 210:5–31

Table 4 Random generated test problem groups. MP and SP give the dimension of the variable vectors. The
value of the disjunctive constant used for the tests are given by C. Whether the lower level problem is derived
from a LP or QP is indicated by the problem type

Gr MP SP C Probl
type

x type y z b

1 2 int 5 2 7 1.E+03 LP

2 5 int 5 2 7 1.E+03 LP

3 10 bin 10 5 15 300 LP

4 10 bin 15 10 25 1.E+06 LP

5 2 int 400 200 600 1.E+06 LP

6 20 bin 100 100 200 1.E+05 LP

7 2 int 100 50 150 1.E+06 QP

Here y̌j and žj are the first-stage decisions and ŷj , ẑj and ŵj are the second-stage deci-
sions of the lower-level for scenario j . The two last equation sets of S(x1, . . . , xJ) are non-
anticipativity constraints (Rockafellar and Wets 1976) included to make sure the first-stage
decisions are equal in all scenarios.

We transform the complementarity conditions of Problem (9) into disjunctive constraints
as described earlier, transforming the problem into a MILP. The underlying stochastic pro-
gram gives the resulting MILP matrix a structure of nearly separable blocks for each sce-
nario. To achieve separability in the scenarios the non-anticipativity constraints are dualized
using Lagrangean relaxation. Since one set of optimality conditions contain a sum over all
scenarios also these constraints need to be dualized to achieve separability. Note that also
the upper-level variables and some disjunctive binary variables act as first-stage variables in
this setting.

Scenario decomposition corresponds to Lagrangean relaxation of an integer program. As
stated in Theorem 1 in Geoffrion (1974) this gives a lower bound on the original problem
which makes it valid for our lower bounding purpose, but does not guarantee a tight bound.

3 Results

The dynamic algorithm has been tested both on randomly generated test data for the general
model formulation and on three cases for an application of the DC-MPEC problem from the
Norwegian natural gas supply chain. For all tests the tolerance was set to TOL = 10−5.

3.1 Results on randomly generated data

In this section, we present our computational results with the dynamic DC-MPEC algorithm
based on randomly generated data. Each lower-level problem is created by deriving the
KKT conditions from a LP or convex QP problem. 59 LP-based problems are generated
by random data from the interval [−500,500] with a uniform distribution. Similarly, data
for 40 QP-based problems are sampled from a uniform distribution [−100,100]. The test
problems are grouped according to the dimension of the variable vectors and underlying
problem type, as summarized in Table 4. Sensitivity analysis has been conducted to find the
working range for the disjunctive constant C, and the values reported in Table 4 is within
this range and corresponds to the results reported in the following tables. Data for Groups

Ann Oper Res (2013) 210:5–31 19

Table 5 Number of subdomains and samplings for random generated test problem solved by static algorithm
and dynamic algorithm without and with warm-start (ws). # subdomains refers to the finest partitioning of the
x-domain, which corresponds to the leaf nodes of the branch-and-bound tree for the dynamic algorithm. For
the static algorithm the subdomains are identified through sampling and comparing (λT, b̄T, b̃T) as described
in Gabriel et al. (2010). The true number of subdomains are identified by enumeration, where a subdomain
is defined as a set of integer x points where (λT, b̄T, b̃T) is the same. Mean and median values cover all test
problems that were solved by all three algorithms

Gr ID # subdomains # samplings

True Stat Dyn Dyn ws Stat Dyn Dyn ws

Mean 19.5 19.7 3.9 1 40.6 58.5 0

Median 14 4 1 1 4.5 2.5 0

1 1 4 1 1 1 2 0 0

1 2 4 1 1 1 2 0 0

1 3 6 5 2 1 10 4 0

1 4 5 4 1 1 2 2 0

2 1 4 1 1 1 2 8 0

2 2 4 1 1 1 2 0 0

2 3 6 1 1 1 2 0 0

2 4 7 198 1 1 382 0 0

3 1 6 1 3 1 2 24 0

3 2 16 47 11 1 123 139 0

3 3 10 61 4 1 195 37 0

3 4 20 29 1 1 71 3 0

3 5 20 50 1 1 115 14 0

3 6 7 17 17 1 40 446 0

3 7 14 1 3 1 2 100 0

3 8 8 16 1 1 31 17 0

3 9 22 26 1 1 74 7 0

3 10 9 1 1 1 2 0 0

3 11 9 4 3 1 4 100 0

3 12 10 1 2 1 2 22 0

3 13 16 11 3 1 27 92 0

3 14 14 77 2 1 174 136 0

3 15 14 1 1 1 2 5 0

3 16 33 65 5 1 188 62 0

3 17 32 63 1 1 168 2 0

3 18 20 22 11 1 26 247 0

1 to 4 is provided in the online appendix for Gabriel et al. (2010), while the rest is new test
problems. All tests were conducted on a computer with 2.34 GHz processor and 23.55 GB
memory. The algorithm was implemented with MATLAB (ver. 7.0) and GAMS (ver. 23.6)
interfacing where GAMS used Xpress-MP for its MILP solver. Test runs using more than
10 hours were stopped, giving rise to “n/a” in the result tables.

Table 5 lists the number of subdomains and the number of sampling and branching at-
tempts for the alternative algorithms. Results are given for the original static algorithm

20 Ann Oper Res (2013) 210:5–31

Table 5 (Continued)

Gr ID # subdomains # samplings

True Stat Dyn Dyn ws Stat Dyn Dyn ws

4 1 38 4 13 1 15 149 0

4 2 41 1 35 1 1 708 0

4 3 27 1 29 1 1 831 0

4 4 12 99 35 1 223 395 0

4 5 52 2 1 1 1 6 0

4 6 6 12 13 1 48 502 0

4 7 13 20 52 1 39 552 0

4 8 60 105 3 1 259 70 0

4 9 7 1 2 1 2 58 0

4 10 33 41 5 1 97 33 0

4 11 24 14 5 1 12 138 0

4 12 15 24 3 1 47 0 0

4 13 28 79 5 1 206 36 0

5 1 16 19 2 1 37 2 0

5 2 6 12 2 1 23 2 0

5 3 6 1 1 1 2 6 0

5 4 11 2 1 1 3 0 0

5 5 42 33 2 1 78 2 0

5 6 92 22 1 1 43 0 0

5 7 21 9 1 1 23 0 0

5 8 42 26 1 1 51 0 0

5 9 21 3 1 1 5 0 0

5 10 23 24 1 1 49 0 0

6 1 n/a 1 1 1 2 0 0

6 2 n/a 3 1 1 5 5 0

6 3 n/a 2 1 1 3 0 0

6 4 n/a 1 1 1 2 0 0

6 5 n/a 1 1 1 2 0 0

6 6 n/a 1 1 1 2 0 0

6 7 n/a 1 1 1 2 0 0

6 8 n/a 1 1 1 2 0 0

6 9 n/a 2 1 1 3 0 0

6 10 n/a n/a n/a 1 n/a n/a 0

7 1 n/a 3 1 1 5 0 0

7 2 n/a 5 1 1 9 2 0

7 3 n/a 1 3 1 4 59 0

7 4 n/a 2 5 1 3 62 0

7 5 n/a 10 5 1 19 41 0

7 6 n/a 7 1 1 19 0 0

7 7 n/a 1 1 1 2 0 0

7 8 n/a 1 3 1 2 34 0

Ann Oper Res (2013) 210:5–31 21

Table 5 (Continued)

Gr ID # subdomains # samplings

True Stat Dyn Dyn ws Stat Dyn Dyn ws

7 9 n/a 1 1 1 2 0 0

7 10 n/a 1 1 1 2 2 0

7 11 n/a 2 2 1 3 6 0

7 12 n/a 1 1 1 2 0 0

7 13 n/a 2 2 1 4 20 0

7 14 n/a 1 1 1 2 0 0

7 15 n/a 1 1 1 2 0 0

7 16 n/a 3 1 1 3 0 0

7 17 n/a 2 1 1 3 0 0

7 18 n/a 1 1 1 2 0 0

7 19 n/a 26 1 1 34 0 0

7 20 n/a 37 3 1 55 17 0

7 21 n/a 5 1 1 7 2 0

7 22 n/a 40 2 1 121 44 0

7 23 n/a 12 3 1 87 58 0

7 24 n/a 1 1 1 2 0 0

7 25 n/a 1 1 1 2 0 0

7 26 n/a 1 1 1 2 0 0

7 27 n/a 10 4 1 27 45 0

7 28 n/a 68 1 1 313 0 0

7 29 n/a 53 1 1 111 4 0

7 30 n/a 53 1 1 116 0 0

7 31 n/a 72 2 1 147 36 0

7 32 n/a 12 4 1 30 47 0

7 33 n/a 65 2 1 152 50 0

7 34 n/a 5 4 1 10 9 0

7 35 n/a 75 1 1 156 0 0

7 36 n/a 1 1 1 2 0 0

7 37 n/a n/a n/a 1 n/a n/a 0

7 38 n/a n/a 1 1 n/a 0 0

7 39 n/a n/a 1 1 n/a 0 0

7 40 n/a n/a 1 1 n/a 0 0

(“Stat”) as in Gabriel et al. (2010) and the dynamic algorithm with and without warm-
starting the Benders algorithm with the solution from Lagrangean relaxation (“Dyn ws” and
“Dyn”, respectively). For the dynamic algorithm the number of subdomains corresponds
to leaf nodes in the branch-and-bound tree, while in the static algorithm subdomains are
identified by comparing (λT, b̄T, b̃T) as described in Gabriel et al. (2010). We observe that
the dynamic algorithm reduces the number of subdomains and samplings compared to the
static algorithm. In Table 6 the solution times for the same test problems and algorithms are
given. “Bounding time” covers the Lagrangean and Benders algorithms (Subroutines 1–2),
“Sampling time” sampling and branching the x-domain (Subroutine 3), and “Total time” is

22 Ann Oper Res (2013) 210:5–31

Ta
bl

e
6

So
lu

tio
n

tim
es

fo
rr

an
do

m
ge

ne
ra

te
d

te
st

pr
ob

le
m

so
lv

ed
by

st
at

ic
al

go
ri

th
m

an
d

dy
na

m
ic

al
go

ri
th

m
w

ith
ou

ta
nd

w
ith

w
ar

m
-s

ta
rt

(w
s)

.T
he

co
nv

ex
ity

of
α
(x

)
is

ch
ec

ke
d

th
ro

ug
h

pl
ot

tin
g,

an
d

is
th

er
ef

or
e

on
ly

av
ai

la
bl

e
fo

r
2-

di
m

en
si

on
al

pr
ob

le
m

s.
B

ou
nd

in
g

tim
e

co
ve

rs
B

en
de

rs
an

d
L

ag
ra

ng
ea

n
al

go
ri

th
m

,S
am

pl
in

g
tim

e
is

tim
e

fo
r

sa
m

pl
in

g
an

d
br

an
ch

in
g

w
hi

le
To

ta
lt

im
e

is
th

e
su

m
B

ou
nd

in
g

an
d

Sa
m

pl
in

g.
M

ea
n

an
d

m
ed

ia
n

va
lu

es
co

ve
rs

al
lt

es
tp

ro
bl

em
s

th
at

w
er

e
so

lv
ed

by
al

lt
hr

ee
al

go
ri

th
m

s.
A

ll
tim

es
in

se
co

nd
s

G
r

ID
C

on
ve

x
α
(x

)?
To

ta
lt

im
e

Sa
m

pl
in

g
tim

e
B

ou
nd

in
g

tim
e

St
at

D
yn

D
yn

w
s

St
at

D
yn

D
yn

w
s

St
at

D
yn

D
yn

w
s

M
ea

n
61

4.
03

29
6.

23
42

.3
4

50
5.

43
11

0.
83

0
10

8.
6

18
5.

4
42

.3
4

M
ed

ia
n

11
3.

78
61

.3
7

2.
64

85
.5

7
10

.4
7

0
36

.8
5

37
.9

3
2.

64

1
1

Y
es

3.
65

0.
86

0.
78

2.
62

0
0

1.
03

0.
86

0.
78

1
2

Y
es

3.
08

0.
84

0.
78

2.
38

0
0

0.
7

0.
84

0.
78

1
3

N
o

53
.8

3
7.

15
0.

71
45

.9
8

4.
45

0
7.

85
2.

71
0.

71
1

4
N

o
21

.9
7

3.
74

0.
78

13
.7

2
2.

22
0

8.
25

1.
52

0.
78

2
1

n/
a

3.
69

18
.3

1
0.

81
2.

36
9

0
1.

33
9.

31
0.

81
2

2
n/

a
3.

23
6.

41
0.

8
2.

24
0

0
0.

99
6.

41
0.

8
2

3
n/

a
3.

25
3.

65
0.

73
2.

26
0

0
0.

99
3.

65
0.

73
2

4
n/

a
43

72
.4

10
.9

5
0.

79
34

61
.7

0
0

91
0.

7
10

.9
5

0.
79

3
1

n/
a

3.
72

66
.0

7
0.

78
2.

59
29

.0
1

0
1.

12
37

.0
6

0.
78

3
2

n/
a

60
2.

74
30

8.
42

0.
83

52
6.

43
16

7.
58

0
76

.3
1

14
0.

84
0.

83
3

3
n/

a
94

9.
43

80
.5

4
0.

86
85

6.
59

43
. 9

9
0

92
.8

4
36

.5
5

0.
86

3
4

n/
a

35
7.

67
6.

72
0.

78
30

8.
12

3.
66

0
49

.5
5

3.
06

0.
78

3
5

n/
a

58
9.

89
30

.8
3

0.
84

50
2.

13
16

.7
0

87
.7

6
14

.1
3

0.
84

3
6

n/
a

20
4.

17
91

6.
14

0.
79

17
8.

06
54

3.
31

0
26

.1
1

37
2.

83
0.

79
3

7
n/

a
3.

67
26

8.
67

0.
84

2.
54

12
7.

19
0

1.
13

14
1.

48
0.

84
3

8
n/

a
19

1.
79

39
.6

4
0.

77
14

6.
61

21
.0

1
0

45
.1

8
18

.6
3

0.
77

3
9

n/
a

37
3.

93
14

.2
1

0.
85

32
5.

22
8 .

64
0

48
.7

1
5.

57
0.

85
3

10
n/

a
2.

99
1.

31
0.

85
2.

58
0

0
0.

4
1.

31
0.

85
3

11
n/

a
34

.6
25

8.
38

1.
04

21
.7

2
12

5.
08

0
12

.8
8

13
3.

3
1.

04
3

12
n/

a
4.

78
59

.8
4

0.
78

2.
51

27
.3

3
0

2.
26

32
.5

1
0.

78
3

13
n/

a
13

5.
42

20
4.

19
0.

89
11

6.
71

11
2.

34
0

18
.7

1
91

.8
5

0.
89

Ann Oper Res (2013) 210:5–31 23

Ta
bl

e
6

(C
on

ti
nu

ed
)

G
r

ID
C

on
ve

x
α
(x

)?
To

ta
lt

im
e

Sa
m

pl
in

g
tim

e
B

ou
nd

in
g

tim
e

St
at

D
yn

D
yn

w
s

St
at

D
yn

D
yn

w
s

St
at

D
yn

D
yn

w
s

3
14

n/
a

93
8.

08
31

4.
31

0.
84

78
4.

07
17

1.
5

0
15

4.
01

14
2.

81
0.

84
3

15
n/

a
2.

93
11

.2
9

0.
82

2.
52

6.
07

0
0.

41
5.

22
0.

82
3

16
n/

a
93

8.
34

13
7.

76
0.

76
82

4.
76

76
.3

4
0

11
3.

58
61

.4
3

0.
76

3
17

n/
a

86
2.

79
5.

93
0.

83
73

3.
41

2.
5

0
12

9.
38

3.
43

0.
83

3
18

n/
a

22
3.

64
59

3.
27

0.
91

15
2.

38
30

3.
82

0
71

.2
6

28
9.

45
0.

91

4
1

n/
a

74
.5

5
37

0.
99

0.
93

67
.1

6
19

5.
94

0
7.

39
17

5.
05

0.
93

4
2

n/
a

2.
8

22
86

.5
2

1.
69

1.
93

89
1.

61
0

0.
87

13
94

.9
1

1.
69

4
3

n/
a

2.
68

22
39

.2
5

1.
69

1.
74

10
60

.1
0

0.
94

11
79

.1
5

1.
69

4
4

n/
a

12
76

.0
4

10
10

.3
1

1.
18

10
74

.4
51

3.
2

0
20

1.
64

49
7.

11
1.

18
4

5
n/

a
13

.1
9

20
.1

4
0.

88
4.

86
7.

45
0

8.
33

12
.6

9
0.

88
4

6
n/

a
25

0.
85

11
00

.4
5

0.
81

21
3.

46
60

9.
88

0
37

.3
9

49
0.

57
0.

81
4

7
n/

a
23

1.
46

15
67

.4
6

0.
87

18
0.

94
70

3.
81

0
50

.5
2

86
3.

65
0 .

87
4

8
n/

a
13

66
.1

7
26

9.
18

1.
8

11
58

.9
90

.5
1

0
20

7.
27

17
8.

67
1.

8
4

9
n/

a
16

.2
1

17
9.

64
1.

02
8.

53
73

.5
9

0
7.

68
10

6.
05

1.
02

4
10

n/
a

51
4.

46
12

5.
42

1.
92

42
7.

97
43

.0
6

0
86

.4
9

82
.3

7
1.

92
4

11
n/

a
22

7.
28

29
5.

99
0.

97
12

8.
81

17
6.

47
0

98
.4

7
11

9.
52

0.
97

4
12

n/
a

28
4.

97
2.

53
0.

81
22

1.
23

0
0

63
.7

4
2.

53
0.

81
4

13
n/

a
11

05
.8

8
12

3.
33

2.
12

95
4.

53
44

.8
6

0
15

1.
35

78
.4

8
2.

12

5
1

N
o

19
85

.5
2

25
1.

12
30

.4
7

17
17

.4
15

7.
75

0
26

8.
12

93
.3

7
30

.4
7

5
2

Y
es

13
72

.7
6

29
4.

16
30

.2
2

10
77

14
9.

88
0

29
5.

76
14

4.
28

30
.2

2
5

3
N

o
10

4
66

9.
86

30
.4

92
.2

4
46

1.
78

0
11

.7
6

20
8.

08
30

.4
5

4
Y

es
23

1.
12

14
8.

27
30

.5
6

13
7.

98
0

0
93

.1
4

14
8.

27
30

.5
6

5
5

N
o

43
07

.9
4

59
6.

21
31

.9
6

38
06

.4
15

6.
53

0
50

1.
54

43
9.

68
31

.9
6

5
6

Y
es

24
18

.8
2

13
4.

59
30

.7
20

94
.5

0
0

32
4.

32
13

4.
59

30
.7

5
7

N
o

13
39

.7
3

18
0.

39
34

. 5
10

83
.8

0
0

25
5.

93
18

0.
39

34
.5

24 Ann Oper Res (2013) 210:5–31

Ta
bl

e
6

(C
on

ti
nu

ed
)

G
r

ID
C

on
ve

x
α
(x

)?
To

ta
lt

im
e

Sa
m

pl
in

g
tim

e
B

ou
nd

in
g

tim
e

St
at

D
yn

D
yn

w
s

St
at

D
yn

D
yn

w
s

St
at

D
yn

D
yn

w
s

5
8

Y
es

28
78

.0
6

12
8.

22
30

.4
7

24
96

.2
0

0
38

1.
86

12
8.

22
30

.4
7

5
9

Y
es

36
5

16
5.

89
30

.3
7

22
6.

44
0

0
13

8.
56

16
5.

89
30

.3
7

5
10

N
o

27
04

.9
8

33
.5

2
32

.3
6

23
73

.9
0

0
33

1.
08

33
.5

2
32

.3
6

6
1

n/
a

58
.1

7
42

.8
2

4.
11

16
.6

0
0

41
.5

7
42

.8
2

4.
11

6
2

n/
a

87
.1

3
17

0.
17

4.
28

41
.5

9
42

.5
8

0
45

.5
4

12
7.

59
4.

28
6

3
n/

a
11

5.
3

58
.3

7
4.

08
24

.6
3

0
0

90
.6

7
58

.3
7

4.
08

6
4

n/
a

52
.6

4
38

.3
2

4.
26

16
.3

7
0

0
36

.2
7

38
.3

2
4.

26
6

5
n/

a
39

.9
3

30
.8

7
4.

31
16

.6
1

0
0

23
.3

2
30

.8
7

4.
31

6
6

n/
a

52
.6

6
45

.0
5

4.
33

16
.3

5
0

0
36

.3
2

45
.0

5
4.

33
6

7
n/

a
52

.4
4

37
.5

5
3.

99
16

.4
0

0
36

.0
4

37
.5

5
3.

99
6

8
n/

a
41

.9
4

29
.7

2
4.

13
16

.3
3

0
0

25
.6

2
29

.7
2

4.
13

6
9

n/
a

65
.5

24
.9

1
4.

04
24

.6
6

0
0

40
.8

4
24

.9
1

4.
04

6
10

n/
a

n/
a

n/
a

3.
97

n/
a

n/
a

0
n/

a
n/

a
3.

97

7
1

Y
es

11
2.

27
12

.0
5

2.
99

78
.8

9
0

0
33

.3
8

12
.0

5
2.

99
7

2
Y

es
16

9.
52

30
.0

7
2.

95
13

5.
99

12
.0

9
0

33
.5

3
17

.9
8

2.
95

7
3

Y
es

75
.9

1
76

1.
02

2.
94

62
.4

7
37

4.
09

0
13

.4
4

38
6.

93
2.

94
7

4
Y

es
66

.3
1

76
9.

7
2.

95
45

.2
7

38
1.

47
0

21
.0

5
38

8.
23

2.
95

7
5

Y
es

35
8.

2
54

2.
91

3.
06

28
8.

53
24

5.
89

0
69

.6
7

29
7.

02
3.

06
7

6
Y

es
40

2.
86

16
.1

7
3.

43
31

8.
02

0
0

84
.8

4
16

.1
7

3.
43

7
7

Y
es

26
.4

5
13

.2
2

3.
22

14
.3

3
0

0
12

.1
3

13
.2

2
3.

22
7

8
Y

es
39

.6
4

77
7.

8
3 .

15
23

.7
7

32
5.

77
0

15
.8

7
45

2.
03

3.
15

7
9

Y
es

36
.3

15
.6

5
3.

26
21

.2
8

0
0

15
.0

2
15

.6
5

3.
26

7
10

Y
es

30
.3

7
50

.2
7

3.
21

19
.1

21
.2

1
0

11
.2

7
29

.0
6

3.
21

7
11

Y
es

33
.5

6
66

.5
2

2.
6

15
.9

2
31

.8
7

0
17

.6
4

34
.6

6
2.

6
7

12
Y

es
22

.3
1

13
.3

2.
73

10
.8

0
0

11
.5

1
13

.3
2.

73

Ann Oper Res (2013) 210:5–31 25

Ta
bl

e
6

(C
on

ti
nu

ed
)

G
r

ID
C

on
ve

x
α
(x

)?
To

ta
lt

im
e

Sa
m

pl
in

g
tim

e
B

ou
nd

in
g

tim
e

St
at

D
yn

D
yn

w
s

St
at

D
yn

D
yn

w
s

St
at

D
yn

D
yn

w
s

7
13

Y
es

35
.9

2
21

5.
91

2.
6

21
.4

1
10

6.
08

0
14

.5
1

10
9.

83
2.

6
7

14
Y

es
22

.3
6

10
.9

7
2.

58
10

.7
8

0
0

11
.5

8
10

.9
7

2.
58

7
15

Y
es

26
.6

5
16

.8
5

2.
6

11
.1

4
0

0
15

.5
16

.8
5

2.
6

7
16

Y
es

35
.9

5
15

.6
3

2.
63

21
.3

3
0

0
14

.6
2

15
.6

3
2.

63
7

17
Y

es
34

.2
5

14
.3

1
2.

69
16

.1
2

0
0

18
.1

3
14

.3
1

2.
69

7
18

Y
es

22
.3

3
12

.6
1

2.
61

10
.8

0
0

11
.5

3
12

.6
1

2.
61

7
19

Y
es

33
5.

77
15

.0
5

2.
7

18
2.

85
0

0
15

2 .
92

15
.0

5
2.

7
7

20
Y

es
40

4.
77

17
0.

31
2.

54
29

4.
86

90
.3

5
0

10
9.

91
79

.9
6

2.
54

7
21

Y
es

69
.0

7
35

.4
8

3.
84

40
.9

3
11

.9
3

0
28

.1
4

23
.5

4
3.

84
7

22
Y

es
22

22
.4

1
45

4.
72

3.
65

19
86

21
8.

75
0

23
6.

41
23

5.
97

3.
65

7
23

Y
es

22
82

.7
69

1.
04

3.
07

21
47

33
5.

19
0

13
5.

7
35

5.
85

3.
07

7
24

Y
es

22
.1

9
12

.4
7

3.
75

11
.5

8
0

0
10

.6
1

12
.4

7
3.

75
7

25
Y

es
26

15
.8

7
3.

62
11

.7
4

0
0

14
.2

6
15

.8
7

3.
62

7
26

Y
es

25
.8

8
15

.8
7

3.
12

11
.6

9
0

0
14

.2
15

.8
7

3.
12

7
27

Y
es

68
8.

69
52

1.
51

3.
66

60
0.

03
27

5.
15

0
88

.6
6

24
6.

36
3.

66
7

28
Y

es
30

73
.9

7
16

.1
6

3.
9

28
87

.4
0

0
18

6.
57

16
.1

6
3.

9
7

29
Y

es
10

15
.6

8
62

.9
1

3.
59

87
4.

39
27

.7
8

0
14

1.
29

35
.1

3
3.

59
7

30
Y

es
10

39
.4

3
14

3.
74

91
4.

59
0

0
12

4.
84

14
3.

74
7

31
Y

es
27

08
.8

7
65

5.
22

2.
64

23
12

.6
19

3.
22

0
39

6.
27

46
2

2.
64

7
32

Y
es

55
0.

99
43

5.
16

2.
65

43
3.

41
24

9.
03

0
11

7.
58

18
6.

13
2.

65
7

33
Y

es
27

48
.0

8
75

2.
89

2.
87

24
23

.5
28

9.
52

0
32

4.
58

46
3.

37
2.

87
7

34
Y

es
70

.9
4

11
3.

12
2.

69
59

.4
5

47
.9

1
0

11
.5

65
.2

1
2.

69
7

35
Y

es
10

82
.7

8
11

.6
6

2.
54

94
2.

78
0

0
14

0
11

.6
6

2.
54

7
36

N
o

32
73

.7
9

44
56

.4
1

34
85

.4
5

14
87

.5
0

0
17

86
.2

9
44

56
.4

1
34

85
.4

5
7

37
N

o
n/

a
n/

a
61

41
.1

9
n/

a
n/

a
0

n/
a

n/
a

61
41

.1
9

7
38

N
o

n/
a

61
34

.1
2

61
34

.5
2

n/
a

0
0

n/
a

61
34

.1
2

61
34

.5
2

7
39

N
o

n/
a

33
72

.8
2

24
07

.1
5

n/
a

0
0

n/
a

33
72

.8
2

24
07

.1
5

7
40

N
o

n/
a

24
14

.4
4

18
01

.4
2

n/
a

0
0

n/
a

24
14

.4
4

18
01

.4
2

26 Ann Oper Res (2013) 210:5–31

the sum of the two. The dynamic algorithm shows a significant reduction in solution time
compared to the static algorithm, mainly caused by a major reduction in “Sampling time”.
This corresponds well to the reduction in number of subdomains and sampling, and shows
that the gain from fewer subdomains because of dynamic branching is larger than the added
work on computing bounds. We observe that including the warm-start of the Benders al-
gorithm makes the dynamic algorithm able to solve the problem in the root node for all
test problems, also those with non-convex α(x), which indicates that Lagrangean relaxation
gives a very strong lower bound for the problem. We have not been able to prove that this
result is guaranteed for the problem class in general. The tables also show that the dynamic
algorithm with warm-start solves all test problems, while the dynamic algorithm without
warm-start leaves two problems unsolved and the static leaves five unsolved due to long
solution times.

3.2 Application to a natural gas supply chain

3.2.1 Background

The presented algorithm is tested on a stochastic two-stage problem from the Norwegian
natural gas supply chain. For this problem we use the scenario decomposition described
earlier. Because of high investment costs thorough planning is required for field and in-
frastructure developments in the natural gas industry. This planning typically has a bilevel
structure where the investment level should be coordinated within the network, taking into
account the competitive behavior of multiple producers in the operational level. Further, the
investments are binary decisions taken under both long-term and operational uncertainty.

3.2.2 Model description

The model presented here is a MPEC that can be written on this form:

min
x,y

cTx + dTy

s.t. Qx ≤ q

y ∈ S(x)

(10)

where x ∈ Znx , y ∈ Rny , and

S(x) =
⎧
⎨

⎩
y

0 ≤ z ⊥ My + Nx − k ≥ 0
0 ≤ y ⊥ Ey + e − MTz ≥ 0
Ax + By ≥ a

⎫
⎬

⎭
(11)

The upper-level takes the perspective of a central planner making binary decisions on
which fields and pipelines to invest in and when to invest. These decisions are represented
by x. The investments have investment costs, c, and there can be dependencies between the
possible investments given by Qx ≤ q . The central planner maximizes the long term profits
generated in the supply chain taking into account the short term operations, y.

For the lower-level problem we use a multi-period version of the model by Midthun
(2007) with some extension to facilitate a connection to the upper-level decisions. Midthun
(2007) describes a stochastic mixed complementarity problem where several producers
make production decisions, trade in a transportation market, deliver natural gas in long term
contracts and sell natural gas spot. The producers maximize their profit consisting of natural
gas sales income, transportation costs and production cost. The natural gas spot market has

Ann Oper Res (2013) 210:5–31 27

Fig. 4 Overview over natural
gas value chain model

exogenously given stochastic prices and delivery obligations in contracts are stochastic. The
independent system operator (ISO) routes the gas and makes transportation capacity avail-
able in the transportation market according to the physical capacities of the network. The
market for transportation capacity is modeled endogenously in two stages. In the primary
market large prequalified producers book capacity at a fixed price before the uncertainty is
resolved. In the secondary market the ISO offers spare capacity, the large producers trade
and the optimality conditions of a competitive fringe give a demand curve that clears the
market. One producer do not know the other producers’ primary booking in the second
stage, an assumption that makes it possible to formulate the whole operational level as a
Generalized Nash equilibrium. Figure 4 gives an overview over this model.

Midthun (2007) shows that a competitive transportation market where decisions partly is
taken under uncertainty gives some losses compared to a centralized coordination maximiz-
ing the social surplus of the supply chain. These losses are caused by excess transportation
booking that carries forward to excess production and sale. The investment decisions by a
centralized upper level planner in our model will typically search for network structures that
counteract these losses by providing a flexible network design.

3.2.3 Numerical results

Three small instances of this problem are solved by the dynamic DC-MPEC algorithm. Two
datasets (Datasets 1 and 2) are entirely synthetic, while the last (Dataset 3) have production
capacities from an extract of the existing fields. Each dataset have several instances with
different number of scenarios.

For the natural gas application, the main coordination of the dynamic DC-MPEC al-
gorithm is implemented in Matlab. Scenario decomposition was used for lower bounding,
implemented with Mosel/Xpress to solve subproblems. To speed up the upper bounding
the mixed complementarity problem from the lower-level was solved by GAMS/PATH and
provided an initial solution for the binary variables of the Benders subproblem solved with
GAMS/Xpress. As benchmark the whole bilevel problem is formulated as a single MILP
and solved with Mosel/Xpress.

Table 7 presents the datasets and results from the tests. The disjunctive constant C was
105 for Dataset 1 and 106 for Dataset 2 and 3. Dataset 1 and 2 were tested on a HP dl160 G3
with 2 × 3.0 GHz Intel E5472 Xeon processors and 16 GB RAM and Dataset 3 was tested
on a Pentium 4 with 3.6 GHz processor and 3.0 GB RAM.

28 Ann Oper Res (2013) 210:5–31

Ta
bl

e
7

N
um

er
ic

al
re

su
lts

fo
r

na
tu

ra
lg

as
ap

pl
ic

at
io

n.
T

hr
ee

da
ta

se
ts

ar
e

te
st

ed
,e

ac
h

fo
r

se
ve

ra
ld

if
fe

re
nt

nu
m

be
rs

of
sc

en
ar

io
s.

M
P

an
d

SP
gi

ve
th

e
di

m
en

si
on

of
th

e
va

ri
ab

le
ve

ct
or

s.
Fo

r
th

e
dy

na
m

ic
al

go
ri

th
m

w
ith

w
ar

m
-s

ta
rt

th
e

up
pe

r
an

d
lo

w
er

bo
un

d
an

d
so

lu
tio

n
tim

e
in

se
co

nd
s

is
re

po
rt

ed
.

Fo
r

th
e

be
nc

hm
ar

k,
X

pr
es

s
so

lv
in

g
(M

IL
P)

is
th

e
ob

je
ct

iv
e

va
lu

e
an

d
so

lu
tio

n
tim

e
in

se
co

nd
s

re
po

rt
ed

D
at

as
et

sc
en

M
P

x

SP
D

yn
am

ic
w

ith
w

ar
m

-s
ta

rt
B

en
ch

m
ar

k
y

z
b

U
B

L
B

T
im

e
O

bj
va

lu
e

T
im

e

1
10

12
32

4
60

4
68

8
1.

09
83

2E
6

1.
09

83
2E

6
11

.2
1.

09
83

2E
6

2.
1

1
15

12
48

4
90

4
10

28
1.

11
76

5E
6

1.
11

76
5E

6
12

.9
1.

11
76

5E
6

2.
2

1
20

12
64

4
12

04
13

68
1.

19
23

2E
6

1.
19

23
2E

6
14

.4
1.

19
23

2E
6

2.
2

1
25

12
80

4
15

04
17

08
1.

22
43

5E
6

1.
22

43
5E

6
16

.7
n/

aa
>

2
h

1
30

12
96

4
18

04
20

48
1.

26
05

7E
6

1.
26

05
7E

6
17

.5
n/

a
n/

a
1

10
0

12
32

04
60

04
68

08
1.

20
32

6E
6

1.
20

32
6E

6
50

.4
n/

a
n/

a
1

50
0

12
16

00
4

30
00

4
34

00
8

1.
14

88
8E

6
1.

14
88

8E
6

47
2.

2
n/

a
n/

a
1

10
00

12
32

00
4

60
00

4
68

00
8

1.
14

71
0E

6
1.

14
71

0E
6

74
54

.6
n/

a
n/

a

2
10

6
76

2
13

92
16

44
−4

.4
11

52
−4

.4
11

52
16

.9
−4

.4
11

52
1.

1
2

25
6

18
87

34
62

40
74

−4
.5

09
51

−4
.5

09
51

39
.4

−4
.5

09
51

3.
2

2
50

6
37

62
69

12
81

24
−4

.5
73

39
−4

.5
73

39
11

5.
7

−4
.5

73
39

6.
0

2
75

6
56

37
10

36
2

12
17

4
−4

.4
82

22
−4

.4
82

22
17

0.
8

−4
.4

82
22

11
.4

2
10

0
6

75
12

13
81

2
16

22
4

−4
.5

38
83

−4
.5

38
83

33
6.

2
−4

.5
38

83
16

.9
2

30
0

6
22

51
2

41
41

2
48

62
4

−4
.5

08
62

−4
.5

08
62

45
89

.0
−4

.5
08

62
12

8.
0

2
50

0
6

37
51

2
69

01
2

81
02

4
−4

.5
00

97
−4

.5
00

97
17

11
4.

4
−4

.5
00

97
41

4.
5

2
70

0
6

52
51

2
96

61
2

11
34

24
−4

.4
98

60
−4

.4
98

61
27

20
1.

4
−4

.4
98

61
64

7.
0

3
10

6
76

2
13

92
16

44
−0

.8
19

26
1

−0
.8

19
26

1
44

.6
−0

.8
19

26
1

2.
7

3
25

6
18

87
34

62
40

74
−0

.8
21

13
9

−0
.8

21
13

9
87

.8
−0

.8
21

13
9

36
.0

3
50

6
37

62
69

12
81

24
− 0

.7
66

76
6

−0
.7

66
76

6
23

4.
1

n/
ab

>
23

h
3

75
6

56
37

10
36

2
12

17
4

−0
.7

84
22

5
−0

.7
84

22
3

50
8.

6
n/

a
n/

a
3

10
0

6
75

12
13

81
2

16
22

4
−0

.7
83

51
5

−0
.7

83
51

5
70

7.
7

n/
a

n/
a

a T
he

be
nc

hm
ar

k
co

de
di

d
no

tc
om

pl
et

e
it

ru
nn

in
g

in
2

ho
ur

s,
so

w
e

st
op

pe
d

it

b
T

he
be

nc
hm

ar
k

co
de

di
d

no
tc

om
pl

et
e

it
ru

nn
in

g
in

23
ho

ur
s,

so
w

e
st

op
pe

d
it.

U
nt

il
th

en
,b

es
ts

ol
ut

io
n

an
d

be
st

bo
un

d
fo

un
d

w
er

e
0.

76
56

86
an

d
0.

76
67

66
,r

es
pe

ct
iv

el
y

Ann Oper Res (2013) 210:5–31 29

The benchmark was faster in the small instances, but our algorithm was able to solve
substantially larger instances for Datasets 1 and 3. It is not surprising to find the benchmark
faster on small instances, since our research code combining several software has a signifi-
cant overhead in data transfer. We observe that in all tests where the real optimal value was
known from the benchmark the dynamic DC-MPEC algorithm provided an optimal solution,
as expected based on the theory.

We have experienced challenges related to numerical stability in the testing of our algo-
rithm. In several occasions the solver provided a solution to a MILP problem, but when
asking the solver to fix the binary variables according to the solution and resolve, the
solver claimed the resulting LP to be infeasible. To overcome this situation the tests on
Datasets 2 and 3 were run without the presolve function activated in the Xpress solver
(www.gams.com/dd/docs/solvers/xpress.pdf) for upper bounding, and on Dataset 3 we also
had to use different values for MIP tolerance on different instances. Naturally, deactivat-
ing presolve gives a disadvantage to the dynamic DC-MPEC algorithm when it comes to
solution time.

4 Conclusions

We have presented a dynamic DC-MPEC algorithm to solve discretely constrained math-
ematical programs with equilibrium constraints (DC-MPEC) which is a class of bilevel
program with integer program in the upper-level and mixed complementary problem in the
lower-level. We develop a new branch-and-bound method for DC-MPEC problems applying
Benders decomposition and Lagrangean relaxation methods. We provide convergence the-
ory for the new method showing that it will find the global optimum and implement the new
dynamic DC-MPEC algorithm on a set of test problems for both convex and non-convex do-
mains. The numerical results show that the dynamic DC-MPEC algorithm outperforms the
static counterpart presented by Gabriel et al. (2010) due to reduced sampling and branching
efforts. The dynamic algorithm is further improved by warm-starting the Benders algorithm
with the solution found by Lagrangean relaxation. We enhance the new method with the sce-
nario decomposition method (Carøe and Schultz 1999) for two-stage stochastic DC-MPEC
problems with discrete probability space. Then we compare the stochastic DC-MPEC algo-
rithm with the single level approach by Fortuny-Amat and McCarl (1981) for a application
for the Norwegian natural gas value chain. These numerical results present the effective-
ness of our branch-and-bound algorithm and demonstrate the potential of the algorithm for
a decision support tool for upper-level planners whose decisions are discrete.

Acknowledgements The project is partially supported by the Research Council of Norway under grant
175967/S30.

Appendix

Theorem 2 The solution of (SP) from the Benders decomposition algorithm provides an
upper bound on zMILP = dTx +dTy for any given partition, and the optimal solution zMILP =
dTx∗ + dTy∗ for any partition where α(x) is convex.

Proof By the assumption (A2) any x(v) which is a feasible in (MP) is also feasible in
(MILP). For a given x(v) the feasible region of (SP) is identical to the feasible region for

http://www.gams.com/dd/docs/solvers/xpress.pdf

30 Ann Oper Res (2013) 210:5–31

the variables y, z, b̄ and b̃ of (MILP), which makes a solution of (SP) feasible in (MILP).
And since the function zup(x(v)) is identical to the objective function of (MILP), it is an upper
bound of (MILP). Benders (1962) proves that Benders decomposition algorithm converges
to the optimal solution in the case of a convex α(x). �

References

Audet, C., Savard, G., & Zghal, W. (2007). New branch-and-cut algorithm for bilevel linear programming.
Journal of Optimization Theory and Applications, 134, 353–370.

Bard, J. F., & Moore, J. T. (1990). A branch and bound algorithm for the bilevel programming problem. SIAM
Journal on Scientific and Statistical Computing, 11(2), 281–292.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Nu-
merische Mathematik, 4, 238–252.

Carøe, C. C., & Schultz, R. (1999). Dual decomposition in stochastic integer programming. Operations Re-
search Letters, 24, 37–45.

Colson, B., Marcotte, P., & Savard, G. (2007). An overview of bilevel optimization. Annals of Operations
Research, 153, 235–256.

Conejo, A. J., Castillo, E., Minguez, R., & García-Bertrand, R. (2006). Decomposition techniques in mathe-
matical programming: engineering and science application. Berlin: Springer. ISBN: 978-3-540-27685-
2.

Dempe, S. (2002). Foundations of bilevel programming. New York: Kluwer Academic.
DeNegre, S. T., & Ralphs, T. K. (2009). A branch-and-cut algorithm for integer bilevel linear programs.

Operations Research/Computer Science Interfaces, 47, 65–78.
Falk, J. E. (1969). Lagrange multipliers and nonconvex programs. SIAM Journal on Control, 7(4), 534–545.
Fortuny-Amat, J., & McCarl, B. (1981). A representation and economic interpretation of a two-level pro-

gramming problem. The Journal of the Operational Research Society, 32(9), 783–792.
Fukushima, M., & Lin, G.-H. (2004). Smoothing methods for mathematical programs with equilibrium con-

straints. In Proceedings of the ICKS’04 (pp. 206–213). Los Alamitos: IEEE Comput. Soc.
Gabriel, S. A., & Leuthold, F. U. (2010). Solving discretely-constrained MPEC problems with applications

in electric power markets. Energy Economics, 32(1), 3–14.
Gabriel, S. A., Shim, Y., Conejo, A. J., de la Torre, S., & Garcia-Bertrand, R. (2010). A Benders decom-

position method for discretely-constrained mathematical programs with equilibrium constraints with
applications in energy. The Journal of the Operational Research Society, 61(9), 1404–1419.

Geoffrion, A. M. (1974). Lagrange relaxation for integer programming. Mathematical Programming Study,
2, 82–114.

Hansen, P., Jaumard, B., & Savard, G. (1992). New branch-and-bound rules for linear bilevel programming.
SIAM Journal on Scientific and Statistical Computing, 13, 1194–1217.

Hu, J., Mitchell, J. E., Pang, J., Bennett, K. P., & Kunapuli, G. (2008). On the global solution of linear
programs with linear complementarity constraints. SIAM Journal of Optimization, 19(1), 445–471.

Labbé, M., Marcotte, P., & Savard, G. (1998). A bilevel model of taxation and its application to optimal
highway pricing. Management Science, 44(12), 1608–1622.

Luo, Z. Q., Pang, J. S., & Ralph, D. (1996). Mathematical programs with equilibrium constraints. Cambridge:
Cambridge University Press. ISBN: 0-521-57290-8.

Meng, Q., & Wang, X. (2011). Intermodal hub-and-spoke network design: incorporating multiple stakehold-
ers and multi-type containers. Transportation Research. Part B, 45(4), 724–742.

Meng, Q., Huang, Y., & Cheu, R. L. (2009). Competitive facility location on decentralized supply chains.
European Journal of Operational Research, 196, 487–499.

Mesbah, M., Sarvi, M., Ouveysi, I., & Currie, G. (2011). Optimization of transit priority in the transportation
network using a decomposition methodology. Transportation Research. Part C, 19, 363–373.

Midthun, K. T. (2007). Optimization models for liberalized natural gas markets. PhD thesis 2007:205. Trond-
heim, Norway: Norwegian University of Science and Technology. URL: http://ntnu.diva-portal.org/
smash/get/diva2:123659/FULLTEXT01.

Mitsos, A. (2010). Global solution of nonlinear mixed-integer bilevel programs. Journal of Global Optimiza-
tion, 47(4), 557–582.

Moore, J. T., & Bard, J. F. (1990). The mixed integer linear bilevel programming problem. Operations Re-
search, 38, 911–921.

Outrata, J., Kocvara, M., & Zowe, J. (1998). Nonsmooth approach to optimization problems with equilibrium
constraints: theory, applications and numerical results. Boston: Kluwer Academic. ISBN: 978-0-7923-
5170-2.

http://ntnu.diva-portal.org/smash/get/diva2:123659/FULLTEXT01
http://ntnu.diva-portal.org/smash/get/diva2:123659/FULLTEXT01

Ann Oper Res (2013) 210:5–31 31

Rockafellar, R. T., & Wets, R. J.-B. (1976). Nonanticipativity and l1-martingales in stochastic optimization
problems. Mathematical Programming Study, 6, 170–187.

Saharidis, G. K., & Ierapetritou, M. G. (2009). Resolution method for mixed bilevel linear problems based
on decomposition technique. Journal of Global Optimization, 44, 29–51.

Saharidis, G. K., & Ierapetritou, M. G. (2010). Improving Benders decomposition using maximum feasible
subsystem (MFS) cut generation strategy. Computers and Chemical Engineering, 34, 1237–1245.

Saharidis, G. K., Boile, M., & Theofanis, S. (2011). Initialization of the Benders master problem using valid
inequalities applied to fixed-charge network problems. Expert Systems with Applications, 38, 6627–
6636.

van Roy, T. J. (1983). Cross decomposition for mixed integer programming. Mathematical Programming, 25,
46–63.

van Roy, T. J. (1986). A cross decomposition algorithm for capacitated facility location. Operations Research,
34(1), 145–163.

Wang, D. Z. W., & Lo, H. K. (2008). Multi-fleet ferry service network design with passenger preferences for
differential services. Transportation Research. Part B, 42, 798–822.

Wen, U. P., & Yang, Y. H. (1990). Algorithms for solving the mixed integer two-level linear programming
problem. Computers and Operations Research, 17(2), 133–142.

	A branch-and-bound method for discretely-constrained mathematical programs with equilibrium constraints
	Abstract
	Introduction
	Dynamic algorithm
	Lower bounding
	Upper bounding
	Accelerating the Benders decomposition by including the lower bound
	Strong duality constraint

	Branch-and-bound
	Pseudocode for the algorithm
	Convergence of the dynamic algorithm
	Scenario decomposition

	Results
	Results on randomly generated data
	Application to a natural gas supply chain
	Background
	Model description
	Numerical results

	Conclusions
	Acknowledgements
	Appendix
	References

