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Abstract This paper introduces a new model and solution methodology for a real-world
production scheduling problem arising in the electronics industry. The production environ-
ment is a high volume, just-in-time, make-to-order facility with volatile demand over many
product families that are assembled on flexible lines. A distinguishing characteristic of the
problem is the presence of non-traditional sequence-dependant setup costs, which compli-
cate our ability to find high-quality solutions. The scheduling problem arose when product
variety exceeded the mix that the existing lines could accommodate. A nonlinear integer pro-
gramming formulation is presented for the problem of minimizing setup costs, and a greedy
randomized adaptive search procedure (GRASP) is developed to find solutions. To select
the GRASP parameter values, an efficient, space-filling experimental design method is used
based on nearly orthogonal Latin hypercubes. The proposed methodology is tested on ac-
tual factory data and compared to a prior heuristic presented in the literature; our heuristic
provides a cost savings in 7 out of the 10 cases examined, and an average improvement of
17.39 % which is shown to be highly statistically significant. This improvement is due in part
to the introduction of a pre-processing step to determine preferential and non-preferential
line assignment information.
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1 Introduction

The sequencing problem addressed in this paper derives from a production scheduling ap-
plication at a mass-customization, assemble-to-order electronics manufacturing facility. Al-
though this real-world scheduling problem can be roughly described as consisting of the
same three general steps as all scheduling problems, that of (1) the assignment of jobs to
production lines, (2) the sequencing of the jobs on the lines, and (3) the scheduling of the
exact times each job will be placed on and taken off each line within this sequence (Pinto
and Grossmann 1998), it has significant differences from scheduling problems considered in
the existing literature. To begin with, jobs are grouped by families and, rather than schedul-
ing individual jobs on a production line, we must schedule each family to be on the line,
meaning that all parts required to build any job in that family are placed on the production
line. Our problem also has multiple flexible production lines, where each line can hold the
parts for multiple families simultaneously so that jobs from any of these families may be
produced without requiring a setup. Setups are only required when jobs from a different
family, whose parts are not on the line, need to be produced.

Allahverdi et al. (2008) provide a good survey of production scheduling research that
pertains to minimizing setup times or costs; they also introduce new notation to describe
these problems. Using their notation, the problem modeled here would appear to be denoted
as P/SCsd,b/TSC which refers to a problem of scheduling batches of jobs with sequence-
dependant setup costs (SCsd,b) on parallel identical machines (P) with the goal of minimizing
total setup costs (TSC). Although this is the best available notation for our problem, using
it would mask two additional complications due to the factory’s use of product families and
flexible lines: (1) A setup on these flexible lines consists of removing one family from the
line while the line continues to produce jobs from the families remaining on the line during
the setup. This means that the sequence-dependant setups not only depend on the family
coming off the line and the family going on the line (traditional sequence-dependant setups)
but also on the families remaining on the line during the setup. It also results in no downtime
for setups. (2) Since multiple families are placed on a line simultaneously, the length of time
a family needs to spend on a line is not determined exclusively by the ‘batch size,’ i.e., the
number of jobs in that family, that needs to be produced. The implications of these, and
other, important differences are detailed in subsequent sections, but these differences make
modeling and solving the problem much more complex. To get a sense of how much more
difficult the problem becomes with these complexities, we note that the number of family
nodes required in the graph representation of our test problem is 100 times greater than the
number of family nodes that would be required if each production line held only one family
and the sequence-dependant setup costs were traditional in nature. We are not aware of
any production scheduling research that tackles problems with these characteristics without
resorting to serial decomposition.

In fact, the real-world problem investigated in this paper was previously addressed by
Monkman et al. (2005, 2008) who decomposed it into three separate scheduling steps in
which each production line was sequenced independently. Their decomposition approach
in the 2008 paper, herein referred to as the MMB heuristic, provides us with a benchmark
against which to compare our solutions. In this paper, we take an integrative approach that
assigns product families to lines and sequences them simultaneously. Our focus is on the
combined assignment and sequencing steps, which determines the total setup costs. The
third step of the scheduling procedure, which involves specifying when setups occur on
each line, does not affect setup costs and is therefore outside the scope of the proposed
scheduling methodology. However, since the output of the first two scheduling steps feeds
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into the third scheduling step, some considerations must be made in the assignment and
sequencing steps in anticipation of the time scheduling step. We present these considerations
where they appear in the model.

Given that sequence-dependent machine scheduling problems are strongly NP-hard and
our problem is a generalization of such problems, it is also strongly NP-hard. If our cur-
rent model could be solved to optimality it would dominate the MMB heuristic. Although
there has been much progress in solving large instances of difficult combinatorial optimiza-
tion problems, our initial experience with commercial software indicated that our new non-
linear integer programming (NLIP) model is not amendable to exact methods. Therefore,
we developed a greedy randomized adaptive search procedure (GRASP) (Feo et al. 1991;
Feo and Resende 1995) to find solutions to the assignment and sequencing steps of the
scheduling problem. In order to achieve the best possible performance of our GRASP, we
designed and executed an experiment using a nearly orthogonal Latin hypercube (NOLH)
design (Cioppa 2002; Cioppa and Lucas 2007) to determine the best parameters for the
GRASP. When compared to the MMB heuristic, the new GRASP provided a reduction in
setup costs in 7 out of 10 cases, with an average reduction of 17.39 % across all 10 cases.
Using a paired t-test, the average performance improvement of the GRASP results over the
MMB results was found to be highly statistically significant with a p-value of 0.0075.

The primary contributions of this paper are threefold: (1) We present a real-world produc-
tion sequencing problem that involves complexities leading to a new type of optimization
model. Our model most closely resembles an extension of the traveling purchaser problem
(Laporte et al. 2003), which can be described as a capacitated multiple traveling purchaser
problem, an example of which, to our knowledge, has not yet appeared in the literature;
(2) We describe a new GRASP that can accommodate nonlinear constraints. The authors are
only aware of a few previous instances where a GRASP was used for a nonlinear problem
(Bard 1997; Mavridou et al. 1998; Shen et al. 2008), but our problem is the only known
case where the nonlinear constraints cause feasibility issues during the solution construction
phase of the GRASP, a critical difficulty that must be overcome for our problem; and (3) We
demonstrate for the first time the use of an NOLH experimental design to determine the best
parameters for a GRASP.

In the next section, we outline the production scheduling problem that motivated our re-
search. Section 3 contains the development of the NLIP formulation. In Sect. 4, we describe
the GRASP and provide an example to demonstrate how the procedure works. The NOLH
experiments conducted to arrive at the parameter values used in the subsequent analyses are
discussed in Sect. 5 along with the results obtained by comparing its performance with the
MMB heuristic. Several observations are made in Sect. 6 on the effectiveness of the two
procedures and recommendations are given for future research.

2 Production scheduling problem description

In this section we provide all the details of the production environment, the product, and the
production line configuration that make this a particularly complex production scheduling
problem. We then give a concise problem statement that provides the foundation for the
modeling and solution sections that follow. Additional rules and policies required by the
manufacturer regarding their production schedules are presented and incorporated after the
initial model is formulated.
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2.1 Production environment, products, and production line configuration

The sponsoring company manufactures electronics products in a make-to-order fashion. In
doing so, they use just-in-time principles for bringing in raw materials, and promise their
customers that orders will be delivered within a short period of time. Demand is highly
variable and daily demand is comprised of a large volume of jobs, numbered in the tens of
thousands. To accommodate the high variability in demand and prevent the production lines
from running out of jobs to work on, the facility allows a small backlog of jobs to be carried
over from one eight-hour shift to the next. This backlog consists of jobs that have been
received by the factory but not yet produced at the end of a shift. The size of the backlog is
allowed to vary in order to absorb the fluctuations in demand, but the target average backlog
level is approximately one shift’s worth of production.

Orders arrive daily to the sales organization from a multitude of customers for many
different products. When the orders arrive they are given a timestamp and then processed
by the sales group. If indicated, an order is also processed by the engineering group. Once
the orders are fully processed, they are transferred to the production facility where they are
separated into jobs, with one job being one product. Jobs are downloaded into the factory’s
production system at the beginning of a shift and again every two hours during the shift.

Each product consists of one chassis (a case) and the component parts that are to be
assembled within the chassis. Customers are able to customize their orders by selecting the
chassis as well as the mix of parts to go in it. This results in a very high variety of possible
products that may be ordered. Therefore, the products are grouped into product families
based on the chassis. Each product family’s parts include the family’s unique chassis type as
well as all of the component parts from which a customer is allowed to choose when ordering
a product with that chassis. No two product families use identical groups of component parts;
some component parts are used by many families, some are used by only one family, and
many in between. Although there is a high variety of possible products, each production line
is configured in such a way that the products can flow down the line at a fairly constant pace.
Therefore, all jobs can be assumed to take roughly the same amount of time to assemble.

In order to accommodate the wide variety of products, the facility was designed with
multiple, identical, flexible production lines running in parallel. Each flexible line can hold
all the parts for several families simultaneously, so a line can be configured to produce
products from any of several families without requiring a setup. More specifically, each
production line has designated floor space at its head for several pallets of chassis to be
staged there. This allows the line worker to have easy access to whichever chassis is needed
for the next job to be produced. Similarly, boxes of the component parts for these families
are placed alongside the line so the needed parts for the job being produced can be readily
accessed. A depiction of a production line with three chassis areas, each of which would
hold a pallet of chassis for one family, is shown in Fig. 1. Just as there are spaces for only
a few chassis types to be placed on one line, there is limited space for component parts as
well, so only the parts for the families whose chassis are on the line are placed alongside the
line.

One special feature of this production line configuration is that it allows one family’s
chassis to be removed from the line, as well as all the component parts used only by that
family, without interfering with the production of jobs from the other families on the line.
This means that a setup can take place without causing production downtime. Specifically,
a setup consists of removing one family’s parts from the line that are not also required by any
of the families remaining on the line, and adding another family’s parts to the line that are
not already on the line. It is important to note, however, that downtime will only be avoided
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Fig. 1 Example of a single
production line configuration
with three chassis areas

if there is enough demand for the families that remain on the line during the setup to keep
the line busy during the setup. In addition, since each chassis area can be accessed by the
line worker during production, there is no advantage to having one family’s chassis in more
than one chassis area; in fact, it would be detrimental since the production line would then
accommodate fewer families.

The number of different families produced by the facility was historically small enough
that all families could be placed on at least one line simultaneously so any product from any
family could be produced without requiring a setup. Each incoming job could be routed to
the line (or one of the lines) that held that job’s family, and jobs routed to the same line were
produced in (FCFS) order based on the job’s timestamp. With this configuration, setups were
only needed in the relatively rare instances of drastic shifts in demand, new product family
introductions, or the end-of-life of a product family.

2.2 Problem statement

Although the factory was originally designed to operate without regularly scheduled setups,
in a very short period of time the number of product families increased sharply, nearly
doubling in the span of months. The first consequence was that setups were required since
there was no longer enough space to place all families on lines simultaneously. In addition,
it became clear that it was impossible to continue producing jobs in strict FCFS order since
there was simply not enough time in a shift to perform all the setups this would require. The
factory responded by effectively having two queues per line: a production queue for jobs
whose family was currently on the line, and a hold queue for jobs whose family was assigned
to the line but not currently on the line. Within each queue, jobs could be positioned in FCFS
order; however, with the addition of a hold queue, some jobs in the production queue would
be produced before jobs in the hold queue having an earlier timestamp.

Setups were originally introduced on an ad-hoc basis; when the production queue became
relatively small, or orders in the hold queue grew too old, a setup was performed. However,
without a formal plan for when to schedule these setups four problems began occurring:
(1) lines sometimes experienced unplanned downtime during a setup because they ran out of
jobs for the families remaining on the line during the setup; (2) the amount of work required
for setups was onerous when too many setups were called for; (3) some jobs remained
backlogged in a hold queue for too long resulting in an unacceptably late delivery to the
customer; and (4) lines occasionally ran out of parts for jobs, and there were too many of
other parts clogging the facility, because the JIT parts ordering system could not supply the
correct parts when setups were not predictable. This motivated the need for a production
scheduling method that could be used to determine when families should be placed on lines
while considering the many special requirements of the facility.

To better explain the type of schedule that the facility desired, Fig. 2 gives a pictorial
representation of a sample schedule for a single production line. The assumptions for this
example are that the line has three chassis areas, there are five families assigned to the line,
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Fig. 2 Sample schedule for product families A–E on a single line that can accommodate three families

and these families, listed from highest demand to lowest demand, are D, A, B, E, and C.
In the figure there are three rows, one representing each chassis area on the line. (Recall,
however, that there is only one assembly area on the line, as shown in Fig. 1, so as long as
there is at least one family on the line and there is demand for that family, the line can keep
running.) The x-axis is time, and each bar with a family name in it shows the time during
which that family’s chassis is in the designated chassis area and the component parts are
also on the line. A gap between the bars in a row indicates that a setup will occur at that
time, with the family to the left of the gap being removed from the line and the family to the
right of the gap being added. We can also see, by looking at the bars above and/or below a
gap, which families will remain on the line during that setup. For example, during the first
setup, which starts at 12:00 pm, family B is removed and family E is added, and families A
and D remain on the line so the line can continue processing jobs from these two families
during the setup. The circles at the top represent the groups of three families that are on the
line between setups and provide a visual example of the nodes we define in Sect. 3.1.

The primary goal of the facility in constructing the production schedule was to minimize
the amount of work required for all setups during the shift. This may seem counterintuitive
since a common goal in scheduling is to minimize setup times. However, since setups do
not cause production downtime, the only real goal or constraint regarding setup times is that
there must be enough time in the shift to perform all the required setups on each production
line (so the sum of the setup times on a single line cannot exceed the length of the production
shift). The amount of labor required for setups was not constrained. However, the factory’s
desire was to minimize the total required setup work since any excessive work not only
requires more labor but also causes extreme congestion in the areas between and in front of
the production lines where the setups actually take place. The best measure of work content
in a setup was the total number of parts that needed to be changed during the setup, which
we use as the setup cost. The fact that work content and setup times are positively correlated
does mean that achieving the objective of minimal setup costs will also achieve lower total
time spent on setups. However, one additional constraint is added to the model, described in
Sect. 3.2, to ensure that all required setups can be performed during the shift.

3 Model formulation

From the description of the scheduling problem, it should be clear that product families
are the items to be modeled rather than individual jobs, since setups occur only when the
families on a line change. Nevertheless, some consideration for the volume of individual
jobs to be produced per family must be given. One additional complication makes this more
difficult: demand is not fully known when the schedule must be constructed. At that time, the
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only demand known for sure for each family is the number of jobs in the backlog left over
from the previous shift (backlogged demand) which can vary significantly from shift to shift.
Because orders arrive every 2 hours during the day as well, some demand will arrive to the
factory and be produced on the same day. To account for both the backlog and the unknown
amount of demand that will arrive during the production shift, we used the actual backlog
plus the expected demand over one shift (based on the historic mean) as the total demand for
each family that should be considered during the scheduling process. In the context of the
model the term demand, when used alone, will denote this sum of the backlogged demand
and the expected demand.

For our problem, the three production scheduling steps are described as follows: Step 1
consists of assigning families to production lines; step 2 consists of sequencing sets of fami-
lies on each production line; and step 3 consists of specifying when the setups should occur.
Although all three steps are required to develop a complete production schedule, only steps 1
and 2 affect the setup costs. Therefore, our approach is to model steps 1 and 2 using a single
optimization model with the objective of minimizing setup costs. On the other hand, it is im-
portant to note that the output of each step affects the next: the assignments made in step 1
will constrain the possible sequences in step 2, and the sequences in step 2 will constrain
the times at which the setups can occur in step 3 and therefore constrain how much time
a family could be allowed to remain on the line. The relationship between steps 1 and 2 is
what motivates our combined model, and the subsequent relationship to step 3 requires some
consideration of time-scheduling in our assignment and sequencing model. These consider-
ations will be discussed further where they appear in the model.

3.1 Model components

In this section, we develop an optimization model for the assignment and sequencing por-
tions of the scheduling problem, incorporating all the information given above. In the next
section we discuss several additional rules imposed by the manufacturer and the constraints
that must be added to the model to enforce them.

Taking a network approach, we represent the problem as a set of paths in a graph G =
(V ,A), where the nodes in V represent each possible set of families that can be on a single
line simultaneously. In a solution, each path through G represents the sequence of sets of
families to be placed on one line during a shift. Therefore, the final number of paths equals
the number of production lines being scheduled. By design, all families that appear in at
least one node on a line’s path are the families that are assigned to that line.

The cost for each arc in set A is calculated as the cost incurred when a change is made
on a line from the families in the node at one end of the arc to the families in the node at the
other end of the arc. Since the cost is the number of parts that the sets of families across the
two nodes do not have in common, the graph is undirected. However, each path through the
graph will be directed since each path’s initial node in V is specified by the set of families
remaining on the line from the prior shift. Due to the nature of the setup costs, the arc costs
in G satisfy the triangle inequality (proof is in the Appendix).

These costs are non-traditional due to the fact that each setup depends on factors beyond
the characteristics of the families being removed from and added to the line. For example,
say a line can accommodate two families, where family A is the family being removed from
the line, family B is being added, and the number of parts that A and B do not have in
common is 25. The arc’s setup cost depends not only on A and B, but also on the family
remaining on the line (the second family currently on the line). If family C remains on the
line during the setup and has no parts in common with families A and B; then the setup cost
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is 25. However, if family D uses all the same parts as families A and B and is the family on
the line during the setup, the setup cost is 0 because family B’s parts are already on the line
and family A’s parts must remain on the line for family D. When we consider the fact that
the family remaining on the line must have been added to the line earlier on the path, we see
that each arc’s setup cost has dependencies that go beyond its origin node. Therefore, each
node that adds a new family can influence later arc costs.

Before introducing the model, it is important to note that at the beginning of a shift, a line
will still have families remaining on it from the end of the previous shift. Therefore, each
line’s path will begin at a different node in V . However, there is no restriction on which
node any line’s path ends; and a line’s path would rarely end where it began. Since we do
not know where any line’s path will end, it would be difficult to write the balance of flow
constraints correctly without an additional construct. We therefore introduce a dummy node
called the “depot” where each line’s path needs to begin and end. The arc costs to and from
the depot will all be zero, but additional constraints are needed to ensure that each line’s path
goes from the depot to the node containing the families that are on the line at the beginning
of the shift (remaining there from the end of the previous shift). Defining K as the set of all
production lines, the node that contains the families remaining on line k from the previous
shift will be denoted by vk for all k ∈ K . The depot node will be denoted by O , the set of
nodes V ∪ O will be denoted by V +, and the graph with the additional node and additional
arcs will be denoted by G+. Additional notation will be defined as it is used.

With the goal of minimizing the total setup costs, our objective function is

Minimize
∑

k∈K

∑

j∈V +

∑

i∈V +
xijkcij (1a)

where xijk is a decision variable equal to 1 if the arc from node i to node j is included on
the path for production line k, and 0 otherwise; xiik = 0 ∀i ∈ V +; and cij is the cost of the
arc from node i to node j .

The first set of constraints formalizes the idea of the assignment of families to lines.
Specifically, we need to ensure that a line’s path only includes nodes where all families in
the node are assigned to that line. To do this, we constrain the arcs on a path to include only
arcs that go to nodes containing families assigned to the line. We define the decision variable
ypk to be equal to 1 if product family p is assigned to line k, and 0 otherwise. This set of
constraints can then be written as

∑

i∈V +

∑

j∈Sp

xijk ≤ ∣∣V +∣∣ypk, ∀p ∈ P, k ∈ K (1b)

where P is the set of all product families and Sp is the set of all nodes in V that includes
product family p.

The flow balance requirements make up the next few sets of constraints.
∑

i∈V +
xOik = 1, ∀k ∈ K (1c)

xOvkk = 1, ∀k ∈ K (1d)
∑

i∈V +
xijk =

∑

i∈V +
xjik, ∀j ∈ V, k ∈ K (1e)

Constraints (1c) ensure that exactly one path leaves the depot for each line in K , and con-
straints (1d) ensure that the path for line k goes from the depot to the node with the families
remaining on the line from the prior shift, vk . Flow balance is maintained through all nodes
on each line’s path by constraints (1e).
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The next set of constraints eliminates subtours.
∑

i∈S

∑

j∈S

xijk ≤ |S| − 1, ∀S ⊆ V, 2 ≤ |S| ≤ |V |, k ∈ K (1f)

Note that a production line’s full path, which includes its depot node, is, by definition, a sub-
tour, so the subtour elimination constraints (1f) only apply to the nodes in V . In addition,
they have to be written for all |S| ≤ |V | rather than for all |S| ≤ |V |/2, which is more com-
mon, because the reduced set of constraints is not guaranteed to prevent subtours when all
the nodes in V are not required to be visited in a solution.

Next, we consider the demand for each family assigned to each line. The demand for
family p will be denoted by dp , with the unit of measure being jobs, and is equal to the
number of jobs that must be assigned to a production line. Although backlogged demand for
a family may be zero at times, the expected demand will always be positive, so dp , being
the sum of these values, is always positive. We also note that any jobs remaining in the
backlog do not retain their line assignment from the prior shift; backlogged jobs get a new
line assignment when a new schedule is constructed.

Letting the decision variables zpk equal the number of jobs of family p assigned to line
k, the first three sets of demand-related constraints are

∑

k∈K

zpk = dp, ∀p ∈ P (1g)

dpypk ≥ zpk, ∀p ∈ P, k ∈ K (1h)
∑

p∈P

zpk ≥ Lcap, ∀k ∈ K (1i)

where (1g) ensure that all demand for each family gets assigned to a line, (1h) ensure that no
demand is assigned to a line whose family has not been assigned to that line, and (1i) ensure
that the number of jobs assigned to a line is at least as large as the line’s capacity, denoted
by Lcap, in order to prevent unplanned downtime due to too little demand on the line. Recall
that the factory always maintains a backlog so constraints (1i) will not cause infeasibility.
We also note that since dp is always positive, constraints (1g) and (1h) guarantee that every
family will be assigned to a line. Since the portion of dp that makes it positive is an expected
value, it is actually possible to have zero backlogged demand and zero realized demand over
a shift for a given family. In this situation the setups performed to place this family on the
line during that shift would not have been necessary. This is a consequence of the demand
uncertainty at scheduling time. The factory was aware that maintaining the requirement that
a family be assigned to a line even when backlogged demand was zero could potentially
lead to an unnecessary setup (in the event that the realized demand was also zero), but they
preferred this risk to the alternative of not assigning that family to a line and forcing any
arriving demand to be backlogged an extra day.

The final set of demand-related constraints results from consideration of how the pro-
duction line sequences provided by the model’s solution constrain the time-scheduling step
(step 3 of schedule construction). To understand these constraints it is necessary to under-
stand in part the time-scheduling model that underlies step 3. To explain this further, we
refer back to Fig. 2. Notice the inclusion of italicized numbers above the time line markers.
The numbers 1 and 6 indicate the start and end of the shift, respectively. The 2 indicates the
time that the first setup begins and the 4 indicates the time the second setup begins, with the
3 and 5 indicating the end of these respective setups. Once the sequence is determined, the
time each individual family can spend on the line can no longer be adjusted freely within
the shift.
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To demonstrate this, consider family B. Since family B appears in only the first of the
three nodes in the sequence, the only way to maximize the amount of time it spends on
the line (increase the duration between 1 and 2 in the figure) is to compress the durations
from 3 to 4, and from 5 to 6, to zero. (The durations from 2 to 3 and from 4 to 5 cannot be
compressed since they constitute setups and eliminating them would change the sequence.)
So, at the extreme, the maximum time B could be allowed to spend on the line is the total
length of the shift (here eight hours) minus the time required for the two setups. Note that this
would result in eliminating any opportunity to produce jobs in families C and E. If family B
comprised a vast majority of the demand assigned to the line, this may be necessary to avoid
excessive backlogging of family B jobs; however, that would cause all demand associated
with families C and E to be backlogged. In addition, it might cause the line to produce so
much of the demand for families A and D earlier in the shift that there would not be enough
left to keep the line running during the two setup periods at the end of the shift, resulting
in unplanned downtime costs. Looking at family D there is no analogous problem, though,
because it appears in all the nodes on the line’s path so it can spend the entire shift on the
line.

This suggests that some consideration needs to be given to the relative amounts of de-
mand for each family assigned to a line when determining how many nodes a family appears
in on that line’s path. To ensure that each family has enough opportunity for its jobs to be
produced, during the time-scheduling step we allot the time that a family spends on the line
in proportion to the demand associated with that family. To allow the flexibility for the time-
scheduling step to be able to do this, it is sufficient to ensure that the proportion of nodes
in a line’s path in which a family appears is at least as large as the proportion of the total
line’s demand for that family. For example, consider a production line that can accommo-
date three families simultaneously and has five families assigned to it with the following
demands: dA = 5, dB = 10, dC = 15, dD = 25, dE = 45 (total demand = 100). If the path for
this line visits three nodes, then family E will need to appear in at least 45 % of those nodes,
i.e., in at least two of those nodes. For the other families, it will be sufficient for them to
only appear, at a minimum, in just one of the nodes, since each of their demand percentages
on the line is less than 1/3 or 33.3 %. The following constraints ensure this condition holds.

∑
i∈Sp

∑
j∈V + xijk

∑
i∈V

∑
j∈V + xijk

≥ zpk∑
l∈P zlk

, ∀p ∈ P, k ∈ K (1j)

Since the number of nodes visited on a line’s path, containing each family and in total, are
all functions of the decision variables, the ratio on the left-hand side of (1j) is nonlinear.
In addition, the amount of demand assigned to a line for each family and in total are all
functions of the decision variables, so the ratio on the right-hand side is nonlinear as well.
Constraints (1j) also ensure that a line’s path includes at least one node containing each of
the families assigned to that line.

To complete the basic formulation, constraints (1k) and (1l) are included to ensure that
all the x and y decision variables are binary, and all the z decision variables are integer.

xijk ∈ {0,1}, ∀i, j ∈ V +, k ∈ K (1k)

ypk ∈ {0,1}, zpk ∈ {0,1,2, . . . , dp}, ∀p ∈ P, k ∈ K (1l)

Model (1a)–(1l) satisfies the specific details and complications set forth in the problem de-
scription. As mentioned, however, the company had additional rules and policies that re-
quired several more constraints. The details are now given.
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3.2 Additional rules and associated constraints

There are three additional rules at the facility that must be reflected in the model. The first is
that only one family can be removed from a line during each setup, and consequently only
one can be added. This rule is motivated by the goal of keeping the production line running
at all times, even during setups. A line can continue production during setups as long as there
are enough jobs remaining for the families that stay on the line during the setup. Because
demand is not fully known when the schedule is constructed, whether or not a line will run
out of demand during a setup cannot be predicted. The fewer the number of families that
remain on the line during a setup, the more likely that the line will run out of jobs to produce
during a setup and incur unexpected downtime costs. The company placed a much higher
priority on avoiding unexpected downtime than any additional setup efforts this rule might
occasion. Its effect on the model is that the only arcs allowed in set A are arcs that connect
two nodes that differ by only one family.

The second additional rule places bounds on the number of families that can be assigned
to a line. A natural lower bound is the number of chassis areas on the line, since allowing a
chassis area to be left empty or allowing a family to be placed in two chassis areas will most
likely cause an additional setup somewhere else. This lower bound is denoted by Llow, and
the number of chassis areas on a line is the value that the manufacturer chose. The upper
bound is based on the amount of time setups take in relation to the length of a shift. The aim
is to ensure that (1) there will be sufficient time for all setups to occur, and (2) that the set of
families in each node will be given enough time on the line to make the setup worthwhile.
This upper bound is denoted by Lup. The value the company chose for Lup was roughly 2.5
times Llow, which they felt would keep the number of setups on any line to a manageable
number and therefore keep the time required for all setups on a line well under the length of
a shift. To enforce these bounds, we introduce the following constraints.

∑

p∈P

ypk ≤ Lup, ∀k ∈ K (1m)

∑

p∈P

ypk ≥ Llow, ∀k ∈ K (1n)

The third additional rule is designed to maintain the ability to reassign jobs from one
production line to another during a shift without changing the schedule. This gives the shift
supervisor the ability to make last minute changes if realized demand is drastically different
than expected for one or more families. The rule imposed by the company was that all
families with high expected demand must be placed on at least two lines and each line must
have at least two high-demand families assigned to it. With regard to the distribution of
demand across families, the factory observed that the 80/20 rule applied with roughly 20 %
of the families comprising about 80 % of the demand. Accordingly, the top few families were
labeled high runners and were required to be assigned to at least two lines. This rule had the
additional benefit of ensuring that families whose demand well exceeded the capacity of a
single production line would be assigned to more than one line. Defining Q as the subset of
families that were deemed high runners, the corresponding constraints are as follows.

∑

p∈Q

ypk ≥ 2, ∀k ∈ K (1o)

∑

k∈K

ypk ≥ 2, ∀p ∈ Q (1p)

This completes the model.
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3.3 Prior approaches and related literature

Loveland et al. (2007) were the first to address the production scheduling problem described
above. As a first cut, they assumed that setup costs were roughly sequence independent. This
led to the development of an IP formulation of the assignment step and the use of heuristics
and linear programming to solve the sequencing and time-scheduling steps, respectively.
A highlight of the paper was the discussion of how the approach was implemented by the
company.

The second approach, the MMB heuristic, appeared in Monkman et al. (2005, 2008).
There, the authors explicitly modeled the true sequence-dependant setup costs but decom-
posed the problem into the three separate scheduling steps using a different optimization
model for each. Since the setup costs depend on the first two steps of the scheduling prob-
lem and the second step depends on the first, the setup costs could not be minimized. In their
methodology, each production line was sequenced independently. They then demonstrated
how this approach yielded lower setup costs than the method presented by Loveland et al.
(2007) for all cases studied.

In theory, our approach should dominate the other two since first assigning families to
production lines and then separately sequencing them on each line does not even guarantee
local optimality. However, (1a)–(1p) results in a much larger model than can be solved to
optimality so any heuristic solution approach needs to be compared with the performance
and results provided by the MMB heuristic.

With respect to the general field of production planning and scheduling, it has long been
recognized that some amount of decomposition is the only practical way to find solutions
to most real-world problems. Starting with the groundbreaking work of Bitran and Hax
(1977), an enormous amount of literature has appeared describing hierarchical approaches
to planning, scheduling, sequencing, and control problems that arise in manufacturing. The
interested reader is referred to Kolisch (2001). Within the production planning and schedul-
ing literature, very few papers address the problem of scheduling batches of jobs on multiple
production lines with the goal of minimizing total setup costs (Allahverdi et al. 1999, 2008),
and none of those pertain to the situation where a line can accommodate multiple batches or
families at the same time. This generalization changes the problem significantly.

4 Solution methodology with example

For the real problem instances that we investigated the corresponding graph has 2606 nodes,
an incredibly large number of constraints, and over six million variables. Therefore, finding
optimal solutions with exact methods is not possible. In addition, the company required that
a schedule be produced in 30 minutes or less. In pursuing a heuristic solution strategy, our
goal was to develop a procedure that could find high quality solutions within this 30-minute
time limit.

As such, we chose to develop a GRASP due to the success of using this procedure for
the individual line sequencing component of the problem demonstrated in Monkman et al.
(2005, 2008). In addition, the straightforward nature of a GRASP allows it to be easily mod-
ified to accommodate changes in the business environment and makes it easily explainable
to the factory’s production schedulers. For the origins of GRASP and a review of applica-
tions, see Feo and Bard (1989), Feo et al. (1991), and Feo and Resende (1995). In the last
20 years, GRASP has proven useful in a wide variety of applications including vehicle rout-
ing, sequencing and scheduling, telecommunications, and genetic mapping, to name a few.
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Festa and Resende (2009a, 2009b) give a thorough bibliography of publications on GRASP
through 2008 and categorize them by algorithm information and by application area. Two
other papers demonstrating the breadth of applications using GRASP include Higgins et al.
(2008) on environmental investment decision making and Hirsch et al. (2007) who analyze
the relationship between drugs and adverse reactions. However, we are not aware of any
research articles that apply a GRASP to a nonlinear optimization problem where the model
is complex enough that feasibility cannot be maintained during initial solution construction.

4.1 GRASP outline

In general, a GRASP has two phases. In Phase 1, many feasible solutions are constructed by
adding one element at a time to a partial solution in a greedy fashion. The idea is to maintain
feasibility, except that instead of always adding the next lowest cost item, one is randomly
selected from a short list of the next few most attractive items. A percentage of solutions
with the best objective function values are saved from Phase 1 and put through Phase 2,
which is designed to achieve local optimality using neighborhood search. The solution with
the best objective function value at the end of Phase 2 is reported as the final solution.

The GRASP developed here generally follows this pattern but was altered slightly to
deal with the nonlinear constraints (1j), which make it impossible in Phase 1 to reliably
maintain feasibility. To overcome this difficulty, feasible solutions are built with respect
to all constraints except (1i) and (1j), the latter also being troublesome to satisfy during
construction. The result is checked for feasibility with respect to (1i) and (1j) and if not
feasible but easy to fix, the necessary effort is applied; otherwise it is discarded. This happens
before the end of Phase 1. In addition, a tie-breaking rule was developed in the case of
multiple arcs having the same lowest cost when constructing the list of arcs to randomly
choose from. A part commonality measure, PCM, was developed to give preference in the
case of ties to arcs whose families in the node at the end of the arc have the most parts in
common with each other. PCM is a static number calculated for each family node by taking
the sum of the number of families in the node that require each part and dividing the result
by the total number of parts required by at least one family in the node. The formula for
node n is as follows,

PCMn =
∑

p∈In

∑
j∈Gn

fpj

|Gn|
where In is the set of product families in node n, Gn is the set of all parts required by at least
one family in node n, and parameter fpj = 1 if product family p requires part j , 0 otherwise.
Given that each node represents three families, the value of PCMn will be between 1 and 3.
The logic behind this tie-breaking rule is to give preference to nodes that potentially will
have lower cost arcs leaving it since, when PCMn is high, the cost of taking any family off
line n will be relatively low.

The GRASP we designed required the specification of four parameters: NA, NSOL, NSK,
and MMV. The first, NA, is the number of arcs in the restricted candidate list (RCL). One
such arc is randomly chosen to be the next arc added to the partial solution. At each iteration,
the RCL contains the lowest cost arcs among all the feasible arcs that could still be added to
the solution. NSOL is the total number of feasible solutions to be generated in Phase 1 and
NSK is the number of feasible solutions from Phase 1 that are kept and passed to Phase 2
for improvement. They are stored in a list called NSK_List. The fourth parameter, MMV, is
the maximum number of missing visits that a solution can have to be considered repairable.
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‘Missing visits’ refers to the number of times that a family needs to be in a node on a line’s
solution path to satisfy constraints (1j) minus the number of times that family currently
appears in the line’s path.

An outline of the full GRASP follows.

Phase 1
i = 0
WHILE i < NSOL DO

Step 1. Empty all paths, initialize all variables except i and clear NSK_List.
Step 2. FOR each production line k DO

assign as first node on path pk the families left on line k at end of previous
shift.

Step 3. FOR (j = 1 to NA) DO
Find lowest cost over all eligible arcs; to be eligible, an arc must maintain
feasibility with respect to constraints (1b), (1e), (1f), (1m).
IF there are multiple lowest-cost arcs THEN

Chose arc with lowest PCM value;
ELSE choose unique lowest cost arc.
Add chosen arc to RCL and put j ← j + 1.

Step 4. Randomly choose arc from RCL and add node at end of chosen arc to end of
path for the correct line (i.e. the path that currently ends at node at origin
of chosen arc)

Step 5. Check termination conditions: all lines assigned at least 2 high runners;
all high runners assigned to at least 2 lines; all low runners assigned to 1 line.
IF terminating conditions not satisfied THEN

Go to Step 3.
Step 6. FOR each family f DO

IF f is a low runner THEN
Assign all jobs for family f to its assigned line;

ELSE split jobs for family f evenly across all lines to which it is assigned.
Step 7. IF solution does not satisfy constraints (1i) THEN

Discard solution and Go to Step 1.
Step 8. IF solution does not satisfy constraints (1j) THEN

IF missing number of node-visits > MMV THEN
Discard solution and Go to Step 1.

FOR each line k that does not satisfy constraints DO
WHILE number of missing visits on path > 0 DO

IF no eligible nodes exists THEN
Discard solution and Go to Step 1.

ELSE For each node eligible to be inserted into or appended
to path pk (maintaining feasibility with respect to all other
constraints), calculate the number of missing visits that would
be gained and divide total incremental cost of adding node by the
number of missing visits that would be gained to get
cost-per-needed-visit.
Insert or append lowest cost-per-needed-visit node.

Step 9. Solution is now feasible; put i ← i + 1.
Calculate cost of new solution.
IF new solution’s cost < solution cost for any solution in NSK_List THEN
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Replace higher cost solution in NSK_List with new solution.
ELSE discard solution.

Phase 2
FOR each solution i in NSK_List DO

FOR each line k DO
Step 1. For solution i’s line k, calculate the cost reduction of swapping each pair

of neighboring nodes while maintaining solution feasibility; save best
cost reduction swap.

Step 2. For solution i’s line k, calculate the cost reduction of removing each
node; save best cost reduction node-removal while maintaining solution
feasibility.

Step 3. IF either cost reduction from Steps 1 and 2 is positive THEN
Perform highest cost reduction move from Steps 1 and 2 then Go to
Step 1.

RETURN lowest cost solution in NSK_List

Step 2 enforces constraints (1c), (1d) and (1n), Step 3 enforces (1b), (1e), (1f), and (1m),
Step 5 enforces constraints (1o) and (1p), Step 7 enforces (1i) and Step 8 enforces (1j).
Constraints (1g) and (1h) are addressed implicitly in Step 6.

4.2 GRASP example

To illustrate, consider a simplified version of the production scheduling problem with five
families and two lines with two chassis areas each. We denote the five families with the
letters A, . . . ,E. This means that each node in V will include two families. The full network
is shown in Fig. 3, where the depot, O , will be connected to the family node representing
the parts left on the line from the previous shift. Recall that the graph is not completely
connected because only one family can be changed during a setup.

Before we can start, we need to have the setup costs and the family demand data as well
as a few parameter values. The node-to-node setup costs are given in Table 1, with the final
column showing the PCM values for the nodes.

To keep the example simple we will produce one solution in Phase 1 and carry it over
to Phase 2 for improvement, so NSOL = 1 and NSK = 1. We use the values 2 and 3 for pa-
rameters NA and MMV, respectively, and assume that families A and B are the high runners.
Demand for families A through E is 2560, 1852, 493, 98, and 5, respectively, and Lup = 4,
Llow = 2, and Lcap = 2000.

Fig. 3 Full network for example
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Table 1 Arc costs and PCM values for example

AB AC AD AE BC BD BE CD CE DE PCM

AB – 47 66 42 36 66 33 – – – 1.00

AC 47 – 79 33 25 – – 60 21 – 1.17

AD 66 79 – 74 – 28 – 33 – 29 1.01

AE 42 33 74 – – – 27 – 26 61 1.14

BC 36 25 – – – 82 35 63 32 – 1.07

BD 66 – 28 – 82 – 77 47 – 41 1.11

BE 33 – – 27 35 77 – – 39 64 1.08

CD – 60 33 – 63 47 – – 65 32 1.09

CE – 21 – 26 32 – 39 65 – 71 1.36

DE – – 29 61 – 41 64 32 71 – 1.08

Fig. 4 Example problem initial
infeasible solution

In Step 1, all the variables and arrays are initialized. In Step 2, we add arcs from the origin
nodes for each line to the node representing families left on the line from the previous shift.
We assume these are AC for line 1 and AE for line 2. In Step 3, we build RCL by searching
for the two lowest cost eligible arcs that have their origin at the end of a line’s path. The
lowest cost arc leaving AC or AE is AC → CE at a cost of 21, but this is not eligible since
using this arc would assign family E to line 1 and family E is a low runner that is already
assigned to line 2. Arc AC → BC is the next lowest cost arc (cost = 25) and is eligible so it
is added to RCL. The next lowest cost arc is AE → CE (cost = 26) but is not eligible since
it would cause low-runner C to be assigned to two lines. The next arc is AE → BE with cost
= 27 and is eligible so it is added to RCL.

At this point we have NA arcs on RCL so we move on to Step 4 where we randomly
chose one, say, AE → BE. Being the first arc chosen, it is labeled 1 in the graph shown in
Fig. 4. In Step 5, the terminating conditions are checked but they are not satisfied because,
for example, the high runners are not each assigned to two lines. Returning to Step 3, RCL
is constructed again, and arc AC → BC is chosen in Step 4. Iterating through Steps 3 and
4, we add arcs BE → AB and BC → CD. At this point the terminating conditions in Step 5
are satisfied and the arcs from the final node on each path back to the depot are implicitly
added; line 1’s path consists of O → AC → BC → CD → O and line 2’s path is O →
AE → BE → AB → O as shown in Fig. 4 with the arcs numbered in the order that they
were added. Note that when constructing RCL, we did not encounter the situation where
there were multiple eligible arcs with the same cost, so we did not need to use the PCM
values.



Ann Oper Res (2013) 203:295–323 311

In Step 6, the demand for each family gets assigned to the production lines. Families A
and B are high runners so lines 1 and 2 will each have 1280 units of demand for family
A and 926 units for family B. The other families are on one line each so their demand is
assigned accordingly: line 1 gets 493 units of family C and 98 units of family D, and line 2
gets 5 units of family E. Line 1 has 2797 total units of demand and Line 2 has 2211 units.
Therefore, each line has more than the required 2000 units so constraints (1i) in Step 7 are
satisfied.

In Step 8, the constraints ensuring that each family will have enough time on the line need
to be checked. For example, for family A on line 1, the left-hand side of constraint (1j) is
1/3 and the right-hand side is 1280/2797, which indicates a violation. Because the smallest
integer needed in the numerator of the left-hand side that would satisfy the constraint is 2,
and the value in the numerator is currently 1, family A has 2 − 1 = 1 missing visit on line 1.
Performing the same calculations for the other families, we find that line 1 has 2 missing
visits and line 2 has 0 missing visits. Since the total number of 2 missing visits is less than
MMV, we attempt to repair the solution.

Line 1 needs one more node-visit for both families A and B. The infeasible path of
family nodes for line 1 is AC → BC → CD. Checking for eligible neighboring node swaps
and node insertions we find only two possibilities that maintain feasibility: insert node AB
after node AC or insert node BD after node BC. Inserting node AB will increase the solution
cost by 58 but will satisfy two needed node-visits so the cost-per-needed-visit is 29. Inserting
node BD will increase the cost by 66 and only satisfies one needed visit. Therefore the lowest
cost move is to insert AB. The new path for line 1 is O → AC → AB → BC → CD → O .
Rechecking constraints (1k) for the families on line 1 we see that all are now satisfied, as
well as all the constraints. The cost is lower than the best cost in NSK_List (given that this
list is initialized with very high values) so we save it in NSK_List. At this point we have
generated NSOL feasible solutions so we move on to Phase 2. One thing to note is that node
AB is now on both lines’ solution paths.

In Phase 2, the lines associated with all solutions in NSK_List are run through the im-
provement procedure of node-swapping and node-deletion. The path for Line 1 is O →
AC → AB → BC → CD → O . Examining possible node swaps in Step 1, we find that no
node-swap is feasible since AC must come first and AB → CD is not allowed. Looking at
node eliminations in Step 2, we find that none of the nodes can be removed. AC must re-
main since it must be first, AB and CD cannot be removed because constraints (1k) would
be violated, and BC cannot be removed since AB → CD is not allowed. Therefore, no im-
provements are possible for Line 1.

The path for Line 2 is O → AE → BE → AB → O and has a cost of 60. In Step 1,
we see that the only feasible node-swap is swapping nodes BE and AB. This will result
in a new path cost of 75, so the best node-swap cost reduction is −15. Moving to Step 2,
we examine possible node eliminations. Node AE cannot be removed since it must be first,
so the first node elimination where feasibility can be maintained is the elimination of node
BE. Removing node BE will give a new path cost of 42, yielding a cost reduction of 18.
Removing node AB is also feasible, and will result in a new path cost of 27, with a cost
reduction of 33. Moving to Step 3 we make the best cost saving move, which is to eliminate
node AB for a cost reduction of 33. The new Line 2 path is O → AE → BE → O with a
cost of 27. Returning to Step 1, we see that no node swaps are possible since AE must come
first. And in Step 2 no node eliminations are possible since removing either node would
violate constraints (1j). Since no more improvements are possible, Phase 2 is completed
for this solution. All solutions in NSK_List have now gone through Phase 2 so the GRASP
terminates with solution O → AC → AB → BC → CD → O and O → AE → BE → O ,
as shown in Fig. 5. The corresponding cost is 173.
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Fig. 5 Example problem final
solution

5 Computational results

The GRASP was coded in C++ using the Eclipse integrated development environment
(http://www.eclipse.org) and run on a 2.40 GHz desktop computer with 3.25 GB of RAM.
Prior to the comparative testing, a set of experiments was performed to select the best pa-
rameter values for the GRASP. Given these values, the GRASP was compared to the MMB
heuristic using actual factory data. The problem instances used in both the parameterization
experiments and the comparisons all have 2600 family nodes, 26 product families, and 6
production lines. These results are analyzed and a data pre-processing routine, motivated by
these results, is added to improve the performance of the GRASP.

The company has not authorized the publication of the family demand data but an
overview of its characteristics may be helpful to understand additional difficulties in finding
solutions. The family demand is highly variable among families. For any given shift, the
demand for some families is in the single digits while for others it is in the thousands. In
addition, demand for any single family across shifts is highly variable. For the high runner
families the coefficient of variation (CV) across shifts ranged from 0.7 to over 1.3 while
the CV for low runner families ranged as high as 13. This variability causes difficulties
in Steps 7 and 8 of the GRASP resulting in many solutions being discarded as infeasible.
Further discussion of this issue is provided in Sect. 5.2.

5.1 GRASP parameter selection

The values of the four parameters used in Phase 1 affect both the runtime and quality of the
solutions. Since we are aiming for runtimes of 30 minutes or less, and the objective is to re-
duce setup costs, we needed to gain a clear understanding of what the best settings would be.
To do this, we performed experiments to investigate the performance of the GRASP by vary-
ing the levels of each parameter: NA (number of arcs on the RCL), MMV (maximum missing
visits for a solution to be considered ‘repairable’), NSOL (number of feasible solutions to
generate in Phase 1), and NSK (number of solutions from Phase 1 to keep for improvement
in Phase 2). Due to the fact that we had a limited number of data sets of real family demand
from the factory, we fitted probability distributions to each family’s demand and then used
these distributions to generate demand data for the parameterization experiments.

For the experimental design, we chose to use NOLH, which allowed us to efficiently
vary each of the four factors (the four parameters in the GRASP) over a wide range without
requiring an exponential number of runs. For example, in our first experiment, we wanted
to investigate a range of 2 to 40 for the parameter NA. Varying this factor alone at every
level would result in 39 scenarios. When combined with varying the MMV parameter factor
from 2 to 20, we would have 39 × 19 = 741 scenarios, and varying the other factors in this
way would continue this drastic increase. On the other hand, if we just varied each factor by

http://www.eclipse.org
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Table 2 Factor ranges and scenarios used in Experiment 1

NA MMV NSOL PSK

Lowest value 2 2 10000 0.01

Highest value 40 20 50000 1.00

Scenario 1 14 20 42500 0.38

Scenario 2 4 7 45000 0.57

Scenario 3 7 10 12500 0.26

Scenario 4 9 13 22500 1.0

Scenario 5 31 19 27500 0.13

Scenario 6 40 8 25000 0.81

Scenario 7 26 5 50000 0.32

Scenario 8 23 18 40000 0.94

Scenario 9 21 11 30000 0.51

Scenario 10 28 2 17500 0.63

Scenario 11 38 16 15000 0.44

Scenario 12 35 12 47500 0.75

Scenario 13 33 9 37500 0.01

Scenario 14 12 3 32500 0.88

Scenario 15 2 14 35000 0.20

Scenario 16 16 17 10000 0.69

Scenario 17 19 4 20000 0.07

using its lowest and highest values, we would only have 24 = 16 scenarios, but we would
have no idea of the effects of these factors in the middle of the range.

The NOLH design can be used to select varying factor levels throughout their desired
range in such a way that they have essentially no correlation with each other while keeping
the number of scenarios very low. With four factors, we were able to use the NOLH design
with only 17 scenarios and get a good representation of parameters in these ranges. Table 2
gives the factor ranges and factor settings for each scenario used in our first parameterization
experiment, and shows how effectively the NOLH design can cover the ranges with only a
few scenarios. More information on NOLH can be found in Cioppa (2002), Cioppa and
Lucas (2007) and Kleijnen et al. (2005). The worksheet used to quickly calculate NOLH
designs was developed by Susan Sanchez and can be found at http://harvest.nps.edu.

In setting up the experiments, one change was needed to accommodate NOLH design
requirements related to parameter independence. Because it is not possible to save more
solutions for improvement than are generated, we could not vary NSK independently of
NSOL. To resolve this issue, NSK was replaced with the percentage of solutions kept (PSK)
for improvement in Phase 2. NSK was then calculated from NSOL and PSK for use in the
GRASP.

The variability in the output of our GRASP comes from two sources. The first is the
different demand levels for each product family that are part of the input. The second is
the seed value used for the random number generator within the procedure. We chose to
keep the random number seed constant across runs and only vary the demand levels for the
families. To represent the variability in family demand data, we used the fitted probability
distributions to generate 10 different values for each family so we could run 10 replications
of each scenario in the experimental design.

http://harvest.nps.edu
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Table 3 Factor ranges used in Experiment 2

NA MMV NSOL PSK

Lowest value 25 5 100000 0.01

Highest value 50 20 400000 1.00

Two experiments were designed and run to test varying parameter levels. The first ex-
periment tested the parameter factor levels shown in the top section of Table 2 and included
the 17 scenarios shown in the bottom section of the table. Each scenario was run on the
10 different sets of demand data, for a total of 170 runs. The JMP software, version 7.0.2,
was used to analyze the results of each experiment. The results of the first experiment were
averaged across the 10 replications for each scenario. A regression model was fitted to the
corresponding 17 data points using stepwise regression and the prediction profiler was used
to ascertain the general behavior of the solution cost and solution time as each factor was
varied. The results indicated that the NA factor was predicted to have much more influence
on the solution costs with values decreasing as the factor values increased from the lowest
end of the range and then leveled off somewhat with a slight dip in the 30 to 40 range.
The other three factors had very small effects on predicted solution costs with costs slightly
increasing in MMV and slightly decreasing in both NSOL and PSK. With regard to solu-
tion time, the predicted time decreased sharply for low values of NA and then leveled off,
but showed a decrease again in the largest values of NA. The predicted time also decreased
sharply for low values of MMV and then rose and fell slightly as MMV increased. Solution
time was linearly increasing in NSOL.

For Experiment 2, the factor ranges were changed for NA, MMV and NSOL. The range
for NA was changed to 25–50 to focus on the range where the predicted costs leveled off and
the upper end of the range was extended. The low end of the MMV range was increased to
prevent the exceptionally long solution times for low values of MMV seen in Experiment 1.
And, since solution times were generally low in Experiment 1 and it seemed logical that
generating more solutions should increase the chance of finding a lower cost, a range of
larger values of NSOL was used. The factor ranges for Experiment 2 are given in Table 3.

The data from Experiment 2 was averaged within scenarios, a regression model was fit-
ted to it, and the prediction profilers were examined for solution cost and time. The results
showed that all four variables influenced the solution costs. For NA, the predicted costs de-
creased and then increased as NA increased, with a low at NA = 35. This value was robust in
that it remained the low value regardless of the values of the other three parameters. MMV,
NSOL, and PSK were predicted to be linearly related to the solution cost but the direction
of each relationship depended on the values of the other two of these three parameters.
Analysis of these relationships, along with consideration of predicted solution time using
a regression model constructed, resulted in the selection of the following values to mini-
mize solution costs with the expectation of not exceeding the 30-minute limit: NA = 35,
MMV = 5, NSOL = 330000, and PSK = 1.0.

5.2 GRASP performance on factory data

Using these values, the GRASP was run on 10 instances derived from the raw factory data
and the results compared to those obtained with the MMB heuristic. In this section, we
highlight the performance of the GRASP in Table 4 and report Phase 1 and Phase 2 statistics
in Table 5. The comparisons with the MMB heuristic are presented in the next section.
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One of the interesting characteristics of the production sequencing problem investigated
here is the fact that some of the constraints are nonlinear, and by design, the initial solutions
constructed by the GRASP are not necessarily feasible. The second column in Table 4 shows
the total number of initial solutions generated in Phase 1 for each scenario. As can be seen, in
some cases, many initial solutions were infeasible and ultimately had to be discarded. This
greatly influenced the runtimes for Phase 1, shown in column 4. In Phase 2, the same number
of solutions was always processed, so very little variation is seen in runtimes (column 7). In
addition, we can see that although almost all solutions were improved in Phase 2 (column 8),
the Phase 2 runtimes were much smaller than Phase 1 runtimes. Columns 5 and 9 give the
values of the solution costs after Phase 1 and Phase 2, respectively, and the last column
shows that, in all scenarios, Phase 2 provided a significant improvement averaging 8.0 %.

Table 5 provides further information on why so many solutions are discarded during
Phase 1. The second column indicates the number of solutions discarded because no more
feasible arcs could be found in Step 3. Column 3 gives the number of solutions discarded
in Step 7 due to too little demand being assigned to at least one line. Column 4 shows the
number of solutions that were discarded because the number of missing node-visits was
greater than MMV. The results of discarding only one solution over all ten scenarios, as
seen in this column, indicate that higher values of MMV would not be expected to improve
the results. The fifth column shows how many solutions were discarded in Step 8 due to
the procedure being unable to fix the solution to make the number of node-visits satisfy
constraints (1j).

To summarize, the last two columns show the total number of solutions discarded and
the overall percent of solutions that were discarded. Evidently, the nonlinear nature of the
problem coupled with the wide variation in family demand greatly restrict the usability of
an exceedingly large number of solutions found in Phase 1.

5.3 Comparison of production sequencing heuristics

Given the results in Table 4, we now compare the final best solution costs for the GRASP to
the best solution costs found with MMB. In addition to using the same demand data, each
heuristic was initialized with the same family nodes for each production line, representing
the families left on the line from the previous shift. To ensure these initial families were
realistic, they were chosen by using the model developed by Loveland et al. (2007) to assign
families to lines. From the given assignments, the initial subset of families to represent those
left on the line were randomly selected for each line.

Table 6 reports the setup costs associated with the final sequencing solutions produced
by each procedure. The fourth column gives the percent difference between the GRASP and
the MMB heuristic. In 5 out of 10 cases, the GRASP outperformed the MMB heuristic (Sce-
narios 1, 3, 5, 9, and 10), with an improvement ranging from 2.11 % to 19.34 %. However,
the MMB heuristic still performed much better in four of the 10 cases (Scenarios 4, 6, 7, and
8), which caused the overall average improvement of the GRASP to be −12.92 %. From the
statistics in the table, we see that there is a great deal of variability in the results using either
heuristic, and we see that the MMB heuristic gives the most variable results, generating the
solutions with the lowest and the highest overall costs.

To better understand these results, we investigated the different demand data that was
used in each scenario. We found no identifiable difference that could explain why one pro-
cedure performed better or worse for certain scenarios. Noting that most of the results fall
in the general range of 600–800, with the exceptions being the four scenarios where MMB
performed much better, we then focused on the solutions produced by each heuristic. Our
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Table 5 GRASP discarded solutions in Phase 1

Scenario No more
feasible arcs
available

Too little
demand on
at least 1 line

Too many
missing
node visits

Unfixable
missing node
visits

Total
discarded

Percent
discarded

1 70738 13513 0 46877 131128 28.44

2 70671 0 0 60015 130686 28.37

3 246388 971015 0 56483 1273886 79.42

4 197220 611665 1 147788 956674 74.35

5 239976 904949 0 87947 1232872 78.89

6 130834 334799 0 60200 525833 61.44

7 191641 697010 0 32214 920865 73.62

8 224884 809861 0 99962 1134707 77.47

9 72397 43985 0 25300 141682 30.04

10 71591 0 0 64914 136505 29.26

Table 6 Comparison of setup costs

Scenario MMB heuristic
cost

GRASP
cost

GRASP total
time (sec)

Cost improvement,
GRASP vs. MMB (%)

1 662 648 602 2.11

2 687 691 616 −0.58

3 786 697 1591 11.32

4 453 709 1413 −56.51

5 766 717 1601 6.40

6 484 704 962 −45.45

7 461 659 1286 −42.95

8 540 719 1542 −33.15

9 786 634 581 19.34

10 743 667 647 10.23

Average −12.92

investigation showed that MMB solutions for scenarios 4, 6, 7, and 8 each had several indi-
vidual lines with unusually low setup costs whereas the other solutions, across both proce-
dures, usually had only one or zero lines with unusually low setup costs. However, the lines
without unusually low costs in these 4 best solutions appeared to have costs similar to line
costs in all other solutions. So the primary difference seemed to be in these few unusually
low cost lines. Investigating these lines, we saw that the part commonality of the families
assigned to these lines was very high. In addition, the demand distribution for the families
on the line allowed one family with a larger number of parts to remain on the line for the
full shift so the other families very often had most of their required parts already on the line,
drastically reducing the setup costs.

Using this information, we then examined the two procedures to see why MMB was
able to find these low-cost lines but the GRASP wasn’t. We observed that one advantage
exhibited by the MMB heuristic is that it explicitly considers the number of parts assigned
to a line in the first step of the decomposed solution procedure. This directly contributes to
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the conditions found in the four best solutions. In the GRASP, however, the number of parts
being assigned to a line is not explicitly addressed. For each iteration of adding a node in
the solution, only the setup cost for the next arc under investigation is considered, which
can allow a family assigned to a line in earlier nodes on a path to have very different part
requirements than a family assigned to the line more than a node or two later in the path.
Moreover, the explicit consideration of part requirements in the GRASP is only included in
the tie-breaking rule when adding arcs to the RCL.

From this investigation, it appears that the non-traditional nature of the sequence-
dependant setup costs in which family assignments early in a line’s path can significantly
affect setup costs later in a line’s path due to part commonality issues, is a major contribut-
ing factor to the inability of the GRASP to find better solutions in some cases. The fact that
MMB can sometimes find much lower cost solutions indicates that there could potentially be
significant savings achieved if the GRASP could more explicitly consider the part require-
ments of the families assigned to each line. Since the families and their part requirements
rarely change, we determined that data pre-processing based on family part requirements
could potentially improve the performance of the GRASP, while being very practical in the
real-world setting.

5.4 Data pre-processing

The data pre-processing undertaken consisted of using the established PCM metric to deter-
mine the pairwise PCM for all possible family pairs. A list of the pairs of families with the
highest PCM values was developed (good pairs), as well as a list of the pairs with the lowest
PCM values (bad pairs).

We then redesigned the GRASP to read in the lists of good and bad pairs and to use this
information when building solutions. More specifically, assignments of the two families in
each bad pair to the same line were prohibited, and assignments of the two families in each
good pair to the same line were accepted whenever possible, during solution construction.
The following additions were made to the GRASP as it was described in Sect. 4:

• Following Phase 1, Step 2:
– For each family assigned to the line: if it appears in the bad pairs list, add that family’s

bad pair(s) to the line’s bad families list if it isn’t already there; then
– For each family assigned to the line: if it appears in the good pairs list, add that family’s

good pair(s) to the line if it is not already on the line AND it is not on the line’s bad
families list AND other conditions for adding families to lines is met (so constraints
(1m), (1o), and (1p) can be maintained)

• In Phase 1, Step 3: an arc is also not eligible if the new family that would be added to the
line by adding the node at the end of the arc is on the line’s bad families list

• Following Phase 1, Step 4:
– For the new family added to a line: if it appears in the bad pairs list, add that family’s

bad pair(s) to the line’s bad families list if it isn’t already there; then
– For the new family added to a line: if it appears in the good pairs list, add that family’s

good pair(s) to the line if it is not already on the line AND it is not on the line’s bad
families list AND other conditions for adding families to lines is met (so constraints
(1m), (1o), and (1p) can be maintained)

With the incorporation of the use of good pairs and bad pairs, there are two additional
parameters that must be decided: the number of good pairs to use (NGP) and the number
of bad pairs to use (NBP). In addition, the incorporation of the pre-processing information
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Table 7 Factor ranges used in New Experiment

NA MMV NSOL PSK NGP NBP

Lowest value 15 10 50000 1.00 0 0

Highest value 50 20 100000 1.00 15 17

caused many more solutions to be discarded during Phase 1 so the number of solutions
generated needed to be reduced significantly, and the effects of the other parameters was no
longer clear. Therefore, a new NOLH-designed experiment was run to determine the best
parameter values to use. Since the prior experiments had indicated that higher values of
the % kept parameter had a negligible effect on solution times and could not yield worse
solutions, we chose to retain all solutions.

For the new parameterization experiment, a bad pairs list was developed using all pairs
of families with 2 % or fewer parts in common (21 unique pairs), rank ordered by increas-
ing PCM values. And the good pairs list contained all pairs with 30 % or more pairs in
common (up to the highest percent in common of 60 %, 27 unique pairs), rank ordered by
decreasing PCM. However, preliminary runs showed that using large numbers of bad and
good pairs yielded no feasible solutions. In addition, low values of NA and MMV were seen
to cause excessive solution times, so their low values were also adjusted. Therefore the new
parameterization experiment used the ranges shown in Table 7.

The results of the new parameterization experiment showed that higher NGP and NA
values most significantly contributed to lower costs, and avoiding the highest MMV, NGP,
and NBP values, and using moderate NA values reduced the solution times. In addition,
moderate MMV values and NBP values also contributed to smaller improvements in cost.
A higher number of solutions did not have as much impact as expected, but did contribute
somewhat to lower costs and higher solution times. However, with the appropriate selection
of the other parameters, it was still anticipated that the GRASP would be able to solve within
30 minutes for a variety of demand scenarios even when finding 100,000 solutions. This
analysis resulted in the selection of the following values to minimize solution costs with the
expectation of not exceeding the 30-minute limit: NA = 40, MMV = 13, NSOL = 100000,
PSK = 1.0, NGP = 11, and NBP = 6.

Using the GRASP with the incorporated data pre-processing yielded the results shown
in Table 8. Clearly the data pre-processing allows the GRASP to be able to find many lower
cost lines that it couldn’t find without this additional information; it now performs better
than the MMB heuristic in 7 out of 10 cases, and by more than 17 % on average over all
10 scenarios. At best, the GRASP with pre-processing performs over 38 % better, and at
worst performs 12.6 % worse. A paired t-test on the difference in the results between the
MMB heuristic and the GRASP with pre-processing (columns 2 and 3 of Table 8) indicates
a highly significant negative average difference (p-value = 0.0075).

These results confirm that explicit consideration of a basic element of the non-traditional
setup costs, i.e., part commonalities, dramatically improves the performance of the GRASP.
Upon reflection, this appears logical since one characteristic of GRASP is that it is my-
opic, considering only the next node to be added on any path. In the case of traditional
sequence-dependant setup costs, this characteristic is not a limitation but it is here. Our re-
sults show that the addition of pre-processing to explicitly consider the underlying cause of
the non-traditional nature of the setup costs, with appropriate adjustments to the GRASP,
significantly helps GRASP overcome this limitation.
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Table 8 Comparison of setup costs with data pre-processing

Scenario MMB
heuristic
cost

GRASP with
preprocessing
cost

GRASP with
preprocessing total
time (sec)

Cost improvement,
GRASP with preprocessing
vs. MMB (%)

1 662 481 109 27.34

2 687 484 114 29.55

3 786 531 345 32.44

4 453 493 525 −8.83

5 766 509 373 33.55

6 484 545 439 −12.60

7 461 482 255 −4.56

8 540 516 714 4.44

9 786 484 105 38.42

10 743 489 114 34.19

Average 17.39

6 Summary and conclusions

In this paper, we described and modeled a real-world production scheduling problem with
non-traditional sequence-dependant setup costs and several additional complications. To the
best of our knowledge, this problem has not been studied before without being decomposed.
We then presented a GRASP to solve the resulting nonlinear IP and demonstrated the use
of NOLH designed experiments to aid in selecting the best parameter settings for the proce-
dure. The initial results showed that the GRASP was able to outperform the existing heuris-
tic in some cases, and had less variability in the results, but did not outperform the existing
heuristic on average. A pre-processing step was then added, which dramatically improved
the results, yielding an average improvement of over 17 % compared to the MMB heuristic.
With pre-processing, the average improvement in the results of the GRASP over the MMB
heuristic was shown to be statistically significant.

Our research demonstrates that the myopic nature of GRASP becomes a limitation in
problems where sequence-dependant setup costs are non-traditional in that they depend on
the decisions made earlier along the path leading up to the current node and not just on
the state represented by the current node. In a larger context, this implies that the dynamic
programming principle of optimality does not hold for our problem. We also demonstrate
that this limitation can be significantly mitigated by explicitly considering the underlying
source of the non-traditional nature of the setup costs through the addition of pre-processing.

In light of the performance of the new GRASP, at least two directions for future research
offer the possibility for further improvement. The first would be to partially redesign the
GRASP to include more complex adaptive mechanisms in Phase 1, as well as investigat-
ing more advanced exchange procedures such as ejection chains. The second would be to
explore the use exact methods such as branch and price in conjunction with heuristics for
generating columns.
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Fig. 6 Three-node subgraph

Appendix: Triangle inequality proof

Using the same notation as in Sect. 3, let G = (V ,A) be an undirected graph representing
an instance of the assignment and sequencing components of the full scheduling problem.
Recall that the nodes in V correspond to each possible set of families that can be on a single
line at the same time and the arcs in A correspond to feasible transitions between nodes.
Two nodes i and j are connected if and only if they differ by a single family. The arc cost
cij is equivalent to the number of parts that must be placed on the line plus those that must
be removed when some family in node i is removed and the new family is added, where the
new family is the family in node j that is not already on the line. Parts not needed for any
family in node j must be removed implying the symmetric relationship cij = cji .

Also note that the node set V does not contain the depot. The constraints that define the
problem restrict the path of any line to only go through the depot node O once, and the arcs
leaving the depot are uniquely predetermined by the families on lines at the beginning of
the shift. Therefore, it is not possible for node O to appear at an intermediate point along a
path which prevents the use of a path through node O to obtain a lower cost than the cost of
a path whose only difference is the exclusion of node O . The triangle inequality (TI) then
only needs to hold for graph G.

Proposition 1 The triangle inequality with respect to the cost matrix c = (cij ) holds for the
graph G = (V ,A).

Proof Without loss of generality, consider the three-node subgraph in Fig. 6 for the five
families A, B, C, D, E. We need to show that c13 ≤ c12 + c23 (the other cases in the subgraph
admit identical arguments).

The arc cost cij is the sum of the setup costs for each individual part, where the setup
cost for part p is c

p

ij . It is therefore sufficient to prove that

c1
13 + c2

13 + · · · + cn
13 ≤ c1

12 + c2
12 + · · · + cn

12 + c1
23 + c2

23 + · · · + cn
23 (2)

is true for every positive integer n.
For n = 1, which is the case where a single part contributes to the setup costs:
For the TI to be violated for two paths 1 → 3 and 1 → 2 → 3, we must have c1

13 >

c1
12 + c1

23 which is only possible if c1
13 = 1 and c1

12 = c1
23 = 0. For any single part, there are

two possible cases that can result in c1
13 = 1: either family C needs the part and family D

does not, or family D needs the part and family C does not. In addition, we need to consider
whether or not family E requires the part which, in combination with the first two cases,
gives us four cases.

Case 1: Families A, B, D and E do not require the part and family C does require the
part.
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Since one of the families in node 1 requires the part, and no family in node 2 requires
the part, the part must be removed from the line on arc 1 → 2 so c1

12 = 1 and the TI is not
violated.

Case 2: Families A, B and D do not require the part and families C and E do require the
part.

In this case families in both nodes 1 and 2 require the part so c1
12 = 0. However, none of

the families in node 3 require the part so the part must be removed on arc 2 → 3, so c1
23 = 1

and the TI is not violated.
Case 3: Families A, B, C and E do not require the part and family D does require the

part.
In this case none of the families in nodes 1 or 2 require the part so c1

12 = 0. However,
family D does require the part so the part must be added on arc 2 → 3, so c1

23 = 1 and the
TI is not violated.

Case 4: Families A, B, and C do not require the part and families D and E do require the
part.

Since none of the families in 1 require the part, but a family in 2 requires the part, the
part does need to be added on arc 1 → 2 so c1

12 = 1 and the TI is not violated.
Therefore there is no possible case for which the TI can be violated when n = 1.
Now we assume the TI holds for k:

c1
13 + c2

13 + · · · + ck
13 ≤ c1

12 + c2
12 + · · · + ck

12 + c1
23 + c2

23 + · · · + ck
23 (3)

where k is a positive integer.
So for the TI to hold we need to prove that

c1
13 + c2

13 + · · · + ck
13 + ck+1

13 ≤ c1
12 + c2

12 + · · · + ck
12 + ck+1

12 + c1
23 + c2

23 + · · · + ck
23 + ck+1

23

(4)

In light of (3), the inequality in (4) reduces to ck+1
13 ≤ ck+1

12 + ck+1
23 which we now must show

is true. However, this reduced inequality is equivalent to the case where n = 1, which we
have shown above to be true.

Hence, by the principle of mathematical induction, (2) is true for every positive integer n

and therefore the TI holds for G. �
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