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Abstract Based on the distribution of the project financing cost over the contractor and the
client, this paper involves the project payment scheduling problem from a joint perspective
of the two parties. In the problem, the project financing cost is defined as the expense for
raising money from the outside or the opportunity cost of the capital devoted into the project
and the objective is to find the project payment schedule that can not only maximize the
joint revenue of the two parties but also be accepted by them. Based on the characteristics
of the problem, an optimization model consisting of two submodels is constructed using the
activity-based method. For the strong NP-hardness of the problem, two simulated annealing
algorithms with different searching structures are developed and compared with the multi-
start iterative improvement method on the basis of a computational experiment performed
on a data set generated randomly. The results show that the simulated annealing algorithm
with the nested loop module seems to be the most promising algorithm for solving the
defined problem especially when the scale of the problem becomes larger. In addition, the
influences of some key parameters on the computational results are investigated through the
full factorial experiment and a few useful conclusions are drawn.

Keywords Project scheduling · Progress payments · Financing cost distribution ·
Simulated annealing

1 Introduction

As one of the most important aspects in project management, the financial issue is attracting
more and more researchers’ attention. Russell (1970) is the first researcher who attempts to
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model the financial aspects of project management with the objective of maximizing the net
present value (NPV) of cash flows in the project. Since Russell’s pioneering work, more and
more efforts have been spent on the development of schedules that take financial aspects
into account and this has led to a large amount of models and algorithms. For an overview
of project scheduling with the objective of the maximization of the NPV in general, we
refer the reader to Icmeli et al. (1993), Özdamar and Ulusoy (1995), Herroelen et al. (1997),
Brucker et al. (1999), Kolisch and Padman (2001), Demeulemeester and Herroelen (2002),
Błażewicz et al. (2007), Drezet (2008), Hartmann and Briskorn (2010), and Węglarz et al.
(2011).

The project payment scheduling problem (PPSP), which can be considered as a new
branch of the Max-NPV project scheduling problem, involves how to schedule progress
payments so as to maximize the NPV of the contractor or/and the client. Considering the
single-mode PPSP where activities can only be executed with one mode, Dayanand and
Padman (1997) introduce several deterministic models to maximize the contractor’s NPV
where a deadline is imposed and the number and the total amount of payments from the
client are fixed. Owing to the combinatorial nature of the problem, Dayanand and Padman
(2001a) present a two-stage procedure for the single-mode PPSP in which a set of payments
is determined using a simulated annealing algorithm in the first stage and in the second stage,
activities are rescheduled to improve the NPV. Dayanand and Padman (2001b) also establish
several mixed integer linear programming models from the client’s viewpoint according to
practical payment rules and draw the conclusion that the client obtains the greatest benefit by
scheduling the project for early completion such that the payments are not made at regular
intervals. On the basis of the fact that the timing of payments and the completion times
of activities are determined by the client and the contractor respectively, Szmereskovsky
(2005) develops a branch-and-bound procedure for a novel single-mode PPSP model where
the payment schedule is chosen by the client and the contractor protects his interests by
selecting the activity schedule to maximize his own NPV and by rejecting the payment
schedule if his NPV does not exceed a minimum amount.

Other researchers devote their attentions into the multi-mode PPSP where activities can
be accomplished in more than one way. Ulusoy and Cebeli (2000) propose a double-loop
genetic algorithm in which the outer loop represents the client and the inner loop the con-
tractor to find an equitable payment schedule of the project for the two parties of contract.
Kavlak et al. (2009) extend the work of Ulusoy and Cebeli (2000) by introducing a bargain-
ing power concept into the objective of the problem and use simulated annealing algorithm
and genetic algorithm approaches as solution procedures for the problem. He and Xu (2008)
analyze the effects of the bonus-penalty structure on project payment scheduling and find
that the structure can enhance the flexibility of project payment scheduling and be helpful
for the two parties of contract to get more profits from the project synchronously. He et al.
(2009) develop two heuristic algorithms for the multi-mode PPSP, namely simulated anneal-
ing and tabu search, and compare their performances on a data set constructed by ProGen
project generator.

In practice, the preferences of the contractor and the client on payment scheduling are of-
ten contradicted with each other and the coordination of the conflict between them is always
a hard work. Therefore, how to schedule payments so as to make both of the two parties be
willing to accept is a problem worthwhile to be investigated intensively. Aiming at such a
problem, this paper investigates the PPSP based on the distribution of the project financing
cost over the contractor and the client from a joint perspective of the two parties since given
the contract price of the project, payment scheduling is associated with the distribution of
the project financing cost impliedly. In this problem, the project financing cost is defined
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as the expense for raising money from the outside or the opportunity cost of the capital de-
voted into the project and its distribution is determined by the relative bargaining power of
the contractor and the client in contract negotiation. The activities can be performed with
one of several alternative modes and the project must be finished no later than a deadline. At
the completion time of the project, there exists a sole cash inflow for the client, namely the
client’s expected revenue which is generated by discounting the project future incomes back
to this time. The contract price of the project and the total number of payments are given in
advance and during the execution of the project, the amount of payments is determined by
the payment proportion and the contractor’s earned value accumulated up to the payment
time. On the basis of the condition aforementioned, the task of this research is to find the
project payment schedule that can not only maximize the joint revenue of the contractor and
the client but also be accepted by both of the two parties.

Based on the above identification, we name the studied problem the financing cost dis-
tribution based PPSP (FCDPPSP) and divide it into the following two subproblems.

• Subproblem 1: How to determine the execution modes and the completion times of activ-
ities so that the joint revenue of the contractor and the client is maximized.

• Subproblem 2: How to arrange payments so as to distribute the project financing cost
between the two parties according to their relative bargaining power in the contract nego-
tiation.

We believe that the FCDPPSP, which has not been investigated so far to the best of
our knowledge, may be more realistic than the PPSPs studied before because it takes the
preferences of the contractor and the client into account concurrently and can facilitate the
two parties to achieve a more profitable outcome.

The remainder of this paper is organized as follows. In the next section, we provide the
optimization model of the FCDPPSP and an illustrative example. The simulated annealing
algorithms are developed in Sect. 3 and Sect. 4 devotes to the computational experiment.
Section 5 concludes the paper.

2 Problem formulation

2.1 Optimization model

Consider a project represented as an activity-on-the-node (AoN) network G = (N,A),
where the set of nodes, N , represents activities, and the set of arcs, A, represents finish-
start precedence constraints with a time lag of zero. The activities are numbered from the
dummy start activity 1 to the dummy end activity n and each activity i, i = 1,2, . . . , n, has
to be executed in one of Mi modes. The duration and the cost of activity i executed in mode
m are dim and cim respectively, and we assume that cim occurs at the completion of activ-
ity i. The earned value of activity i is vi , which represents the amount of the compensation
that the contractor can obtain from the client for finishing activity i. During the execution
of the project, the client makes payments to the contractor at the completion of some certain
activities named payment activities. The number of payments is K (K ≤ n) and the amount
of the k-th (k = 1,2, . . . ,K − 1) payment, pk , equals the product of the contractor’s earned
value accumulated by the payment time and the compensation proportion θ (0 ≤ θ ≤ 1).
The last payment K must be arranged at the completion of the dummy end activity n, and
its amount is determined by the formula: pK = U − ∑K−1

k=1 pk where U (U = ∑n

i=1 vi ) is
the contract price of the project. The client’s expected revenue, which is assumed to occur
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at the completion of the project, is ER. The project deadline and the interest rate per period
are denoted as D and α, respectively.

The three groups of decision variables in the FCDPPSP are defined below,

xim =
{

1 if activity i is performed with mode m

0 otherwise
i = 1,2, . . . , n; m = 1,2, . . . ,Mi

yit =
{

1 if activity i is finished at period t

0 otherwise
i = 1,2, . . . , n; t = 1,2, . . . ,D

zki =
{

1 if the k-th payment is attached to activity i

0 otherwise
k = 1,2, . . . ,K; i = 1,2, . . . , n.

Based on the above definition of decision variables, we define the three decision vectors
further for the sake of description:

Ω = (m : xim = 1, i = 1,2, . . . , n), Γ = (t : yit = 1, i = 1,2, . . . , n), and

Ψ = (zki , i = 1,2, . . . , n).

Now, let β be the financing cost rate per period then the project financing cost, FC, can be
calculated by

FC =
n∑

i=1

{[
Mi∑

m=1

(ximcim)

]

exp

[

β

(
LFn∑

t=EFn

(ynt t) −
LFi∑

t=EFi

(yit t)

)]}

− TC. (1)

Where, TC (TC = ∑n

i=1

∑Mi

m=1(ximcim)) is the contractor’s expense for finishing the project
and [EFi ,LFi] is activity i’s completion time window calculated using the critical path
method (CPM). During the execution of the project, the client makes payments to the con-
tractor and thus bears a part of the project financing cost, FCclient,

FCclient =
K∑

k=1

{

pk exp

[

β

(
LFn∑

t=EFn

(ynt t) −
n∑

i=1

(

zki

LFi∑

t=EFi

(yit t)

))]}

− U. (2)

Hence, the financing cost of the contractor is only FCcont,FCcont = FC − FCclient. We call
λ (λ = FCclient

FC ), which reflects the proportion of the project financing cost undertaken by the
client in fact, the distribution proportion of the project financing cost over the contractor
and the client. The relative bargaining power of the two parties in the contract negotiation
is represented as RBP (0 ≤ RBP ≤ 1), which takes 0 if the client holds an overwhelming
superiority over the contractor and 1 if the reverse is true.

Based on the above definitions, the optimization model of the FCDPPSP, which consists
of two submodels, is constructed as follows.

• Submodel 1

Maximize NPVjoint = NPVcont + NPVclient

= ER exp

[

−α

LFn∑

t=EFn

(ynt t)

]

−
n∑

i=1

{[
Mi∑

m=1

(ximcim)

]

exp

[

−α

LFi∑

t=EFi

(yit t)

]}

(3)
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Subject to
Mi∑

i=1

xim = 1 i = 1,2, . . . , n (4)

LFi∑

t=EFi

yit = 1 i = 1,2, . . . , n (5)

LFi∑

t=EFi

(yit t) ≤
LFj∑

t=EFj

(yjt t) −
Mj∑

m=1

(xjmdjm) ∀(i, j) ∈ A (6)

LFn∑

t=EFn

(ynt t) ≤ D (7)

xim, yit ∈ {0,1}. (8)

Where, NPVcont and NPVclient are the NPVs of the contractor and the client respectively,
NPVjoint is the joint revenue of the two parties.

• Submodel 2

Minimize Diff = |λ − RBP| (9)

Subject to
n−1∑

i=1

zki = 1 k = 1,2, . . . ,K − 1 (10)

K∑

k=1

zki ≤ 1 i = 1,2, . . . , n (11)

pk = θ

[
n∑

i=1

(

vi

Tk∑

t=0

yit

)

−
n∑

i=1

(

vi

Tk−1∑

t=0

yit

)]

k = 1,2, . . . ,K − 1 (12)

pK = U −
K−1∑

k=1

pk (13)

zki ∈ {0,1}. (14)

Where, Tk (Tk = ∑n

i=1[zki

∑LFi
t=EFi

(yit t)]) and Tk−1 (Tk−1 = ∑n

i=1[zk−1,i

∑LFi
t=EFi

(yit t)]) are
the occurrence times of the k-th payment and the (k − 1)-th payment, respectively.

Submodels 1 and 2 correspond to subproblems 1 and 2 respectively and their solutions
constitute together a solution for the FCDPPSP. In submodel 1, the decision variables in-
clude xim and yit and the objective is to maximize NPVjoint, which is equivalent to the present
value of ER minus the present values of cim. Constraints (4) select a mode for each activity
exactly. Constraints (5) make sure that the completion time of each activity must be within
its completion time window while the precedence feasibility is maintained by (6). A dead-
line is imposed to the project by constraint (7) and constraints (8) define the binary status of
the decision variables. Through solving submodel 1, we may obtain the optimal xim and yit ,
which are the input data for submodel 2 where the decision variables are zki . In submodel 2,
the objective is to minimize the absolute difference between λ and RBP, i.e. Diff , making
the distribution proportion of the project financing cost over the contractor and the client
match their relative bargaining power as well as possible. Constraints (10) attach payments
to activities and (11) secure that at a certain activity, only one payment can be arranged at
most. Constraints (12) compute amounts of payments while constraint (13) forces that the
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Fig. 1 An example

total amount of payments equals the contract price. Constraints (14) give the definition field
of the decision variables.

Without any loss of generality, let ER = 0 and α = 0, then the objective of submodel 1
can be transformed to the maximization of −∑n

i=1

∑Mi

m=1(ximcim), i.e. the minimization of
TC. This means that when ER = 0 and α = 0 subproblem 1 can be simplified to assigning
the modes and the completion times of activities to minimize the total expense under the
constraint of the project deadline. Recalling that P_C|T in DTCTP (De et al. 1995) is to
identify a realization of activities’ modes that minimizes the cost of the project subject to
a given deadline, we can conclude immediately that subproblem 1 is a generalization of
P_C|T with the consideration of the client’s expected revenue and the time value of money.
Because P_C|T has been proven to be strongly NP-hard for general project networks (De et
al. 1997), subproblem 1 and thus the FCDPPSP must be strongly NP-hard as well.

2.2 An example

We use an example to illustrate the FCDPPSP identified above. The AoN network of the
example is depicted in Fig. 1 where activities 1 and 9 are the dummy start activity and
the dummy end activity respectively. The activities in the project can be performed with
two modes and their earned values as well as durations and costs under different modes
are labeled with nodes. Other data of the project are as follows: K = 3, θ = 0.8, D = 16,
ER = 6000, α = 0.03, β = 0.04, RBP = 0.8. To demonstrate that a cooperative attitude
may allow both the contractor and the client to get more profits from the project, we give
the desirable project payment schedules under two different cases and compare the results
produced below.

• The cooperative case

In this case, we suppose that the two parties know their relative bargaining power well
and take a cooperative attitude in project payment scheduling. It is easy to understand
that this case satisfies the assumptions of the model constructed above, and the desirable
payment schedule of the project can be worked out easily: Ω = (1,2,1,1,2,1,2,2,1),
Γ = (0,4,6,10,11,11,14,14,14), and Ψ = (0,0,1,0,1,0,0,0,1). Under the desirable
solution, NPVjoint , FC, FCclient, and FCcont are calculated below:



Ann Oper Res (2014) 213:203–220 209

NPVjoint = ER × exp(−α × 14) − [
c11 × exp(−α × 0) + c22 × exp(−α × 4)

+ c31 × exp(−α × 6) + c41 × exp(−α × 10) + c52 × exp(−α × 11)

+ c61 × exp(−α × 11) + c72 × exp(−α × 14) + c82 × exp(−α × 14)

+ c91 × exp(−α × 14)
] = 1783.05,

FC = {
c11 × exp

[
β × (14–0)

] + c22 × exp
[
β × (14–4)

] + c31 × exp
[
β × (14–6)

]

+ c41 × exp
[
β × (14–10)

] + c52 × exp
[
β × (14–11)

] + c61 × exp
[
β × (14–11)

]

+ c72 × exp
[
β × (14–14)

] + c82 × exp
[
β × (14–14)

]

+ c91 × exp
[
β × (14–14)

]} − TC = 491.70,

FCclient = {
p1 × exp

[
β × (14–6)

] + p2 × exp
[
β × (14–11)

]

+ p3 × exp
[
β × (14–14)

]} − U = 393.64, and

FCcont = FC − FCclient = 98.06.

Where, TC = c11 + c22 + c31 + c41 + c52 + c61 + c72 + c82 + c91 = 2930, U = v1 + v2 + v3 +
v4 +v5 +v6 +v7 +v8 +v9 = 3300, p1 = θ × (v1 +v2 +v3) = 584, p2 = θ × (v4 +v5 +v6) =
1360, p3 = U − (p1 + p2) = 1356. On the basis of the obtained FC and FCclient, we can
calculate λ and Diff as follows: λ = FCclient/FC = 0.80, Diff = |λ − RBP| = 0.00, which
indicate that under the desirable solution, the distribution proportion of the project financing
cost can match the relative bargaining power of the two parties exactly. Besides the results
aforementioned, we may calculate NPVcont and NPVclient further:

NPVcont = [
p1 × exp(−α × 6) + p2 × exp(−α × 11) + p3 × exp(−α × 14)

]

− [
c11 × exp(−α × 0) + c22 × exp(−α × 4) + c31 × exp(−α × 6)

+ c41 × exp(−α × 10) + c52 × exp(−α × 11) + c61 × exp(−α × 11)

+ c72 × exp(−α × 14) + c82 × exp(−α × 14) + c91 × exp(−α × 14)
]

= 197.26,

NPVclient = NPVjoint − NPVcont = 1585.79.

• The non-cooperative case

In this case, it is assumed that the two parties do not know their relative bargaining power
very well and make decisions from their own perspectives. In practice, the modes and the
completion times of activities are often arranged by the contractor while the payment ac-
tivities are mainly determined by the client. Therefore, in such a case, the activities will
be performed with their cheaper modes by the contractor so that his/her expense, namely
TC, can be minimized. In contrast, from the angle of the client, the payment activities
will be arranged in the way by which FCclient can be reduced as much as possible. This
may lead to another feasible solution for the problem: Ω = (1,1,1,1,1,1,1,2,1), Γ =
(0,5,8,11,13,13,16,16,16), and Ψ = (0,1,1,0,0,0,0,0,1). In the light of the same pro-
cess as that applied in the cooperative case, we can obtain NPVjoint, FC, FCclient, FCcont ,
TC, λ, Diff , NPVcont, and NPVclient under the new solution as follows: NPVjoint = 1732.21,
FC = 512.71, FCclient = 266.59, FCcont = 246.12, TC = 2830, λ = 0.52, Diff = 0.28,
NPVcont = 179.07, NPVclient = 1553.14.

Compared with the results in the cooperative case, it can be considered that the contrac-
tor and the client in the non-cooperative case have achieved their respective goals to some
extent since TC and FCclient are both reduced. However, it is unfortunate that their decisions
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aforementioned decrease rather than increase their profits, i.e. NPVcont and NPVclient. The
decline of NPVcont derives from the increase of FCcont which is caused by the client’s chang-
ing the payment activities whereas the decrease in NPVclient comes from the postponement
of the occurrence of ER, which is the result of the contractor’s adjusting the modes and the
completion times of the activities. The above facts indicate that the contractor and the client
can obtain some benefits from their respective decisions, but these decisions may generate
greater damages to the profits of the other sides, thus decreasing their NPVs as a whole.

Essentially speaking, the reason for the decreases in the NPVs of the two sides lies in
the decline of NPVjoint , which is the common source of NPVcont and NPVclient. In the coop-
erative case, NPVjoint is maximized and shared by the contractor and the client reasonably
according to their relative bargaining power. However, in the non-cooperative case, the ob-
jective of maximizing NPVjoint is ignored and the two parties pursue to enhance their own
profits respectively, without the consideration of the influences on the profit of the other
side. Therefore, the results in the cooperative case can be regarded as the global optimiza-
tion outcomes while those in the non-cooperative case are only the local optimization ones
in a sense. On the basis of the above analysis, we can conclude that if the contractor and the
client know each other pretty well, in order to get more profits from the project, they will
tend to take a cooperative attitude to schedule payments in the project.

3 Simulated annealing algorithm

The model constructed in Sect. 2.1 has two features that render optimal solutions a com-
putationally difficult proposition, especially for real world projects. The model is combi-
natorial in nature because of the use of binary variables. Furthermore, the number of con-
straints severely limits the ability to solve the problem to optimality for projects of large
size or long duration. For the above reasons, we use a well-known local search meta-
heuristic, i.e. simulated annealing which is introduced by Metropolis et al. (1953) and is
applied to combinatorial optimization for the first time independently by Kirkpatrick et
al. (1983) and Cerny (1985), to solve the problem. We choose simulated annealing for
two reasons. Firstly, this technique has been successfully applied to a number of project
scheduling problems by researchers (e.g. Boctor 1996; Shtub et al. 1996; Etgar et al. 1997;
Cho and Kim 1997; Hapke et al. 1998; Viana and Sousa 2000; Dayanand and Padman 2001a;
Jozefowska et al. 2001; Bouleimen and Lecocq 2003; Mika et al. 2005; Kavlak et al. 2009;
He et al. 2009); and second, it is often characterized by fast convergence and ease of imple-
mentation.

Because the problem consists of two subproblems, we divide the algorithm into two mod-
ules, namely modules 1 and 2 which are designed to solve subproblems 1 and 2 respectively.
In module 1, the desirable Ω and Γ are searched out while in module 2, the desirable Ψ is
found on the basis of the desirable Ω and Γ obtained by module 1. In the following of this
section, we present the solution representation, the objective function, the preprocessing, the
initial solution generation, the neighborhood generation mechanism, and the cooling scheme
at first and then describe the design of the two modules.

3.1 Solution representation

Referring to the literatures (Kolisch and Hartmann 1999; Bouleimen and Lecocq 2003; Mika
et al. 2008), we represent a solution for the problem, i.e. Ω , Γ , and Ψ , using three lists
defined below.
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• Execution mode list (EML): This list is composed of n elements and the i-th (i =
1,2, . . . , n) element defines the mode of activity i.

• Time deviation list (TDL): This list is an n-element list and the i-th (i = 1,2, . . . , n)
element, which is denoted as Δi (Δi ∈ [0,LFi − EFi]), indicates how many units of
activity i’s completion time deviating from its possible earliest finish time.

• Payment activity list (PAL): This list includes n 0–1 elements and the i-th (i = 1,2, . . . , n)
element is set at 1 if a payment is attached to activity i and 0 otherwise.

Based on the above three lists, Ω and Ψ are determined by EML and PAL directly while
Γ is calculated using the following decoding procedure, where ACTi denotes activity i’s
completion time and EAS the set of eligible activities, i.e. the unscheduled activities whose
predecessors have been scheduled.

Step 1. Set EAS = {activity 1}, ACT1 = 0.
Step 2. Update EAS, i.e. remove the scheduled activities from EAS and add the new eligible

activities into it. If EAS = ∅ go to step 4; otherwise, go to step 3.
Step 3. On the basis of EML, calculate EFi for the new eligible activities in EAS and in

terms of TDL, determine the completion times of the activities according to the formula
ACT i = EFi + Δi , then go to step 2.

Step 4. Stop the procedure and output all ACT is, thus obtaining Γ .

3.2 Objective function

Given a solution represented by the above three lists, it is possible that the solution is an
infeasible solution where the project deadline constraint is violated. In the algorithms, we
transform the deadline constraint into a soft constraint based on a deadline feasibility test
function defined as

DFT = max

{

0,

LFn∑

t=EFn

(ynt t) − D

}

. (15)

During the searching process, if the DFT of a solution is greater than 0 the objective function
value of submodel 1 will be penalized according to the following formula:

NPVjoint = ER
{
exp

[−α(D + DFT )
]} − TEP. (16)

Where, TEP is the total expense of the project in which all activities are performed with
their most expensive modes.

3.3 Preprocessing

Similar with Sprecher et al. (1997), we adapt the project data to the implementation of
simulated annealing using a preprocessing procedure by which all inefficient modes and
infeasible modes are eliminated. An inefficient mode is a mode with duration not shorter and,
simultaneously, cost not less than any other modes of the considered activity. An infeasible
mode is defined as follows. Suppose that EMLim

min is an EML in which activity i is performed
with mode m while other activities are performed with their modes corresponding to the
minimal duration. Denote the EFn under EMLim

min as EFn(EMLim
min). If EFn(EMLim

min) > D

mode m is an infeasible mode for activity i, since the project deadline constraint cannot be
satisfied no matter how to adjust the modes of other activities.
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3.4 Initial solution

After the implementation of the preprocessing procedure, a feasible initial solution can be
generated conveniently according to the following steps.

Step 1. Perform each activity with its mode corresponding to the minimal duration, thus
obtaining an EML.

Step 2. On TDL, set the values of all the elements at 0.
Step 3. Select randomly K − 1 activities from all activities except for activities 1 and n. On

PAL, set the values of the elements corresponding to the selected activities and activity n

at 1 while those of the others at 0.

3.5 Neighborhood generation mechanism

There are three operators utilized in the neighborhood generation mechanism.

• Mode change (MC): On EML, select one activity randomly and change its mode to an-
other executable one for this activity arbitrarily, thus obtaining a neighbor solution. Com-
pute EFn under the generated solution and judge whether EFn exceeds the project dead-
line or not. If the answer is false accept the neighbor solution obtained, otherwise, refuse
it and repeat the above operations until the answer becomes false.

• Deviation change (DC): On TDL, choose an activity from all the activities except for
activity 1 randomly. Denote the chosen activity as activity i and change the value of Δi

to another possible one within [0,LFi − EFi] arbitrarily, thus getting a neighbor solution.
• Element swap (ES): On PAL, except for the last element, select randomly an element from

the elements whose values are 1 and swap its position with that of another element chosen
randomly from those whose values are 0, changing the current solution to its neighbor.

Note that operators MC and DC are used in module 1 while operator ES is applied in
module 2.

3.6 Cooling scheme

The simulated annealing algorithm is specified by the cooling scheme, which is generally
constituted of the initial temperature, the cooling function, the Markov chain length, and the
stop criterion to terminate the algorithm. A great variety of cooling schemes have now been
suggested by different authors and these have been classified in Collins et al. (1988), Eglese
(1990), and Koulamas et al. (1994). On the basis of the literatures (Jozefowska et al. 2001;
Mika et al. 2005; Kavlak et al. 2009) and a few preliminary computational experiments
conducted, the cooling scheme and its parameters used in this study are designed as follows.

• Initial temperature: In module 1, the initial temperature, Tempinit , is calculated by

Tempinit = (
NPVmin

joint − NPVinit
joint

)
/ ln Probinit

while in module 2 it is computed from

Tempinit = (
Diff init − Diff max

)
/ ln Probinit.

Where, NPVinit
joint and Diff init are the objective function values under the initial solutions for

submodels 1 and 2 respectively, NPVmin
joint and Diff max are the minimal objective function

value of submodel 1 and the maximal objective function value of submodel 2 among the 50
neighbor solutions of the initial solution respectively, and Probinit , which is set at 0.95 in
this application, is the initial acceptance ratio defined as the number of accepted neighbors
divided by that of the proposed neighbors.
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• Cooling rate: Beginning from the initial value, the temperature is progressively reduced
according to a given cooling rate, which is set at 0.9 in our implementation.

• Markov chain length: The lengths of Markov chains, which determine the number of
transitions for a given value of the temperature, are set at 12 · n and 10 · n in modules 1
and 2 respectively.

• Stop criterion: The search process terminates when the current temperature drops to the
final temperature, which is set at 0.01 in the two modules.

3.7 Modules 1 and 2

In the light of different searching structures used, we design two versions of module 1, which
are module 1 with random sampling (M1RS) and module 1 with nested loops (M1NL)
respectively. The so-called M1RS means that in the searching process, operators MC and
DC are selected randomly and applied independently to the current solution to generate a
neighbor solution for subproblem 1. However, in M1NL, the above operators are utilized in a
nested way, based on the fact that activities’ completion times can not be arranged until their
modes are all determined while the reverse is not true. More concretely, M1NL is composed
of the following two nested loops.

• INNERLOOP(EML): In this loop, the EML is given and the task is to search the desirable
TDL.

• OUTERLOOP: With the results obtained by INNERLOOP(EML), this loop seeks the
desirable EML, forming a desirable solution for subproblem 1.

On the basis of the desirable EML and TDL found by module 1, module 2 searches
the desirable PAL for subproblem 2, thus constituting together a desirable solution for the
problem.

4 Computational experiment

4.1 Experimental design

For the sake of description, we represent the simulated annealing algorithm with M1RS and
M1NL as SA-M1RS and SA-M1NL respectively in the following of the paper. In the experi-
ment, SA-M1NL utilizes the stop criterion defined in Sect. 3.6, and during its searching pro-
cess, the total number of the feasible solutions visited by modules 1 and 2 are recorded and
denoted as Num1

stop and Num2
stop respectively. To compare the performances of SA-M1RS

and SA-M1NL on a common basis, we adjust the stop criterion of SA-M1RS as follows:
The algorithm stops and outputs the current solution as the desirable one when the number
of the feasible solutions visited by modules 1 and 2 reaches Num1

stop and Num2
stop respec-

tively. Note that in module 1 of SA-M1RS, since the two decision vectors are searched
concurrently the length of Markov chains, L, is set at 140 · n.

To evaluate the performances of SA-M1RS and SA-M1NL, we utilize a simple heuristic
algorithm, namely the multi-start iterative improvement (MSII) (Mika et al. 2008; Waligóra
2008, 2009), to generate benchmark schedules for comparison. For the two subproblems,
MSII starts from the same initial solution and employs the same neighbor generation mech-
anism as those used in SA-M1RS. In the searching course of MSII, the most improving
neighbor solution is chosen and when there are no improving moves, it restarts with another
feasible solution generated randomly. The algorithm terminates and takes the best solution
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Table 1 Parameter setting used to generate the data set

Parameter Setting

Number of non-dummy activities 10, 20, 30, or 40

Number of instances generated under a
given number of non-dummy activities

20

Number of initial and terminal activities Randomly selected from 2, 3, and 4

Maximal number of successors and
predecessors

5

Number of performing modes 3

Activity durations under mode 1, di1 Randomly selected from interval [1,10]
Activity costs under mode 1, ci1 Randomly selected from interval [10,20]
Activity durations under mode 2, di2 ρ1 · di1, where ρ1 is randomly selected from interval [0.8,1]
Activity costs under mode 2, ci2 ρ2 · ci1, where ρ2 is randomly selected from interval [1,1.2]
Activity durations under mode 3, di3 ρ3 · di2, where ρ3 is randomly selected from interval [0.8,1]
Activity costs under mode 3, ci3 ρ4 · ci2, where ρ4 is randomly selected from interval [1,1.2]
Earned values of activities, vi ρ5 · ci3, where ρ5 is randomly selected from interval [1.3,1.5]
Client’s expected revenue, ER ρER · U , where ρER is randomly selected from 1.6, 1.8, and 2.0

Relative bargaining power, RBP Randomly selected from 0.4, 0.5, and 0.6

Table 2 Levels of the key parameters

Parameter Value

Interest rate per period, α 0.01, 0.02, and 0.03

Project deadline, D ρD · (CLmax − CLmin) + CLmin, where CLmax and CLmin are
the length of the critical path of the network when all the
activities are performed with modes 1 and 3 respectively and
ρD is set at 0.4, 0.6, and 0.8

Financing cost rate, β 0.01, 0.02, and 0.03

Payment number, K 3, 4, and 5

Compensation proportion, θ 0.7, 0.8, and 0.9

found as the desirable one when the numbers of the visited feasible solutions for subprob-
lems 1 and 2 reach Num1

stop and Num2
stop, respectively.

The three algorithms are tested on a data set constructed by ProGen project generator
(Kolisch et al. 1995; Kolisch and Sprecher 1996). The set consists of 80 instances and the
parameter setting used to generate the instances is described in Table 1. The value of the
key parameters, including α, D, β , K , and θ , is set at three levels given in Table 2. A full
factorial experiment of the five parameters with three levels results in 35 replicates for each
instance and 80×35 = 19,440 ones overall. Note that during the generation of the instances,
it is ensured that there are no inefficient modes for activities through the parameter setting.
However, infeasible modes, which have to be eliminated by the preprocessing procedure
presented in Sect. 3.3, cannot be avoided completely since for a certain instance the param-
eter D needs to be set at different values. The following five indices are defined to evaluate
the performances of the algorithms.
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• NUM: The number of instances for which the algorithm find a solution equal to the best
solution known, i.e. the best solution found by any of the algorithms.

• ARP: Average relative percent below the known best solution for the problems.
• MRP: Maximal relative percent below the known best solution for the problems.
• ACT: Average computational time of the algorithm for solving the problems.
• MCT: Maximal computational time of the algorithm for solving the problems.

Note that since the FCDPPSP consists of two subproblems we may obtain two groups
of the above indices in the experiment. The algorithms are coded and compiled with Vi-
sual Basic 6.0 and the computational experiment is performed on a Pentium-based personal
computer with 1.60 GHz clock-pulse and 256 MB RAM.

4.2 Experimental results

The computational results are presented in Table 3. For subproblem 1, Table 3 makes clear
that ARPs and MRPs for SA-M1RS and SA-M1NL are much less whereas NUMs for the
two algorithms are much greater than the corresponding indices for MSII, in particular when
the instances become larger. This indicates that SA-M1RS and SA-M1NL outperform MSII
remarkably and their superiority augments with the increase of the problem scale. This result
is not surprising because the intelligent search procedures generally get an advantage over
the simple search method, and this advantage grows as the problem becomes more complex.
As for the two simulated annealing algorithms, it can be seen that the three indices afore-
mentioned for SA-M1NL are a bit better than those for SA-M1RS, and with the increase
of the number of activities, the indices for SA-M1NL improve while those for SA-M1RS
deteriorate. So, we can say that compared with SA-M1RS, SA-M1NL performs a little bet-
ter in general, especially for the larger instances. The above outcomes may be explained
as follows: SA-M1NL is based on the characteristics of the problem and utilizes the two
nested loops to search the desirable solutions while in SA-M1RS, the two neighbor gener-
ation operators are selected in a random fashion. Therefore, it can be considered that the
searching structure of SA-M1NL may be more reasonable than that of SA-M1RS, making
it own a higher searching efficiency than SA-M1RS. The results for subproblem 2, which
is much easier to be solved than subproblem 1, are relatively simple. Since SA-M1RS and
SA-M1NL employ the same module 2, their NUMs, ARPs, and MRPs for subproblem 2 are
almost identical. Compared with SA-M1RS and SA-M1NL, MSII gets a bit worse outcome
because its searching process is less intelligent than those of SA-M1RS and SA-M1NL.

The computational times are ones to be expected—MSII runs faster than SA-M1RS and
SA-M1NL since it owns a simpler searching process than the other two algorithms. Concern-
ing SA-M1RS and SA-M1NL, because the searching structure of the latter is more complex
than that of the former it seems a little strange that the former works longer than the latter for
tackling subproblem 1. Recall that during the searching process of the algorithms, the two
neighbor generation operators, i.e. MC and DC, are utilized to generate neighbor solutions
based on the current one. In SA-M1RS, when operator MC is selected to generate neigh-
bor solutions, the EML is changed while the TDL remains unchanged. Because the value
of LFi − EFi is determined by the EML, this may lead to the result that Δi > LFi − EFi ,
causing the generated solution to be infeasible. However, in SA-M1NL, this shortcoming is
eliminated by the loop nested searching structure where operator DC works under a given
EML. The facts aforementioned may explain why SA-M1NL runs faster than SA-M1RS to
some extent although the former owns a more complex searching structure than the latter.
Summarizing the computational results discussed above, we can draw the conclusion that
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SA-M1NL is the most promising procedure for the problem among the three algorithms
presented.

The influences of the key parameters on average NPVjoint , NPVcont, NPVclient, Diff ,
FCcont, and FCclient are presented in Table 4, from which the following phenomena can be
observed. Firstly, with the growth of α, NPVjoint , NPVcont , and NPVclient decrease. This is an
immediate observation when formula (3) is taken into account. Secondly, as ρD increases,
NPVjoint and NPVcont climb while NPVclient and FCcont drop. The reasons for these results are
as follows. When ρD increases D augments subsequently, so, the project deadline constraint
is loosened to some degree, causing NPVjoint improved. In addition, the postponement of D

can make the contractor execute more activities with their cheaper modes, therefore, NPVcont

rises and FCcont falls. However, for the client, because the occurrence of his/her expected
revenue, which is assumed to take place at the completion of the project, may be delayed
in such a case, NPVclient declines. Thirdly, increasing β makes FCcont and FCclient increased
monotonously and this can be explained by formulae (1) and (2) directly. Fourthly, when K

increases NPVcont and FCclient ascend whereas NPVclient,FCcont , and Diff descend. This is
because that the increase of K can make the payments occur at earlier activities and thus
plays a negative effect on the client whereas a positive effect on the contractor, resulting in
NPVcont and FCclient increased while NPVclient and FCcont decreased. Furthermore, increas-
ing K may generate more choices on the arrangements of payments at activities, therefore,
the obtained Diff cannot be worse than the one obtained for the smaller K in general. At
last, as θ increases, NPVcont and FCclient go up while NPVclient and FCcont go down. This is a
reasonable result since enhancing the value of θ leads to greater parts of payments to occur
earlier during the execution of the project.

5 Conclusions

This paper studies the project payment scheduling problem based on the distribution of the
project financing cost which is defined as the expense for raising money from the outside or
the opportunity cost of the capital devoted into the project. The purpose is to find the project
payment schedule that can not only maximize the joint revenue of the contractor and the
client but also match their relative bargaining power and thus be accepted by them. Based
on its identification, we divide the studied problem into two subproblems, i.e. how to deter-
mine the modes of activities and the completion times of activities so that the joint revenue is
maximized and how to arrange payments at activities so as to distribute the project financing
cost according to their relative bargaining power. An optimization model, which consists of
two corresponding submodels, is constructed using the activity-based method and an exam-
ple is utilized to illustrate the practical utility of the constructed model. For the strong NP-
hardness of the problem two simulated annealing heuristic algorithms, namely SA-M1RS
and SA-M1NL which own different searching structures, are developed and compared with
MSII on the basis of a computational experiment performed on a data set generated by
ProGen. From the computational results, the following conclusion is drawn: The proposed
SA-M1NL is the most promising algorithm for solving the defined problem, surpassing SA-
M1RS somewhat while clearly outperforming MSII especially when the instances become
larger.

In addition, the influences of some key parameters on the computational results are inves-
tigated through the full factorial experiment of the five parameters with three levels, and the
obtained observations are described below: Increasing the interest rate decreases the contrac-
tor’s, the client’s, and their joint NPVs; When the project deadline is delayed the contractor’s
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and the joint NPVs climb while client’s NPV and the contractor’s financing cost drop; In-
creasing financing cost rate increases the contractor’s and the client’s financing costs; With
the growth of the payment number or the compensation proportion, the contractor’s NPV
and the client’s financing cost ascend whereas the client’s NPV and the contractor’s financ-
ing cost descend; The absolute difference between the distribution proportion of the project
financing cost and the relative bargaining power of the two parties tends to go down as the
payment number goes up.

Note that the research in this paper is based on the joint perspective of the two parties.
Although it is not always the case that the contractor and the client take a cooperative attitude
in the real-world project management, the research can still provide some supports for the
coordination of the conflict between the two parties in contract negotiation and facilitate
them to achieve a more profitable outcome.

Acknowledgements The research was funded by the National Natural Science Foundation of China under
contract No. 70971105. We express our gratitude to two anonymous referees for their valuable comments,
which have improved this paper considerably.

References
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