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Abstract This paper presents a hyper-heuristic approach which hybridises low-level heuris-
tic moves to improve timetables. Exams which cause a soft-constraint violation in the
timetable are ordered and rescheduled to produce a better timetable. It is observed that
both the order in which exams are rescheduled and the heuristic moves used to resched-
ule the exams and improve the timetable affect the quality of the solution produced. After
testing different combinations in a hybrid hyper-heuristic approach, the Kempe chain move
heuristic and time-slot swapping heuristic proved to be the best heuristic moves to use in
a hybridisation. Similarly, it was shown that ordering the exams using Saturation Degree
and breaking any ties using Largest Weighted Degree produce the best results. Based on
these observations, a methodology is developed to adaptively hybridise the Kempe chain
move and timeslot swapping heuristics in two stages. In the first stage, random heuristic
sequences are generated and automatically analysed. The heuristics repeated in the best se-
quences are fixed while the rest are kept empty. In the second stage, sequences are generated
by randomly assigning heuristics to the empty positions in an attempt to find the best heuris-
tic sequence. Finally, the generated sequences are applied to the problem. The approach is
tested on the Toronto benchmark and the exam timetabling track of the second International
Timetabling Competition, to evaluate its generality. The hyper-heuristic with low-level im-
provement heuristics approach was found to generalise well over the two different datasets
and performed comparably to the state of the art approaches.
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1 Introduction

For more than 40 years exam timetabling has been a particularly well studied domain across
the Artificial Intelligence and Operational Research communities. This is due to its impor-
tance in many academic institutions worldwide. However, much of the research has been
aimed at developing methodologies that produce the best quality timetables for a single
problem (Qu et al. 2009b). A more recent direction in this field, represented by some work
on hyper-heuristics, aims to raise the level of generality of search methodologies to create al-
gorithms that operate effectively over a range of problems. A hyper-heuristic can be seen as a
heuristic to choose heuristics (Burke et al. 2003). In this case, the low-level heuristics repre-
sent the search space. In timetabling, the low-level heuristics can be categorised as heuristics
which construct a timetable or heuristics which perform certain moves to improve a con-
structed timetable. This paper presents a random iterative hyper-heuristic approach which
uses improvement low-level heuristics. This approach was tested on the Toronto benchmark
and the second International Timetabling Competition (ITC2007) exam timetabling prob-
lems. It was found to generalise well over the two datasets. Furthermore, very competitive
results have been produced against other approaches in the literature.

The following section presents a brief description of the benchmarks. Sections 2.3 and
2.4 provide an overview on different approaches developed in the exam timetabling do-
main. Furthermore, Sect. 2.5 concentrates on hyper-heuristic approaches. A random itera-
tive hyper-heuristic to improve timetables is proposed in Sect. 3. An adaptive methodology
to select low-level heuristics and the results obtained are presented in Sect. 4. The future
extensions of this work are summarised in Sect. 5.

2 Exam timetabling
2.1 The Toronto benchmark

An exam timetabling problem consists of the allocation of a set of exams to a given set of
timeslots. The generated timetable must satisfy the hard constraints of the problem which are
the requirements that cannot be violated. For example, no one student must be scheduled to
sit two exams during the same period. A timetable which meets all the hard constraints given
is called a feasible timetable. A timetabling problem can also have a set of soft constraints.
Soft constraints are constraints that can be violated and the level of violation determines
the quality of the timetable generated. An example of a soft constraint is that there must
be a certain number of periods between two exams taken by the same student. Therefore,
high quality timetables contain the least number of soft constraint violations. The Toronto
benchmark problem is well known in the exam timetabling community since it was first
introduced by Carter et al. (1996) in 1996. Over the years, a slightly different version was
made available and used to test some approaches in the literature. The characteristics of the
two versions of this dataset are presented in Table 1. The problem has one hard constraint.
This says that conflicting exams (with common students) must not be assigned to the same
time slot. In addition, there is one soft constraint. This says that conflicting exams should be
spread throughout the timetable as much as possible. The objective is to minimise the sum
of proximity costs given as:

4

> (wi xn)/S

i=0
where
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Table 1 Characteristics of the two versions of the Toronto Benchmark datasets

Problem Exams I/II/Ilc Students I/IT Enrolments I/IT Density Time slots
car91 682 16925 56877 0.13 35
car92 543 18419 55522 0.14 32
ear83 1 190 1125 8109 0.27 24
ear83 II 189 1108 8057 0.27 24
hec92 I 81 2823 10632 0.42 18
hec92 II 80 2823 10625 0.42 18
kfu93 1 461 5349 25113 0.06 20
Ise91 381 2726 10918 0.06 18
sta83 I 139 611 5751 0.14 13
sta83 11 138 549 5417 0.19 35
tre92 261 4360 14901 0.18 23
uta92 I 622 21266 58979 0.13 35
uta92 II 638 21329 59144 0.12 35
ute92 184 2750 11793 0.08 10
yor83 181 941 6034 0.29 21
yor83 11 180 919 6002 0.3 21

— w; = 2% is the cost of assigning two exams with i time slots apart. Only conflicting
exams with common students and which are four or less time slots apart are considered
as violations

— n is the number of students involved in the conflict

— S is the total number of students in the problem

This problem has been used to test and compare many approaches in the literature. Re-
cently, a more constrained set of benchmarks was made available as part of the International
Timetabling Competition (ITC2007) (McCollum et al. 2010). The next section describes the
ITC2007 dataset in detail.

2.2 The international timetabling competition (ITC2007) dataset

The ITC2007 exam timetabling track could be considered to be a complex and a more prac-
tical dataset in comparison to the Toronto benchmark. This is due to the larger number of
constraints it contains. A full description of the problem and the evaluation function can be
found in McCollum et al. (2010). In addition, the characteristics which define the instances
are summarised in Table 2. The problem consists of the following:

— A set of timeslots covering a specified length of time. The number of timeslots and their
durations are provided.

— A set of exams which should be allocated to the timeslots.

— A list of students enrolled in each exam.

— A set of rooms with different capacities.

— A set of additional hard constraints.

— A set of soft constraints and their associated penalties.

In comparison to the Toronto benchmark, the ITC2007 dataset has more than one hard
constraint. The hard constraints can be outlined as follows:
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Table 2 Characteristics of the ITC2007 dataset

Instance Conflict density Exams Students Periods Rooms No. of hard constraints
exam 1 5.05 607 7891 54 7 12
exam 2 1.17 870 12743 40 49 14
exam 3 2.62 934 16439 36 48 185
exam 4 15.0 273 5045 21 1 40
exam 5 0.87 1018 9253 42 3 27
exam 6 6.16 242 7909 16 8 23
exam 7 1.93 1096 14676 80 15 28
exam 8 4.55 598 7718 80 8 21

— No student sits more than one exam at the same time.

— The capacity for each individual room should not be exceeded at a given period.

— Period lengths should not be violated.

— All period related hard constraints need to be satisfied e.g. exam A after exam B.

— All room related hard constraints need to be satisfied e.g. exam A must use room X.

The soft constraint violations can be summarised as follows:

— Two Exams in a Row The number of occurrences where a student sits two exams in a
row on the same day.

— Two Exams in a Day The number of occurrences where a student sits two exams on the
same day. If the exams are back to back then this is considered as a Two Exams in a Row
violation to avoid duplication.

— Period Spread The exams have to be spread a certain number of timeslots apart.

— Mixed Durations The number of occurrences where exams of different durations are
assigned to the same room.

— Larger Exams Constraint The number of occurrences where the largest exams are
scheduled near the end of the exam session. The number of the largest exams and the
distance from the end of the exam session are specified in the problem description.

— Room Penalty The number of times where certain rooms, which have an associated
penalty, are used.

— Period Penalty The number of times where certain timeslots, which have an associated
penalty, are used.

2.3 Exam timetabling approaches for the ITC2007 dataset

A three phased approach was developed by Muller (2008) to solve the problems in the
ITC2007 exam timetabling track. The first phase consists of an Iterative Forward Search
algorithm to find a feasible solution. Hill climbing is used to find the local optima in the
second phase. Finally, a Great Deluge Algorithm is applied to further explore the search
space.

Gogos et al. (2008) proposed a method which used a GRASP (Greedy Randomised
Adaptive Search Procedure) approach. In the construction phase, five orderings of exams
based on various criteria are generated. Tournament selection is used to select exams until
they are all scheduled. A backtracking strategy using a tabu list is employed as required. In
the improvement phase, Simulated Annealing is used. Finally, room allocations are arranged
using integer programming in the third phase.
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Atsuta et al. (2008) used a constraint satisfaction solver which employed tabu search
and iterated local search. The solver differentiates between the constraints and their cor-
responding weights during the computation to improve performance. De Smet (2008) also
incorporated local search techniques in a solver called Drools, an Open-Source Business
Rule Management System (http://www.jboss.org/drools/).

Pillay (2008) introduced a biologically inspired approach which is analogous to cell be-
haviour. The exams are initially ordered using the saturation degree heuristic and scheduled
sequentially in the available “cells” i.e. timeslots. If more than one timeslot is available, the
slot which causes the least overall constraint violation is chosen. Rooms are chosen using
the best fit heuristic. If a conflict occurs before all the exams are scheduled, the timetable
is rearranged to reduce the soft constraint violation. This is described as cell division. If
the overall soft constraint violation is not improved without breaking the hard constraints,
cell interaction occurs. The timeslots are swapped in this process to remove hard constraint
violations. The process continues until a feasible solution is achieved. Finally, the contents
of cells having equal durations are swapped to improve the solution. This is called cell mi-
gration.

McCollum et al. (2009) proposed a two phased approach where an adaptive heuristic is
used to achieve feasibility during the first phase. The second phase improves the solution
through the employment of a variant of the Great Deluge Algorithm.

Finally, Pillay (2008) presented an evolutionary algorithm based hyper-heuristic using
three different chromosome representations. An initial population is created and iteratively
improved by applying the processes of evaluation, selection and recreation.

2.4 Exam timetabling approaches for the Toronto benchmark

Abdullah et al. (2009) presented a hybridisation of an electromagnetic-like mechanism (EM)
and the Great Deluge algorithm. The technique estimates the quality of the solution and
calculates a decay rate at every iteration of the search. These values depend on a force value
calculation using the EM approach. This approach produced the best quality solution for
four of the instances. An approach which uses a sequential construction method, employed
by Caramia et al. (2008), to assign exams in the least number of timeslots was able to
produce the best quality timetables for another four of the Toronto benchmark instances. It
uses a greedy scheduler to obtain a feasible solution. A penalty decreaser and trader are then
applied to improve the quality of the constructed solution. Burke et al. (2010) introduced an
approach which combines a variable neighbourhood search with a genetic algorithm which
produced the best quality solution for one of the Toronto instances. In addition, Burke and
Bykov (2008) proposed a method where a hill-climber compares the candidate solution with
a solution produced a couple of iterations back instead of the current solution. This was
called the “late acceptance criteria” and it produced the best quality solutions for another
two instances. The results obtained by these approaches are presented in Sect. 4.1.
Recently, some new methods were investigated to automatically find the best heuristic to
solve a set of instances. This has led to the introduction of hyper-heuristics. The next section
summarises some of the hyper-heuristic methods applied to the exam timetabling domain.

2.5 Hyper-heuristics in exam timetabling
A hyper-heuristic can be seen as a method to choose low-level heuristics depending on
the problems in hand. Furthermore, it could be used to adapt or tune heuristics and meta-

heuristics. Hyper-heuristics in exam timetabling can be categorised, according to the low-
level heuristics they use, into two types as follows:
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1. Hyper-heuristics with constructive low-level heuristics
2. Hyper-heuristics with improvement low-level heuristics

A Tabu search approach was developed by Burke et al. (2007) to optimise a search space
of heuristic sequences comprised of two or more low-level heuristics. This work was ex-
tended in later research by Qu et al. (2009a) to construct heuristic sequences which produce
feasible timetables. The combinations are then analysed to find distribution patterns of low-
level heuristics. This leads to the generation of sequences which are adaptively adjusted to
construct better timetables. In addition, hybridisations of the graph based hyper-heuristic
with local search methods were investigated in Qu and Burke (2009). The formal definition
of the search problem of hyper-heuristics, where low-level heuristics represent the search
space, has also been provided in Qu and Burke (2009).

Asmuni et al. (2004) used fuzzy logic to combine two out of three graph colouring heuris-
tics. The idea was to combine the two heuristics into a single value which calculates the
difficulty of allocating an exam to a timeslot. The exams are ordered using this value and are
scheduled in order. Furthermore, the approach was extended to tune the fuzzy rules instead
of keeping them fixed (Asmuni et al. 2009).

Ersoy et al. (2007) developed an approach called the hyperhill-climber where a hyper-
heuristic is embedded in a memetic algorithm. The aim of this hyper-heuristic was to select
the best hill-climber to apply or decide the best order in which hill-climbers are executed. In
addition, Pillay and Banzhaf (2007) created another approach where genetic programming
was used to evolve hyper-heuristics.

Biligan et al. (2007) presented different heuristic selection methods and acceptance crite-
ria for hyper-heuristics in exam timetabling. Finally, a different method of combining heuris-
tics was presented by Pillay and Banzhaf (2009). The low-level heuristics were combined
hierarchically and applied simultaneously instead of being applied sequentially.

3 A hyper-heuristic with low-level improvement heuristics

Several low-level heuristics can be used to improve a timetable with varying quality. The
different low-level heuristics used could be considered as different methods for escaping
from local optima. However, the order in which exams are moved and the type of moves
performed play an important role in finding the best quality solution. An initial feasible
solution is constructed using the Largest Degree heuristic where the exams in the ordering
are assigned to the timeslot causing the least penalty. In the case where there is more than one
timeslot with the lowest penalty, one of them is randomly chosen. Our objective is to analyse
the performance of the different low-level heuristics used to minimise the penalty incurred
from a constructed solution. In addition, we test the effect of using different orderings for
the exams causing penalties in the solution. Finally we develop an adaptive approach which
orders the exams causing violations and automatically selects the best heuristic to use for
each exam to produce an improvement.

3.1 The low-level heuristics

In this paper we investigate the effect of using different low-level heuristics or neighbour-
hood operators to improve timetables. A combination of two improvement low-level heuris-
tics is used in our approach. The following is a list of the heuristics investigated:

1. Move Exam (ME): This heuristic selects an exam and reassigns it to the timeslot causing
the least penalty.
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Algorithm 1 The pseudo-code of the random iterative hyper-heuristic with low-level im-
provement heuristics

order the exams using the LD heuristic
construct a feasible solution by assigning the exams to the time slot causing the least
penalty
create a randomly ordered list of the exams which contribute to the overall penalty in-
curred
fori=1—1i=50do
for n =1 — n = e //e: number of exams causing penalty do
initialise heuristic sequence 7 = [KCM KCM KCM KCM] //h has a length of e
h =randomly change n heuristics in 4 to ME, SE or ST
construct a solution s, using &
if solution s, is feasible then
save h and the penalty of its corresponding solution s,
end if
end for
end for

2. Swap Exam (SE): This heuristic selects an exam and tries to swap it with a scheduled
exam leading to the least penalty timetable.

3. Kempe Chain Move (KCM): This is similar to the SE heuristic but is more complex
as it involves swapping a subset of conflicting exams in two distinct timeslots. This
neighbourhood operator was successfull in some earlier studies (Burke et al. 2010;
Thompson and Dowsland 1996).

4. Swap Timeslot (ST): This heuristic selects an exam and swaps all the exams in the same
timeslot with another set of exams in a different timeslot. After testing all the timeslots,
the swap producing the least penalty timetable is applied.

3.2 The random iterative hyper-heuristic

The study presented in this paper takes a similar approach to that presented in Qu et al.
(2009a) where a random iterative hyper-heuristic generates heuristic sequences of different
quality to solve the benchmark problem mentioned in Sect. 2.1. Instead of being used to
construct solutions, the heuristic sequences are used here to improve constructed feasible
solutions by rescheduling exams causing penalties. Algorithm 1 presents the pseudo-code
of this random iterative hyper-heuristic. The process starts by constructing an initial feasible
solution. Since the initial solution constructed affects the improvement process, a random
largest degree graph colouring heuristic which orders exams according to the number of
conflicts each exam has with others is used (Burke et al. 2010). This allows us to compare our
approach to other approaches in the literature which use a similar method in construction. At
every iteration, the exams causing violations in the constructed solution are identified and a
random sequence of moves is generated. A move is the application of one of the low-level
heuristics described in Sect. 3.1. The sequence of moves is then applied to the sequence of
exams as they are unscheduled one by one. Only moves that improve the current solution
are accepted. If a move does not improve the solution, it is skipped and the exam stays in its
current position. A sequence is discarded if an improvement is not obtained after the whole
sequence is applied.
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Table 3 Results using KCM without a hybridisation and with several different moves

hec92 I yor83 1 sta83 I tre92
KCM without hybridisation Best 13.50 43.84 160.43 8.99
KCM with ME Best 12.03 43.84 157.48 8.91
KCM with SE Best 12.03 42.37 157.75 8.75
KCM with ST Best 11.30 41.79 157.27 8.57

This approach was applied to four instances (hec92 I, sta83 I, yor83 I and tre92) of the
Toronto benchmark exam timetabling problems described in Sect. 2.1 for off-line learning of
the best heuristic hybridisations and the order of execution leading to the best improvement.
These instances were chosen as they vary in size and cover a range of conflict densities (see
Table 1). After running this process for (e x 50) times, where e is the number of exams caus-
ing soft constraint violations in the constructed solution, a set of sequences and the penalties
of their corresponding solutions are obtained for further investigation on the effectiveness
of the different heuristics used. Note that, only 50 samples were collected for each rate of
hybridisation as we found that using more samples does not improve the quality of the fi-
nal outcome at this point. Finally, an adaptive approach was developed and applied to the
Toronto benchmark. Furthermore, to test the generality of the approach, it was applied to
the ITC2007 exam timetabling track. The approach is presented in Sect. 4.

3.3 Analysis of hybridising improvement low-level heuristics

In order to clearly observe the effect of the different low-level heuristics in improving solu-
tions, the heuristic sequences generated consist of two heuristics. We use the Kempe chain
move heuristic as the basic heuristic in the sequences as it has proved to be successful in
previous work (Burke et al. 2010; Thompson and Dowsland 1996). The Kempe chain move
involves swapping a subset of exams in two distinct timeslots making sure that a hard con-
straint violation does not occur. The rest of the heuristics (ME, SE and ST) are randomly
hybridised into the list of KCM.

The random sequences are generated with different percentages of hybridisation by in-
serting n ME, SE or ST, n =[1, ..., e] in the sequences. For each hybridisation of KCM
with either ME, SE or ST, 50 samples are obtained for each amount of hybridisation. Dupli-
cate sequences are discarded and another sequence is generated instead. The sequences are
re-initialised in each iteration to lead the search to explore a wider area of the search space
at this stage.

We applied this approach to four instances of the Toronto benchmark exam timetabling
problems (Carter et al. 1996). Table 3 presents the results obtained using ME, SE and ST in
a hybridisation with KCM as well as a comparison against using KCM only.

It is observed that using a Kempe chain only produces the worst results. After introducing
other heuristics in a hybridisation with the Kempe chain moves, better results were obtained.
Another observation from Table 3 is that swapping timeslots and performing Kempe chain
moves produces the best improvement for all the problems. One possible reason may be that
swapping timeslots allows the search to be more diverse and to sample different areas of the
search space to find good solutions more quickly. In addition, no obvious trends could be
obtained on the amount of ST hybridisation within the best heuristic sequences. However, it
is observed in all the sequences leading to the best timetables, the ST heuristic is randomly
distributed within the sequence and the percentage of hybridisation is less than 50 %.
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Table 4 Results of hybridising KCM with ST using different orderings of the exams causing a soft constraint
violation. The notation X tb ¥ means heuristic Y is used to break ties in heuristic X

hec92 I yor83 I sta83 I tre92
KCM with ST + RO Average 11.99 42.63 159.74 9.02
KCM with ST + RO Best 11.60 41.33 158.46 8.66
KCM with ST + LD Average 12.69 42.10 163.32 9.00
KCM with ST 4 LD Best 12.50 39.69 159.50 8.66
KCM with ST + LWD Average 12.06 42.08 159.74 8.91
KCM with ST + LWD Best 11.39 39.69 157.76 8.64
KCM with ST + LP Average 12.15 42.09 159.52 8.85
KCM with ST + LP Best 11.32 39.69 157.49 8.56
KCM with ST + SD tb LWD Average 11.45 41.96 159.39 8.74
KCM with ST + SD tb LWD Best 11.25 39.56 157.37 8.54

3.4 Variations of orderings of the exams causing a penalty

To analyse the effect of ordering the unscheduled exams causing a soft constraint violation
in a previous solution, we decided to test different orderings while using the Kempe Chain
and swapping timeslot hybridisation stated in the previous section. After the exams causing
violations are identified, they are ordered first before being reassigned to a timeslot. Several
orderings can be used to guide the search as follows:

e Largest Degree (LD): The exams are ordered decreasingly according to the number of
conflicts each exam has with others.

o Largest Weighted Degree (LWD): The exams are ordered similarly to LD but weighted
according to the number of students involved in the conflict.

e Saturation Degree (SD): The exams are ordered increasingly according to the number of
remaining timeslots available to assign them without causing conflicts. In the case where
ties occur, LWD is used as a tie breaker. From our previous work it was shown that SD
produces the best results when LWD is used to break ties in the ordering (Burke et al.
2011).

e Largest Penalty (LP): The exams are ordered decreasingly according to the penalty they
incur in the current solution.

e Random Ordering (RO): The exams are ordered randomly.

Table 4 presents the results of applying different orderings to the unscheduled exams,
then running a random heuristic sequence of KCM and ST to assign them in better timeslots.

As shown in Table 4, we found that using SD and breaking any ties in the ordering using
LWD produced the best results. This is because SD orders the unscheduled exams according
to the number of timeslots available to assign them without causing conflicts. Therefore, the
chances of moving exams at the top of the SD list and finding better timeslots for them
become higher. Ordering the exams according to the penalty they incur was seen to be the
second best ordering followed by LWD. The effect of using LD and RO was the same as
randomly choosing an exam to reschedule.

A t-test is also carried out to give an indication if the results using SD, LP and LWD are
significantly different. Tables 5, 6 and 7 summarise the p-values of the t-tests carried out
between the results of different orderings, which are significantly different in all the cases.
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Table 5 t-test on the results from ordering exams causing violations using SD and LP

hec92 1 yor83 1 sta83 I tre92
p-value 1.3E-05 5.27E-21 1.9E-18 1.33E-04
t Stat 5.96 74.66 50.35 4.73

Table 6 t-test on the results from ordering exams causing violations using SD and LWD

hec92 I yor83 I sta83 1 tre92
p-value 1.58E-07 5.3E-18 6.85E-16 5.56E-08
t Stat 8.67 47 33.89 9.41

Table 7 t-test on the results from ordering exams causing violations using LP and LWD

hec92 1 yor83 I sta83 I tre92
p-value 0.18 7.51E-04 1.58E-11 3.36E-09
t Stat 0.93 3.87 17.04 11.62

4 Adaptive selection of low-level heuristics for improving exam timetables

Algorithm 2 presents the initialisation stage of the adaptive approach. The exams causing
a penalty are first identified and are unscheduled. They are then put in a list and ordered
using SD. Random heuristic sequences are generated using KCM and ST to reschedule the
exams. The sequences are then applied to the ordered exams and the corresponding solutions
are saved. Note that, only 10 sequences are generated for each rate of hybridisation to be
able to adhere to the time limitation and compare our results with the best in the literature
for the ITC2007 dataset. Furthermore, limiting the number of sequences generated in this
stage makes it easier to analyse and observe any trends in the sequences generating the best
results.

The above observations indicate that the best solutions were obtained when ordering
the exams causing violations using SD, and rescheduling them using either a Kempe-chain
move or swapping timeslots. It was also observed that the heuristic sequences producing the
top 5 % results used the same move for the majority of the exams (i.e. the same heuristic
appears at the same position in more than 75 % of the sequences). Therefore, we developed
an intelligent approach that performs an analysis of the best 5 % of the sequences produced
to generate a new set of sequences. The new set of sequences obtained better results for all
the problem instances. The adaptive approach was tested and showed to be effective and
comparable with the best approaches in the literature.

Algorithm 3 presents the pseudo-code of the approach which hybridises ST with KCM
in two stages. The process is presented as follows:

1. In the first stage, the best 5 % of heuristic sequences are collected and analysed. If the
same heuristic is used at the same position for more than 75 % of the heuristic sequences,
then it is stored. Otherwise the position is kept empty. Note that, we also tested collect-
ing more than 5 % of the best sequences to analyse them. However, the behaviour was
random since no trends were seen. Therefore, to guarantee the effectiveness of the ap-
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Algorithm 2 The pseudo-code of the initialisation stage of the adaptive hyper-heuristic with
low-level improvement heuristics

order the exams using the LD heuristic
construct a feasible solution by assigning the exams to the time slot causing the least
penalty
create a list of the exams which contribute to the overall penalty incurred, ordered by SD
fori =1 — i = (e x 10) //e: number of exams causing penalty do
forn=1—->n=ecedo
initialise heuristic sequence 4 = {KCM KCM ... KCM KCM}
h = randomly change n heuristics in /& to ST
construct a solution using i
if solution Sc is feasible then
save h and the penalty of its corresponding solution Sc
end if
end for
end for

Algorithm 3 Adaptive generation of heuristic sequences hybridising KCM and ST
construct the initial heuristic sequences // see Algorithm 2
collect the best 5 % of the heuristic sequences
for i =0 — i = (number of exams causing penalty — 1) do

count =0
for j =1 — j = (number of sequences — 1) do
if heuristicSequence[i][ j] = KCM then
count ++
end if
end for
if count > (0.75 x number of sequences) then
finalHeuristicSequence[i] = KCM
else if count < (0.25 x number of sequences) then
finalHeuristicSequence[i] = ST
else
finalHeuristicSequence[i] = empty
end if
end for
n = (number of empty positions x 5) for large problems or (number ofempty positions x
10) for small problems
fori=0—i=m—1)do
for j =0 — j = (number of sequences — 1) do
if finalHeuristicSequence[ j] = empty then
finalHeuristicSequence[ j] = KCM or ST
end if
end for
construct a solution using finalHeuristicSequencel[ j |
if a better solution is obtained then
save finalHeuristicSequence[ j] and the penalty of its corresponding solution
end if
end for

@ Springer



140 Ann Oper Res (2014) 218:129-145

proach, the heuristic was chosen for a certain position if it appears in 75 % of the best
5 % heuristic sequences collected.

2. In the second stage, the empty positions are randomly assigned as KCM or ST. (n x 5)
sequences for the large problems (uta92 I, uta92 II, car91 and car92) and (n x 10) se-
quences for the small problems are generated, respectively. The generated sequences are
then applied to the problem.

4.1 The Toronto benchmark results

We tested this approach on the Toronto benchmark exam timetabling problems and present
the results in Tables 8 and 9. The average computational time for each stage across the
instances is also presented for 30 runs on a Pentium IV machine with a 1 GB memory. In
addition, the number of exams causing a penalty is presented in the tables.

The best results stated in the literature are presented in Table 10. These include the hy-
bridisation of an electromagnetic-like mechanism (EM) and the Great Deluge algorithm
employed by Abdullah et al. (2009), the hill-climbing with a late acceptance strategy imple-
mented by Burke and Bykov (2008), the variable neighbourhood search incorporating the
use of genetic algorithms used by Burke et al. (2010) and the sequential construction method
developed by Caramia et al. (2008). These algorithms are briefly discussed in Sect. 2.4.

The results obtained indicate the generality of our approach to different constructed
timetables regardless of the size. We also make a comparison with other hyper-heuristics
which produced the best results in the literature in Table 11. In comparison with the graph-
based hyper-heuristic in Burke et al. (2007), our approach performs better in all the cases
reported. In addition, it performs better in 8 out of 11 cases in comparison with the hyper-
heuristics investigated in Pillay and Banzhaf (2009) and Qu and Burke (2009). Finally, it
performs better in 10 out of 11 cases compared to the tabu search hyper-heuristic investi-
gated in Kendall and Mohd Hussin (2005). Only the problems presented in Table 11 were
compared to other results since the results for the other instances in Table 1 were not reported
in the literature.

4.2 The international timetabling competition (ITC2007) results

To test the generality of our approach, we applied it to the ITC2007 exam timetabling
dataset. The initial solution is constructed by ordering the exams according to their satu-
ration degree. The exams are assigned a random timeslot in the situation where more than
one timeslot is available. After a feasible solution is constructed the Adaptive Improvement
Hyper-heuristic in Algorithm 3 was applied to the constructed solution. To allow a fair com-
parison with the reported competition results, the approach was run for the same amount of
time using 11 distinct seeds for each instance. Table 12 presents the results we obtained in
comparison with the best in the literature. The description of the approaches used for com-
parison is presented in Sect. 2.3. We do emphasise that the objective here is not to beat the
best reported results but to demonstrate the generality of our approach to different problems
with different constraints. A dash in the table means that no feasible solution was obtained.

The Extended Great Deluge in McCollum et al. (2009) obtained the best results for 5
out of the 8 instances. However, the approach was run for a longer time as it was developed
after the competition. In the competition, the best results for all the 8 instances were reported
in Muller (2008) using a three phased approach. The GRASP used in Gogos et al. (2008)
produced the second best results.
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Table 9 Contd. Results from the adaptive improvement Hyper-heuristic (AIH) approach on the Toronto
Benchmark dataset

hec92 II yor83 II ear83 11 sta83 11 uta92 II

AIH Average 12.43 50.49 41.98 35.00 3.54
AIH Best 11.35 49.72 39.60 32.57 3.45
Time taken in first stage (s) 352 861 1517 1204 53966
Time taken in second stage (s) 146 513 1275 684 27350
Number of exams causing violations 23 19 30 17 53

Table 10 Best results obtained by the Adaptive Improvement Hyper-heuristic (Algorithm 3) compared to
the best approaches in the literature on the Toronto Benchmark

Problems AIH Abdullah et al. Burke and Bykov Burke et al. Caramia et al.
Best (2009) (2008) (2010) (2008)
Best Best Best Best
hec92 1 11.19 9.73 10.06 10.00 9.20
sta83 I 157.18 156.94 157.03 156.90 158.20
yor83 1 39.47 34.95 34.78 34.90 36.20
ute92 26.70 24.90 24.79 24.80 24.40
ear83 1 35.79 36.00 32.65 32.80 29.30
tre92 8.49 8.5 7.72 7.90 9.40
Ise91 10.92 10.03 9.86 10.00 9.60
kfu93 14.51 12.62 12.81 13.00 13.80
car92 4.31 3.76 3.81 3.90 6.00
uta92 I 3.44 2.99 3.16 3.20 3.50
car91 5.19 4.42 4.58 4.60 6.60

In comparison with other hyper-heuristic techniques, our approach was able to produce
better results in only one instance when compared to the evolutionary algorithm based hyper-
heuristic presented in Pillay (2010). However, it was stated that these experiments did not
adhere to the time limitation imposed by the competition.

In comparison to the Constraint Based Solver developed in Atsuta et al. (2008), our
approach performed better in 3 out of the 8 instances. The approach using the Drools solver
in De Smet (2008) obtained feasibility for only 5 instances. Our approach outperformed it
as we were able to gain feasibility for all the 8 instances. This demonstrates the generality of
our approach to solving exam timetabling problems. Finally, our approach performed better
on 6 of the 8 instances in comparison with the biologically inspired approach proposed in
Pillay (2008).

5 Conclusions
The study presented in this paper implements a hyper-heuristic approach which adaptively
adjusts heuristic combinations to achieve the best improvement on constructed timetables.

An investigation is made of the low-level heuristics used and the order in which exams
causing soft constraint violations are rescheduled. The analysis is performed on a set of four

@ Springer



Ann Oper Res (2014) 218:129-145 143

Table 11 Best results obtained by the Adaptive Improvement Hyper-heuristic (AIH) compared to other
hyper-heuristics approaches in the literature on the Toronto Benchmark

Problems AIH Kendall and Burke et al. Pillay and Qu and Burke
Best Mohd Hussin (2007) Banzhaf (2009)
(2005) Best (2009) Best
Best Best
hec92 1 11.19 11.86 12.72 11.85 11.94
sta83 1 157.18 157.38 158.19 158.33 159.00
yor83 I 39.47 - 40.13 40.74 40.24
ute92 26.70 27.60 31.65 28.88 28.30
ear83 I 35.79 40.18 38.19 36.86 35.86
tre92 8.49 8.39 8.85 8.48 8.60
1se91 10.92 - 13.15 11.14 11.15
kfu93 14.51 15.84 15.76 14.62 14.79
car92 4.31 4.67 4.84 4.28 4.16
uta92 I 3.44 - 3.88 3.40 3.42
car91 5.19 5.37 5.41 4.97 5.16

Table 12 Best results obtained by the Adaptive Improvement Hyper-heuristic (AIH) compared to the best
approaches in the literature on the ITC2007 dataset

Instances AIH McCollum etal. Muller Gogosetal. Atsutaetal. DeSmet Pillay Pillay

Best (2009) (2008)  (2008) (2008) (2008) (2008) (2010)
Best Best Best Best Best Best Best

Exam 1 6235 4633 4370 5905 8006 6670 12035 8559
Exam 2 2974 405 400 1008 3470 623 3074 830
Exam3 15832 9064 10049 13862 18622 - 15917 11576
Exam4 35106 15663 18141 18674 22559 - 23582 21901
Exam 5 4873 3042 2988 4139 4714 3847 6860 3969
Exam 6 31756 25880 26950 27640 29155 27815 32250 28340
Exam7 11562 4037 4213 6683 10473 5420 17666 8167
Exam 8 20994 7461 7861 10521 14317 - 16184 12658

benchmark instances of differing difficulty in an off-line learning process. It is shown that,
of the heuristics tried, the timeslot swapping heuristic is the best to combine with Kempe
chains. In addition, better solutions are produced when ordering the exams causing a soft
constraint violation using Saturation Degree and breaking any ties with Largest Weighted
Degree. Based on the output of the learning process, an adaptive approach which analyses
and adjusts some randomly generated sequences is implemented and applied to the rest of
the instances. Furthermore, the hyper-heuristic approach is applied to a more constrained
dataset, and showed to produce very competitive results compared to other approaches in
the literature on both datasets.

Future research directions include performing improvements during the timetable con-
struction stage instead of performing the improvements at the end of the construction. Using
hybridisations of more than two low-level heuristics could also be investigated. Finally, the
approach investigated in this paper can be applied to course timetabling.
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