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Abstract In this paper we describe some nonlinear equilibrium problems under uncertainty
arising from economics and operations research. In particular we treat Wardrop equilibria
in traffic networks. We show how the theory of monotone random variational inequalities,
where random variables occur both in the operator and the constraint set, can be applied to
model these problems.

Therefore in this contribution we introduce the topic of random variational inequalities
and present some of our recent results in this field. In particular, we treat the more structured
case where a finite Karhunen-Loève expansion leads to a separation of the random and
the deterministic variables. Here we describe a norm convergent approximation procedure
based on averaging and truncation. We illustrate this procedure by means of some small
sized numerical examples.

Keywords Random variational inequality · Monotone operator · Cassel-Wald
equilibrium · Distributed market equilibrium · Traffic network · Wardrop equilibrium

1 Introduction

Although relatively recent, the variational inequality (V.I.) approach to a variety of equi-
librium problems that encompass (convex) optimization and minimax problems and that
arise in various fields of applied sciences, such as economics, game theory and transporta-
tion science, has developed very rapidly (see e.g. Facchinei and Pang 2003; Giannessi and
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Maugeri 1995; Konnov 2007; Nagurney 1993). Since the data of most of the above men-
tioned problems are often affected by uncertainty, the question arises of how to introduce
uncertainty or randomness in their V.I. formulation. In fact, while the topic of stochastic pro-
gramming is already a well established field of optimization theory (see e.g. Dempster 1980;
Prekopa 1995), the theory of random (or stochastic) variational inequalities is much less de-
veloped.

Here we first quote (Chen and Fukushima 2005; Gürkan et al. 1999). Chen and
Fukushima (2005) present an expected residual method that finds a surrogate solution to
stochastic (random) linear complementarity problems (LCP) by transforming the random
LCP to a random minimization problem using a NCP (or gap) function and then minimizing
its expectation. Gürkan et al. (1999) extend sample-path optimization, the simulation-based
method of sample average approximation, to the approximate solution of a class of stochastic
(random) variational inequalities on a polyhedral subset in finite dimension. There is further
recent work on sample average approximation methods (see Shapiro 2003) for generalized
equations (Shapiro et al. 2009, Sect. 5.2), for stochastic mathematical programs with equi-
librium constraints (Shapiro and Xu 2008), and for various equilibrium problems, including
Stackelberg games (DeMiguel and Xu 2009) and Nash games (Ravat and Shanbhag 2010,
2011). In particular, we draw the reader’s attention to the recent paper (Xu 2010) (see also
Xu and Zhang 2009) on sample average approximation methods for a class of stochastic
variational inequality problems. Roughly said, sample average approximation treats a mean
value model as a deterministic surrogate model and uses random samples of realizations of
the random vectors such that almost sure, even exponential convergence to the solution of
the surrogate deterministic model can be established.

Before presenting our analysis and some specific nonlinear equilibrium problems in the
subsequent sections, some words about our approach to modelling uncertainty in equilib-
rium problems by random variational inequalities are in order. In the present paper, random-
ness may affect all data of the equilibrium problems: firstly extending random (nonlinear)
operator equations, randomness may occur in the right hand side and in the operator that
may come from an optimization model via the gradient of the cost functional. More impor-
tantly, we admit randomness in the constraints and require these constraints to be satisfied
with probability 1. Thus we consider a special instance of probability constraints, here with
probability level p = 1; see (Shapiro et al. 2009, Chap. 4) for stochastic optimization models
with probabilistic constraints. We follow Shapiro et al. (2009, p. 87) and “emphasize that
imposing constraints on the probability of events is particularly appropriate whenever high
uncertainty is involved and reliability is a central issue.” In such cases a mere mean value
model may not be appropriate.

Our treatment of random variational inequalities started with Gwinner (2000) where the
author studied a class of V.I. in infinite dimension with a linear random operator, presented
an existence and full discretization theory and applied this theory to a unilateral boundary
value problem stemming from continuum mechanics, where the coefficients of the elliptic
differential operator are admitted to be random to model uncertainty in material parame-
ters. The functional setting introduced therein, and extended in Gwinner and Raciti (2006)
in order to include randomness also in the constraints, can also be utilized to model many
finite dimensional random equilibrium problems, which only in special cases admit an opti-
mization formulation. Furthermore, recently in Gwinner and Raciti (2009), the authors have
extended the theory consisting of the existence results and the deterministic approximation
procedure in Gwinner and Raciti (2006) to the monotone nonlinear case. This extension is
motivated by the need to cope with the nonlinearity in many equilibrium problems arising
in operations research, such as the random traffic equilibrium problem which is studied in
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detail in this article. In contrast to Gwinner and Raciti (2006, 2009), we also discuss here
the nonuniqueness case, when still monotonicity of the operator is present, but uniform
monotonicity is abandoned. Moreover, under stronger assumptions, we can show norm con-
vergence of our deterministic approximation procedure, even when the substitute problems
are only solved inaccurately.

The relevant information that we can extract from our random solution concept is the
mean of the random solution. We can understand this mean as a deterministic surrogate
solution. By our deterministic approximation procedure we provide an approximation of
this unknown surrogate solution. We show in this paper how the well-known Chebyshev
inequality can be applied in virtue of the L2 convergence of our approximation procedure to
derive a probabilistic error estimate for the approximation obtained.

This paper consists of 6 sections. In the following Sect. 2 we specialize the abstract
formulation of Gwinner and Raciti (2009) to the case in which the deterministic variables
belong to a finite dimensional space, so as to make our theory readily applicable to eco-
nomics and operations research problems; in Sect. 3 we consider the special separable case
where a finite Karhunen-Loève expansion separates deterministic and random variables; in
Sect. 4 we recall the approximation procedure given in Gwinner and Raciti (2009) and re-
fine its convergence analysis. Then in Sect. 5, we show how the theory of monotone random
V.I., where random variables occur both in the operator and the constraint set, can be applied
to model various nonlinear equilibrium problems under uncertainty arising from economics
and operations research. In the last Sect. 6 we focus on the modelling of the nonlinear ran-
dom traffic equilibrium problem and, in order to explain the role of monotonicity, we also
discuss the fact that this problem (as every network equilibrium problem) can be formu-
lated by using two different sets of variables, connected by a linear transformation. Here we
illustrate our theory of monotone random V.I by two small sized numerical examples of traf-
fic equilibrium problems. In the final concluding remarks we delineate some open research
avenues for future research.

2 The random variational inequality problem—the pointwise and the integral
formulation

Let (�, A,P ) be a probability space. For all ω ∈ �, let K(ω) be a closed, convex and
nonempty subset of R

k . Consider a random vector λ and a Carathéodory function F : � ×
R

k �→ R
k , i.e. for each fixed x ∈ R

k , F(·, x) is measurable with respect to A, and for every
ω ∈ �, F(ω, ·) is continuous. Moreover, for each ω ∈ �, let F(ω, ·) be a monotone map
on R

k , i.e. 〈F(ω,x) − F(ω,y), x − y〉 ≥ 0,∀x, y ∈ R
k .

With these data we consider the following

Problem 1 For almost all ω ∈ �, find x = x(ω) ∈ K(ω) such that

〈
F(ω,x), y − x

〉 ≥ 〈
λ(ω), y − x

〉
, ∀y ∈ K(ω). (2.1)

This means that the preceding inequality holds pointwise on � except a fixed null set,
depending on the solution.

Obviously if a solution of Problem 1 that depends on ω, exists for all ω ∈ �, we arrive
at a set-valued map � : � ⇒ R

k which, to each ω ∈ �, associates the solution set of (2.1).
The measurability of � (with respect to the algebra B(Rk) of the Borel sets on R

k and to
the σ -algebra A on �) has been proved in Gwinner and Raciti (2006) for the case of a
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bilinear form on a general separable Hilbert space. The proof given therein can be adapted
in a straightforward fashion to nonlinear maps.

We are not interested in investigating a merely parameter dependent variational inequal-
ity. Instead we shall formulate the problem in an appropriate functional analytic setting. We
introduce for fixed p ≥ 2, the reflexive Banach space Lp(�,P,R

k) of random vectors V

from � to R
k such that the expectation

EP ‖V ‖p =
∫

�

∥∥V (ω)
∥∥p

dP (ω) < ∞. (2.2)

Then it makes sense to introduce the nonvoid closed convex subset

K := {
V ∈ Lp

(
�,P,R

k
) : V (ω) ∈ K(ω),P-almost sure

}
.

In addition, we assume that the map F satisfies the growth condition

∥∥F(ω, z)
∥∥ ≤ α(ω) + β(ω)‖z‖p−1 ∀z ∈ R

k P-almost sure, (2.3)

for some α ∈ Lp(�,P ),β ∈ L∞(�,P ).
It is noteworthy that in many applications, such as the traffic equilibrium problem, the

modelling is often done with polynomial cost functions. Then the growth of those polyno-
mial cost functions determines the parameter p of the Lp space and the growth condition
(2.3) is naturally satisfied.

Under the growth condition (2.3) a map F̂ that acts from Lp(�,P,R
k) to the dual

Lp′
(�,P,R

k), 1
p

+ 1
p′ = 1 can be derived from F by

F̂ (V )(ω) := F
(
ω,V (ω)

)
, ω ∈ �.

Moreover, let λ ∈ Lp′
(�,P,R

k). Then the integrals and the associated duality forms

∫

�

〈
F

(
ω,U(ω)

)
,V (ω) − U(ω)

〉
dP (ω) =: [

F̂ (U),V − U
]

∫

�

〈
λ(ω),V (ω) − U(ω)

〉
dP (ω) =: [λ,V − U ]

are well defined for all U,V ∈ Lp(�,P,R
k). Therefore, we can consider the following

Problem 2 Find U ∈ K such that, ∀V ∈ K ,

[
F̂ (U),V − U

] ≥ [λ,V − U ]. (2.4)

Both problem formulations are related in the following way.

Proposition 1 Let U ∈ Lp(�,P,R
k). Suppose U solves Problem 1 such that x(ω) := U(ω)

satisfies (2.1) on � except a null set, then U solves Problem 2 satisfying (2.4). Vice versa,
let us assume K does not depend on ω. Then any solution of Problem 2 solves Problem 1.

Proof With U ∈ Lp(�,P,R
k) a solution of Problem 1, we have U ∈ K . Let V ∈ K arbi-

trarily chosen, then plug in y = V (ω) ∈ K(ω) and (2.1) holds pointwise in � except a null
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set depending on U and V . Then integrate a nonnegative L1(�,P ) function to obtain that
U solves Problem 2.

The converse statement follows by contradiction. Let U ∈ K be a solution of Problem 2.
Then, U(ω) ∈ K for almost all ω. Assume ∃A ⊂ �,P (A) > 0, ∃z ∈ K:

〈
F

(
ω,U(ω)

)
, z − U(ω)

〉
<

〈
λ(ω), z − U(ω)

〉
, ∀ω ∈ A.

Then by construction,

∫

A

〈
F

(
ω,U(ω)

)
, z − U(ω)

〉
dP (ω) <

∫

A

〈
λ(ω), z − U(ω)

〉
dP (ω).

Take V ∈ Lp(�,P,R
k) by

V (ω) =
{

U(ω) ω /∈ A

z ω ∈ A

Then V ∈ K and
∫

�

〈
F

(
ω,U(ω)

)
, V (ω) − U(ω)

〉
dP (ω) <

∫

�

〈
λ(ω),V (ω) − U(ω)

〉
dP (ω)

contradicting that U solves Problem 2. Using the separability of K as a closed subset of R
k ,

we can get rid of the dependence on the null set of z ∈ K. Therefore we conclude that U

solves Problem 1. �

Remark 2.1 Clearly, when unique solutions exist to Problems 1 and 2 (as considered in
Gwinner and Raciti 2006, 2009), then both problem formulations are equivalent for a general
ω dependent constraint set K .

Since the continuity of F(ω, ·) implies the continuity of the monotone superposition
operator F̂ (see Appel and Zabrejko 1990), monotone operator theory (see Kinderlehrer and
Stampacchia 1980; Zeidler 1990) applies. Thus we have unique solvability of Problem 2, if
F is uniformly strongly monotone, i.e. if there is some constant c0 > 0 such that

〈
F(ω,x) − F(ω,y), x − y

〉 ≥ c0‖x − y‖2 ∀x, y ∈ R
k,∀ω ∈ �.

For existence results without the assumption of uniform strong monotonicity, we can refer
to the existence theory of monotone variational inequalities (Kinderlehrer and Stampacchia
1980), see also Maugeri and Raciti (2009) for a recent exposition. Here we use the notation
KR := {V ∈ K : ‖V ‖ ≤ R} and quote from Kinderlehrer and Stampacchia (1980, Theorem
III 1.7) the following characterization result.

Theorem 2.1 A necessary and sufficient condition in order that Problem 2 is solvable is the
existence of R > 0 such that a solution UR of the variational inequality

UR ∈ KR,
[
F̂ (UR),V − UR

] ≥ [λ,V − UR], ∀V ∈ KR

satisfies ‖UR‖ < R.
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Remark 2.2 For purposes of completeness let us point out that time dependent V.I. (Gwinner
2003) with their application to time dependent equilibrium problems (Daniele et al. 1999),
when considered without any delay effects or time integration/differentiation and treated
in an Lp framework, can be seen as a subclass of random V.I. Indeed, without any loss of
generality, consider the time interval (0,1). Then take � := (0,1);P := dt , the Lebesgue
measure leading to the special uniform probability distribution on (0,1); see also Exam-
ple 6.1 in the paper.

3 The separable case

In the following we want to present applications not only with implicit constraints de-
scribed by a constraint set, but also with explicit inequality constraints. Moreover we have
to simplify somewhat our random V.I. problems to arrive at numerically treatable problems.
Therefore here and in the sequel we shall posit further assumptions on the structure of the
constraint set and on the operator. More precisely, with a matrix A ∈ R

m×k and a random
m-vector D being given, we consider the random set

M(ω) := {
x ∈ R

k : Ax ≤ D(ω)
}
, ω ∈ �.

Moreover, let G,H : R
k → R

k be two (nonlinear) maps; b, c ∈ R
k fixed vectors and R and

S two real valued random variables on �. We assume that S ∈ L∞(�) and R ∈ Lp(�). We
simplify Problem 1 to that of finding X̂ : � → R

k , such that X̂(ω) ∈ M(ω) (P-a.s.) and the
following inequality holds for P -almost every elementary event ω ∈ � and ∀x ∈ M(ω)

〈
S(ω)G

(
X̂(ω)

) + H
(
X̂(ω)

)
, x − X̂(ω)

〉 ≥ 〈
b + R(ω)c, x − X̂(ω)

〉
. (3.1)

Thus the operator F defined by

F(ω,x) := S(ω)G(x) + H(x)

inherits (uniform strong) monotonicity from the (uniform strong) monotonicity of s0 G and
H , provided s0 is a positive constant such that there holds S ≥ s0 P -a.s. (almost sure).
We also require that F satisfies the growth condition (2.3). Moreover, we assume that D ∈
L

p
m(�) := Lp(�,P,R

m). Hence we can introduce the following closed convex nonvoid
subset of L

p

k (�):

MP := {
V ∈ L

p

k (�) : AV (ω) ≤ D(ω),P − a.s.
}

and arrive at the following problem: Find Û ∈ MP such that, ∀V ∈ MP ,

∫

�

〈
S(ω)G

(
Û (ω)

) + H
(
Û (ω)

)
,V (ω) − Û (ω)

〉
dP (ω)

≥
∫

�

〈
b + R(ω)c,V (ω) − Û (ω)

〉
dP (ω). (3.2)

The r.h.s. of (3.2) defines a continuous linear form on L
p

k (�), while the l.h.s. defines a
continuous monotone form on L

p

k (�). Similar relations as in Sect. 2 hold for the pointwise
formulation (3.1) and integral formulation (3.2).
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In order to get rid of the abstract sample space �, we consider the joint distribution P

of the random vector (R,S,D) and work with the special probability space (Rd , B(Rd),P),
where the dimension d := 2 +m. To simplify our analysis we shall suppose that R, S and D

are independent random vectors. Let r = R(ω), s = S(ω), t = D(ω), y = (r, s, t). For each
y ∈ R

d , consider the set

M(y) := {
x ∈ R

k : Ax ≤ t
}

Then the pointwise version of our problem now reads: Find x̂ such that x̂(y) ∈ M(y), P-a.s.,
and the following inequality holds for P-almost every y ∈ R

d and ∀x ∈ M(y),

〈
sG

(
x̂(y)

) + H
(
x̂(y)

)
, x − x̂(y)

〉 ≥ 〈
b + rc, x − x̂(y)

〉
. (3.3)

In order to obtain the integral formulation of (3.3), consider the space Lp(Rd ,P,R
k) and

introduce the closed convex nonvoid set

MP := {
v ∈ Lp

(
R

d ,P,R
k
) : Av(r, s, t) ≤ t,P − a.s.

}
. (3.4)

This leads to the problem: Find û ∈ MP such that, ∀v ∈ MP,

∫

Rd

〈
sG

(
û(y)

) + H
(
û(y)

)
, v(y) − û(y)

〉
dP(y) ≥

∫

Rd

〈
b + rc, v(y) − û(y)

〉
dP(y). (3.5)

Again similar relations as in Sect. 2 hold for the pointwise formulation (3.3) and the
integral formulation (3.5).

Remark 3.1 Our approach and analysis here and in the next section readily applies also to
more general finite Karhunen-Loève expansions

λ(ω) = b +
L∑

l=1

Rl(ω)cl, F (ω,x) = H(x) +
L∑

l=1

Sl(ω)Gl(x).

However, such an extension does not only need a more lengthy notation, but—more
importantly—leads to more computational work; see Gwinner and Raciti (2006) for a more
thorough discussion of those computational aspects.

4 An approximation procedure by discretization of distributions

Without loss of generality, we can suppose that R ∈ Lp(�,P ) and D ∈ L
p
m(�,P ) are

nonnegative (otherwise we can use the standard decomposition in the positive part and
the negative part). Moreover, we assume that the support (the set of possible outcomes)
of S ∈ L∞(�,P ) is the interval [s0, s1) ⊂ (0,∞). Furthermore we assume that the distri-
butions PR,PS,PD are continuous with respect to the Lebesgue measure, so that accord-
ing to the theorem of Radon-Nikodym, they have the probability densities ϕR,ϕS,ϕDi

i =
1, . . . ,m, respectively. Hence, P = PR ⊗ PS ⊗ PD , dPR(r) = ϕR(r)dr , dPS(s) = ϕS(s)ds

and dPDi
(ti) = ϕDi

(ti)dti for i = 1, . . . ,m. Let us note that v ∈ Lp(Rd ,P,R
k) means that

(r, s, t) �→ ϕR(r)ϕS(s)ϕD(t)v(r, s, t) belongs to the standard Lebesgue space Lp(Rd ,R
k)
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with respect to the Lebesgue measure, where shortly ϕD(t) := ∏
i ϕDi

(ti). Thus our problem
(3.5) reads as follows: Find û ∈ MP such that, ∀v ∈ MP,

∫ ∞

0

∫ s1

s0

∫

R
m+

〈
sG(û) + H(û), v − û

〉
ϕR(r)ϕS(s)ϕD(t)dy

≥
∫ ∞

0

∫ s1

s0

∫

R
m+
〈b + rc, v − û〉ϕR(r)ϕS(s)ϕD(t)dy. (4.1)

In order to give an approximation procedure for the solution û, let us start with a dis-
cretization of the space X := Lp(Rd ,P,R

k) and introduce a sequence {πn}n of partitions of
the support ϒ := [0,∞)×[s0, s1)×R

m+ of the probability measure P induced by the random
elements R,S,D. To be precise, let πn = (πR

n ,πS
n ,πD

n ), where

πR
n := (

r0
n, . . . , r

NR
n

n

)
, πS

n := (
s0
n, . . . , s

NS
n

n

)
, πDi

n := (
t0
n,i , . . . , t

N
Di
n

n,i

)

0 = r0
n < r1

n < · · · rNR
n

n = n

s0 = s0
n < s1

n < · · · sNS
n

n = s1

0 = t0
n,i < t1

n,i < · · · tN
Di
n

n,i = n(i = 1, . . . ,m)

∣∣πR
n

∣∣ := max
{
rj
n − rj−1

n : j = 1, . . . ,NR
n

} → 0 (n → ∞)
∣∣πS

n

∣∣ := max
{
sk
n − sk−1

n : k = 1, . . . ,NS
n

} → 0 (n → ∞)

∣∣πDi
n

∣∣ := max
{
t
hi

n,i − t
hi−1
n,i : hi = 1, . . . ,NDi

n

} → 0 (i = 1, . . . ,m;n → ∞).

These partitions give rise to the exhausting sequence {ϒn} of subsets of ϒ , where each ϒn

is given by the finite disjoint union of the intervals:

I n
jkh := [

rj−1
n , rj

n

) × [
sk−1
n , sk

n

) × I n
h ,

where we use the multiindex h = (h1, . . . , hm) and

I n
h :=

m∏

i=1

[
t
hi−1
n,i , t

hi

n,i

)
.

For each n ∈ N let us consider the space of the R
l-valued simple functions (l ∈ N) on ϒn,

extended by 0 outside of ϒn:

Xl
n :=

{
vn : vn(r, s, t) =

∑

j

∑

k

∑

h

vn
jkh1In

jkh
(r, s, t), vn

jkh ∈ R
l

}
,

where 1I denotes the {0,1}-valued characteristic function of a subset I .
To approximate an arbitrary function w ∈ Lp(Rd ,P,R) we employ the mean value trun-

cation operator μn
0 associated to the partition πn given by

μn
0w :=

NR
n∑

j=1

NS
n∑

k=1

∑

h

(
μn

jkhw
)
1In

jkh
, (4.2)



Ann Oper Res (2012) 200:299–319 307

where

μn
jkhw :=

{
1

P(Ijkh)

∫
In
jkh

w(y)dP(y) if P(I n
jkh) > 0;

0 otherwise.

Likewise for a Lp vector function v = (v1, . . . , vl), we define μn
0v := (μn

0v1, . . . ,μ
n
0vl).

From Lemma 2.5 in Gwinner (2000) (and the remarks therein) we obtain the following
result.

Lemma 4.1 The linear operator μn
0 : Lp(Rd ,P,R

l ) → Lp(Rd ,P,R
l ) (for fixed d, l ∈ N) is

bounded with ‖μn
0‖ = 1 and for n → ∞, μn

0 converges pointwise in Lp(Rd ,P,R
l ) to the

identity.

This lemma reflects the well-known density of the class of the simple functions in a Lp

space. It shows that the mean value truncation operator μn
0 , which acts as a projector on

Lp(Rd ,P,R
l ), can be understood as a conditional expectation operator introduced by Kol-

mogorov in 1933, see also (Doob 1953), and thus our approximation method is a projection
method according to the terminology of (Lepp 1994).

In order to construct approximations for MP given by (3.4) we introduce the orthogonal
projector q : (r, s, t) ∈ R

d �→ t ∈ R
m and let, for each elementary quadrangle I n

jkh,

qn
jkh = (

μn
jkhq

) ∈ R
m,

(
μn

0q
) =

∑

jkh

qn
jkh1In

jkh
∈ Xm

n .

Thus we arrive at the following sequence of convex, closed sets

Mn
P

:= {
v ∈ Xk

n : Avn
jkh ≤ qn

jkh,∀j, k,h
}
.

Note that the sets Mn
P

are of polyhedral type. In Gwinner and Raciti (2009) it has been
proved that the sequence {Mn

P
} approximate the set MP in the sense of Mosco (Attouch 1984;

Mosco 1969), i.e.

weak-limsupn→∞Mn
P

⊂ MP ⊂ strong-liminfn→∞Mn
P
. (4.3)

For the reader not familiar with Mosco set convergence we add that the above relations
state that for each point u of MP there exists a sequence of points un ∈ Mn

P
which converges

strongly to u, and that given any sequence un ∈ Mn
P

, any weak limit of any subsequence of
un belongs to MP. Here a sequence wn converges strongly to w in Lp iff ‖wn − w‖Lp → 0
for n → ∞; whereas wn converges weakly to w, iff for all f ∈ Lp′

we have
∫

Rd f wn dP →∫
Rd f w dP for n → ∞.

Moreover we want to approximate the random variables R and S and introduce

ρn =
NR

n∑

j=1

rj−1
n 1[rj−1

n ,r
j
n )

∈ Xn, σn =
NS

n∑

k=1

sk−1
n 1[sk−1

n ,sk
n)

∈ Xn.

We observe that σn(r, s, t) → σ(r, s, t) = s in L∞(Rd ,P) while, as a consequence of the
Chebyshev inequality (see e.g. Billingsley 1995), ρn(r, s, t) → ρ(r, s, t) = r in Lp(Rd ,P).
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Thus we are led to consider, ∀n ∈ N, the following substitute problem: Find ûn ∈ Mn
P

such that, ∀vn ∈ Mn
P

,

∫

Rd

〈
F̃ n(ûn), vn − ûn

〉
dP(y) ≥

∫

Rd

〈
c̃n, vn − ûn

〉
dP(y), (4.4)

where

F̃ n := σnG + H, c̃n := b + ρnc.

We observe that (4.4) splits in a finite number of finite dimensional monotone variational
inequalities: For ∀n ∈ N,∀j, k,h find ûn

jkh ∈ Mn
jkh such that, ∀vn

jkh ∈ Mn
jkh,

〈
F̃ n

k

(
ûn

jkh

)
, vn

jkh − ûn
jkh

〉 ≥ 〈
c̃n
j , v

n
jkh − ûn

jkh

〉
, (4.5)

where

Mn
jkh := {

vn
jkh ∈ R

k : Avn
jkh ≤ qn

jkh

}
,

F̃ n
k := sk−1

n G + H, c̃n
j := b + rj−1

n c.

Clearly, this gives

ûn =
∑

j

∑

k

∑

h

ûn
jkh1In

jkh
∈ Xk

n.

Now, we can state the following convergence results. The first result holds for general
monotone maps.

Theorem 4.1 Any weak limit point of the sequence ûn generated by the substitute problems
in (4.4) is a solution of (3.5).

Proof For the proof see part (2) of the proof of Theorem 4.1 in Gwinner and Raciti (2009),
which uses only monotonicity arguments, but not the assumption of uniform monotonic-
ity. �

Remark 4.1 Clearly, if the solution û of (3.5) is unique, then the entire sequence ûn con-
verges weakly to û. Hence if the probability measure has compact support (as e.g. the uni-
form distribution), then the means of ûn converge to the mean of û.

The next result (see Gwinner and Raciti 2009, Theorem 4.1) deals with uniformly mono-
tone maps and gives norm convergence.

Theorem 4.2 Suppose uniform monotonicity. Then the sequence ûn generated by the substi-
tute problems in (4.4) converges strongly in Lp(Rd ,P,R

k) for n → ∞ to the unique solution
û of (3.5).

The preceding convergence theorem can be refined under the additional assumption of
Lipschitz continuity, because in this case (and in virtue of uniform strong monotonicity), it
is enough to solve the finite dimensional substitute problem (4.4) only inaccurately.
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Theorem 4.3 Suppose, both maps G and H are uniformly strongly monotone and Lipschitz
continuous. Let εn > 0. Introduce the monotone operator Tn by

Tn(u)(y) := σn(y)G(u)(y) + H(u)(y) − b − ρn(y)c

and the associated natural map

F nat
n (u) = u − ProjMn

P

[
u − Tn(u)

]
,

both acting in Xl
n(R

d ,P,R
k) (where Proj is the minimum norm projection). Let ũn ∈ Mn

P

satisfy
∥∥F nat

n (ũn)
∥∥ ≤ εn. (4.6)

Suppose that in (4.6), εn → 0 for n → ∞. Then the sequence ũn converges strongly in
Lp(Rd ,P,R

k) to the unique solution û of (3.5).

Proof It will be enough to show that limn ‖ũn − ûn‖ = 0.
Let us observe that obviously a zero ûn of F nat

n is an exact solution of (4.4). Instead we
solve (4.4) only inaccurately. In fact, we can estimate (see Facchinei and Pang 2003, Vol. I,
Theorem 2.3.3)

‖ũn − ûn‖ ≤ Ln + 1

cn

∥∥F nat
n (ũn)

∥∥,

where Ln, respectively cn is the Lipschitz constant, respectively the uniform monotonic-
ity constant of Tn. Since the support of the random variable S ∈ L∞(�,P ) is the inter-
val [s0, s1) ⊂ (0,∞) and s0 G + H is uniformly strongly monotone with some constant
c0 > 0, respectively s1 G + H is Lipschitz continuous with some constant L0, we have
0 < c0 ≤ cn,Ln ≤ L0 < ∞. Therefore by construction, limn ‖ũn − ûn‖ = 0 follows. �

We emphasize that with p = 2 we have proved the convergence of the means and the
variances of un := ûn (respectively of un := ũn) towards 〈û〉, the mean, respectively towards
σ 2(û), the variance of the unique solution û. Therefore the well-known Chebyshev inequal-
ity becomes applicable to estimate errors in probability, as we shortly discuss here.

Let 0 < δ < 1;0 < η � 1. Then for any component j for j = 1, . . . l, we have

P
(∣∣ûj − 〈

un
j

〉∣∣ ≥ δ
) ≤ P

(∣∣ûj − 〈ûj 〉
∣∣ ≥ δ

2

)
≤ 4

δ2
σ 2(ûj ) ≤ 4

δ2
σ 2

(
un

j

) + 4η

δ2
, (4.7)

as long as n is chosen is large enough such that

∣∣〈ûj 〉 − 〈
un

j

〉∣∣ ≤ δ

2
,

∣∣σ 2(ûj ) − σ 2
(
un

j

)∣∣ ≤ η.

5 Some random nonlinear equilibrium problems

In this section we describe some simple equilibrium problems from economics, while equi-
librium problems using a more involved network structure are deferred to the next section.
Here we discuss where uncertainty can enter in the data of the problems and show how our
theory of random V.I., where we can admit that random variables occur both in the operator
and the constraint set, can be applied to model those nonlinear equilibrium problems under
uncertainty.
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5.1 A random Cassel-Wald economic equilibrium model

We follow Konnov (2007) and describe a Cassel-Wald type economic equilibrium model.
This model deals with n commodities and m pure factors of production. Let ck be the price
of the k-th commodity, let bi be the total inventory of the i-th factor, and let aij be the
consumption rate of the i-th factor which is required for producing one unit of the j -th
commodity, so that we set c = (c1, . . . , cn)

T , b = (b1, . . . , bm)T ,A = (aij )m×n. Next let xj

denote the output of the j -th commodity and pi denote the shadow price of the i-th factor,
so that x = (x1, . . . , xn)

T and p = (p1, . . . , pm)T . In this model it is assumed that the prices
are dependent on the outputs, so that c : R

n+ → R
n+ is a given mapping. Now in contrast to

Konnov (2007) we do not consider b as a fixed vector, but we admit that the total inventory
vector may be uncertain and model it as a random vector b = B(ω). Thus we arrive at the
following

Problem CW-1 For each ω ∈ �, find X̂(ω) ∈ R
n+, P̂ (ω) ∈ R

m+ such that

〈
c
(
X̂(ω)

)
, X̂(ω) − x

〉 + 〈
P̂ (ω),Ax − AX̂(ω)

〉 ≥ 0, ∀x ∈ R
n
+;

〈
p − P̂ (ω),B(ω) − AX̂(ω)

〉 ≥ 0, ∀p ∈ R
n
+.

This is nothing but the optimality condition for the variational inequality problem:

Problem CW-2 For each ω ∈ �, find X̂(ω) ∈ K(ω) such that

〈
c
(
X̂(ω)

)
, X̂(ω) − x

〉 ≥ 0, ∀x ∈ K(ω),

where here

K(ω) = {
x ∈ R

n | x ≥ 0,Ax ≤ B(ω)
}
.

Both Problems CW-1 and CW-2 are special instances of the general Problem 1, Prob-
lem CW-1 is a random variational inequality with a generally nonlinear map c over a fixed
(nonrandom) constraint set, while randomness in CW-2 also affects the constraint set.

5.2 A random distributed market equilibrium model

We follow Gwinner (1995) and consider a single commodity that is produced at n supply
markets and consumed at m demand markets. There is a total supply gi in each supply
market i, where i = 1, . . . , n. Likewise there is a total demand fj in each demand market j ,
where j = 1, . . . ,m. Since the markets are spatially separated, xij units of the commodity
are transported from i to j . Introducing the excess supply si and the excess demand tj we
must have

gi =
m∑

j=1

xij + si, i = 1, . . . , n; (5.1)

fj =
n∑

i=1

xij + tj , j = 1, . . . ,m; (5.2)
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Moreover the transportation from i to j gives rise to unit costs πij . Further we associate
with each supply market i a supply price pi and with each demand market j a demand price
qj . We assume there is given a fixed minimum supply price pi ≥ 0 (‘price floor’) for each
supply market i and also a fixed maximum demand price q̄j > 0 (‘price ceiling’) for each
demand market j . These bounds can be absent and the standard spatial price equilibrium
model due to Dafermos (Dafermos 1990, see also Konnov 2007) results, where the markets
are required to be cleared, i.e.

si = 0 for i = 1, . . . , n; tj = 0 for j = 1, . . . ,m

are required to hold. Since si ≥ 0 and tj ≥ 0 are admitted, the model is also termed a disequi-
librium model. As is common in operations research models, we also include upper bounds
x̄ij > 0 for the transportation fluxes xij on our bipartite graph of distributed markets.

Let us group the introduced quantities in vectors omitting the indices i and j . This gives
the total supply vector g ∈ R

n, the supply price vector p ∈ R
n, the total demand vector

f ∈ R
m, the demand price vector q ∈ R

m, the flux vector x ∈ R
nm, and the unit cost vector

π ∈ R
nm.

Thus in our constrained distributed market model the feasible set for the unknown vector
u = [p,q, x] is given by the product set

M :=
n∏

i=1

[pi ,∞) ×
m∏

j=1

[0, q̄j ] ×
n∏

i=1

m∏

j=1

[0, x̄ij ].

Assuming perfect equilibrium the economic market conditions take the following form

si > 0 ⇒ pi = pi , pi > pi ⇒ si = 0 i = 1, . . . , n; (5.3)

tj > 0 ⇒ qj = q̄j , qj < q̄j ⇒ tj = 0 j = 1, . . . ,m; (5.4)

pi + πij

⎧
⎪⎨

⎪⎩

≥ qj if xij = 0

= qj if 0 < xij < x̄ij

≤ qj if xij = x̄ij

i = 1, . . . , n; j = 1, . . . ,m. (5.5)

The last condition (5.5) extends the classic equilibrium conditions in that pi + πij < qj

can occur because of the flux constraint xij ≤ x̄ij . As in unconstrained market equilibria
(Dafermos 1990) we assume that we are given the functions

g = ğ(p), f = f̆ (q), π = π̆(x).

Then under the natural assumptions that for each i = 1, . . . , n; j = 1, . . . ,m there holds

qj = 0 ⇒ f̆j (q) ≥ 0; xij > 0 ⇒ π̆ij (x) > 0.

it can be shown (see Gwinner 1995) that a market equilibrium u = (p, q, x) introduced
above by the conditions (5.1)–(5.5) can be characterized as a solution to the following vari-
ational inequality: Find u = (p, q, x) ∈ M such that

n∑

i=1

(

ği (p) −
m∑

j=1

xij

)

(p̃i − pi) −
m∑

j=1

(

f̆j (q) −
n∑

i=1

xij

)

(q̃j − qj )
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+
n∑

i=1

m∑

j=1

(
pi + π̆ij (x) − qj

)
(x̃ij − xij ) ≥ 0, ∀ũ = (p̃, q̃, x̃) ∈ M.

As soon as the given bounds are uncertain and we model these bounds as random vari-
ables, we obtain the random constraint set

M(ω) :=
n∏

i=1

[pi (ω),∞) ×
m∏

j=1

[
0, q̄j (ω)

] ×
n∏

i=1

m∏

j=1

[
0, x̄ij (ω)

]
,

and the above variational inequality becomes a random variational inequality.

6 A random traffic equilibrium problem

The purpose of this Sect. 6 is to discuss the applicability of our results to network equi-
librium problems. A common characteristic of these problems is that they admit two dif-
ferent formulations based either on link variables or on path variables. These are actually
related to each other through a linear transformation; we stress that in general, in the path
approach, the strong monotonicity assumption is not reasonable. However, since a Mosco
convergence result holds for the transformed sequence of sets, see the subsequent Remark
6.1, we can work in the “right”group of variables. To be more precise we need first some
preliminary notations commonly used to state the standard traffic equilibrium problem from
the user’s point of view in the stationary case (see for instance Smith 1979; Dafermos 1980;
Patriksson 1994).

A traffic network consists of a triple (N,A,W) where N = {N1, . . . ,Np}, p ∈ N, is the
set of nodes, A = (A1, . . . ,An), n ∈ N, represents the set of the directed arcs connecting cou-
ples of nodes and W = {W1, . . . ,Wm} ⊂ N ×N , m ∈ N is the set of the origin-destination
(O,D) pairs. The flow on the arc Ai is denoted by fi , f = (f1, . . . , fn); for the sake of sim-
plicity we shall consider arcs with infinite capacity. We call a set of consecutive arcs a path,
and assume that each (O,D) pair Wj is connected by rj , rj ∈ N, paths whose set is denoted
by Pj , j = 1, . . . ,m. All the paths in the network are grouped in a vector (R1, . . . ,Rk),
k ∈ N, We can describe the arc structure of the paths by using the arc-path incidence matrix
� = (δir ) i=1,...,n

r=1,...,k
with the entries

δir =
{

1 if Ai ∈ Rr

0 if Ai /∈ Rr

. (6.1)

To each path Rr there corresponds a path flow Fr . The path flows are grouped in a vector
(F1, . . . ,Fk) which is called the network flow. The flow fi on the arc Ai is equal to the sum
of the path flows on the paths which contain Ai , so that f = �F . Let us now introduce the
unit cost of going through Ai as a real function ci(f ) ≥ 0 of the flows on the network, so
that c(f ) = (c1(f ), . . . , cn(f )) denotes the arc cost vector on the network. The meaning of
the cost is usually that of travel time. Analogously, one can define a cost on the paths as
C(F) = (C1(F ), . . . ,Ck(F )). Usually Cr(F ) is just the sum of the costs on the arcs which
build that path: Cr(F ) = ∑n

i=1 δirci(f ) or in compact form,

C(F) = �T c(�F). (6.2)
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For each pair Wj there is a given traffic demand Dj ≥ 0, so that (D1, . . . ,Dm) is the demand
vector. Feasible path flows are nonnegative and satisfy the demands, i.e. belong to the set

K = {
F ∈ R

k : Fr ≥ 0 for any r = 1, . . . , k and �F = D
}
,

where � is the pair-path incidence matrix whose entries for j = 1, . . . ,m, r = 1, . . . , k, are

ϕjr =
{

1 if the path Rr connects the pair Wj

0 elsewhere
.

A path flow H is called an equilibrium flow or Wardrop Equilibrium, if and only if H ∈ K

and for any (O,D) pair Wj ∈ W and any Rq,Rs ∈ Pj there holds

Cq(H) < Cs(H) =⇒ Hs = 0. (6.3)

This means that all the used paths connecting a given (O,D) pair share the same cost and
any path with a higher cost is not used. It can be shown that condition (6.3) is equivalent
(see, for instance, Dafermos 1980 and Smith 1979) to the variational inequality

H ∈ K and
〈
C(H),F − H

〉 ≥ 0, ∀F ∈ K. (6.4)

Although the Wardrop equilibrium principle is expressed in the path variables, it is clear
that the “physical” (and measured) quantities are expressed in the link variables; moreover,
the strong monotonicity hypothesis on c(f ) is quite common, but as noticed for instance in
(Bertsekas and Gafni 1982) this does not imply the strong monotonicity of C(F) in (6.2),
unless the matrix �T � is nonsingular. Although one can give a procedure for buildings net-
works preserving the strong monotonicity property (see, for instance, Falsaperla and Raciti
2007), the condition fails for a generic network, even for a very simple one as we shall
illustrate in the sequel. Thus, it is useful to consider the following variational inequality
problem:

h ∈ �K and
〈
c(h), f − h

〉 ≥ 0 ∀f ∈ �K. (6.5)

If c is strongly monotone, one can prove that for each solution H of (6.4), C(H) = const.,
i.e. all possibly nonunique solutions of (6.4) share the same cost. From an algorithmic point
of view it is worth noting that one advantage in working in the path variables is the simplicity
of the corresponding convex set but the price to be paid is that the number of paths grows
exponentially with the size of the network.

Let us now consider the random version of (6.4) and (6.5):

H(ω) ∈ K(ω) and
〈
C

(
ω,H(ω)

)
,F − H(ω)

〉 ≥ 0, ∀F ∈ K(ω), (6.6)

where, for any ω ∈ �,

K(ω) = {
F ∈ R

k : Fr ≥ 0 for any r = 1, . . . , k and �F = D(ω)
}
,

The random variational inequality in the link-flow variables is:

h(ω) ∈ �K(ω) and
〈
c
(
ω,h(ω)

)
, f − h(ω)

〉 ≥ 0, ∀f ∈ �K(ω). (6.7)
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Moreover (6.6) is equivalent to the random Wardrop principle: For any ω ∈ �, for any
H(ω) ∈ K(ω), and for any Wj ∈ W , Rq,Rs ∈ Pj , there holds

Cq

(
ω,H(ω)

)
< Cs

(
ω,H(ω)

) =⇒ Hs(ω) = 0.

In order to use our approximation scheme we require the assumption that the determin-
istic and random variables are separated. However this assumption is very natural in many
applications where the random perturbation is treated as a modulation of a deterministic
model. Under the above mentioned assumptions, (6.6) assumes the particular form:

S(ω)
〈
A

(
H(ω)

)
,F − H(ω)

〉 ≥ R(ω)
〈
b,F − H(ω)

〉
, ∀F ∈ K(ω) (6.8)

In (6.8), both the l.h.s. and the r.h.s. can, be replaced with any (finite) linear combination
of monotone and separable terms, where each term satisfies the hypothesis of the previous
sections:

∑

i

Si(ω)
〈
AT

i

(
H(ω)

)
,F − H(ω)

〉 ≥
∑

j

Rj (ω)〈bj ,F − H(ω)〉, ∀F ∈ K(ω) (6.9)

In this way, in (6.8) R(ω),S(ω) can be replaced by random vectors. Hence, in the traffic
network, we could consider the case where the random perturbation has a different weight
for each path.

Remark 6.1 When applying our theory to the random traffic equilibrium problem we con-
sider the integral form of (6.8), which, after the transformation to the image space, is defined
on the set:

KP = {
F ∈ Lp

(
R

d ,P,R
k
) : �F(r, s, t) = t,F (r, s, t) ≥ 0 P-a.s.

}

Let Kn
P

be the approximate sets constructed as described in Sect. 4. It can be easily
verified that the sets Kn

P
are uniformly bounded. Moreover, the arc-path incidence matrix

� induces a linear operator mapping Lp(Rd ,P,R
k) to Lp(Rd ,P,R

n). This operator, which
by abuse of notation is still denoted by �, is continuous. Thus, from Mosco convergence
Kn

P
→ KP it follows easily that also �Kn

P
→ �KP in Mosco’s sense.

In what follows we present two small scale examples. In the first example we build a
small network and we study the random variational inequality in the path-flow variables. The
network is built in such a way that if the cost operator is strongly monotone in the link-flow
variables, the transformed operator, is still strongly monotone in the path-flow variables.
Moreover, this small network can be considered as an elementary block of an arbitrarily
large network with the same property of preserving strong monotonicity. On the other hand,
the second example, which we solve exactly, shows that even very simple networks can fail
to preserve the strong monotonicity of the operator when passing from the link to the path-
flow variables. In this last case, two possible strategies can be followed. The first possibility
is to work from the beginning in the link-variables and use the previous remark to apply our
approximation procedure. The other option is to regularize (in the sense of Tichonov) the
problem in the path-variables. We stress the fact that if one is interested in the cost shared
by the network users, it does not matter which solution is obtained from the regularized
problem, because, thanks to the particular structure of the operator, the cost is constant on
the whole solution set.
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Fig. 1 Network which preserves
strong monotonicity

Example 6.1 In the network under consideration, (see Fig. 1), there are 7 links and one
origin-destination pair, 1 − 6, which can be connected by 3 paths, namely:

R1 = A1A2A7,R2 = A1A6A4,R3 = A5A3A4.

The traffic demand is represented by the nonnegative random variable D with uniform prob-
ability distribution in DeMiguel and Xu (2009), Dentcheva and Ruszczyński (2003) so that
F1 + F2 + F3 = D, while link-cost functions are given by:

c1 = ρf 2
1 + f1, c2 = ρf 2

2 + 2f2, c3 = ρf 2
3 + f3, c4 = ρf 2

4 + 2f4 + f6,

c5 = ρf 2
5 + f5, c6 = ρf 2

6 + 2f6, c7 = ρf 2
7 + f7 + 0.5f5.

The linear part of the operator above is represented by a nonsymmetric positive definite
matrix, while the nonnegative parameter ρ represents the weight of the nonlinear terms.
Such a functional form is quite common in many network equilibrium problems (Nagurney
1993). Since we want to solve the variational inequality associated to the Wardrop Equilib-
rium we have to perform the transformation to the path-flow variables, which yields for the
cost functions the following expressions:

C1 = 3ρF 2
1 + ρF 2

2 + 2ρF1F2 + 4F1 + F2 + 0.5F3,

C2 = ρF 2
1 + 3ρF 2

2 + ρF 2
3 + 2ρF1F2 + 2ρF2F3 + F1 + 6F2 + 2F3,

C3 = ρF 2
2 + 3ρF 2

3 + 2ρF2F3 + 4F3 + 3F2.

For the resolution of the discretized, finite dimensional variational inequalities, many
algorithms are available. Due to the simple structure of our example we employ the extra-
gradient algorithm.

Table 1 describes the case where the parameter ρ is equal to 0.1, while in Table 2 we have
ρ = 1. This parameter controls the “degree” of nonlinearity of the problem. For ρ = 0.1 the
problem can be considered as a linear problem with a small perturbation, and the solutions
are quite stable with respect to the random demand. On the other hand, when ρ = 1 the
problem is fairly nonlinear and the solutions change qualitatively according to the random
demand (in particular, near D = 10 there is a zero component, H2, in the solution vector,
while in most of the interval the equilibrium solution has nonzero components). As a result,
the variances are larger and the convergence slower.

Example 6.2 We consider the simple network of Fig. 2 below which consists of four arcs
and one origin–destination pair, which can be connected by four different paths. Let us
assume that the traffic demand between O and D is given by a real random variable T > 0
and that the link cost functions are given by c1 = 2f1, c2 = 3f2, c3 = f3, c4 = f4. The link
flows belong to the set {f ∈ R

4 : ∃F ∈ K(T ),f = �F } , where K(T ) is the feasible set in
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Table 1 Mean values and
variances corresponding to
various approximations for
D ∈ [10,11] and ρ = 0.1

N 〈F1〉 〈F2〉 〈F3〉 σ 2
1 σ 2

2 σ 2
3

10 4.5396 1.4756 4.4346 0.0153 0.0017 0.0148

100 4.5590 1.4821 4.4537 0.0154 0.0017 0.0149

1000 4.5610 1.4821 4.4556 0.0154 0.0017 0.0149

10000 4.5612 1.4828 4.4558 0.0154 0.0017 0.0149

Table 2 Mean values and
variances corresponding to
various approximations for
D ∈ [10,11] and ρ = 1

N 〈F1〉 〈F2〉 〈F3〉 σ 2
1 σ 2

2 σ 2
3

10 3.1602 2.6005 4.6891 4.2853 2.3442 0.1010

100 3.6964 2.1968 4.6017 3.0077 1.6456 0.0759

1000 3.6460 2.2390 4.6143 3.1668 1.7326 0.0791

10000 3.6505 2.2436 4.6157 3.1837 1.7418 0.0794

Fig. 2 Loss of strong
monotonicity

the path flow variables given by

K(T ) = {F1,F2,F3,F4 ≥ 0 such that F1 + F2 + F3 + F4 = T },
and � is the link-path matrix. Hence, if F is known, one can derive f from the equations

f1 = F1 + F2, f2 = F3 + F4, f3 = F1 + F3, f4 = F2 + F4.

The path–cost functions are given by the relations

C1 = c1 + c3 = 3F1 + 2F2 + F3,

C2 = c1 + c4 = 2F1 + 3F2 + F4,

C3 = c2 + c3 = F1 + 4F3 + 3F4,

C4 = c2 + c4 = F2 + 3F3 + 4F4

The associated variational inequality can be solved exactly (see e.g. Falsaperla and Raciti
2007 for a non-iterative algorithm) and the solution expressed in term of the second path
variable is

(
3t

5
− G(t),G(t),G(t) − t

10
,−G(t) + t

2

)
,

where G : (0,∞) → R is any function of the realization t of the random variable T that
satisfies the constraint G(t) ∈ [ t

10 , t
2 ]. Let us observe that for each feasible choice of G(t)
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the cost at the corresponding solution is always equal to 17
10 t · (1,1,1,1). One can also solve

the variational inequality in the link variables by using the relations

f1 + f2 = T , f3 + f4 = T .

We are then left with the problem:

(c2 − c1)
(
f2 − h2(T )

) + (c4 − c3)
(
f4 − h4(T )

) ≥ 0,

which yields for any realization t ,

h(t) = t ·
(

3

5
,

2

5
,

1

2
,

1

2

)
.

As an example we assume that our random parameter follows the lognormal distribution.
This statistical distribution is used for numerous applications to model random phenomena
described by nonnegative quantities. It is also known as the Galton Mc Alister distribution
and, in economics, is sometimes called the Cobb-Douglas distribution, and has been used to
model production data. Thus, let the normal distribution given by the density

gμ,σ 2(t) = 1√
2πσ

e
−
(t − μ)2

2σ 2

then the lognormal distribution is defined by the density

{
(1/t)gμ,σ 2(log t), ift > 0;
0, ift ≤ 0.

The numerical evaluation of the mean values and variances, corresponding to μ = 0 and
σ = 1 yields:

(〈h1〉, 〈h2〉, 〈h3〉, 〈h4〉
) = 1.64 · (3/5,2/5,1/2,1/2)

(
σ 2(h1), σ

2(h2), σ
2(h3), σ

2(h4)
) = 4.68 · (3/5,2/5,1/2,1/2).

7 Some concluding remarks

Let us first discuss our main results. We are aware that our definition of uniform strong
monotonicity is very strong. It guarantees uniqueness of the solution, uniqueness and
boundedness of the solutions of the substitute problems, and norm convergence in our ap-
proximation procedure. When we relax to mere monotonicity, we still have Theorem 4.1.
At this level, our convergence result compares to Kryazhimskii and Ruszczyński (2001),
where weak convergence of a constraint aggregation procedure is established in infinite-
dimensional spaces.

The postulated separation of the deterministic and random variables in Sects. 3 and 4 is
itself the outcome of an approximation process, namely Karhunen-Loève expansion, whose
convergence behaviour remains unexplored in this paper. Moreover, we have not presented
any analysis of the convergence speed of our approximation procedure. This would open the
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possibility to make the estimates (4.7) given at the end of Sect. 4 more rigorous to obtain
confidence regions for the computed results.

Here we have studied static models of equilibrium of random systems. We did not con-
sider multistage problems of stochastic programming or dynamic stochastic processes, as
e.g. the problem of adaptive routing in a network with failures (Ferris and Ruszczyński
2000). Also we have only studied almost sure constraints, we did not consider the variety of
constraints in stochastic programming, like chance contraints or the more recent dominance
constraints (Dentcheva and Ruszczyński 2003).
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