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Abstract This paper presents a modeling framework that intends to select the optimal ro-
bust wastewater reclamation program of measures (PoM) to achieve the European Water
Framework Directive (WFD) objectives in the inner Catalonia watersheds. The integrative
methodological tool developed incorporates a water quality model to simulate the effects of
the PoM used to reduce pollution pressures on the hydrologic network. A Multi-Objective
Evolutionary Algorithm (MOEA) helps to identify efficient trade-offs between PoM cost
and water quality. Interactive Decisions Map (IDM)—a multi-criteria visualization—based
decision support tool is used to provide a clear idea of the trade-off between water status
and the cost to achieve such situation. Lastly, a stochastic simulation model to analyze the
sensitivity under varied environmental uncertainties is run. Moreover, the tool is oriented to
guide water managers in their decision-making processes. Additionally, this paper analyzes
the results of the application of the management tool in the inner Catalan watershed in order
to perform the European WFD. This tool has had a key role in the design of part of the PoM
which shall be implemented to achieve objectives of the WFD in 2015 in all the Catalan
catchments.
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IDM Interactive Decision Maps
PoM Program of Measures
WFD Water Framework Directive
WWTP Waste Water Treatment Plant
TA Total Ammonium
TN Total Nitrogen
TP Total Phosphorus
TOC Total Organic Carbon

1 Introduction

Water availability is often jeopardized by the poor quality of this precious resource. Water-
sheds are constantly subject to increasing threats such as over-exploitation of both surface
and ground water, and rising levels of contamination from point and diffuse sources of pol-
lution (European Commission 2002). In this context, it has become vitally important to
develop and apply new political and management strategies and methodologies aimed at
reversing this trend in water quantity and quality degradation.

The WFD (European Commission 2000) is the core of the European Union water leg-
islation. It provides the foundation for long-term sustainable water management by taking
due account of environmental, economic and social considerations. The main objective of
the WFD is to achieve “Good Ecological Status” for all European Water Bodies by the end
of 2015. Since the beginning of 2006, European Union Member States have been develop-
ing a Program of Measures (PoM), for each water body, in order to reduce current threats
and, therefore, achieving Good Ecological Status (WFD’s goals) by 2015. Although the
European Commission has published a number of guidance documents to ease the imple-
mentation of WFD (European Commission 2000, 2001, 2002), no specific methodology has
been suggested to evaluate the practical efficiency of PoMs; nor it is mentioned how these
combinations of measures should be selected in order to achieve the best cost-effective strat-
egy.

Therefore, EU member states have submitted the river basin management plan, which is
a document that defines a strategy to be implemented in order to satisfy the objectives of
2015. The restoration of water quality at watershed level (considering the water bodies as
management units) is related to a series of objectives that should be taken into account when
defining the river basin management plan. It is important to select a cost-effective PoM in
order to reduce and, where possible, to eradicate existing and future water deficits, whilst
maintaining sustainable economical and social costs.

Water Quality Models are used to quantify and simulate the effectiveness of PoMs in in-
creasing water quality and quantity. Even though water quality models themselves are useful
for evaluating single “what-if” scenarios and testing potential management alternatives, they
are unable to automatically solve the multi-criteria (cost, water quality, water availability)
optimization problems involving the selection of the best cost-effective PoM trade off.

Linear programming (Revelle et al. 1968), non-linear programming (Cai et al. 2001)
and integer programming (Bishop and Grenny 1976) have been used to solve the cost op-
timization river water quality management model for regional wastewater treatment. Some
approaches also consider river flow as a random variable constructing a probabilistic wa-
ter quality management model (Fujiwara et al. 1987). The majority of the mentioned ap-
proaches, however, only consider one or two water quality parameters and optimal deci-
sions disregard the general state of the watershed with regard to contamination, political
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strategies and the socioeconomical status. The non-linearity of the water quality models, the
integer decision variables (waste water treatment plant) and the multiple criteria simultane-
ously considered make the Multi Objective Evolutionary Algorithms (MOEA) method an
interesting option to identify tradeoff among multiple objectives. Over recent years, MOEA
(Deb 2001; Zitzler et al. 2003) has been applied to obtain the Pareto optimal set of solu-
tions for watershed management multi-objective problems with very good results in a single
execution (Muleta and Nicklow 2005; Ritzel et al. 1994).

Moreover, besides the multicriteria consideration, the WFD implementation is a decision
making process related to a negotiation process, which involves several stakeholders with
different interests and goals. For this reason, computer procedures for decision screening
must be transparent and simple. The Interactive Decision Maps (IDM) visualization tech-
nique (Lotov et al. 2004) provides a computer procedure to show in an objective and simple
way the solutions defined by the Pareto-optimal trade-off surfaces, helping to avoid any
possible subjectivity of the decision makers.

In addition, there exist uncertainties in the inputs of the water quality model (inflow
quality and quantity) that may influence the outputs (Benedetti et al. 2010; Haimes 1998).
Objective ways of quantifying the relative contribution of those uncertainties should be pro-
vided.

In order to overcome these difficulties and assist the management of water quality at
catchment scale, this paper describes a new Multi-Criteria watershed restoration decision
support tool that has been developed to aid in water management during WFD implemen-
tation. This probabilistic framework approach results from integrating the Qual2k (Pelletier
and Chapra 2004) water quality model, a MOEA, a stochastic simulation model and graph-
ical analytic tools. It is able to incorporate conflicting elements such as environmental
objectives and economical issues into the analysis. It also enables the delineation of non-
dominated Pareto optimal set of solutions in a number of WQM executions that are small
enough to be performed on a standard PC, in a timescale that meets the requirements of the
Catalan Water Agency (ACA). The tool also caters to situations where correlation between
factors influencing two or more alternatives can be used to reduce the uncertainty in the
differences between predicted outcomes of alternative actions.

Finally, this paper presents how the management modeling framework and tools devel-
oped have been applied in the inner Catalan catchment to select a robust cost-efficient PoM,
in order to achieve the WFD objectives within a reasonable cost. It describes how to iden-
tify the problems in each watershed, how the tool helps in the decision process and how the
optimum PoM is finally selected. In addition, the results of using this methodological tool
have made an essential contribution to the definition of the Catalan hydrological plan. The
PoM has been recently approved by the board of directors for the Catalan water authority.
It will be endorsed by the Catalan government (Diari Oficial de la Generalitat de Catalunya
2010) together with the River Basin Management Plan of Catalonia in the near future. After
this phase, the PoM will be implemented in the territory using, among others, the indications
and conclusions obtained by the tool described in this paper.

2 Problem stage

The European Directive (European Commission 2000, 2001, 2002) has the goal of protect-
ing the environment from the adverse effects of waste water discharges. In response to this
directive, the ACA (Catalan Water Agency) has developed an urban and industrial WWTP
program (Diari Oficial de la Generalitat de Catalunya 2003, 2005) that in a preliminary
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Table 1 Main characteristics of the inner Catalan river basin ordered from north (left) to south (right)

Muga Fluvia Ter Tordera Besos Llobregat Foix Gaia Franco

A 863 1008 2989 879 1029 5045 319 429 828

L 67 104 212 59 52 163 45 67 60

P 807 859 828 770 643 675 573 563 575

Q 3.3 9.4 17.1 7.2 6.8 19.3 0.3 0.3 1.1

QCS 13 9 25 14 18 49 5 3 9

WWTP 43 64 131 50 38 217 35 34 56

Strategies 1036 1054 10110 1042 1032 10183 1029 1028 1047

NQE 54 75 370 90 120 540 55 55 95

A: surface (km2), L: length (km), P: precipitation (mmyr−1); Q: natural average annual inflow (m3s−1),
QCS: number of quality control stations, WWTP: number of WWTP locations, NQE: number of elements in
the Qualk model

Table 2 Cost and nutrient removal efficiency of the WWTP technologies considered by ACA

Treatment type XT Nutrient effic. remov. (%) Monthly cost (€/m3)

ISS NH4 NO3 P Investment (15y payback) Operation

Primary 50 0 0 0 Fix (222) −0.0001Q0.115
P

Secondary 90 30 0 0 2.758Q−0.357
D

4.645Q0.337
P

Nitrification (60%) 95 60 0 0 3.172Q−0.357
D

5.342Q−0.337
P

Nitrif.–denitrif. 70% 95 70 70 0 3.447Q−0.357
D

5.342Q−0.337
P

Nitrif.–denitrif. 70% P removal 95 70 70 100 3.447Q−0.357
D

5.574Q−0.337
P

Nitrif.–denitrif. 85% P removal 95 85 85 100 4.137Q−0.357
D

5.574Q−0.337
P

Advanced 100 95 95 100 4.413Q−0.357
D

6.604Q−0.337
P

QD : design capacity of WWTP in (m3/day), QP : operational capacity of WWTP in (m3/day), ISS: Inorganic
Suspended Solids

study, allowed to identify a number of suitable locations to build 38 WWTPs in the Besos
catchment and 670 WWTPs (see Table 1) for all the Catalan internal catchments in order to
reduce the impact of discharges on all Catalonian surface water bodies.

Nowadays there is a wide variety of reclamation technologies that provide different effi-
ciency levels in the removal of water pollutants (Qasim 1999). For the PoM implementation
analysis, ACA considers seven WWTP technology types, which are described in Table 2 in
terms of their nutrient removal efficiency and building and operational costs. Then, in one
river with a number n of WWTP possible locations, there are 7n different PoM possible
combinations (strategies). The management solution involves finding which of these PoM
combinations is efficient according to the ACA estimated conditions for the 2010 scenario.

Water resources planning and management is a sub-field of natural resource manage-
ment in which decisions are particularly amenable to multiple criteria analysis (Romero and
Rehman 1987). Decisions in water management are characterized by multiple objectives and
multiple stakeholder groups. Decision makers are increasingly looking beyond conventional
cost-benefit analysis and looking towards techniques of multiple criteria analysis that can
handle a multi-objective decision environment (Hajkowicz and Collins 2007).
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3 Multiple criteria optimization model

For the Catalan basins, the number of possible strategies varies from approximately 1028

to 10183 (see Table 1). It’s not easy to select just a few effective strategies from all those
possibilities. Finding the effective PoMs (strategies) is not only difficult due to the large
number of possible PoMs, but also because the comparison between two strategies simulta-
neously depends on cost (investment and operational) and various water quantity and quality
criteria: total nitrogen (TN), total ammonia (TA), total phosphorus (TP), and total organic
carbon (TOC). All these values are taken into account in the WFD and the solution implies
determining the best tradeoff strategies in order to satisfy the WFD’s objectives within a
reasonable cost.

When a scenario involves an arbitrary optimization problem with M objectives, all of
them to be maximized, a general multi-objective problem can be formulated as follows:

maximize fm(x), m = 1,2, . . . ,M,

subject to: gj (x) ≥ 0, j = 1,2, . . . , J,

hk(x) = 0, k = 1,2, . . . ,K,

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1,2, . . . , n

(1)

where x is a vector of n decision variables: x = (x1, x2, . . . , xn)
T . The terms gj (x) and hk(x)

are called constraint functions and fm(x) is the multi-objective function. J inequality and
K equality constraints are associated with the problem. The last subsets of constraints are
called variable bounds, which restrict each decision variable xi to take a value within an
interval with a lower x

(L)
i and an upper x

(U)
i bound. All of these constraints define the deci-

sion variable space D, or simply the decision space. In this case, a Pareto optimal objective
vector f ∗ = (f ∗

1 , f ∗
2 , . . . , f ∗

M) is such that it does not exist any feasible solution x ′, and cor-
responding objective vector f ′ = (f ′

1, f
′
2, . . . , f

′
M) = (f1(x

′), f2(x
′), . . . , fM(x ′)) such that

f ∗
m ≤ f ′

m for each m = 1,2, . . . ,M and f ∗
j < f ′

j for at least one 1 ≤ j ≤ M .
In our case, the vector x describes the waste water treatment alternatives, which corre-

spond to each WWTP (strategy), planned to be constructed in the region.
We use five objectives to reflect the trade-off between minimizing the total annual cost

of the implemented WWTP and maximizing the water quality.

F = [f1, f2, f3, f4, f5], (2)

Minf1 =
nm∑

i=1

[
NumWWTP∑

j=1

(ICostj + OCostj )

]
, (3)

Maxfk = WaterQualitycontaminat k (4)

where:

• k, 2 ≤ k ≤ 5: contaminant index
• nm: number of months
• NumWWTP: number of total waste water treatment plants.
• ICostNwwtp = f (QD,XT ): is the investment needed to build a WWTP (monthly cost with

a 15-year payback period). This cost is a function of the design flow (QD) and the type of
treatment technology applied (XT ), see Table 2.
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• OCostNwwtp = f (QP ,XT ): is the monthly operating cost. This cost is a function of the
amount of water treated in one month (QP ) and the type of treatment technology applied
(XT ), see Table 2.

• fTA = WaterQualityNH4
is the relative difference between the legal limits and the current

concentration of TA in the river water (according to (5)).
• fTN = WaterQualityNO3

is the relative difference between the legal limits and the current
concentration of TN in the river water (according to (5)).

• fTP = WaterQualityPO4
is the relative difference between the legal limits and the current

concentration of TP in the river water (according to (5)).
• fTOC = WaterQualityTOC is the relative difference between the legal limits and the current

concentration of TOC in the river water (according to (5)).

To assess the water quality in a basin over a yearlong period it is necessary to define
a quality function (metric), e.g., as shown in (5). This quality function has two different
approaches, depending on whether it measures the achievement of the good ecological status
or its failure. Positive values of the metric mean that the WFD objectives are reached every
month and for every basin stretch. A negative value means that the WFD objectives are
exceeded by at least one river stretch during one month.

fk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑nm
i=1

∑ns
j=1(LDMk

ij − VIk
ij)/LDMk

ij

nm · ns
if the WFD levels are satisfied

for every stretch and month,∑nmi
i=1

∑nsi(i)
j=1 (LDMk

ij − VIk
ij)/LDMk

ij

nm · ns
otherwise.

(5)

where:

• k, 2 ≤ k ≤ 5: contaminant index
• ns: number of stretches
• nmi: number of months not meeting the WFD limits.
• nsi(nmi): number of stretches that do not meet the WFD limits. This number is different

for each simulation month.
• LDMk

ij : concentration limit of the contaminant k in stretch j and month i, allowed by the
WFD’s goals.

• VIk
ij: concentration of the contaminant k in stretch j and month i.

Other metrics are possible and have been analyzed (Boon et al. 1997), but we consider
that the one described above is more adequate to assess relative fulfillment of the limits
imposed by the WFD.

The discrete decision variables, denoted by XT , are the treatment technologies to be
applied at each WWTP. In some cases, a constraint for the minimum wastewater treatment
technology could be added. The mathematical formulation of that constraint is the following:

XT > Xmin ∀T , XT ∈ {1, . . . ,7}. (6)

4 Methodology

The approach proposed in this paper and applied to select the adequate PoM in order to
satisfy the WFD in the inner Catalan catchments, combines a water quality model, a math-
ematical optimization model, Interactive Decision Maps (IDM) (Lotov et al. 2004) and a
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Fig. 1 Scheme of the methodology

stochastic simulation model. Some of these components work integrated, while others are
executed sequentially starting from decisions made in previous phases as shown in Fig. 1.

The first step is to define the possible correction measures for each watershed, which
consist in a series of proposals (PoM) including the Catalonia urban and industrial WWTP
program. This includes deciding which is the most appropriate cleaning technology for each
WWTP. The features considered by ACA for each plant type are described in Table 2.

The second step consists in creating economic models to determine the investment (to
build a new WWTP) and the operational costs for each plant modality. Both costs depend
on the specific technology implemented and the volume of water treated (Table 2). Cost
models for the WWTP considered in this study are derived from historical data collected
by the ACA over the last 10 years. The total cost of each PoM (strategy) is estimated by
summing up the individual costs of each WWTP for each simulated period.

The next step is to build the watershed model according to the “water quality model”
(Sect. 4.1 of this paper). All the information related to catchments should be implemented
in the Qual2k model. The user’s manual (Brown and Barnwell 1987) provides values and
ranges for rates and constants, such as O2 for NH4 nitrification which a suggested value of
4.57 gO2/gC, and some values are also available in Bowie et al. (1985). However, Brown
and Barnwell (1987) strongly suggest that parameters should be field measured to reduce
uncertainty in the model results. Qual2k requires an auto-calibration phase that estimates a
series of coefficients which are subsequently used to simulate the present state of the river
basin. The resulting characterization provides information related to water resource quantity
and quality (Pelletier and Chapra 2004).

The fourth step involves the execution of the MOEA-Qual2k integrated tool which delim-
itates the Pareto-optimal trade-off surfaces and intends to select the best cost-efficient PoMs
(efficient strategies) set. In many multi-objective optimization problems, knowledge about
this set helps the decision maker choose the best alternative. One of the main advantages of
the proposed modeling framework against other approaches performing an individual cost-
effectiveness analysis of each WWTP is the multi-objective simultaneous analysis of the
influence of all the WWTP.

Once the Pareto-optimal trade-off surface is delineated, in the fifth step it must be ana-
lyzed and decision makers must select some interesting strategies. Special techniques should
be used when there are more than two criteria. This is the reason why Interactive Decision
Maps (IDM) have been applied, see Muleta and Nicklow (2005), to simultaneously study
trade-offs for up to 7 criteria. IDM has been extensively used in water management issues
(Lotov et al. 2005; Bourmistrova et al. 2005).
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The final decision can’t be taken with the unique perspective provided by deterministic
scenarios. Water quality and quantity status is subject to uncertainty and varies markedly
throughout the year. Reasonable changes in the scenarios exist due to uncertainty in factors
such as climate or resource exploitation level and therefore the selected strategies should
remain as close as possible to the efficiency level. We should therefore take each of the
selected strategies from step 5 and introduce them into the stochastic model integrated with
Qual2k in this step.

In the final step, decision makers choose one strategy that shall eventually be conducted
in the catchment under study. Decision makers make this final decision comparing the un-
certainty analysis results carried out with the previously selected strategies.

4.1 Water quality model

Water Quality Models seek to describe the spatial and temporal evolution of contaminants
and constituents characterizing the river flow. Many highly reliable simulation models are
available today for estimating the behavior of physical systems such as water bodies, with
reasonable computational requirements (Rauch et al. 1998; Shanahan et al. 1998). Accord-
ing to these references, one of the most popular river and stream water quality models is
Qual2e (Brown and Barnwell 1987). We chose Qual2k (Pelletier and Chapra 2004) as the
water quality model for this application as it is a modernized version of the Qual2e model
and is easily embedded with the other tools that integrate the methodology. Qual2k is one-
dimensional steady state hydraulics, with non-uniform, simulated steady flow model. For
each computational element, a hydrologic balance in terms of flow, a heat balance in terms
of temperature, and a mass balance in terms of constituents’ concentration are formulated.

The region under study is the one formed by all the internal Catalan watersheds (lo-
cated in the northeast of Spain) whose main characteristics are described in Table 1. All
the rivers in that region flow into the Mediterranean Sea. In this paper we present re-
sults for the Besos catchment. The year-averaged daily flow of the Besos main stream
outlet is 4.33 m3/s. The base flow measures from daily streamflow in five stations of the
catchment from 2003 to 2006 were obtained from the Catalan Water Agency (available at
http://www.gencat.cat/aca).

The main inputs of the water quality model are: the head water in all tributaries, point
sources (urban, industrial, WWTP; etc.), water extractions, and diffuse sources of pollution.
The inflows for the proposed WWTPs are the urban and industrial effluents. Based on in-
formation from urban and industrial discharges over the last 10 years, the evolution of the
inflows has been estimated from the relation with the evolution of the population in each
city and the evolution of the industrial production. Diffuse pollutants were also considered
as input of the Qual2k model. Non-point sources of pollution generated by agriculture ac-
tivities considerably affect water quality of the Besos River. Measures or estimation about
these contributions are not available in Catalonia. In order to set up Qual2k model, informa-
tion about these sources was provided by the Catalan agricultural department (Udías et al.
2009) and obtained through direct interview with regional and local officers.

In order to apply the Qual2k model to a river network, the river system must be divided in
river elements, which have roughly uniform hydraulic characteristics. Within each river cell,
the model computes the major interactions between up to 16 state variables and their value
for steady state and dynamic conditions. The Besos river main channel, with its 9 tributaries,
has 210 km, which were divided into 120 elements with an approximated individual length
of 2 km for the simulations.

Twelve Qual2k models must be built for each catchment, one for each month of the year.
They all have the same geographical characteristics (geographical longitude and latitude,

http://www.gencat.cat/aca
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time zone, elevation), but each one has different meteorological characteristics (air temper-
ature, dew point temperature, wind speed, cloud cover, shade), as well as physical-chemical
and biological parameters for waste hydraulics (morphological elements, Manning rough-
ness coefficient, flow curve, flow).

Before applying the Qual2k, we need to adjust the model parameters to properly repre-
sent the actual behavior of the basin. Qual2k includes a general purpose function optimiza-
tion subroutine based on a genetic algorithm, PIKAIA (Charbonneau and Knapp 1995).
This algorithm could automatically calibrate over 120 parameters of the catchment. How-
ever, one must consider that when a model has a large number of parameters, excessive
computing time is normally needed. To address this problem, before starting the model cal-
ibration processes, we perform a standard “one at a time design” on the 120 parameters
of the catchment, which varies only one factor from the standard conditions (Daniel 1973)
for each simulation. This is done in order to determine which parameters impose the most
significant effect on the model performance and therefore which must be the only ones to
include in the calibration process. The desired result was to narrow the selection down to 20
parameters that appear to be the most sensitive to the Besos models.

Monthly models were calibrated separately using the monthly data set observed from
year 2003 to 2005 at three water quality control stations. Measures of eight water qual-
ity parameters are available at each station: dissolved oxygen, suspended solids, biochemi-
cal oxygen demand, chemical oxygen demand, ammonium, nitrogen, and total phosphorus.
Point source pollutant loads in stream flow were prepared based on data conditions in 2006.

The validation period is based on data conditions in 2006. The Nash-Sutcliffe model ef-
ficiency index (Ef) is used to assess the predictive power of hydrological models. For the
2006 simulation, results for the Qual2k model show a value of 0.47 for the Nash-Sutcliffe
model efficiency index (Ef) (Nash and Sutcliffe 1970) to assess calibration results obtained
for the 12 monthly Besos models. This value is reasonably close to 1 to consider that the
model does not introduce important discrepancies for verifying the open decision frame-
work. More details about the water quality models calibration and validation may be found
in Udías et al. (2011).

4.2 Multi-Objective Evolutionary Algorithm (MOEA)

The MOEA optimizer is usually capable of mitigating the limitations of standard Multi
Criteria Decision Making methods (Udías et al. 2009, 2011), and provides the Pareto cost-
efficient PoMs (efficient strategies) set of solutions. In many multi-objective optimization
problems, knowledge about this set helps the decision maker to choose the best alternative.
The multi-objective analysis of the global influence of all the WWTP is one of the main
advantages of the proposed framework over other approaches that make individual cost-
effectiveness analyses of each WWTP.

A MOEA is a heuristic search algorithm based in a population of strings (called chro-
mosomes) that mimics the process of natural evolution. This population encodes candidate
solutions (called individuals) to an optimization problem and evolves toward better solu-
tions.

The MOEA developed to optimize (select) WWTP trade-off strategies, applies binary
gray encoding (Goldberg 1989) for each chromosome (optimization string). The length of
each optimization string corresponds to a total number of genes, one for each facility. Each
gene uses 3 bits to encode the 7 sewage treatment levels for each plant. After decoding
the chromosome, in treatment levels for each WWTP, the water quality in each reach is
forecasted by the Qual2k model. The fitness value for the four quality criteria is assessed
by (5) and the cost criteria by (3).
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A set of chromosomes makes up a generation. The initial population is generated ran-
domly if no previous basin management information is available. Afterwards, each solution
is evaluated according to all the decision-making criteria. At this point, the MOEA selects
the solutions that are Pareto dominant from the main population and stores them in the
Pareto front population. It also removes the solutions that are dominated by Pareto-optimal
trade-off surface solutions (elitism).

The MOEA algorithm applies the usual procedures of selection (Tournament), crossover
(Multi-point) and mutation (uniform) to generate the new population. Efficient convergence
is achieved with small populations (10 chromosomes per generation) and mutation rates
of 3%. For more details about the convergence of the algorithm see Udías et al. (2009)
and Udías et al. (2011). This MOEA algorithm also introduces elitism by maintaining
an external population (Deb 2001; Zitzler et al. 2003). In each generation, the new so-
lutions belonging to the internal population are copied to the external population when
they are not Pareto-dominated by any solution of this external population. If solutions
for the external population are dominated by some of the new solutions, these solutions
are deleted from the external population. The external elitist population is simultaneously
maintained in order to preserve the best solutions found so far and to incorporate part
of the information in the main population by means of the crossover. Elitism is also in-
cluded in this recombination process, selecting each of the parents through a fight (tour-
nament) between two randomly-selected chromosomes from the external Pareto-optimal
set of solutions (according to a density criterion) or from the population set (according
to their ranking determined through a dominance criterion). The stopping criterion is to
wait until new non dominant chromosomes don’t appear in a significant number of genera-
tions.

4.3 Screening stage

As we usually consider more than two criteria, a special technique is used to study the trade-
off between them, formed by hundreds of alternatives that the approximation of Pareto-
optimal trade-off surfaces determines.

We use IDM that permits the visualization of simultaneous trade-offs for up to 7 cri-
teria, see Lotov et al. (2004). IDM has been previously used in water management issues
(Bourmistrova et al. 2002, 2005; Schumann et al. 2006; Fragoso et al. 2010). The informa-
tion on the Pareto-optimal trade-off surfaces displayed by the IDM technique simplifies the
decision makers’ choice among the Pareto efficient alternatives. Each stakeholder, familiar
with the use of such visualization tools, easily identifies the area of interest (according to his
preferences) on a decision map by simply clicking with the computer mouse. This process
pre-selects some alternatives in which more accurate analysis involving robustness analysis
may be performed. From this pre-selection, we carry out the simulation in order to check if
the corresponding strategies (sets of WWTP) are robust decisions, that is, remain efficient
under changeable environmental conditions.

This is the fundamental information upon which the stakeholder will base the decision
process, so, special care should be taken in order to represent it in intelligible, yet rigor-
ous manner. IDM suits this goal in the framework of participatory decision making (Lotov
et al. 2004), when the number of criteria is, at least, five. Here, however, we introduce an
example of IDM representing the following three criteria: cost, fTA, fTP, because these cri-
teria represent the most interesting trade-offs for the Llobregat watershed. Figure 2 shows
the IDM example that visualizes the Edgewort-Pareto Hull (Lotov et al. 2004), H(Y), for



Ann Oper Res (2014) 219:123–140 133

Fig. 2 Example, for the Llobregat catchment, of simple EPH decision map with the corresponding smoothed
convex hull

the three above-mentioned criteria. The contaminant criteria are assigned to the axes of the
map, whereas the cost criterion is assigned to the grey scale. The total scale of the cost
criterion is divided into several half-open intervals of equal length. The slices of H(Y) in
the plane of the axis criteria for the values of the third criterion corresponding to the end-
points of the intervals are superimposed on a single screen; each slice is represented by a
specific color; the legend on the right of Fig. 2 matches the color of each slice to the end
point for the interval this slice was computed for. Note that a slice corresponding to a worse
value for this criterion encloses the slice corresponding to a better value. This guarantees
that non-dominated frontiers for these slices never intersect, even though they might touch.
The values for the rest of quality criteria: fTN and fTOC , are set to their lower feasible posi-
tions.

In some cases, omitting some data that are irrelevant to the decision-making information
may be useful for, mainly, redefining the precise shape of the tradeoff curves between the two
quality criteria: fTA and fTP, considering a decision map with “smoothed” tradeoff curves,
see Fig. 2. Technically, this is achieved by approximating the convex hull of H(Y), see
Lotov et al. (2004). The aim of the removal is to help the decision maker to concentrate on
the essential interdependences between the different criteria.

Therefore, exploration of the Pareto-optimal trade-off surfaces by means of the IDM map
(Fig. 2) helps to understand the criterion tradeoffs and to identify a preferred criterion point
directly at the Pareto trade-off surfaces. Also by means of the Pareto front visualization,
e.g., Fig. 2, we can observe that even for the most intensive sewage PoM, it is impossible to
satisfactorily achieve the WFD’s objective for all the criteria.

Furthermore, the slope of these criteria quality curves (or the Pareto-optimal trade-off
surfaces) for each cost level indicates the water quality sensitivity to the water treatment
actions. It shows the cost increase required to achieve a unitary water quality improvement
for each strategy.
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4.4 Stochastic Simulation Model (SSM)

Water quality models are generally deployed to provide insight on source assessments and
their impacts on water quality targets as well as the consequences of varied management
scenarios (e.g., Parker et al. 2008).

However, the different parameters, such as quantity and quality of waste treatment dis-
charges, irrigation return flows and urban runoff, that characterize regional water quality,
are probabilistic in nature. Therefore, the uncertainty is an inherent characteristic in the
modeling process (Benedetti et al. 2010).

Stochastic models attempt to mitigate these issues to some degree by representing mod-
eled phenomena as a distribution of possible outcomes. A common implementation is to
perturb the input parameter, for example, through the use of Monte Carlo simulations, and
assess the likelihood of the different outcomes.

With the information available on each basin, the correlation between different climatic
variables, such as precipitation in the nearby measurement stations, variable flows and water
quality data is analyzed in order to adequately define the dependencies between them.

As we have, both for water flow and for level of contaminants, the historical series of the
river monitoring points placed in the main and the tributaries catchment, we use these col-
lected data to build the cumulative histogram of flow values. These histograms are inverted
to generate a random variable for the flow with the observed distribution of the experimen-
tal flows. Further an empirical relation between contaminants and flows is determined from
the data by regression. So, based in this empirical function, the stochastic simulation model
generates the predicted values of the variables at each point of the catchments.

We construct a simulation model in order to govern each of the monthly Qual2k water-
shed models and in which the type of WWTP is fixed, and execute several thousands times
in order to statistically analyze the results for each of the criteria. By running the simulation
model tool, it is possible to determine the statistical distribution of each PoM strategy under
probabilistic daily environmental and social conditions.

5 Results

After each basin was calibrated and validated, it was integrated into the MOEA, which had
previously been developed and tested (Udías et al. 2011). A major difficulty in applying
the MOEA methods lies in identifying the appropriate parameter settings to ensure that
the decision space of the problem is effectively explored and the entire tradeoff curve is
identified. Once this has been set, the MOEA algorithm identifies tradeoffs among multiple
objectives in a number of Qual2k executions, ranging from 6,000 to 10,000 depending on
the watershed characteristics and the number of WWTP (Udías et al. 2011). This made
the problem amenable to being solved by common computers as, even in the larger basins,
such the Llobregat [Table 1], each execution of Qual2k requires at most 120 seconds on a
computer with an IntelCore2 Duo Processor (2.00 GHz) and 2 GB of RAM Memory.

Considering that 5 criteria (cost, fTA, fTN , fTP and fTOC) are simultaneously under con-
sideration, the number of efficient strategies provided by MOEA is quite high (several hun-
dreds).

Qualitatively, three regions of interest may be identified in the Pareto-optimal trade-off
surfaces. In this paper, these regions are named: economic, balanced and environmental.
The first is the area where the PoM’s are inexpensive and implement purification treatments
that are less intense than average. The “environmental region” implements a fairly intensive
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Table 3 Example of water quality metric (equation (5)) obtained for the five decision regions selected,
ordered from most economical to most expensive, in the Besos basin. Table shows the water quality for each
contaminant and the cost (monthly investment + operational cost) for each region

Regions of
compromise

Cost
(M€/month)

fTA fTN fTP fTOC

Cheapest 0.397 −0.9976 −0.0007 −0.0031 0.8064

Economic 0.528 −0.6018 −0.0007 0.9338 0.8040

Balanced 0.630 −0.3225 0.7956 0.9356 0.8057

Environmental 0.699 −0.2655 0.7938 0.9355 0.8076

Expensive 0.871 −0.2318 0.7983 0.9391 0.8852

purification treatment and is quite expensive, and the “balanced region” would fall in the
range between the two other ones.

For example, in the Besos basin, where the MOEA provides a Pareto-optimal set of
approximately 500 strategies, Table 3 shows the representative values of these three areas,
and two other ones located in the most economical and most expensive regions (all the
WWTP are of the “advanced” type). For each one of the five PoM (strategies) preselected,
the Qual2k execution provides different outputs for each parameter and river stretch. The
quality values shown in Table 1 are the result of these outputs evaluated by means of the
metric proposed in (5). Each one of these strategies represents one of the five regions of
interest.

While TOC is not affected by investment variations in wastewater treatments, the other
quality indicators improve in different rates with the water treatment levels of investments.
The average quality of phosphate improves significantly with small investments and, with
regard to nitrates; the small breaches in the WFD disappear with intermediate investment.
For the fTA the investment produces significant improvements, but fails to achieve the WFD
goals, even with the most expensive treatment. The “expensive” alternative region is 24%
more expensive than the “environmental” one and 38% more than the “balanced” strategies
region, with negligible improvement in fTN , fTP and fTOC and between 13% and 29% in
fTA, but it never reaches the WFD goal. The “balanced” strategy regions are, on average,
19% more costly than the “economic” ones, but manage to clearly eliminate the problems
of fTN in the basin and reduce the average ammonia concentration 47%.

The next step of the framework, running the stochastic simulation model, is done with
the 5 preselected strategies. Figure 3 compares the TA output probability distribution box
plot for the 5 strategies that had been previously selected. Note that as the strategies become
more intense, improvement is made in the average TA water quality. It is remarkable that the
probability distribution becomes less disperse with the intensification of the water treatment,
leading to a smaller difference in the water quality between the worst and the best scenarios.

Figure 4 shows the Besos main channel spatial distribution of the TA quality probability
distribution for the “balanced” strategy. To get the results shown in this figure, the stochastic
simulation model runs the water quality model 600 times. Figure 5 shows the extreme values
(95% probability of occurrence) for the five TA spatial statistical distributions, considering
the five regions of compromise. In Figs. 4 and 5, the kilometer labeled as km 0 in the x axis
corresponds to the confluence with the Mediterranean Sea. There are no significant pollution
problems in the first 25 km of river segment. However, for the last 25 km, non compliance of
the TA WFD limits is very probable in at least 4 stretches. Similar simulation and statistical
analysis process should be repeated for all regions under study and all the criteria.
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Fig. 3 Example of the fTA
quality metric (equation (5))
statistical distribution for the five
previously selected WWTP
strategies

Fig. 4 2D TA concentration statistical distribution along Besos main channel for the balanced strategy. The
WFD limit in TA in this stretches is 0.5

The objectives were achieved in all sections in the best possible environmental situation,
given that for all sections shown in Figs. 4 and 5 the WFD limit for ammonia is 0.5 mg/l.
However, the total compliance is relatively unlikely, as it depends on the level of investment
in purification and in the probability that the limits allowed by the WFD be violated, which
vary significantly. All these analyses usually help to reach an agreement in a single region
of interest in which the PoM shall finally be implemented in.

We also apply the IDM to obtain neighboring strategies for the final region selected
in the second step. In Fig. 2, the chosen strategy designated by the black cross seems to
be reasonable enough from the point of view of the tradeoff between the pivotal criteria:
phosphates and ammonium. The alternatives located near the goal (Fig. 2) are listed on
Table 4. These alternatives are either subject to more careful analysis, or can be filtered
by another technique, possibly through “eye of the users”. Whatever the case, IDM helps
to discard most alternatives and to select several ones that do not differ greatly on criteria
values with respect to the goal.
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Fig. 5 2D TA concentration statistical extreme probability distribution values along Besos main channel
considering the five regions of compromise. (∗ WWTP location)

Table 4 Example of water quality metric (equation (5)) of six neighboring points (strategies) defined by
IDM with respect to the selected strategy in the Llobregat basin (Fig. 2). Table shows the water quality for
each contaminant and the cost of the corresponding neighbor strategy

Your aspiration Cost fTA fTN fTP fTOC

1.2 −0.305 0.9 −0.06 0.88

Nearest points

P1 1.1628 −0.5271 0.8999 −0.0582 0.8768

P2 1.1967 −0.2816 0.9066 −0.0642 0.8857

P3 1.2001 −0.4028 0.9032 −0.0469 0.8766

P4 1.2213 −0.5049 0.8937 −0.0581 0.8781

P5 1.3303 −0.3666 0.9021 −0.0472 0.8789

P6 1.3766 −0.3510 0.9057 −0.0443 0.8790

6 Conclusions

This paper presents an integrative optimization and simulation framework proposed to select
the most efficient and robust PoMs in order to reduce both pressure and associated impact
in the context of the implementation of the WFD in Catalonia

The methodological tool presented in this paper is an effective combination of a Qual2k
model, a MOEA and a screening Pareto-optimal trade-off surfaces tool in a first step,
and Qual2k with a stochastic simulation model in a second step. Qual2k model estimates
monthly runoff and pollutant loads in the catchments. The MOEA is a multi-criteria genetic
algorithm specially designed and configured to find the efficient tradeoff between restoration
cost and water quality criteria. The screening tool helps the decision makers to assess local
problems in each catchment, and to make initial PoM selections of some deterministic effi-
cient strategies. The stochastic simulation model performs a study of the sensitivity on the
previously selected strategies to examine how the catchment behaves under the daily condi-
tions of the variables subject to uncertainty. A range of inputs is used in the water quality
simulations, including topography, climate and anthropic pressures predicted for 2015, the
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year in which the Water Framework Directive’s objectives take effect. Qual2k, integrated
with the MOEA, and complemented with the IDM for alternative selection and other user-
friendly analysis tools, constitute the main core of the proposed approach.

In this paper, a case study has been carried out by taking wastewater systems into ac-
count and considering seven different alternatives for the cleaning technology to be used,
also modeled in terms of both cost and treatment for each pollutant. Therefore, in addition
to the cost criteria (operating and investment cost), four quality criteria were considered
simultaneously: fTA, fTN , fTP and fTOC .

This framework has shown to be adequate in evaluating the effectiveness of the possible
remediation actions to improve water quality. It provides decision-makers the opportunity
to explore the multi-objective nature of problems, and to discover tradeoffs amongst objec-
tives, enabling them to make decisions and to select among given alternative solutions in
order to achieve PoM management outcomes for the future. The model also considers the
uncertainties of climate and environmental variables. The main factors intended to guarantee
the system implementation success have been: ‘early-end users’ involvement; development
of several evolutionary prototypes; designing a specific user-friendly interface adopted for
multicriteria applications; and a variety of implemented models and decision support tools.

This tool has been a key factor in the designing part of the PoM which shall be im-
plemented to achieve the WFD objectives by 2015. For the Catalan catchments, the model
and tools developed have successfully identified the problems in each watershed, for all the
WFD criteria considered in this study. Indeed, application of the model has required a rea-
sonably small number of Qual2k executions, keeping the computational time requirements
within reasonable limits.
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