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Abstract We investigate a gated polling system with semi-linear feedback and Markovian
routing. We thereby relax the classical independence assumption on the walking times; the
walking times constitute a sequence of stationary ergodic random variables. It is shown that
the dynamics of this polling system can be described by semi-linear stochastic recursive
equations in a Markovian environment. We obtain expressions for the first and second order
moments of the workload and queue content at polling instants and for the mean queue
content and workload at random instants.

Keywords Polling system · Branching process · Semi-linear process · Feedback · Random
routing

1 Introduction

In a polling system, a single server visits multiple stations in cyclic order. If customers are
waiting at a station, the server serves one or more of them in accordance with a polling
discipline and then moves to the next station. The most common polling disciplines are the
gated, exhaustive and 1-limited disciplines. All customers that are present upon arrival of
the server at a station are served if the discipline is gated, the server remains with the station
until there are no more customers present for the exhaustive discipline and a single customer
is served prior to moving to the next station for the 1-limited discipline. Moreover, moving
from station to station usually is not instantaneously, a walking time is required.

Many real-world queueing systems in telecommunications and manufacturing can be
described by polling systems. Hence, there has been a continuing interest in polling systems
since the 1950s. Polling systems are also interesting from a mathematical point of view.
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These systems are one of the few multidimensional queueing systems for which explicit
solutions for the expected waiting times have been available. The considerable literature on
polling systems prior to 1985 is surveyed in Takagi and Kleinrock (1985) and Takagi (1987).
A more recent survey on polling systems is Vishnevskii and Semenova (2006). The main
characteristics of the polling system at hand and the related literature are summarised below.

Markovian routing For classic polling systems, it is assumed that the server visits the
different stations in a deterministic order. Most often the stations are visited in cyclic order.
There have been, however, a growing number of applications that can be modelled by polling
systems in which the visit order of the server is random. This type of server routing is also
considered in this paper.

Polling systems with random server routing were introduced in Kleinrock and Levy
(1988), and pseudo-conservation laws for the waiting times were established in Boxma
and Weststrate (1989). The random routing discipline was motivated by distributed network
control, and in particular by slotted ALOHA. The authors considered exhaustive, gated and
1-limited discrete-time polling systems. Also Levy and Sidi (1990) mention random-access
schemes in shared channel networks as a possible application for polling systems with ran-
dom server routing. Polling systems with random routing and finite buffers were studied in
Chung et al. (1994) and Lee and Sunjaya (1996), Lee (2003), the latter papers extending the
former paper by allowing arrival correlation. In all cases, each buffer can only hold a sin-
gle customer. In Lee (2003) the buffer can also hold an additional customer while another
customer receives service.

Polling systems with random routing can be used to assess demand-based multiple ac-
cess protocols. Already in geostationary satellite communication, we find demand-based
multiple access protocols in which there is a first phase of random access that is used by ter-
minals to send a reservation request packet. The satellite then responds by assigning a dedi-
cated channel for the amount of data that is requested in the reservation. An example is the
SPADE (single-channel-per carrier PCM multiple-access demand assignment equipment)
system operated by INTELSAT described in Evans (1999, p. 137). A similar mechanism is
available in the WiMAX metropolitan area network, standardised by IEEE (known as IEEE
802.16 standard), for access based on a contention phase in which a station is selected at
random followed by a transmission period for the terminal that received access for a time
limited to the amount of data it has to send (Staehle and Pries 2007). This type of access is
used for elastic traffic. Yet WiMAX has also a polling based mechanism in which the visit
order is determined by the base station (Chang et al. 2008). The standard does not specify
how to choose the service order.

In addition, polling systems with random routing can also be applied in manufacturing.
For example, Srinivasan (1991) investigates a polling system with state-dependent Marko-
vian random routing—the transition matrix of the server routing is different if the server
finds an empty queue—and 1-limited polling and applies it to the performance analysis of
an Automated-Guided-Vehicle (AGV) materials handling system. A single vehicle moves
loads from one machine to another. When the AGV delivers a load, it inspects (polls) the
output buffer of that machine to determine if there are any loads waiting to be transported.
As such, the polling order is determined by the destination of the loads. The same polling
system can also be used to model and assess delivery of packets by a “messenger boy” who
picks up new packets upon delivery of some other packet. Fayolle and Lasgouttes (1995)
studies a similar polling system, thereby investigating the waiting times when the routing
probabilities are state-dependent.
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Feedback The concept of queues with feedback was introduced by Takács (1963). In such
a queueing system, a customer has some fixed probability to rejoin the queue upon service
completion. In the context of polling systems, a customer may either rejoin the same queue,
join another queue or leave the polling system. For polling systems with Bernoulli feedback,
customers cannot join other queues upon service completion whereas this restriction does
not apply for polling systems with Markovian feedback.

Takagi (1987) and de Moraes (1990) consider 1-limited polling systems with Bernoulli
feedback. This type of polling model is applied in the context of token-ring networks where
a single message is segmented into a (geometrically distributed) number of packets. The
feedback mechanism corresponds to the message segmentation: a message virtually reen-
ters the queue until all its packets are transmitted. The same queueing system can also be
applied to model packet retransmissions in case a packet contains errors upon reception.
Apart from the 1-limited polling discipline, Bernoulli feedback is also investigated for gated
and exhaustive polling systems (Takine et al. 1991). Limiting the polling system to two sta-
tions with exhaustive service (such a system is sometimes referred to as a queueing system
with alternating priorities), Gupta and Buzacott (1990) investigate Bernoulli feedback in the
context of manufacturing. In contrast to the preceding papers, the customers rejoin the queue
at the head of the queue and receive service immediately.

Polling models with Markovian feedback also naturally arise in the context of token ring
networks. Sidi et al. (1992) note that work at some station can generate work at other queues,
e.g. a file request from a node in the token ring network results in a file transmission initiated
from another node. These authors investigate exhaustive and gated polling disciplines. This
is also the case in Hirayama (2005) where a multi-class polling system (gated or exhaus-
tive) with cyclic service, FCFS or priority scheduling at each polling station and Markovian
feedback is studied.

All the former contributions assume cyclic server routing in contrast to the Marko-
vian routing which is studied here. Furthermore, we complement the classic feedback
mechanism—a customer may generate new customer arrivals upon service completion—by
a conceptually different one: feedback is expressed in terms of workload and the dynamics
of the feedback to the different stations while serving at a particular station are modelled by
semi-linear processes.

Semi-linear processes The class of semi-linear processes includes both linear processes
and branching processes and were introduced in Altman (2009). For both linear processes
and branching processes, the first and second order moments can be expressed as linear
forms of the process parameter. Recalling the definition from Altman (2009), an R

K -valued
stochastic process A(x) is semi-linear if (i) for x = x1 + x2 + · · · + xk ∈ R

K+ , A(x) has the
following representation,

A(x) =
k∑

l=1

Â(l)(xl ),

whereby Â(l)(·), l = 1, . . . , k, are identically distributed, but not necessarily independent,
with the same distribution as A(·). Moreover, (ii) A(·) is linear in the mean,

E
[
A(x)

]= A x, x ∈ R
K
+ , (1)

and the correlation matrix of A(x) is linear in xx′ and x. For all x = [x(1), . . . , x(K)] ∈ R
K+ ,

we have the following representation,

E
[
A(x)A′(x)

]= ϒ
(
xx′)+

K∑

j=1

x(j)Dj . (2)
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In the former expressions, A is fixed K ×K matrix, ϒ is a linear operator that maps K ×K

non-negative definite matrices on K ×K non-negative definite matrices and satisfies ϒ(0) =
0 and {Dj , j = 1, . . . ,K} is a set of fixed K × K matrices.

Semi-linear processes being a generalisation of branching processes, the close connec-
tion between branching processes and polling systems is retained. Resing (1993) showed
that multitype branching processes with migration capture the dynamics of the number of
customers at polling instants. Moreover, a similar branching structure with a continuous
state space was shown to describe the so called “station times” of polling systems (Altman
and Fiems 2007). A station time is the time spent at the various queues including the walk-
ing time to the next queue. This structure was used to compute the expected waiting times of
polling systems with up to two queues by reducing the state evolution to a one-dimensional
branching process (Groenevelt and Altman 2005).

By the introduction of semi-linear feedback, the workload at polling instants cannot be
described by a pure branching process: the dynamics are described by a semi-linear process
with migration. Moreover, this process operates in a Markovian environment to account for
the random routing. Such a process was already studied in the context of packet forwarding
in delay-tolerant networks (Fiems and Altman 2009a).

Organisation of the paper The remainder of this paper is organised as follows. The details
of the polling models at hand are outlined in the next section. Some specific applications
of the models are highlighted there as well. Sections 3 and 4 are then concerned with the
analysis. In Sect. 3 the state of the polling system at polling instants is described in terms
of workload, this is a station times approach. In contrast, the state is expressed in terms of
customers in Sect. 4, this is a buffer occupancy approach. In either case, it is shown that the
dynamics of the polling system can be described by semi-linear processes with migration
in a Markovian environment. For self-containment, the main results of these processes are
summarised in the appendix. Finally, conclusions are drawn in Sect. 5.

2 Polling model

We consider a polling system with K infinite capacity buffers, each buffer implementing
a first-come-first-served service discipline. The polling system adheres to a gated polling
discipline—the server stays at a buffer till all workload present upon arrival of the server
at that buffer is processed—and the server moves randomly between the different buffers.
The modelling assumptions are described in detail below and are summarised in Fig. 1.
We consider two complementary polling systems: a system with continuous state space
(Sect. 2.1) and a system with a discrete state space (Sect. 2.2). In the former system, arriving
load is expressed in terms of workload whereas the load is expressed in terms of customers
and their service times in the latter system. Before proceeding to the analysis, some example
applications of the polling systems at hand are discussed in the Sects. 2.3 and 2.4.

2.1 Modelling assumptions: continuous state space

Service routing Let ξn ∈ {1,2, . . . ,K} denote the nth buffer being polled. The consecutive
ξn are not independent. Let θ be a (deterministic) surjective mapping from {1,2, . . . ,N} onto
{1,2, . . . ,K}. The nth queue being polled is ξn = θ(Yn) whereby {Yn} denotes an ergodic
Markov chain on the finite state space � = {1,2, . . . ,N}. The transition probabilities of
the chain are denoted by pij and the corresponding N × N transition matrix is denoted
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Fig. 1 Schematic representation of the polling system under investigation

by P = [pij ]. The assumptions above imply that the state of the Markov chain determines
which buffer is polled but the buffer being polled does not necessarily determine the state
of the Markov chain. These assumptions obviously include the case where the consecutive
ξn constitute a Markov chain or are modulated by a Markov chain. Finally, notice that all
buffers are being polled since the Markov chain is ergodic and the mapping θ is surjective.

Walking times Moving between buffers incurs a walking time which does not only depend
on the buffer being polled; the consecutive walking times are dependent random variables. In
particular, let {Wn} denote a sequence of stationary ergodic random N -dimensional column
vectors. The walking time between the nth and n+1st polling instant is then given by W(Yn)

n ,
the Ynth element of Wn. Example applications of stationary ergodic walking times include
signalling and switching time in mobile networks, where the signalling or switching speed
depends on the wireless channel conditions which can be correlated in time, see (Altman
and Fiems 2007).

For further use, let w = E W0 denote the mean walking time vector, w(i) being the ith
element of this vector. Moreover, let Wn = E W0W′

n denote the autocorrelation matrix at
lag n and let W (i,j)

n denote the element at position (i, j) in this matrix. In line with the
notation introduced above, the ith element of any vector x is denoted by x(i) in the remainder.
Similarly, for any matrix X , X (i,j) denotes the element at position (i, j).

In the above setting, the walking time distribution from queue θ(Yn) to queue θ(Yn+1)

does not depend in an explicit way on Yn+1. However, a direct transformation allows us to
include such dependence in our model. Indeed, we can augment Yn and consider the Markov
chain Zn := (Yn,Yn+1) instead. If the initial Markov chain is ergodic, then this is also the
case for the new one. Furthermore, notice that the sequence of consecutive walking times
W(Yn)

n is a stationary ergodic sequence of random variables as both sequences Wn and Yn

are stationary ergodic.

Arrivals The arrival process in the different buffers is modelled as an R
K+ -valued Lévy

process F(t). The kth element F (k)(t) of F(t) denotes the amount of work arriving at the
kth buffer in the interval (0, t]. For ease of notation, let Fn,m(t) denote a doubly-indexed
sequence of independent Lévy processes, distributed as F(t). Moreover, for Lévy processes,
the mean value and autocovariance of F(t) can be expressed as follows,

E F(t) = f t, cov F(t) = F t,
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with f a fixed column vector and F a fixed K × K matrix.

Feedback traffic. Processing workload in a buffer may lead to additional workload in other
buffers. In other words, workload can be fed back to the same buffer as well as to the other
buffers. Let Gn(t) denote the feedback process corresponding to the nth polling instant.
The process Gn(t) is a semi-linear process, its distribution depending on the buffer being
polled. Semi-linear processes were introduced in Altman (2009), and their main properties
are summarised in Appendix for completeness. The kth element G(k)

n (t) of Gn(t) is the
amount of work that is fed back to queue k. For ease of notation and for each n, let Gn,m(t)

denote a sequence of independent semi-linear processes, distributed as Gn(t). Moreover,
by the semi-linearity, mean and autocovariance of Gn(t) (conditioned on the buffer being
polled) can be expressed as follows,

E
[
G0(t)|ξ0 = k

]= gk t, cov
[
G0(t)|ξ0 = k

]= Gkt + Hkt
2.

2.2 Modelling assumptions: discrete state space

For the discrete state space model, we retain the assumptions on server routing and walking
times. The arrival and feedback processes adhere to the assumptions below. Since there is
no risk for confusion, much of the notation of the continuous state space model is reused
here.

Arrivals For the discrete state space model, the arrival process at the different buffers is
modelled as a K-dimensional batch Poisson process F(t). The kth element F (k)(t) of F(t)

denotes the number of customers arriving in the kth buffer in the interval (0, t]. For ease of
notation, let Fn,m(t) denote a doubly-indexed sequence of independent Poisson processes,
distributed as F(t). Also, let f = E F(1) and F = cov F(1) denote the mean vector and co-
variance matrix of the number of customer arrivals in a unit-length interval. The mean and
covariance of F(t) then equal tf and t F , respectively.

Service and feedback The customer service times constitute a sequence of independent
random variables, their distribution depending on the buffer. Let Sn(i) denote the service
time of the ith customer at the nth polling instant. Moreover, let sk = E [S0(1)|ξ0 = k] and
s2,k = E [(S0(1))2|ξ0 = k] denote the first and second moment of the service times in buffer
k. Note that there is no distinction between customers that enter the system for the first time
and customers that are fed back to the system.

Processing customers in a buffer may trigger additional customer arrivals in other buffers.
In other words, customers can be fed back to the same buffer as well as to the other buffers.
Let Gn(t) denote the feedback process corresponding to the nth polling instant. Like the
arrival process, Gn(t) is a Poisson process, its distribution depending on the buffer being
polled. The kth element G(k)

n (t) of Gn(t) equals the number of customers that are fed back
to queue k. For ease of notation and for each n, let Gn,m(t) denote a sequence of indepen-
dent Poisson processes, distributed as Gn(t). Moreover, mean and autocovariance of Gn(t)

(conditioned on the buffer being polled) can be expressed as follows,

E
[
G0(t)|ξ0 = k

]= gk t, cov
[
G0(t)|ξ0 = k

]= Gkt.

The former type of feedback is similar to the type of feedback that was assumed for the
continuous state space model. In addition, we also allow for classical feedback: upon service
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completion, a number of customers can enter the different buffers. Let R(k)
n (i) denote the

number of customers that enter the kth buffer upon service completion of the ith customer at
the nth polling instant. In addition, let Rn(i) denote the random vector with elements R(k)

n (i).
The random vectors Rn(i) are independent, their distribution depending on the buffer being
polled. The following notation is introduced for further use: rk = E [R0(1)|ξ0 = k] and Rk =
cov[R0(1)|ξ0 = k].

2.3 Example of random service order

2.3.1 Bernoulli polling

An example application of our model is the Bernoulli polling model introduced in Alt-
man and Yechiali (1993). The server moves cyclically between the stations in the order
1,2, . . . ,K,1,2, . . . ,K , etc. When arriving at queue i, a coin is flipped. With probability q

the server decides to poll this queue and with probability 1 − q it moves to the next queue,
etc. Moving from queue i to queue i + 1 requires a walking time distributed like a random
variable Di . If the server decides to poll queue i + 1 then an additional switching time of
Si+1 is incurred. It was shown in (Altman and Yechiali 1993) that the expected waiting times
under this visit order may be strictly smaller than with any cyclic order polling system.

We next show that this can be formulated within our framework. Let qij denote the prob-
ability that queue j is polled next, given that the server is at queue i. In view of the model
description above, we find,

qij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − q)i−j−1q

1 − (1 − q)K
for j + 1 ≤ i ≤ K ,

(1 − q)i−j−1+Kq

1 − (1 − q)K
for 1 ≤ i ≤ j .

We can now determine the walking time from queue i to queue j as follows. For each
i ∈ {1, . . . ,K}, let Di,n denote a sequence of independent random variables, distributed like
Di and let Cn be,

Cn =
K∑

i=1

Di,n.

Obviously, Cn distributes as the time it takes to move from station i to station i without
actually polling any queue. For j > i, the total walking time from station i to station j

includes (i) the walking times from station i to station i + 1, from station i + 1 to station
i + 2, . . . , and from station j − 1 to station j , (ii) a geometrically distributed number G of
walking times from station j to station j , and (iii) the switch-over time to station j . Hence
the (total) walking time from station i to station j is distributed as,

Wi,j = Di,0 + · · · + Dj−1,0 +
G∑

n=1

Cn + Sj .

For j ≤ i, similar observations show that the walking time is distributed as,

Wi,j = Di,0 + · · · + DK,0 + D1,0 + · · · + Dj−1,0 +
G∑

n=1

Cn + Sj .
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From the former expressions, it is clear that the walking times depend on the current and
the next buffer being polled. Such a dependence fits our framework by extending the state
space of the modulating Markov chain (the state includes the current buffer and the next
buffer) as was already noted in Sect. 2.1.

2.3.2 Random walk polling

Another example is the random walk: when completing service at a station i, the server goes
either to station i + 1 or to station i − 1, with probability qi and 1 − qi , respectively.

2.4 Examples of feedback

We present various types of feedback that fit the present modelling assumptions.

2.4.1 Retransmission of packets

Consider a single queue with a gated polling (or vacation) discipline. Customers arrive in
accordance with a Poisson process. The ith customer to be served has a service time of Si

time units, the service times being independent and identically distributed. Upon service
completion, the customer reenters the queue with probability q or leaves with probability
1 − q . Such a reentrance may represent a retransmission of a packet in some network.

2.4.2 Acknowledgements

Consider a system with two queues whereby customers arrive at queue 1 in accordance with
a Poisson process. A customer served in queue 1 is routed to queue 2 with probability q

and served there, or it leaves the system with probability 1 − q . q can be viewed as the
successful packet transmission probability, and the routing to queue 2 can be interpreted as
acknowledgements that are sent back to the source and that are triggered by each successful
transmission.

2.4.3 Compression

Consider two queues. There is a Lévy arrival process at queue 1. During the nth busy period,
a constant percent αn of the workload that leaves queue 1 is rerouted to queue 2. This traffic
can be interpreted as a compressed version of the initial traffic.

For example, by means of H.264 scalable video coding (Schwartz et al. 2007), multiple
decodable substreams can be extracted from a single scalable video stream. If a receiver
only accepts a certain substream of the complete stream (e.g. at a lower spatial or temporal
resolution), this substream has to be extracted in the network. Hence, at this network node,
both the complete stream and the substream (modelled by feedback to a second queue) have
to be transmitted.

2.4.4 Random response

Consider a single user (a single queue) that receives new jobs in accordance with a Poisson
arrival process. During the busy period of the queue, there are additional jobs, modelled
as another Poisson process. These jobs join the same queue. For example, an arrival corre-
sponds to an email and its service time represents the time for reading and responding. The
feedback models extra emails sent by other users who may react to the responses of the user.
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3 Analysis: continuous state space model

Let V (k)
n denote the workload in queue k at the nth polling instant and let Vn denote the

vector with elements V (k)
n , k = 1, . . . ,K . The workload in the different buffers at polling

instant n + 1 includes (i) all workload that was present in the different buffers, excluding
buffer ξn which is being polled, (ii) all workload that is fed back into the system while
processing the workload in buffer ξn, and (iii) all workload that arrived during the station
time at buffer ξn and during the walking time from station ξn to station ξn+1. This observation
yields the following set of recursions,

V
(k)

n+1 = V (k)
n + G(k)

n

(
V (ξn)

n

)+ F (k)
n

(
V (ξn)

n + W(Yn)
n

)
, for k �= ξn,

V
(ξn)

n+1 = G(ξn)
n

(
V (ξn)

n

)+ F (ξn)
n

(
V (ξn)

n + W(Yn)
n

)
(3)

By application of the divisibility property of semi-linear processes, and in view of the map-
ping between Yn and ξn, this set of recursive equations further simplifies to,

V
(k)

n+1 = V (k)
n + G(k)

n

(
V (θ(Yn))

n

)+ F
(k)

n,1

(
V (θ(Yn))

n

)
︸ ︷︷ ︸

A
(k)
n (Vn,Yn)

+F
(k)

n,2

(
W(Yn)

n

)
︸ ︷︷ ︸

B
(k)
n (Yn)

, (4)

for k �= θ(Yn) and,

V
(θ(Yn))

n+1 = G(θ(Yn))
n

(
V (θ(Yn))

n

)+ F
(θ(Yn))

n,1

(
V (θ(Yn))

n

)
︸ ︷︷ ︸

A
(θ(Yn))
n (Vn,Yn)

+F
(θ(Yn))

n,2

(
W(Yn)

n

)
︸ ︷︷ ︸

B
(θ(Yn))
n (Yn)

. (5)

To simplify notation, we collect the terms depending on Vn and those that do not into two
random functions as indicated above. In other words, we introduce the following compact
notation for the set of recursive equations (4) and (5),

Vn+1 = An(Vn, Yn) + Bn(Yn), (6)

with,

An(v, i) = Gn

(
v(θ(i))

)+ Fn,1

(
v(θ(i))

)+ Kθ(i)v, (7)

and,

Bn(i) = Fn,2

(
W(i)

n

)
. (8)

Here, Ki is a diagonal matrix whose ith diagonal element equals 0 while its other diagonal
elements equal 1. Note that for fixed i, An(·, i) is indeed semi-linear as it is the sum of
semi-linear processes.

By definition, for each n and for fixed i, all terms on the right-hand side of (7) are semi-
linear which implies that An is semi-linear as well. Moreover, in view of the independence
assumptions on F and G, the consecutive An are independent random processes. By the
measurability of Fn,2 and the ergodicity of the walking times, it is further observed that the
sequence Bn is stationary ergodic. We conclude that the framework of Appendix applies.
Expressions for the moments of A0 and B0 are established in the following subsection.
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3.1 Moments of A0 and B0

Taking expectations in (7) immediately yields,

E A0(v, i) = v(θ(i))(gθ(i) + f − eθ(i)) + v. (9)

for a non-random vector v ∈ R
K+ and a non-random i ∈ �. Here ex is a column vector whose

xth entry equals 1 while its other entries equal zero. The former expression can be expressed
as a matrix product, that is,

E A0(v, i) = Aiv, (10)

with,

Ai =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . g
(1)

θ(i) + f (1) . . . 0
0 1 . . . g

(2)

θ(i) + f (2) . . . 0
...

. . .
...

0 0 . . . g
(θ(i))

θ(i) + f (θ(i)) . . . 0
...

...
. . .

0 0 . . . g
(K)

θ(i) + f (K) . . . 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

By the independence of G0 and F0,1, the following expression for the autocovariance of A0

is found,

cov A0(v, i) = v(θ(i))Gθ(i) + (
v(θ(i))

)2 Hθ(i) + v(θ(i))F . (12)

We then have the following expression for the second order vector,

E A0(v, i)A0(v, i)′ = v(θ(i)) (Gθ(i) + F )︸ ︷︷ ︸
Di,θ(i)

+ (
v(θ(i))

)2 Hθ(i) + Aivv′A′
i︸ ︷︷ ︸

ϒi(vv′)

= ϒi

(
vv′)+

K∑

j=1

v(j)Di,j ,

with,

ϒi

(
vv′)= (

v(θ(i))
)2 Hθ(i) + Aivv′A′

i , Di,j = 1
{
j = θ(i)

}
(Gj + F ). (13)

Here, 1{} is the standard indicator function.
Having established expressions for the moments of A0, we now focus on the moments of

B0. Taking expectations in (8), we immediately find,

E B0(i) = w(i)f. (14)

Moreover, the second order moment can be expressed as,

E
[
B0(i)Bn(j)′]= E

[
W

(i)

0 W(j)
n

]
f f′ = W (i,j)

n f f′, (15)

for all i, j = 1, . . . ,N and n �= 0, whereas for n = 0, we have,

E
[
B0(i)B0(i)

′]= E
[
W

(i)

0

]
F + E

[(
W

(i)

0

)2]
f f′ = w(i)F + W (i,i)

0 f f′. (16)
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3.2 Workload

With the expressions of the moments of A and B at hand, Theorem 1 of the Appendix estab-
lishes the existence of a stationary solution of the workload at polling instants. Moreover,
Theorem 2 provides expressions for the first two moments of the workload in the differ-
ent queues at polling instants. Note that the stability condition of Theorem 2 is expressed
in terms of the maximal eigenvalue of a matrix of first order moments of the arrival and
feedback processes. We were not able to further simplify the stability conditions.

Recall that μi = E [V∗
01{Y0 = i}] and �i = E [V∗

0(V
∗
0)

′1{Y0 = i}]. We now express vari-
ous performance measures in terms of these vectors and matrices and in terms of the steady
state vector π of the Markov chain Yk . That is, π is the unique solution of π P = π and
πe = 1, e being a column vector of ones. In the remainder, the superscript asterisks that
indicate the stationary solution are dropped for ease of notation.

We first consider the average workload in the system. Let v̂ denote the mean workload
(vector) at a random time when the polling system has reached steady state. This vector can
be obtained by averaging over a station time. We have the following expression,

v̂ = E [∫ V
(θ(Y0))

0 +W
(Y0)

0
0 V0(t)dt]

E [V (θ(Y0))

0 + W
(Y0)

0 ] . (17)

Here, with a slight abuse of notation, V0(t) denotes the workload in the different queues at
time t during cycle 0. V0(t) includes (i) the workload that was present at the stations at the
0th polling instant, excluding the work processed at the station being polled (ii) all work
that arrived since the polling instant, and (iii) all work that has been fed back to the stations
since the polling instant.

By conditioning on Y0, the denominator in (17) can be expressed in terms of μi ,

E
[
V

(θ(Y0))

0 + W
(Y0)

0

]=
N∑

i=1

E
[(

V
(θ(i))

0 + W
(i)

0

)
1{Y0 = i}]

=
N∑

i=1

(
μ

(θ(i))
i + π(i)w(i)

)
. (18)

Calculation of the numerator is more involved. Again, we first condition on Y0. The cycle
consists of the service time at station Y0 and the consecutive walking time. During the service
time, the mean queue contents at all stations but station θ(Y0) grow linearly, while the mean
queue content at station θ(Y0) decreases linearly. During the walking time, the mean queue
contents at all stations grow linearly. In view of these observations, we find the following
expression,

E

[∫ V
(θ(Y0))

0 +W
(Y0)

0

0
V0(t)dt

]

=
N∑

i=1

E

[∫ V
(θ(i))
0

0

(
V0 + (f + gθ(i) − eθ(i))t

)
dt 1{Y0 = i}

]

+
N∑

i=1

E

[∫ W
(i)
0

0

(
V0 + (f + gθ(i) − eθ(i))V

(θ(i))

0 + f t
)
dt 1{Y0 = i}

]
, (19)
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which further simplifies to,

E

[∫ V
(θ(Y0))

0 +W
(Y0)

0

0
V0(t)dt

]

= 1

2

N∑

i=1

E
[(

V0 + (
V0 + (f + gθ(i) − eθ(i))V

(θ(i))

0

))
V

(θ(i))

0 1{Y0 = i}]

+
N∑

i=1

E

[((
V0 + (f + gθ(i) − eθ(i))V

(θ(i))

0

)
W

(i)

0 + 1

2
f
(
W

(i)

0

)2
)

1{Y0 = i}
]
, (20)

and,

E

[∫ V
(θ(Y0))

0 +W
(Y0)

0

0
V0(t)dt

]
= 1

2

N∑

i=1

(
�ieθ(i) + Ai�ieθ(i) + 2Aimi + π(i)f W (i,i)

0

)
. (21)

The last expression is obtained by noting that V
(θ(i))

0 = e′
θ(i)V0 = V′

0 eθ(i) and by equations

(9) and (10). In this last expression, the unknown vectors mi = E [V0W
(i)

0 1{Y0 = i}] can be
determined as follows. Following the lines of the proof of Theorem 2 in (Fiems and Altman
2009b), it is easy to show that

E
[
V0B0(i)

′1{Y0 = i}]= Ci (22)

with Ci the ith block diagonal element of Ĉ as defined in (47). In view of equation (8), we
further find,

Ci = mif′, (23)

which uniquely defines the unknown expectation. That is, mi equals the kth column of Ci

divided by f (k) (k = 1, . . . ,K).
Summarising, we have the following expression for the mean workload in the different

buffers on a random time instant,

v̂ =
∑N

i=1(�ieθ(i) + Ai�ieθ(i) + 2Aimi + π(i)f W (i,i)

0 )

2
∑N

i=1(μ
(θ(i))
i + π(i)w(i))

. (24)

4 Analysis: discrete state space model

Let V (k)
n denote the number of customers in queue k at the nth polling instant and let Vn

denote the vector with elements V (k)
n , k = 1, . . . ,K . At polling instant n + 1, the buffers

contain (i) all customers that were present in the different buffers, excluding buffer ξn which
is polled, (ii) all customers that are fed back into the system while processing at buffer ξn,
and (iii) all customers that arrived during the station time at buffer ξn and during the walking
time from station ξn to station ξn+1. This observation yields the following set of recursions,

V
(k)

n+1 = V (k)
n +

V
(ξn)
n∑

i=1

(
R(k)

n (i) + G(k)
n

(
∑V

(ξn)
n

i=1 Sn(i)

)
+ F (k)

n

(
∑V

(ξn)
n

i=1 Sn(i) + W(Yn)
n

))
,
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for k �= ξn,

V
(ξn)

n+1 =
V

(ξn)
n∑

i=1

(
R(ξn)

n (i) + G(ξn)
n

(
∑V

(ξn)
n

i=1 Sn(i)

)
+ F (ξn)

n

(
∑V

(ξn)
n

i=1 Sn(i) + W(Yn)
n

))
. (25)

By application of the divisibility property of Poisson processes, and in view of the mapping
between Yn and ξn, this set of recursive equations further simplifies to,

V
(k)

n+1 = V (k)
n +

V
(θ(Yn))
n∑

i=1

(
R(k)

n (i) + G
(k)
n,i

(
Sn(i)

)+ F
(k)
n,i

(
Sn(i)

))

︸ ︷︷ ︸
A

(k)
n (Vn,Yn)

+F
(k)

n,0

(
W(Yn)

n

)

︸ ︷︷ ︸
B

(k)
n (Yn)

,

for k �= θ(Yn), and

V
(θ(Yn))

n+1 =
V

(θ(Yn))
n∑

i=1

(
R(θ(Yn))

n (i) + G
(θ(Yn))
n,i

(
Sn(i)

)+ F
(θ(Yn))
n,i

(
Sn(i)

))

︸ ︷︷ ︸
A

(θ(Yn))
n (Vn,Yn)

+F
(θ(Yn))

n,0

(
W(Yn)

n

)

︸ ︷︷ ︸
B

(θ(Yn))
n (Yn)

.

To simplify notation, we collect the terms depending on Vn and those that do not into two
random functions as indicated above. In other words, we introduce the following compact
notation for the former set of recursive equations,

Vn+1 = An(Vn, Yn) + Bn(Yn), (26)

with,

An(v, i) = Kθ(i)v +
v(θ(i))∑

j=1

(
Rn(j) + Gn,j

(
Sn(j)

)+ Fn,j

(
Sn(j)

))
, (27)

and,

Bn(i) = Fn,0

(
W(i)

n

)
. (28)

Recall that Ki is a diagonal matrix whose ith diagonal element equals 0 while its other
diagonal elements equal 1. As for the continuous state space model, it is easy to show that
the framework of the appendix applies. The moments of A0 and B0 are determined in the
next Subsection.

4.1 Moments

As for the continuous state space model, we determine the moments of A0 and B0. By taking
expectations in (27), we immediately find,

E A0(v, i) = v(θ(i))sθ(i)(gθ(i) + f) + v(θ(i))rθ(i) + Kθ(i)v = Aiv, (29)
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for a non-random vector v ∈ N
K and a non-random i ∈ � with,

Ai =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . sθ(i)(g
(1)

θ(i) + f (1)) + r
(1)

θ(i) . . . 0
0 1 . . . sθ(i)(g

(2)

θ(i) + f (2)) + r
(2)

θ(i) . . . 0
...

. . .
...

0 0 . . . sθ(i)(g
(θ(i))

θ(i) + f (θ(i))) + r
(θ(i))

θ(i) . . . 0
...

...
. . .

0 0 . . . sθ(i)(g
(K)

θ(i) + f (K)) + r
(K)

θ(i) . . . 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

Moreover, by the independence assumptions, we find the following expression for the co-
variance,

cov A0(v, i) = v(θ(i))
(

Rθ(i) + sθ(i)(Gθ(i) + F ) + (
s2,θ(i) − s2

θ(i)

)
(f + gθ(i))

(
f′ + g′

θ(i)

))
, (31)

which implies,

E A0(v, i)A0(v, i)′

= v(θ(i))
(

Rθ(i) + sθ(i)(Gθ(i) + F ) + (
s2,θ(i) − s2

θ(i)

)
(f + gθ(i))

(
f′ + g′

θ(i)

))+ Aivv′A′
i

= ϒi

(
vv′)+

K∑

j=1

v(j)Di,j . (32)

The last equality holds by introducing the following notation:

ϒi

(
vv′)= Aivv′A′

i ,

Di,j = 1
{
j = θ(i)

}(
Rθ(i) + sθ(i)(Gθ(i) + F ) + (

s2,θ(i) − s2
θ(i)

)
(f + gθ(i))

(
f′ + g′

θ(i)

))
.

Having established expressions for the moments of A0, we now focus on the moments of
B0. Taking expectations in (28), we immediately find,

E B0(i) = w(i)f. (33)

Moreover, the second order moment can be expressed as,

E
[
B0(i)Bn(j)′]= E

[
W

(i)

0 W(j)
n

]
f f′ = W (i,j)

n f f′, (34)

for all i, j = 1, . . . ,N and n �= 0, whereas for n = 0, we have,

E
[
B0(i)B0(i)

′]= E
[
W

(i)

0

]
F + E

[
W

(i)

0

]2
f f′ = w(i)F + W (i,i)f f′. (35)

4.2 Queue content

As for the continuous state space model, we again rely on the theorems of the appendix,
whereby expressions of the moments of A0 and B0 were derived in the preceding subsection.
Now, Theorem 1 establishes the existence of a stationary solution of the queue content at
polling instants while Theorem 2 provides expressions for the first two moments of this
solution. Recall that μi = E [V∗

01{Y0 = i}] and �i = E [V∗
0(V

∗
0)

′1{Y0 = i}]. We now express
various performance measures in terms of these vectors and matrices and in term of the
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steady state vector π of the Markov chain Yk . Again, we suppress the superscript asterisks
that indicate the stationary solution for ease of notation.

For ease of notation, let L0 =∑V
(θ(Y0))

0
i=1 S0(i). Moreover, with a slight abuse of notation,

let V0(t) denote the queue content at time t during the 0th station time. The mean queue
content at random points in time can then be expressed as follows,

v̂ = E [∫ L0+W
(Y0)

0
0 V0(t)dt]
E [L0 + W

(Y0)

0 ] .

We can easily calculate the denominator as follows,

E
[
L0 + W

(Y0)

0

]=
N∑

i=1

E

[(V
(θ(i))
0∑

j=1

S0(j) + W
(i)

0

)
1{Y0 = i}

]

=
N∑

i=1

(
μ

(θ(i))
i sθ(i) + π(i)w(i)

)
. (36)

Calculation of the numerator is more involved. We have,

E

[∫ L0+W
(Y0)

0

0
V0(t) dt

]
=

N∑

i=1

E

[∫ L0+W
(i)
0

0
V0(t) dt 1{Y0 = i}

]

=
N∑

i=1

E

[(
V0L0 + L2

0

2
(f + gθ(i))

)
1{Y0 = i}

]

+ 1

2

N∑

i=1

E
[
V

(θ(i))

0

(
V

(θ(i))

0 − 1
)
sθ(i)(rθ(i) − eθ(i))1{Y0 = i}]

+
N∑

i=1

E

[(
V0(L0)W

(i)

0 + (W
(i)

0 )2

2
f
)

1{Y0 = i}
]

The first term takes into account the new arrivals during service, as well as the feedback
during service. The second term corresponds to the possible feedback at service completion
epochs and to the departures. The last term accounts for the new arrivals during the walking
time. Note that for the first and third term there were similar expressions in the continuous
state space model while there is no corresponding term for the second term. Noting that,

E
[
L2

0|V0, Y0 = i
]= V

θ(i)

0 s2,θ(i) + s2
θ(i)V

θ(i)

0

(
V

θ(i)

0 − 1
)
,

and,

E
[
V0(L0)|V0, Y0 = i

]= V0 + L0(f + gθ(i)) + (rθ(i) − eθ(i))V
(θ(i))

0 ,

we find,
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E

[∫ L0+W
(Y0)

0

0
V0(t) dt

]

=
N∑

i=1

E

[(
V0sθ(i) + 1

2

(
s2,θ(i) + s2

θ(i)

(
V

(θ(i))

0 − 1
))

(f + gθ(i))

)
V

(θ(i))

0 1{Y0 = i}
]

+ 1

2

N∑

i=1

E
[
V

(θ(i))

0

(
V

(θ(i))

0 − 1
)
sθ(i)(rθ(i) − eθ(i))1{Y0 = i}]

+
N∑

i=1

E

[((
V0 + (f + gθ(i))sθ(i)V

(θ(i))

0

+ (rθ(i) − eθ(i))V
(θ(i))

0

)
W

(i)

0 + 1

2

(
W

(i)

0

)2
f
)

1{Y0 = i}
]
.

Again, by the equality V
(θ(i))

0 = e′
θ(i)V0 = V′

0 eθ(i) and in view of equation (29), the former
expression further simplifies to,

E

[∫ L0+W
(Y0)

0

0
V0(t) dt

]

= 1

2

N∑

i=1

sθ(i)(I + Ai )�ieθ(i)

+ 1

2

N∑

i=1

(
s2,θ(i)(f + gθ(i))e′

θ(i) − sθ(i)(Ai − I)
)
μi +

N∑

i=1

Aimi + 1

2

N∑

i=1

π(i)W (i,i)

0 f.

where I denotes the identity matrix. As for the continuous state space model, the unknown
vector mi = E [V0W

(i)

0 1{Y0 = i}] can be determined from the following equation,

Ci = mi f′.

Summarising, we have the following expression for the mean number of customers in the
different buffers at random time instants,

v̂ =
∑N

i=1[sθ(i)(I + Ai )�ieθ(i) + (s2,θ(i)(f + gθ(i))e′
θ(i) − sθ(i)(Ai − I))μi + 2Aimi + π(i)W (i,i)

0 f]
2
∑N

i=1[μ(θ(i))
i sθ(i) + π(i)w(i)]

.

(37)

5 Conclusions

We considered polling systems with random routing and various types of feedback. Two
complementary systems were analysed. The continuous state space model introduced semi-
linear feedback. The discrete state space model combined classical feedback with Poisson
feedback. Moreover, in either model, we relaxed the independence assumption on the walk-
ing times. The walking times constitute a sequence of stationary ergodic random variables.
Our methodology relies on the framework of semi-linear equations in a random environ-
ment. We obtained the first and second order moments of workload and queue content at
polling instants and the first moment of these quantities at random time instants.
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Appendix: Semi-linear recursions in a random environment

Consider the sequence of random column vectors Vn ∈ R
K , adhering to the stochastic re-

cursive equation,

Vn+1 = An(Vn, Yn) + Bn(Yn), n ∈ Z. (38)

Here Y = {Yn} denotes a Markov chain, taking values on a finite state-space � =
{1,2, . . . ,N} whereas An and Bn denote random vector-valued functions with domain
R

K+ × � and �, respectively. The Markov chain Yn is time-homogeneous, stationary er-
godic and independent of An and Bn. Let pij = Pr[Y1 = j |Y0 = i] denote the transition
probability of the chain and let P = [pij ] denote the corresponding transition matrix. The
steady-state probability vector is denoted by π = [π(i)]i=1,...,N . The consecutive An con-
stitute a sequence of independent and identically distributed processes with the following
properties:

• For each i ∈ �, An(·, i) has a divisibility property. Let x = x1 + x2 + · · · + xk ∈ R
K+ , then

An(x, i) has the following representation,

An(x, i) =
k∑

l=1

Â(l)
n (xl , i), (39)

whereby Â(l)
n (·, i), l = 1, . . . , k, are identically distributed, but not necessarily indepen-

dent, with the same distribution as An(·, i).
• For each i ∈ �, An(·, i) is linear in the mean,

E
[
An(x, i)

]= Ai x, x ∈ R
K
+ . (40)

Here {Ai , i ∈ �} is a set of fixed K × K matrices. Further, for each i ∈ �, the correlation
matrix of An(x, i) is linear in xx′ and x. For all x = [x(1), . . . , x(K)] ∈ R

K+ , we have the
following representation,

E
[
An(x, i)A′

n(x, i)
]= ϒi

(
xx′)+

K∑

j=1

x(j)Di,j . (41)

For each i ∈ �, ϒi is a linear operator that maps K ×K non-negative definite matrices on
K × K non-negative definite matrices and satisfies ϒi(0) = 0. Further, {Di,j , i ∈ �,j =
1, . . . ,K} is a set of fixed K × K matrices.

Hence, for fixed n and i, An(·, i) is a semi-linear process. Finally, the process {Bn, n ∈
Z} is stationary ergodic. We introduce the following notation for its first and second order
moments,

bi = E
[
B0(i)

]
, B(n)

ij = E
[
B0(i)Bn(j)′]
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Finally, the following block matrices and block vector are defined to simplify further
notation,

Â =

⎡

⎢⎢⎢⎣

A1p11 A2p21 . . . ANpN1

A1p12 A2p22 . . . ANpN2
...

. . .
...

A1p1N A2p2N . . . ANpNN

⎤

⎥⎥⎥⎦ , b̂ =
∑

i∈�

π(i)

⎡

⎢⎢⎢⎣

pi1

pi2
...

piN

⎤

⎥⎥⎥⎦⊗ bi , (42)

and,

B̂(n) =
∑

i∈�

π(i)

⎡

⎢⎢⎢⎣

B(n)

i1 pi1 B(n)

i2 pi1 . . . B(n)
iN pi1

B(n)

i1 pi2 B(n)

i2 pi2 . . . B(n)
iN pi2

...
. . .

B(n)

i1 piN B(n)

i2 piN . . . B(n)
iN piN

⎤

⎥⎥⎥⎦ . (43)

For ease of notation, the following operator will prove useful: for any x ∈ R
K , let⊗k

i=n Ai (x, Yi) = x for k < n whereas, for k ≥ n, this operator is defined by the follow-
ing recursion,

k⊗

i=n

Ai (x, Yi) = Ak

(
k−1⊗

i=n

Ai (x, Yi), Yk

)
.

The operator above can be applied likewise on Â(l)
i for each l. We now state the stability

theorem.

Theorem 1 Assume that (i) bi < ∞ component-wise for all i ∈ �; and (ii) that all the eigen-
values of the matrix Â are within the open unit disk. Then, there exist a unique stationary
solution V∗

n, distributed like,

V∗
n =d

∞∑

j=0

n−1⊗

i=n−j

Â(n−j)

i

(
Bn−j−1(Yn−j−1), Yi

)
, (44)

for n ∈ Z. The sum on the right side of the former expression converges absolutely almost
surely. Furthermore, one can construct a probability space such that limn→∞ ‖Vn − V∗

n‖ =
0, almost surely, for any initial value V0.

Assume that one of the eigenvalues of Â is outside the closed unit disk. Then the system
is unstable: ‖E [Vn]‖ converges to infinity for some initial states.

Proof The sufficiency condition for stability is established in (Fiems and Altman 2009b).
We establish the necessary condition for stability. Define μi (n) � E [Vn1{Yn = i}], i ∈ �.
Then it is shown in (Fiems and Altman 2009b) that

μ(n + 1) = Âμ(n) + b̂.

Â is a positive matrix. By the Perron-Frobenius theorem, the eigenvalue of Â with the largest
norm (we call this eigenvalue ζ ) is real and positive. By the assumption in the second part of
the Theorem, ζ > 1. The Perron-Frobenius theorem also implies that Â has a corresponding
left eigenvector whose entries are all non-negative with at least one of them strictly positive.
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If we start with that initial state or with any larger one, then μ(n) diverges. This also
implies the divergence for some initial state of the form V0 which has just one nonzero
element. This establishes the necessary condition for stability. �

With the stability conditions established, we now focus on expressions for the first and
second moments of V∗

0, conditioned on the state of the Markov chain Y0. Let μ̂, the condi-
tional first moment vector, be the block column vector with elements μi � E [V∗

01{Y0 = i}],
i ∈ �. Analogously, let �̂, the conditional second moment matrix, be the block column
vector with elements �i � E [V∗

0(V
∗
0)

′1{Y0 = i}], i ∈ �. The following theorem provides
expressions for these vectors.

Theorem 2 Assume that the stability conditions of Theorem 1 are satisfied. The conditional
first moment vector is then given by,

μ̂ = (I − Â)−1b̂. (45)

Under the additional assumption that the second moments of B0(i) are finite, i ∈ �, the
elements �i of the conditional second moment matrix of V∗

0 are the unique solution of the
system of equations,

�l =
∑

k∈�

(
ϒk(�k) +

K∑

j=1

μ
(j)

k Dk,j + B(0)
kk π(k) + Ak Ck + C′

k A′
k

)
pkl, (46)

l ∈ �, with μ
(j)

k the j th element of μk and where Ck denotes the kth diagonal (block) element
of

Ĉ =
∞∑

j=0

Âj B̂(j+1). (47)
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