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Abstract The unit commitment problem has been a very important problem in the power
system operations, because it is aimed at reducing the power production cost by optimally
scheduling the commitments of generation units. Meanwhile, it is a challenging problem
because it involves a large amount of integer variables. With the increasing penetration of
renewable energy sources in power systems, power system operations and control have been
more affected by uncertainties than before. This paper discusses a stochastic unit commit-
ment model which takes into account various uncertainties affecting thermal energy demand
and two types of power generators, i.e., quick-start and non-quick-start generators. This
problem is a stochastic mixed integer program with discrete decision variables in both first
and second stages. In order to solve this difficult problem, a method based on Benders de-
composition is applied. Numerical experiments show that the proposed algorithm can solve
the stochastic unit commitment problem efficiently, especially those with large numbers of
scenarios.
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1 Introduction

Unit commitment is one of the key optimization problems in power system operations
and control. The objective of the unit commitment problem is to minimize the produc-
tion cost of the generators to supply the load. This optimization problem is a mixed inte-
ger linear programming (MILP) problem since the problem formulation includes integer
variables indicating the on/off statuses of generation units and other constraints such as
capacity limits, minimum on/off hours and ramping constraints. As there could be hun-
dreds of generation units and transmission lines in some systems, the unit commitment
problem can become a computationally very challenging problem due to the large num-
ber of integer variables and constraints. Many techniques or constraints are used to model
the reliability issues, such as transmission constraints (Fu et al. 2005, 2006), “n − 1” cri-
teria (O’Neill et al. 2010), stochastic demands (Wang et al. 2008), etc. Various optimiza-
tion techniques including Lagrangian relaxation and branch-and-bound based MILP meth-
ods have been used to solve the problem (Hobbs et al. 2001; Shahidehpour et al. 2002).
Benders decomposition and other decomposition techniques have been also used to re-
duce the computational requirement by separating the master unit commitment problem
from the reliability checking subproblems (Fu et al. 2005; Fu et al. 2006). Benders cuts
can be generated from the reliability checking or contingency simulation subproblems and
added to the master unit commitment problem if any violation exists (Conejo et al. 2006;
Fu et al. 2006), when the subproblems are linear programs.

In the past several years, more advanced power system operations methods have been
proposed to address the variability and uncertainty brought by uncertain demand and in-
creasing penetration of renewable energy sources. Stochastic unit commitment has emerged
as one of the most promising tools (Barth et al. 2006; Ruiz et al. 2009; Tuohy et al. 2009;
Wang et al. 2009). The idea of stochastic unit commitment is to capture the uncertainty
and variability of the underlying factors by simulating a number of scenarios. Each sce-
nario defines a possible realization of the uncertain sources. By simulating the scenarios, the
uncertainty can be represented to a large extent. However, because of the large number of
scenarios, the computational requirement also increases dramatically. More advanced opti-
mization techniques need to be applied in these cases. In Wang et al. (2008), the unit com-
mitment problem with uncertain wind power was modeled as a two-stage problem where the
master problem determines the unit commitment and the second stage simulates the possible
wind power output scenarios. By Benders decomposition, the problem can be solved in an
efficient manner because of the small size of the master and subproblems.

However, the above models only considered unit commitment in the master problem. The
modeling of quick-start units in the second stages is missing. In practice, there are generally
two types of generators, i.e., quick-start generators such as gas turbines and combined-cycle
units and non-quick-start generators such as coal-fired power plants and nuclear units. Those
quick-start units can be committed on/off very quickly and have great ramping capabilities
while it usually takes a long time for the non-quick-start generators to be committed. Thus,
quick-start generators are often used as remedies to meet the stochastic demand in real time.
Because binary variables are needed to model the commitment statuses of the quick-start
units in the second stage of the stochastic problem, the problem becomes a stochastic mixed
integer program (SMIP) with discrete decision variables in both the first and the second
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stages. This problem is very difficult to solve directly by the state-of-the-art commercial
optimization software when a large number of scenarios in the second stage are used.

Benders decomposition has achieved a lot successful implementations in the unit com-
mitment related problems, especially the two-stage stochastic problems without discrete
variables in the second stage. In many cases, the convergence of Bender Decomposition
algorithm is not ideal. To this end, a lot of research has been conducted to accelerate the
convergence of Benders decomposition. Of the many approaches, some focus on reducing
the computational expense on individual restricted master problem or subproblem. In Mc-
Daniel and Devine (1977), the algorithm first solves the relaxed version of the mixed integer
master problem, by using the solution of which the subproblem still can generate a valid
Benders cut, and heuristic rules determines when the integrality constraints are enforced. In
Cote and Laughton (1984), the mixed integer master problem is not solved to optimality,
and the first integer feasible solution is used to generate Benders cut, and again heuristic
rules are used to determine when the master problem needs to be solved optimally. In Rei
et al. (2009), local branching is used to speed up the convergence. In Zakeri et al. (2000),
feasible solutions of the dual programs to the subproblems are used to construct Benders
cuts, which saves computation time on solving the subproblems optimally. However, the
other approaches are focusing on Benders cuts generation to improve either cut-generation
efficiency or effectiveness of the Benders cuts. In Magnanti and Wong (1981), the Pareto-
optimal cuts, which are not dominated by any other cut, is used to improve convergence. In
Saharidis and Ierapetritou (2010), the maximum feasible sub-system cut generation strategy
is used. In Saharidis et al. (2010), the covering cut bundle generation strategy for multiple
constraint generation is proposed. Acceleration strategies have experienced shorter compu-
tational times in applications to stochastic two-stage unit commitment problems without
discrete second-stage decision variables (Wu and Shahidehpour 2010). For those stochastic
unit commitment problems with discrete second stage, algorithms from stochastic mixed
integer programming are needed to address the nonconvexity of the second stage.

Stochastic mixed integer programming (SMIP) has been drawing a lot of attention re-
cently. When integer variables exist only in the first stage, the problem is relatively easier to
solve, since generally L-shaped method (Van Slyke and Wets 1969) or Benders decompo-
sition (Benders 1962) would work. This is because the value function for the second stage
is convex with respect to the first stage variables. However, the second stage value function
becomes non-convex when there are integer decision variables in the second stage as dis-
cussed in Blair and Jeroslow (1982). This makes Benders decomposition (Benders 1962) or
generalized Benders decomposition (Geoffrion 1972) not readily applicable because of the
duality gap of integer programs. Within the last two decades, a lot of research has been done
to solve SIMP problems with integer variables in the second stage. In Laporte and Louveaux
(1993), a decomposition-based branch-and-cut method is proposed, where both feasibility
and optimality cuts are applied, for SMIP with pure binary variables in the first stage. In
Carøe and Tind (1998), a generalized L-shape method is proposed based on the generalized
Benders decomposition (Geoffrion 1972), where both Gomory cuts and branch-and-bound
algorithm are applied. In Sherali and Fraticelli (2002) and Sherali and Zhu (2006), modified
Benders decomposition methods are developed by sequentially convexifying the discrete
subproblem using reformulation-linearization technique (Sherali and Adams 1994). In Sen
and Higle (2005), Ntaimo and Sen (2008) and Ntaimo (2010), decomposition methods are
proposed for SMIP with random recourse and discrete second stage based on disjunctive
programming (Balas 1979). Recently, a finite branch-and-cut solution algorithm is devel-
oped for SMIP with pure integer decision variables in the second stage, and a cutting plane
framework for multi-stage stochastic integer program is studied in Guan et al. (2009).
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In previous research, significant progress has been made on stochastic programming
approaches to solve the unit commitment problem with the objective of minimizing total
expected cost. A multistage stochastic programming formulation was developed early in
Takriti et al. (1996). Meanwhile, an augmented Lagrangian decomposition framework was
studied in Carpentier et al. (1996). The relevant Lagrangian decomposition literature also
includes Dentcheva and Römisch (1997) and Gollmer et al. (2000). Recently, the stochastic
programming approach for unit commitment to generate supply curves in electricity pool
markets was studied in Philpott and Schultz (2006), and the stochastic programming ap-
proach for unit commitment to serve as a decision aid for scheduling and hedging in the
wholesale power market was studied in Sen et al. (2006). In this paper, we study the two-
stage stochastic programming formulation for the unit commitment problem, and propose a
method which also exploits Benders cuts for the second stage subproblems, and these cuts
are reusable given any first stage solution. Also our method generates multiple cuts while
solving the subproblem of only one scenario, by taking advantage of the special structure of
the unit commitment problem.

The remaining part of this paper is organized as follows. Section 2 gives the extensive
formulation of the two-stage stochastic unit commitment problem, and uses the piecewise
linear function to approximate the quadratic fuel cost function. In order to avoid solving
the whole extensive formulation directly, Sect. 3 shows how the Benders decomposition is
adjusted and applied to this problem by taking advantage of the problem structure. Section 4
presents the decomposition algorithm. Numerical experiments are shown in Sect. 5. Finally,
Sect. 6 concludes the paper.

2 Problem formulation

This paper considers a two-stage unit commitment scheduling problem while taking into ac-
count real-time demand uncertainties. In the first-stage scheduling, the model makes com-
mitment decisions for all units, including both non-quick-start and quick-start generators,
since power plants may need to know the generation scheduling of all power units one day
ahead. However, in the second-stage scheduling, only quick-start units can be rescheduled,
because the startup time is much shorter than the length of one time period. The model in
this paper is more general since it assumes that the rescheduling may induce some extra
costs due to the discrepancies between the original scheduling and the real-time schedul-
ing of quick-start generators. This is because the system operators receive different bidding
prices in the day-ahead market and the real-time market. Also, the power dispatch on any
unit, whose status is “on” at that time period in the original schedule, can be adjusted in real
time.

The first stage consists of constraints (3)–(7) and objective function (1). And the second
stage consists of constraints (8)–(24) and objective function (2), where F(p) is a quadratic
function of p with a positive second order derivative. The most obvious difference between
the first-stage and second-stage constraints is whether the constraints are associated with the
scenarios. The extensive formulation is shown as follows,

[ESCUC]:

min
T∑

t=1

∑

i∈{Nc∪Ng }
(SUit γit + SDit δit ) (1)
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ξ
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j t , δ
ξ
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y
ξ

jt , z
ξ

j t ∈ {−1,0,1}, j ∈ Ng, t = 1, . . . , T , ξ ∈ �, (23)

pξ , sξ , qξ ≥ 0, ξ ∈ �. (24)

In order to facilitate the description of the model, sets and indices used in this paper are
listed in Table 1, parameters in Table 2, and decision variables in Table 3. Decision variable
αit denotes the commitment status of unit i at time period t , with “0” meaning “off” and
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Table 1 SCUC sets and indices
Notation Definition

Nc The set of non-quick-start power units

Ng The set of quick-start power units

� The set of all possible scenarios

T Length of planning horizon

K The number of segments in order to linearly approximate the
fuel cost

i, j Indices of generators

t Time period

ξ, ζ Indices of scenarios

Table 2 SCUC parameters
Notation Definition

SUit Start-up cost of unit i in period t

SDit Shut-down cost of unit i in period t

CUit Penalty cost for real-time rescheduled startup of unit
i in period t

CDit Penalty cost for real-time rescheduled shutdown of
unit i in period t

li Minimum down time of unit i

Li Minimum up time of unit i

P min
i

Minimum amount of power generated by unit i

P max
i

Maximum amount of power generated by unit i

Ui Ramping up limit of unit i

Di Ramping down limit of unit i

Smax
i

Maximum spinning reserve of unit i

RSξ
t Spinning reserve requirement at time t of scenario ξ

ROξ
t Operating reserve requirement at time t of scenario

ξ

PDξ
t Real-time system demand (including loss) at time t

of scenario ξ

“1” meaning “on”. γit is the start-up action indicator, of which “1” means there is a start-up
action and “0” else, and δit is the shut-down action indicator, respectively. Constraints (3)
and (4) are respectively the minimum up and down time requirement constraints of the first
stage scheduling. Constraints (5) and (6) define the start-up and shut-down action indicators
respectively. The cost of first stage is shown in (1), which consists of only the start-up and
shut-down costs since power dispatches are decided in the second stage or real time.

The objective function of the second stage is defined by (2) which is the expected total
cost of dispatch and rescheduling. Decision variable β

ξ

jt is the rescheduled commitment

status variable of quick-start unit j at time t in scenario ξ . γ
ξ

jt and δ
ξ

jt are the start-up and
shut-down action indicator variables respectively. Because the day-ahead schedule of quick-
start units might not be the least-cost solution for the real-time situation, they might need to
be rescheduled in real time. Let y

ξ

jt denote the start-up rescheduling indicator. This indicator
has three possible choices: “1” means that there is a start-up action for unit j at time t under
scenario ξ but not in the day-ahead schedule; “0” means that real-time schedule of scenario
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Table 3 SCUC decision
variables Notation Definition

αit Commitment decision of unit i in period t

γit Startup action of unit i at period t

δit Shutdown action of unit i at period t

p
ξ
it

Amount of power generated by unit i in period t of
scenario ξ

s
ξ
it

Spinning reserve of unit i in period t of scenario ξ

q
ξ
it

Operating reserve of unit i in period t of scenario ξ

γ
ξ
it

Real-time startup action of gas unit i in period t of
scenario ξ

δ
ξ
it

Real-time shutdown action of gas unit i in period t of
scenario ξ

β
ξ
jt

Commitment decision of gas unit i in period t of
scenario ξ

y
ξ
it

Startup reschedule indicator of gas unit i in period t

of scenario ξ

z
ξ
it

Shutdown reschedule indicator of gas unit i in period
t of scenario ξ

ξ is the same as day-ahead one for unit j at time t ; “−1” means that there is a start-up
action for unit j at time t in the day-ahead schedule but not in the schedule of scenario ξ .
The same definition applies for z

ξ

jt , shut-down rescheduling indicator. In the second stage,
demands are satisfied in constraint (8), and constraints (9) and (10) are the spinning reserve
and non-spinning or supplemental reserve constraints respectively. The right hand sides can
be considered as the difference between the customer demands subtracted by the renewable
resource availability. For example, in a scenario with abundant wind and/or solar energy, the
total demand for thermally generated power will be low. Constraints (11) and (12) are the
start-up and shut-down action rescheduling indicator constraints. Constraints (13) and (14)
define the start-up and shut-down action indicators of the quick-start generators respectively.
Constraints (15) and (16) define the range of values that the dispatches and take spinning
reserves of non-quick-start generators can take. Constraints (17) and (18) do the same for
the quick-star generators. Constraint (19) requires the maximum ramp-up and ramp-down
limits. Constraint (20) gives the maximum spinning reverses that generators can provide.
Constraint (21) defines the non-spinning or supplemental reserves, which are actually the
generating capacity of the uncommitted quick-start generators. The first and second stages
are connected by the non-quick-start units’ commitment decisions and the start-up and shut-
down action indicators of the quick-start units.

In the extensive formulation [ESCUC], both γit and δit can be simply treated as nonneg-
ative continuous variables since the positive costs related to them in the objective function
and constraints (5) and (6) will ensure that they can take only either 0 or 1. For convenience,
let pξ be a vector composed of all p

ξ

it , i = 1, . . . ,Nc , t = 1, . . . , T . So do sξ , qξ , α, βξ , γ ,
γ ξ , δ, δξ , yξ and zξ through the rest of this paper.

2.1 Piecewise linear approximation of the fuel cost function

As is noted in the second stage objective function (2), the fuel cost is a function of the
power dispatches on generators, usually a quadratic function with a positive second or-
der derivative. This quadratic mixed 0-1 integer programming problem is difficult to solve
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Fig. 1 Piecewise linear approximation of the fuel cost function

when a lot of generators are considered. However, a piecewise linear approximation of the
quadratic function can make the original problem [ESCUC] a mixed integer linear program-
ming (MILP) problem. The solution to the MILP is very close to the real optimal solution
(Hobbs et al. 2001). Because the cost function itself is convex, the piecewise linear ap-
proximation function is still convex. Hence we can use the following function, (25), and
constraints, (26)–(28), to replace the original function F(p) in the objective function, as is
shown in Fig. 1.

F(p) =
K∑

k=1

Ckλk. (25)

And we need to add the following constraints,

p =
K∑

k=1

�kλk, (26)

K∑

k=1

λk = 1, (27)

λk ≥ 0, k = 1, . . . ,K. (28)

However, as is seen from Fig. 1, the cost function usually does not start from the origin,
(0,0), and p = λk = 0, k = 1, . . . ,K , if this unit is not committed. To handle this situation,
we need to include the commitment status variable α in the above constraints. In stead of
“1”, the right hand side of (27) is replaced by the commitment status variable α, which is
shown as follows,

K∑

k=1

λk = α. (29)
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Because α is the commitment status, and λks are nonnegative variables, the cost F(p)

is zero when the commitment status is “off”, i.e., α = 0. And the new equation, (29), is
the same as the old one, (27), when the commitment status is “on”, i.e., α = 1. Constraints
(26), (28) and (29) will also ensure that P minα ≤ p ≤ P maxα, since usually we have that
�1 = P min and �K = P max. Hence, in the extensive formulation [ESCUC], constraints (15)
and (17) can be dropped if the above linear approximation techniques are used to replace
the quadratic fuel cost function.

3 Problem decomposition

Even after the piecewise linear approximation, the remaining problem is still a very diffi-
cult problem since the second stage may contain a lot of scenarios, which include an even
larger number of integer variables. For this nontrivial problem, the best way to solve it is
to decompose it to multiple smaller problems and assemble the solution information from
the smaller problems, and then to tell whether an optimal solution to the original extensive
problem was obtained or how far the current solution is away from it. This section discusses
how the original problem is decomposed based on Benders decomposition, which finally
leads to the solution algorithm in Sect. 4.

3.1 Generating valid Benders cuts from discrete subproblems

In order to take advantage of the dual solution of the second stage problem, Benders Decom-
position or Generalized Benders Decomposition requires the second stage problem to be a
linear program or a convex program. In the model of this paper, the second stage is neither
a linear program nor a convex program. In order to tackle this difficulty and still be able
to apply Benders Decomposition, one way is to convexify the second stage mixed integer
programs to get valid and effective Benders cuts for the first stage, i.e., the restricted master
problem. The approach proposed by Sherali and Fraticelli (2002) is inspiring. They analyze
the following two stage mixed integer program,

[P]: min cT x + dT y,

s.t. Ax + Dy ≥ b,

x ∈ X, x ∈ {0,1}n, y ∈ Y,

where y is a vector including integer variables, and X is a nonempty polytope. If we can
find the convex hull of the following region

{Ax + Dy ≥ b, y ∈ Y } (30)

for any given x, then Benders’ decomposition can be applied because the linear relaxation
of the subproblem (convex hull formulation) will have the same optimal solution as the
discrete subproblem, and then the subproblem can simply be treated as a linear programming
problem. To achieve this goal, Reformulation-Linearization-Technique or Lift-and-Project
cuts are iteratively added to the subproblem in Sherali and Fraticelli (2002). These are called
global cuts, which means that they are valid for the original problem [P] but focus on cutting
the region of (30), which has the following format,

αT
k y + ψT

k x ≥ βk, k = 1, . . . ,K, (31)



396 Ann Oper Res (2013) 210:387–410

where k denotes the kth cut. There are also other cuts (Balas et al. 1993; Sen and Sherali
2006, etc.) that possess the same properties which (31) has. With these cuts added, the
relaxed subproblem will be as follows,

min dT y

s.t. Dy ≥ b − Ax,

y ≥ γ,

αT
k y ≥ βk − ψT

k x̂, k = 1, . . . ,K,

where y ≥ γ is the linear relaxation of the set Y . Then we just need to solve the above linear
problem to produce Benders cuts for the first stage. For convenience, the subproblem is
assumed to be feasible given any first stage solution, x̂, since we can always add an artificial
variable and assign a big penalty to it to make the problem feasible. Suppose the optimal
dual solutions are φ1, φ2, and φ3 corresponding to the above three constraints respectively.
Then a valid Benders’ cut can be obtained as follows,

z ≥ (b − Ax)T φ1 + γ T φ2 +
K∑

k=1

(
βk − ψT

k x
)
φ3k

.

Even when the convex hull of the subproblem is not completely obtained, the Benders cuts
are still valid to the first stage problem. This is because the relaxed subproblem always
provides a lower bound to the subproblem, which means it also provides a valid lower bound
for z.

3.2 Embedded Benders decomposition for the stochastic security constrained unit
commitment

The extensive formulation is too difficult to solve because of the huge number of scenarios,
which means even more binary variables. So we would like to decompose the problem into
two stages, where the restricted master problem and subproblems individually have much
fewer variables and constraints. In this paper, we adopt a similar method proposed by Zheng
and Pardalos (2010). The first stage is the restricted master problem, which determines the
optimal first-stage schedule of all generating units without considering the second-stage
stochastic demands explicitly, while including the feedback cuts (e.g., Benders cuts) from
the second stage. The Restricted Master Problem (RMP) is shown as follows,

[RMP]:

min
T∑

t=1

∑

i∈{Nc∪Ng }
(SUit γit + SDit δit ) +

∑

ξ∈�

Probξχξ (32)

s.t. (3)–(6),

αit ∈ {0,1}, i ∈ {Nc ∪ Ng}, t = 1, . . . , T , (33)

γit , δit ≥ 0, i ∈ {Nc ∪ Ng}, t = 1, . . . , T , (34)
∑

i∈Nc

x̂ξ,n

it αit +
∑

j i∈Ng

(
d̂

ξ,n

j t γjt + êξ,n

j t δj t

) + χξ ≥ bξ,n, n ∈ J ξ , ξ ∈ �, (35)
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where γit and δit are relaxed to nonnegative continuous variables in (34), because they are
associated with positive costs in the objective function and are determined by binary vari-
ables αit and αi(t−1) in constraints (5) and (6). χξ is an auxiliary variable for the recourse

function of scenario ξ , and x̂ξ,n

it , d̂
ξ,n

j t , êξ,n

j t and bξ,n are the coefficients of cut n, which will
be explained in details later on.

When the first stage decision variables are fixed, the second stage is decomposed into |�|
separate subproblems, each of which solves a unit commitment problem of a specific sce-
nario. The only difference between two subproblems are the demands as shown in the fol-
lowing formulation. This eases the burden from too many scenarios, but information based
on the solutions of subproblems of individual scenarios needs to be collected and sent to
[RMP] in the form of feedback cuts. Later in this paper, details of assembling valid and
effective Benders cuts are provided. For each scenario ξ ∈ �, the subproblem, with fixed
values of first stage decision variables, is shown as follows,

[
SPξ

]:

min
T∑

t=1

[ ∑

i∈{Nc∪NG}

∑

k∈Ki

Ci,kλ
ξ

it,k +
∑

j∈{Ng}

(
CUj t y

ξ

j t + CDj t z
ξ

j t

)]
(36)

s.t. p
ξ

it =
∑

k∈Ki

�i,kλ
ξ

it,k, i ∈ {Nc ∪ Ng}, t = 1, . . . , T , (37)

∑

k∈Ki

λ
ξ

it,k = α̂it , i ∈ Nc, t = 1, . . . , T , (38)

∑

k∈Kj

λ
ξ

jt,k = β
ξ

jt , j ∈ Ng, t = 1, . . . , T , (39)

∑

i∈{Nc∪Ng}
p

ξ

it ≥ PDξ
t , t = 1, . . . , T ,

∑

i∈{Nc∪Ng}
s
ξ

it ≥ RSξ
t , t = 1, . . . , T ,

∑

j∈Ng

q
ξ

jt ≥ ROξ
t , t = 1, . . . , T ,

y
ξ

jt ≥ γ
ξ

jt − γ̂j t , j ∈ Ng, t = 1, . . . , T ,

γ
ξ

jt ≥ β
ξ

jt − β
ξ

j (t−1), j ∈ Ng, t = 1, . . . , T ,

z
ξ

jt ≥ δ
ξ

jt − δ̂j t , j ∈ Ng, t = 1, . . . , T ,

δ
ξ

jt ≥ −β
ξ

jt + β
ξ

j (t−1), j ∈ Ng, t = 1, . . . , T ,

p
ξ

it + s
ξ

it ≤ P max
i α̂it , i ∈ Nc, t = 1, . . . , T ,

p
ξ

jt + s
ξ

j t ≤ P max
j β

ξ

jt , j ∈ Ng, t = 1, . . . , T ,

− Di ≤ p
ξ

it − p
ξ

i(t−1) ≤ Ui, i ∈ {Nc ∪ Ng}, t = 1, . . . , T ,

s
ξ

it ≤ Smax
i , i ∈ {Nc ∪ Ng}, t = 1, . . . , T ,
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q
ξ

jt ≤ (
1 − β

ξ

jt

)
P max

j , j ∈ Ng, t = 1, . . . , T ,

β
ξ

jt , γ
ξ

j t , δ
ξ

j t ∈ {0,1}, j ∈ Ng, t = 1, . . . , T ,

y
ξ

jt , z
ξ

j t ∈ {−1,0,1}, j ∈ Ng, t = 1, . . . , T , (40)

pξ , sξ , qξ ≥ 0,

where the fuel cost function is replaced by its linear approximation (36) and auxiliary con-
straints (37), (38) and (39).

Given the first-stage schedule α̂, γ̂ and δ̂, the second-stage unit commitment problem
[SPξ ] might be infeasible because we cannot change the commit status of the non-quick-
start units promptly in real time, and the quick-start units solely do not have enough total
capacity to satisfy the high demand. In order to avoid dealing with infeasible subproblems,
we can relax the subproblem to make it always feasible by introducing a dummy quick-start
generator, indexed by d , with a big enough capacity but much higher costs. The higher cost
will ensure the relaxed problem has the same optimal solution as the original problem if
the original is feasible. The new problem is then referred to as the modified subproblem,
[MSPξ ]. The only difference between [SPξ ] and [MSPξ ] is the set of quick-start units. In
[MSPξ ], this set is Ng ∪ d , and we assume γ̂dt = δ̂dt = 0, t = 1, . . . , T .

Because the modified subproblem is still a mixed integer program, we need to further
modify it in order to find a legitimate dual optimal solution to construct a valid and effective
cutting plane for the [RMP]. Our strategy is to keep convexifying the subproblem while
returning cuts to the [RMP] along the iterations. When the second-stage commitment status
of all quick-start units are determined as β̂ξ , along with the first-stage commitment status
of all non-quick-start units, α̂, the subproblem associated with scenario ξ reduce to a linear
program, [LPξ ], shown as follows,

[
LPξ

]:

min
T∑

t=1

∑

i∈{Nc∪Ng∪d}

∑

k∈Ki

Ci,kλ
ξ

it,k

s.t. p
ξ

it =
∑

k∈Ki

�i,kλ
ξ

it,k, i ∈ {Nc ∪ Ng ∪ d}, t = 1, . . . , T ,

∑

k∈Ki

λ
ξ

it,k = α̂it , i ∈ {Nc ∪ Ng ∪ d}, t = 1, . . . , T , ← l
I,ξ
it (41)

∑

k∈Kj

λ
ξ

jt,k = β̂
ξ

j t , i ∈ {Nc ∪ Ng ∪ d}, t = 1, . . . , T , ← l
II,ξ
j t (42)

∑

i∈{Nc∪Ng∪d}
p

ξ

it ≥ PDξ
t , t = 1, . . . , T , ← h

I,ξ
t (43)

∑

i∈{Nc∪Ng∪d}
s
ξ

it ≥ RSξ
t , t = 1, . . . , T , ← h

II,ξ
t (44)

∑

j∈{Ng∪d}
q

ξ

jt ≥ ROξ
t , t = 1, . . . , T , ← h

III,ξ
t (45)

p
ξ

it + s
ξ

it ≤ P max
i α̂it , i ∈ Nc, t = 1, . . . , T , ← u

ξ

it (46)
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p
ξ

jt + s
ξ

it ≤ P max
j β̂

ξ

j t , j ∈ {Ng ∪ d}, t = 1, . . . , T , ← v
ξ

jt (47)

− Di ≤ p
ξ

it − p
ξ

i(t−1) ≤ Ui, i ∈ {Nc ∪ Ng ∪ d}, t = 1, . . . , T , ← w
ξ∓
it (48)

s
ξ

it ≤ Smax
i , i ∈ {Nc ∪ Ng ∪ d}, t = 1, . . . , T , ← r

I,ξ
it (49)

q
ξ

jt ≤ (
1 − β̂

ξ

j t

)
P max

j , j ∈ {Ng ∪ d}, t = 1, . . . , T , ← r
II,ξ
j t (50)

pξ , sξ , qξ , λξ ≥ 0.

where the variables on the right of the left-pointing arrows are the corresponding dual vari-
ables. Solving the above [LPξ ] can generate a new cut, which is shown in (51), for the
restricted master program of [MSPξ ].

π ≥
T∑

t=1

∑

i∈Nc

α̂it

(
l̂
I,ξ
it + P max

i û
ξ

it

)

+
T∑

t=1

∑

j∈{Ng∪d}
β

ξ

jt

[
l̂
II,ξ
j t + P max

j

(
v̂

ξ

j t − r
II,ξ
j t

)]

+
T∑

t=1

[
ĥ

I,ξ
t PDξ

t + ĥ
II,ξ
t RSξ

t + ĥ
III,ξ
t ROξ

t

]

+
T∑

t=1

[ ∑

i∈{Nc∪Ng∪d}

(−Diŵ
ξ−
it + Uiŵ

ξ+
it + Smax

i r̂
I,ξ
it

) +
∑

j∈{Ng∪d}
P max

j r̂
II,ξ
it

]
, (51)

where l̂I,ξ , l̂II,ξ , ĥI,ξ , ĥII,ξ , ĥIII,ξ , ûξ , v̂ξ , ŵξ∓, r̂ I,ξ , r̂
II,ξ
j t are the optimal dual solution corre-

sponding to constraints (41)–(50) respectively. For convenience, we rewrite (51) in vector
format as follows,

bξβξ + πξ ≥ f ξ + aξ α̂.

By including these new cuts (51) and relaxing the integer restrictions, the relaxation of
the [MSPξ ], which is referred to as the relaxed linear program [RLPξ ], can be constructed
as follows,

[
RLPξ

]:

min
T∑

t=1

[ ∑

j∈{Ng∪d}

(
CUj t y

ξ

j t + CDj t z
ξ

j t

)] + πξ −
T∑

t=1

∑

j∈{Ng∪d}
(SUj t + SDj t ) (52)

s.t. ẏ
ξ

j t − γ
ξ

jt ≥ 1 − γ̂j t , j ∈ {Ng ∪ d}, t = 1, . . . , T , ← θ
ξ

jt (53)

ż
ξ

j t − δ
ξ

jt ≥ 1 − δ̂j t , j ∈ {Ng ∪ d}, t = 1, . . . , T , ← σ
ξ

jt (54)

γ
ξ

jt − β
ξ

jt + β
ξ

j (t−1) ≥ 0, j ∈ {Ng ∪ d}, t = 1, . . . , T , (55)

δ
ξ

jt + β
ξ

jt − β
ξ

j (t−1) ≥ 0, j ∈ {Ng ∪ d}, t = 1, . . . , T , (56)

b
ξ

kβ
ξ + πξ ≥ f

ξ

k + a
ξ

k α̂, k ∈ Kξ , ← η
ξ

k (57)
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β
ξ

jt ≤ 1, j ∈ {Ng ∪ d}, t = 1, . . . , T , ← ρ
ξ

jt (58)

ẏ
ξ

j t ≤ 2, j ∈ {Ng ∪ d}, t = 1, . . . , T , (59)

ż
ξ

j t ≤ 2, j ∈ {Ng ∪ d}, t = 1, . . . , T , (60)

βξ , ẏξ , żξ , γ ξ , δξ ≥ 0, (61)

where Kξ is the set containing all these cuts (51) for scenario ξ , y
ξ

jt and z
ξ

jt are replaced

by ẏ
ξ

j t − 1 and ż
ξ

j t − 1, in order to have only nonnegative variables after relaxation. Then
constraints (59) and (60) result from the linear relaxation of constraints (40). However, these
two constraints can be dropped without affecting the optimal solution of [RLPξ ], because
ẏ

ξ

j t and ż
ξ

j t are both associated with positive coefficients in (52), of which the constant term
results from the variable replacement.

Proposition 1 The cut, (51), obtained by solving [LPξ ] is a valid cut for [RLPξ ] given any
first stage solution, α̂, γ̂ and δ̂.

Proof In [LPξ ], both first-stage decisions and second-stage discrete decisions are fixed.
Based on its optimal dual solution, a Benders cut can be constructed, for the remaining
problem obtained by removing constraints and the objective function of [LPξ ] from the
original extensive formulation, as follows,

bξβξ + πξ − aξα ≥ f ξ ,

where first-stage decision variable α is free to be chosen as long as it satisfies the above cut.
Also, first-stage decision variables, γ and δ, do not appear in this cut. Hence, this cut is valid
for [RLPξ ] given any first-stage solution. �

These cuts are often referred to as global cuts. By “global”, it means that the cut is valid
for [RLPξ ] given any first-stage solution, i.e., the solution from the first stage (restricted
master problem), α̂, γ̂ and δ̂. Since the above [RLPξ ] is a linear program, whose feasible
region is an approximation of the convex hull of [MSPξ ]s feasible region, we can derive a
valid Benders cut for [RMP], shown in (62), by solving [RLPξ ]’s dual problem optimally.

−
T∑

t=1

∑

i∈Nc

(∑

k∈Kξ

η̂
ξ

k a
ξ

k,it

)
αit +

T∑

t=1

∑

j∈Ng

(
θ̂

ξ

j t γjt + σ̂
ξ

j t δj t

) + χξ

≥
∑

k∈Kξ

f
ξ

k η̂
ξ

k +
∑

j∈{Ng∪d}

(
θ̂

ξ

j t + σ̂
ξ

j t

) +
T∑

t=1

∑

i∈{Ng∪d}
ρ̂

ξ

j t , (62)

where η̂
ξ

k is the optimal dual solution corresponding to the kth global cuts in [RLPξ ], and
θ̂ ξ , σ̂ ξ and ρ̂ξ are the optimal dual solutions corresponding to constraints (53), (54) and (58)
respectively.

Proposition 2 The cut (62) based on the dual solution of [RLPξ ] is a valid cut for [RMP].

Proof Let Zξ

MSP (α, γ, δ) and Zξ

RLP (α, γ, δ) be the optimal objective value of [MSPξ ] and
[RLPξ ] given any first-stage decision (α,γ, δ). Because (51) is a global cut for [RLPξ ] and
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(62) is a Benders cut for [RMP],

Zξ

RLP (α, γ, δ) ≥
T∑

t=1

∑

i∈Nc

(∑

k∈Kξ

η̂
ξ

ka
ξ

k,it

)
αit −

T∑

t=1

∑

j∈Ng

(
θ̂

ξ

j t γjt + σ̂
ξ

j t δj t

)

+
∑

k∈Kξ

f
ξ

k η̂
ξ

k +
∑

j∈{Ng∪d}

(
θ̂

ξ

j t + σ̂
ξ

j t

) +
T∑

t=1

∑

i∈{Ng∪d}
ρ̂

ξ

j t .

Because [RLPξ ] is the relaxation of the minimization problem [MSPξ ],

Zξ

MSP (α, γ, δ) ≥ Zξ

RLP (α, γ, δ),

for any first stage decision. Hence, (62) is a valid cut for [RMP]. �

It is interesting to note that all [LPξ ]s share the same dual space (dual feasible region)
since the costs in the objective functions and left-hand-side coefficients are the same. Hence
the dual solution obtained by solving a specific [LPξ ] could be used to construct the global
cuts for other scenarios. A generalization to all scenarios leads to the following corollary.

Corollary 1 The global cut of scenario ξ , (51), with right hand side being changed to
f ζ − aξ α̂, is also valid for [RLPζ ] given any first stage solution, for all ζ ∈ �.

In constraint (57), the set of cuts, Kξ , is designated to only one single scenario, ξ . How-
ever, we can generalize this set for all scenarios, which means that only one cut set K is
needed for all subproblems of different scenarios.

For all scenarios, this constraint, (51), is almost the same except f
ζ

k , which is calculated
as follows,

f
ζ

k =
T∑

t=1

[
ĥ

I,ξ
k,tPDζ

t + ĥ
II,ξ
k,t RSζ

t + ĥ
III,ξ
k,t ROζ

t

] + f
c,ξ

k

where the (k) in the subscripts denotes the kth optimal dual solution in Kξ , and

f
c,ξ

k =
T∑

t=1

[ ∑

i∈{Nc∪Ng∪d}

(−Diŵ
ξ−
k,it + Uiŵ

ξ+
k,it + Smax

i r̂
I,ξ
k,it

) +
∑

j∈{Ng∪d}
P max

j r̂
II,ξ
k,it

]
,

which is independent of scenario ζ . So f
ζ

k can be considered as an affine function of PDζ
t ,

RSζ
t and ROζ

t , in which f
c,ξ

k is the constant part. Then all [RLPξ ]s can share the same global
cut set except for the right hand sides. Instead of multiple global cut sets for all the scenarios,
we only need to maintain a single global cut set as follows,

bkβ
ζ + πζ ≥ f

ζ

k + akα̂, k ∈ K, (63)

where the only differences between the scenarios are the names of variables and right hand
sides.

After we replace (57) in [RLPξ ] by (63), the left-hand-side coefficients of [RLPξ ] are
not dependent of the scenarios any more because bk is the same for all scenarios. This
also means that all [RLPξ ]s have the same dual feasible region because they are all linear
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programs. So an optimal dual solution to one scenario is also a feasible dual solution to
another scenario. Hence the dual optimal solutions, θ̂ ξ , σ̂ ξ , ψ̂ξ , φ̂ξ , η̂ξ , and ρ̂ξ to [RLPξ ]
can help construct valid Benders cuts from all other scenarios, but with different f

ζ

k ’s, which
leads to the following proposition.

Proposition 3 For all ζ ∈ �, the inequality

−
T∑

t=1

∑

i∈Nc

(∑

k∈Kξ

η̂
ξ

kak,it

)
αit +

T∑

t=1

∑

j∈Ng

(
θ̂

ξ

j t γjt + σ̂
ξ

j t δj t

) + χζ

≥
∑

k∈K

f
ζ

k η̂
ξ

k +
∑

j∈{Ng∪d}

(
θ̂

ξ

j t + σ̂
ξ

j t

) +
T∑

t=1

∑

i∈{Ng∪d}
ρ̂

ξ

j t (64)

is a valid Benders cut for [RMP] given any first stage solution, where θ̂ ξ , σ̂ ξ , η̂ξ , and ρ̂ξ are
the dual optimal solutions to [RLPξ ].

With these disaggregated cuts being added into the [RMP], we need to include |�| re-
course variables, χξ , ξ ∈ �. In the case of a big number of scenarios, this could increase the
computational burden of solving the restricted master problem. However, all cuts generated
by the same dual solution of [RLPξ ] can be aggregated to one single cut by adding them
together while multiplying each of them by the probability of its corresponding scenario.
The aggregated cut is shown as follows,

−
T∑

t=1

∑

i∈Nc

(∑

k∈Kξ

η̂
ξ

k ak,it

)
αit +

T∑

t=1

∑

j∈Ng

(
θ̂

ξ

j t γjt + σ̂
ξ

j t δj t

) + χ

≥
T∑

t=1

[
h̄

I,ξ
t PDt + h̄

II,ξ
t RSt + h̄

III,ξ
t ROt

] +
∑

k∈K

η̂
ξ

kf
c
k

+
∑

j∈{Ng∪d}

(
θ̂

ξ

j t + σ̂
ξ

j t

) +
T∑

t=1

∑

i∈{Ng∪d}
ρ̂

ξ

j t , (65)

where
∑

ξ∈� Probξχξ is replaced by χ , and RS, RO, and PD are the expectations of the

random spinning reserve, operating reserve and demand. h̄
I,ξ
t , h̄

II,ξ
t and h̄

III,ξ
t are aggregated

optimal dual solutions as follows,

h̄
I,ξ
t =

∑

k∈K

η̂
ξ

k ĥ
I
k,t ,

h̄
II,ξ
t =

∑

k∈K

η̂
ξ

k ĥ
II
k,t ,

h̄
III,ξ
t =

∑

k∈K

η̂
ξ

k ĥ
III
k,t .

If we choose to add the aggregated cuts into the relaxed master problem, RMP, the term,∑
ξ∈� χξ , in its objective function can be then simply replaced by χ . According to the

number of scenarios, we could choose different strategies to add valid Benders cuts. As
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discussed in Birge and Louveaux (1997), the disaggregated scheme is preferred in the case of
a small number of scenarios, and the aggregated scheme is in favor instead when |�| is large.
We prefer the aggregated scheme because the aggregated cuts contain more information
from all scenarios and are very easy to generate due to the sharing of same dual space.

4 Solution algorithm

If there is no Benders’ cut being added in the [RMP], without including recourse variable
χ in the objective function, its optimal solution is (α̂, β̂, γ̂ , δ̂) = 0. It is because all the
variables are nonnegative and the costs of startup and shutdown are positive. Hence 0 is the
best objective value that the [RMP] without any cut can achieve. Then we can use this as the
initial solution for the algorithm based on Benders decomposition. At each iteration, after
we solve the [RMP], its optimal objective value is used as a lower bound of [ESCUC]. An
upper bound can be obtained as follows,

ZUB = ZRMP − χ̂ +
∑

ξ∈�

Probξ Zξ

MSP , (66)

where Zξ

MSP , ZRMP and χ̂ are the optimal objective values of [MSPξ ] and [RMP], and the
solution of χ respectively. This actually represents the cost of a feasible solution to the
relaxed [ESCUC] with a dummy costly generator being added.

The lower bound based on the solution of [RMP] could improve very slowly in prac-
tice when the UB and LB are very close to each other. One of the methods to avoid slow
convergence or even stalling is to apply the integer L-shaped cut since it is an optimality
cut improving the lower bound if there exists a solution with a higher objective value. An
integer L-shaped “optimality” cut is as follows,

z ≥ (
Q(x̂) − L

)( ∑

j∈T(x̂)

xj −
∑

j∈F(x̂)

xj − ∣∣T(x̂)
∣∣ + 1

)
+ L

where Q(x̂) is the recourse function of x̂, the first stage solution, and L is a lower bound
for the second stage problem, and T(x̂) = {j |x̂j = 1} and F(x̂) = {j |x̂j = 0}, if x is the first
stage decision variable and x̂ is the current solution. This follows from the fact that the right
hand side will be equal to Q(x̂) if x = x̂, and less than L otherwise since (

∑
j∈T(x̂) xj −∑

j∈F(x̂) xj − |T(x̂)| + 1) ≤ 0 if x �= x̂. We refer interested readers to Laporte and Louveaux
(1993) for the detailed proof of its validity and convergence. Without having to define the
two sets, T(x̂) and F(x̂), after rearranging terms the cut can be expressed by the following
equivalent inequality,

(
Q(x̂) − L

)∑

j

(1 − 2x̂j )xj + z ≥ Q(x̂) − (
Q(x̂) − L

)∑

j

x̂j .
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The first stage problem, [RMP], is a pure integer program with only 0-1 variables, and then
we can apply the integer L-shaped “optimality” cut in [RMP], which is shown as follows,

[
Q(α̂) − L

]
[

T∑

t=1

∑

i∈{Nc∪Ng }
(1 − 2α̂it )αit

]
+ χ

≥ Q(α̂) − [
Q(α̂) − L

]
[

T∑

t=1

∑

i∈{Nc∪Ng}
α̂it

]
, (67)

where the recourse Q(·) is a function of only α, the commitment status of both coal and
gas power generators, since the best optimal objective value of the second stage is uniquely
defined once they are determined. If all non-quick-start generators remain “on” at all time
periods, the total cost from the quick-start generators is the least; this is because they have
start-up costs and higher fuel costs, and then are only used as needed. So the second-stage
optimal objective cost under this condition can be used as an lower bound of the second
stage, L. The embedded Benders decomposition algorithm is shown as follows,

Step 0. Set UB = ∞, LB = 0, K = ∅, (α̂, γ̂ , δ̂) = 0, ZUB = 0, ZRMP = 0, and χ̂ = 0;
Step 1. Solve [MSPξ ] given (α̂, γ̂ , δ̂), ξ ∈ �, and suppose that optimal solution and objec-

tive value are (β̂ξ , p̂ξ , q̂ξ , λ̂ξ , ŷξ , ẑξ , γ̂ ξ , δ̂ξ ), and Zξ

MSP , ξ ∈ �;
Update ZUB ;
UB ← min(UB,ZUB);

Step 2. Solve [LPξ ] given α̂ and β̂ξ , and dual optimal solutions are (l̂I, l̂II, ĥI, ĥII, ĥIII, û, v̂,
r̂ I, r̂ II);
Add this new dual solution to the set, K;
Repeat this for all ξ ∈ �;

Step 3. Solve [RLPξ ] given (α̂, γ̂ , δ̂), and suppose the optimal dual solution is (θ̂ , σ̂ , η̂, ρ̂);
Add a new aggregated cut, as in (65), into [RMP];
Repeat this for all ξ ∈ �;

Step 4. Add an integer L-shaped “optimality” cut, as in (67), into [RMP];
Step 5. Solve [RMP], and suppose that optimal solution and objective value are (α̂, γ̂ , δ̂, χ̂ )

and ZRMP respectively;
LB ← max(LB,ZRMP );

Step 6. If UB − LB ≤ ε, stop; Otherwise, go to Step 1,

where ε is a small value for the gap tolerance. As is shown above, we repeatedly solve [LPξ ]
and [RLPξ ] for all scenarios in steps 2 and 3 respectively. However, in order to improve
computational efficiency we do not need to repeat for all scenarios since all [LPξ ]s and
[RLPξ ]s which are corresponding to the same first stage decision. One way is to sample
from all the scenarios and only solve a limited number of [LPξ ]s and [RLPξ ]s.

In this algorithm, we maintain two sets of cuts: one for convexifying the mixed integer
subproblems, and one for constructing the future benefit functions. For convenience, the
first set of cuts are referred to as inner convexification (IC) cuts, and the second set of cuts
are referred to as outer feedback (OF) cuts. In the above algorithm both types of cuts are
actually Benders cuts, and IC cuts are embedded in the subproblems to provide valid OF
cuts. When the algorithm actually terminates, we may need to check the solution in order
to determine if the original extensive formulation is feasible or not. Any variable related to
the dummy costly generator should be equal to zero. Otherwise, extensive formulation is
infeasible because even all of the available generators are turned on, some of requirement
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Table 4 Generators data
Unit Startup

cost
(MBtu)

Generation
cost
(MBtu/MW)

Power
(MW)

10 minutes
spinning
(MW)Max Min

G1 100 8 120 10 10

G2 80 10 100 20 10

G3 150 12 50 20 10

G4 180 15 60 10 10

Table 5 Load forecast of a
simple example ξ Prob(ξ) Loads (MW)

t = 1 t = 2

1 0.2 220 260

2 0.5 250 280

3 0.3 270 300

Table 6 Solution of the 4-unit
SCUC with 3 scenarios ξ Cost

(MBtu)
t Generation (MW)

G1 G2 G3 G4

1 4730 1 120 100 0 0

2 120 100 40 0

2 5540 1 120 100 30 0

2 120 100 50 10

3 6080 1 120 100 50 0

2 120 100 50 30

constraints (8), (9) or (10) cannot be satisfied without resorting to the costly dummy gener-
ator, which means the demands are actually greater than the total generation capacity of all
units. In most cases the dummy generator is not in use in the optimal solution, because most
of the original problems are feasible, which means that we have enough generating capacity
to meet the demands.

5 Numerical experiments

In this section, we present numerical results of our algorithm on serval problems with dif-
ferent sizes and settings. We code our algorithm in Microsoft Visual C++ while calling
CPLEX 11 (Concert Technology) to solve the decomposed problems. All programs are run
in Microsoft Windows XP Professional 2002 operating system on a Dell Desktop with Intel
Pentium 4 CPU 3.40 GHz and 2 GB RAM.

A simple example of security constrained unit commitment problem with four genera-
tors, of which G3 and G4 are quick-start generators, is discussed below. The generator data
are shown in Table 4. For convenience, we solve a problem with two time periods and three
scenarios, with data shown in Table 5. By applying our algorithm, after 5 iterations with 10
cuts added in the first stage, the algorithm reaches the optimality and returns the same op-
timal solution as the extensive model directly solved by CPLEX, which takes 23 iterations
and adds 8 cuts . The results are shown in Table 6. Computational times (in seconds) of more
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Table 7 Computational results of SCUC

Instance group |�| EXTS RMP MSP LP RLP TTL

Nc = 2
Ng = 3
K = 4

1 0.047 0.143 0.128 0.062 0.031 0.364

3 0.062 0.141 0.514 0.080 0.063 0.798

8 0.079 0.157 1.356 0.077 0.047 1.637

20 0.141 0.157 3.091 0.062 0.048 3.358

100 0.781 0.159 14.849 0.077 0.031 15.116

1000 26.016 0.157 135.060 0.047 0.016 135.280

2000 258.531 0.125 269.698 0.063 0.032 269.918

Nc = 2
Ng = 3
K = 6

1 0.047 0.203 0.187 0.126 0.077 0.593

3 0.062 0.205 0.515 0.093 0.063 0.876

8 0.079 0.218 1.464 0.126 0.063 1.871

20 0.156 0.218 3.708 0.124 0.064 4.114

100 1.000 0.236 18.534 0.112 0.063 18.945

1000 50.485 0.187 184.502 0.126 0.048 184.863

2000 154.844 0.187 280.383 0.078 0.047 280.695

Nc = 2
Ng = 3
K = 8

1 0.062 0.203 0.220 0.078 0.080 0.581

3 0.078 0.063 0.249 0.031 0.016 0.359

8 0.125 0.172 1.375 0.047 0.048 1.642

20 0.406 0.156 3.154 0.048 0.031 3.389

100 7.611 0.156 16.802 0.045 0.048 17.051

1000 184.344 0.125 133.855 0.077 0.021 134.078

2000 443.703 0.126 248.370 0.077 0.032 248.605

Nc = 2
Ng = 3
K = 11

1 0.063 0.233 0.265 0.077 0.079 0.654

3 0.078 0.047 0.238 0.062 0.031 0.378

8 0.141 0.172 1.628 0.109 0.047 1.956

20 0.422 0.172 3.281 0.077 0.047 3.577

100 8.890 0.140 16.436 0.079 0.046 16.701

1000 227.877 0.126 133.635 0.048 0.031 133.840

2000 557.188 0.094 263.440 0.093 0.031 263.658

examples are shown in Tables 7, 8 and 9, in which the column of EXTS records the com-
putational times of solving the extensive formulation directly by CPLEX MIP solver, and
columns of RMP, MSP, LP, RLP and TTL record the total computational times of solving
[RMP], [MSP], [LP], [RLP] and the algorithm proposed in this paper. For all the problem
instances in these tables, the decomposition algorithm reaches the same optimal solutions as
those obtained by solving the extensive formulation directly by CPLEX MIP solver. As can
be seen in Table 7, computing times almost increase linearly with respect to the number of
scenarios, which means the method proposed in this paper is well suited to problems with a
large number of scenarios. Also, the method spends a big portion of time to solve [MSP] and
[LP]. Hence it is possible to further reduce computing time if we do not calculate new IC
and OF cuts for each scenario in Step 1 through Step 3 because looping through all scenarios
takes a lot of time, especially when we have a huge number of scenarios. Computational ex-
periments with more time periods and generation units are shown in Tables 8 and 9, where
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Table 8 Computational results of SCUC (K = 11)

Instance group |�| EXTS RMP MSP LP RLP TTL

Nc = 2
Ng = 3
T = 4

1 0.078 0.157 0.281 0.063 0.062 0.563

3 0.094 0.298 1.138 0.096 0.077 1.609

8 0.344 0.251 2.453 0.093 0.062 2.859

20 0.891 0.235 5.756 0.063 0.031 6.085

100 15.781 0.188 28.481 0.108 0.063 28.840

1000 540.468 0.202 279.932 0.093 0.031 280.258

2000 1810.470 0.233 553.911 0.109 0.062 554.315

Nc = 2
Ng = 3
T = 8

1 0.203 0.047 0.140 0.031 0.016 0.234

3 0.141 0.375 1.720 0.156 0.079 2.330

8 0.797 0.342 4.670 0.154 0.078 5.244

20 7.953 0.236 7.433 0.126 0.079 7.874

100 46.250 0.406 58.897 0.172 0.109 59.584

1000 * 0.392 586.995 0.173 0.095 587.655

2000 * 0.328 1060.901 0.138 0.092 1061.459

Nc = 2
Ng = 3
T = 12

1 0.125 0.062 0.141 0.047 0.010 0.260

3 0.266 0.690 3.139 0.279 0.142 4.250

8 1.656 0.250 4.373 0.141 0.077 4.841

20 14.703 0.282 10.207 0.158 0.063 10.710

100 86.766 0.248 46.806 0.174 0.093 47.321

1000 * 0.234 466.735 0.127 0.061 467.157

2000 * 0.235 924.595 0.141 0.077 925.048

Nc = 2
Ng = 3
T = 16

1 0.188 0.062 0.188 0.047 0.031 0.328

3 0.265 1.471 6.844 0.610 0.439 9.364

8 4.078 0.062 1.249 0.062 0.031 1.404

20 18.844 0.218 9.006 0.157 0.080 9.461

100 120.563 0.155 40.046 0.110 0.094 40.405

1000 * 0.156 397.201 0.110 0.093 397.560

2000 * 0.157 792.957 0.124 0.093 793.331

all problems are solved optimally by both methods, and ∗ denotes the cases in which the
corresponding algorithm either is running out of memory (more often) or cannot close the
optimality gap within 1 hour. The decomposition algorithm did not experience the shortage
of memory space since the sizes of the problems it solves are usually much smaller than the
extensive formulation.

6 Conclusion

This paper discusses a very important problem of power systems, the two-stage stochastic
unit commitment problem. In addition to considering the traditional unit commitment con-
straints, spinning reserves and ramping constraints, the model includes two-stage schedul-
ing to address the fact that both quick-start and non-quick-start units are present in thermal
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Table 9 Computational results of SCUC (K = 11)

Instance group |�| EXTS RMP MSP LP RLP TTL

Nc = 5
Ng = 5
T = 16

8 34.484 0.079 2.535 0.094 0.031 2.739

20 76.953 0.078 6.242 0.062 0.030 6.412

100 714.456 0.077 30.852 0.078 0.030 31.037

1000 * 0.046 295.924 0.062 0.016 296.048

Nc = 5
Ng = 5
T = 24

8 56.500 0.079 5.126 0.078 0.016 5.299

20 238.064 0.063 8.816 0.109 0.010 8.998

100 1241.260 0.063 58.613 0.062 0.031 58.769

1000 * 0.078 579.102 0.062 0.015 579.257

Nc = 9
Ng = 8
T = 16

8 80.156 0.095 4.705 0.078 0.015 4.893

20 127.702 0.093 11.170 0.093 0.015 11.371

100 1211.260 0.062 54.006 0.093 0.032 54.193

1000 * 0.046 559.014 0.093 0.010 559.163

Nc = 9
Ng = 8
T = 24

8 129.657 0.079 6.815 0.110 0.032 7.036

20 307.893 0.062 18.502 0.109 0.010 18.683

100 1994.120 0.062 80.545 0.124 0.016 80.747

1000 * 0.063 804.135 0.108 0.015 804.321

Nc = 11
Ng = 7
T = 16

8 89.891 0.094 4.173 0.093 0.015 4.375

20 145.422 0.093 10.127 0.110 0.032 10.362

100 1629.410 0.093 49.665 0.094 0.030 49.882

1000 * 0.094 488.078 0.094 0.032 488.298

Nc = 11
Ng = 7
T = 24

8 134.750 0.125 8.544 0.391 0.032 9.092

20 270.938 0.109 17.734 0.125 0.032 18.000

100 * 0.110 88.215 0.109 0.015 88.449

1000 * 0.141 872.546 0.125 0.016 872.828

Nc = 15
Ng = 10
T = 16

8 106.280 0.125 5.779 0.140 0.016 6.060

20 238.242 0.109 13.609 0.156 0.046 13.920

100 2351.120 0.110 66.511 0.125 0.016 66.762

1000 * 0.093 640.484 0.141 0.031 640.749

Nc = 15
Ng = 10
T = 24

8 204.564 0.141 10.610 0.203 0.010 10.964

20 431.097 0.140 21.487 0.171 0.015 21.813

100 * 0.110 123.728 0.172 0.010 124.020

1000 * 0.259 895.708 0.101 0.027 896.095

plants, and quick-start units are used to meet the uncertain demands in the second stage
or real time. This means that this stochastic model includes integer decision variables in
both the first and second stages. The presence of integer decision variables in the second
stage makes this problem very difficult to solve, especially when there are a large number
of scenarios. This paper, then, uses a method based on Benders decomposition and integer
L-shaped method to solve the two-stage problem. Numerical results show that this algorithm
is efficient when experiencing a large number of scenarios. Future research could focus on
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how to make the algorithm converge faster by more advanced implementation and stronger
Benders cuts, e.g., Pareto optimal cuts, high density cuts, etc.
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