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Abstract The article presents a tree search algorithm (TRSA) for the strip packing prob-
lem in two and three dimensions with guillotine cutting constraint. In the 3D-SPP a set of
rectangular items (boxes) and a container with fixed width and height but variable length
are given. An arrangement of all boxes within the container has to be determined so that
the required length is minimised. The 2D-SPP is analogously defined. The proposed TRSA
is based on a tree search algorithm for the container loading problem by Fanslau and Bort-
feldt (INFORMS J. Comput. 22:222–235, 2010). The TRSA generates guillotine packing
patterns throughout. In a comparison with all recently proposed 3D-SPP methods the TRSA
performs very competitive. Fine results are also achieved for the 2D-SPP.

Keywords Strip packing · Open dimension problem · Guillotine cutting · Tree search

1 Introduction

This article deals with the rectangular strip packing problem (SPP) in two and three dimen-
sions, respectively. In the 3D-SPP a set of rectangular items (boxes) and a container with
fixed width and height but variable length are given. A feasible arrangement of all boxes
within the container has to be determined so that the required length is minimised. The
2D-SPP is analogously defined. Note that the 2D-SPP can be perceived as a 3D-SPP in
which all boxes have a minimum dimension of one length unit while the container height
also equals one.

An arrangement is called feasible if no items overlap and all boxes are placed completely
within the container and parallel to the container walls. There are no further restrictions
imposed for the item stock, so the stock may be homogeneous (one single type of boxes),
weakly heterogeneous (a few box types, many boxes per type) or strongly heterogeneous
(many box types, a few boxes per type). The items of a box type represent congruent paral-
lelepipeds.
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According to the typology of cutting and packing problems (C&P) by Wäscher et al.
(2007) the SPP considered here is referred to as open dimension problem (ODP), or more
precisely as 3D (or 2D) rectangular open dimension problem with one variable dimension.

The 3D-SPP and the 2D-SPP occur in different industries and in many practical cutting
and packing scenarios. In the steel industry, one common problem is to cut small three-
dimensional blocks that belong to one customer order out of a larger steel block. Often
the profile of the large block is fixed, while its length is variable. Customers usually order
identical sets of pieces repeatedly. In such a situation, a good planning of the cutting process
is important in order to limit the length of the large block and so to minimize the trim
loss. Similar 2D cutting problems can be found in the glass- and paper industry, in which
rectangles of known dimensions are to be cut out of a strip with a given width, but variable
length.

The following packing problem is in fact also an SPP. Modern attached freight systems
aim at a better capacity utilization of trucks. Such a system collects orders of different
senders for trucks of different carriers. An order can only be assigned to a truck of sufficient
residual capacity determined by the residual free length. Thus, before the assignment, the
system calculates the minimum additional length required by a given consignment. Similar
algorithms can improve the design of containers, or can even help the selection of vehicles
in a vehicle fleet for transporting a given volume of goods.

In practical cutting and packing applications a wide variety of constraints can be observed
(cf. Bischoff and Ratcliff 1995). Here, the following three constraints are considered:

(C1) Orientation constraint: For a defined subset of the item stock the permitted orienta-
tion variants are restricted. For each box up to five of the original six possible spatial
orientation variants can be ruled out in the 3D case while in the 2D case one of the
two possible orientations may be prohibited.

(C2) Guillotine cutting constraint: It requires that all items of a packing arrangement can
be reproduced by guillotine cuts, i.e. by wall-to-wall cuts that run parallel to the walls
of the container.

(C3) Support constraint: The bottom area of each packed box that is not placed on the
container floor must be supported completely (i.e. 100%) by other boxes.

The first two constraints play an important role in two-dimensional and three-dimensional
C&P applications (cf., e.g., Lodi et al. 1999). In particular the guillotine cutting constraint
is often enforced in cutting processes by the available equipment (saws etc.). The support
constraint is an important stability condition in 3D (but not in 2D) packing applications to
prevent boxes from tilting.

In this article we propose a tree search algorithm (TRSA) for solving the 3D-SPP and
the 2D-SPP. The TRSA results by a straightforward adaptation of a tree search algorithm
for the 3D container loading problem (CLP) that was proposed by Fanslau and Bortfeldt
(2010). Note that in the 3D-CLP (considered here) a box set and one container with fixed
dimensions are given and the aim is to maximize the volume (or value) of the packed boxes
while generally not all given boxes can be packed. The TRSA generates guillotine patterns
throughout, i.e. constraint (C2) is always observed. Both of the other constraints introduced
above are satisfied if necessary. The main issue to be investigated is whether the high per-
formance of the integrated CLP method is transferred to the SPP method. The TRSA will
be subjected to a comparison with other recently published SPP solution procedures and it
will turn out that the TRSA is able to generate top-quality solutions in reasonable running
times particularly in the 3D case.

The rest of the article is organized as follows. First, in Sect. 2 we give a literature
overview concerning the SPP in three and two dimensions. In Sect. 3 the SPP algorithm



Ann Oper Res (2012) 196:53–71 55

is described including an outline of the underlying CLP algorithm as well as its adaptation
to the strip packing problem. In Sect. 4 we compare the proposed SPP method to other al-
gorithms from literature by numerical experiments while some conclusions are drawn in
Sect. 5.

2 Literature review

The SPP is NP-hard (cf. Hopper and Turton 2001). Exact algorithms for the 2D-SPP were
proposed by Martello et al. (2003), Lesh et al. (2004), Bekrar et al. (2007), Bekrar and
Kacem (2009) and Kenmochi et al. (2009). A general framework for exactly solving multi-
dimensional packing problems was developed by Fekete and Schepers (1997) (see also
Fekete et al. 2007). At the present time only smaller SPP instances can be solved ex-
actly; typical sizes of exactly solved 2D instances range up to 50 items. Hence, heuristic
approaches (that do not guarantee optimal solutions) are indispensable for solving large
SPP instances in the 2D and even more in the 3D case.

For the 2D-SPP a wide variety of heuristic solution methods has been proposed in recent
years. The interested reader is referred to Hopper and Turton (2000, 2001) and to Riff et
al. (2009) for a comprehensive survey. We can distinguish four 2D-SPP subtypes (variants)
regarding the constraints (C1) and (C2) that are tackled by 2D-SPP algorithms (cf. Lodi et
al. 1999):

− OF: orientation of all pieces is fixed (O) and guillotine cutting is not required (F);
− RF: pieces may be rotated by 90◦(R) and guillotine cutting is not required (F);
− OG: orientation of all pieces is fixed (O) and guillotine cutting is required (G);
− RG: pieces may be rotated by 90◦(R) and guillotine cutting is required (G).

Note that a feasible solution with regard to subtype OG is also feasible regarding the other
subtypes while a feasible solution with regard to subtype RG and OF, respectively, is also
feasible in terms of subtype RF. In Table 1 a representative sample of heuristic 2D-SPP algo-
rithms is presented. The sample is focused on the 2D-SPP with guillotine cutting constraint
but recent and most relevant papers regarding subtypes OF and RF are also considered.
For each contribution author(s) and year, relevant subtype(s), type of solution approach and
additional features of the algorithm are listed.

The subtypes without guillotine cutting constraint (OF, RF) draw much more attention
than the other subtypes (OG, RG). This becomes even clearer if the above mentioned sur-
vey articles are consulted. Most of the algorithms apply metaheuristic search strategies like
genetic algorithms or simulated annealing. At the moment, the solution methods proposed
by Alvarez-Valdes et al. (2008), Belov et al. (2008) and Burke et al. (2009) belong to the
most powerful approaches for the 2D-SPP without guillotine cutting constraint (OF, RF)
while the genetic algorithm by Bortfeldt (2006) and the branch and bound method by Cui
et al. (2008) achieved the best results so far for the guillotine cutting subtypes OG and RG.
It is noticeable that three of these five algorithms are based on widely used metaheuristic
strategies (cf. Table 1). On the other hand, it turned out that straightforward constructive
heuristics are of great value in the design of high-performance solution methods and often
successful 2D-SPP methods are built around those placement heuristics (see Table 1, right-
most column). Clearly, the well-known Bottom Left (BL) heuristic (cf. Baker et al. 1980)
can be regarded as the prototype of such placement heuristics.

In contrast to the 2D-SPP, only few algorithms have been developed for solving the 3D-
SPP so far and almost all of them are listed in Table 2. Table 2 is similarly built as Table 1
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Table 1 Heuristic algorithms for the 2D-SPP (sample)

Authors, source 2D-SPP
subtype

Type of
approach

Additional characteristics

Kröger (1993, 1995) RG parallel GA encoding by binary trees, problem specific
operators

Schnecke (1996) RG parallel GA similar to Kröger (1995)

Mumford-
Valenzuela et al.
(2004)

RG GA encoding by normalized postfix
representation

Burke et al. (2004) RF CH Best Fit heuristic

Lesh et al. (2005) OF LS possible enhancement by human
interaction

Bortfeldt (2006) all GA no encoding, problem specific operators

Zhang et al. (2006) RG LS recursive procedure

Zhang et al. (2005) RG SA built around recursive placement heuristic,
see Zhang et al. (2006)

Cui et al. (2008) RG B&B recursive procedure

Alvarez-Valdes
et al. (2008)

OF GRASP reactive GRASP, parameter learning
mechanism

Belov et al. (2008) OF LS uses “sequential value correction” (SVC)
approach and 1D heuristics SubKP and
Bottom-Left-Right (BLR)

Burke et al. (2009) RF SA includes heuristics Best Fit (BF) and
Bottom Left Fill (BLF)

Wei et al. (2009) RF RLS includes heuristic Least Wasted First
(LWF)

Ortmann et al. (2010) all CH new and improved constructive heuristics

Allen et al. (2011) RF TS includes heuristics Best Fit (BF) and
Deepest Bottom Left Fill (DBLF)

GA: genetic algorithm; CH: constructive heuristic, SA: simulated annealing, TS: tabu search, GRASP: greedy
randomized adaptive search procedure, B&B: branch and bound, (R)LS: (random) local search

but column 2 indicates now whether the methods are able to observe the support constraint
(C3).

Again, some metaheuristic methods include straightforward constructive heuristics. On
the other hand, algorithms for the 3D-SPP are often based on existing algorithms for the
3D-CLP (e.g., see Table 2, branch and bound method of Bortfeldt and Mack 2007).

3 The strip packing algorithm

In the following, the tree search algorithm, referred to as SPTRS (Strip Packing by Tree
Search), is introduced in two steps. At first the frame procedure of SPTRS is explained,
afterwards the integrated CLP method is described.

3.1 The overall algorithm

The overall algorithm of method SPTRS is shown in Fig. 1. The main idea is to solve a
given SPP instance by solving a series of CLP instances by means of a CLP algorithm. The
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Table 2 Heuristic algorithms for the 3D-SPP (for acronyms see Table 1)

Authors, source Support constraint
(C3) observed?

Type of
approach

Additional characteristics

Bischoff and Mariott (1990) No CH includes multiple alternative greedy
heuristics, container is filled by
consecutive “walls”

Sixt (1996) No TS uses order based encoding and
straightforward placement heuristic

Bortfeldt and Gehring (1999) Yes parallel GA,
parallel TS

methods result by modification of CLP
methods

Karabulut and Inceoglu (2004) No GA includes heuristic Deepest Bottom Left
Fill (DBLF)

Bortfeldt and Mack (2007) No B&B built around CLP method by Pisinger
(2002)

Allen et al. (2011) No TS includes heuristics 3D Best Fit (3BF)
and Deepest Bottom Left Fill (DBLF)

Fig. 1 Overall algorithm of
method SPTRS

input (problem data, parameters)
set container length lC := lClB * 100 / minspp_fillrate
solve CLP instance
if no SPP solution found, i.e. if not all boxes were packed then

lC := high_value
solve CLP instance

endif
repeat

lC := lCUsed – 1 // lCUsed of previous SPP solution
solve CLP instance

until no SPP solution found
output (last found SPP solution).

box set, the container width wC and the container height hC of all CLP instances are given
by the SPP instance. Starting with a sufficiently large value (see below) the container length
lC is reduced from instance to instance. The solving of CLP instances will only be finished
after no SPP solution has been returned for the first time. A solution of a CLP instance is
called an SPP solution if and only if all given boxes were packed.

Each time an SPP solution for a CLP instance with container length lC has been cal-
culated, the so-called used container length lCUsed (lCUsed ≤ lC), given by the maximum
coordinate of a box in length direction, is determined. In the next CLP instance the container
length is then set lC := lCUsed − 1. In this way it is ensured that a new SPP solution is al-
ways better than the previous one. Finally, the last (i.e. best) found SPP solution is output.

The initially chosen container length should meet two different demands. On the one
hand, it has to be chosen so that an SPP solution (including all given boxes) can be generated
in any case. On the other hand, the initial container length should be not too large in order
to save computational effort that is caused by a long series of solved CLP instances. Both
the demands are satisfied as follows.

First, the initial container length is calculated as product of the continuous (or material)
lower bound lClB of the required container length and a factor greater than one. The lower
bound is determined as lClB := �(total box volume)/(wC∗hC)� (�a� is the smallest integer
not smaller than a). The factor is given as quotient 100/minspp_fillrate wherein the param-
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Fig. 2 A simple block and a
general block (top view, 2D case)

eter minspp_ fillrate stands for the expected minimum filling rate of the container volume
(in %). With a suitable value of minspp_ fillrate, e.g. 90%, a very large initial container
length can be avoided. Hence, an attempt is made to solve the related CLP instance.

Only if this attempt fails, a second greater initial container length lC is tried. This time
lC is set to the sum of the minimum dimensions in length direction of all boxes (this sum
is denoted as high_value in Fig. 1). The minimum dimension of a box in length direction is
determined considering the container dimensions as well as the orientation constraint (C1).
Clearly, the CLP with length high_value has an SPP solution in any case, formed by a
sequence of all boxes in length direction, so that the first requirement is also met. Hence, an
initial SPP solution with a related length lCUsed is available in any case.

Note that the computation is (also) finished if the used container length lCUsed of the
last found SPP solution reaches the lower bound lClB (not shown in Fig. 1).

3.2 The integrated CLP algorithm

To solve the CLP instances the tree search algorithm CLTRS (Container Loading by Tree
Search) by Fanslau and Bortfeldt (2010) is used. CLTRS generates guillotine packing pat-
terns throughout, i.e. constraint (C2) is always satisfied, while orientation and support con-
straint (C1) and (C3), respectively, are optionally observed. Below we give an extended
outline of algorithm CLTRS; for a comprehensive description we refer the reader to Fanslau
and Bortfeldt (2010).

Algorithm CLTRS is based on the so-called block building approach. Instead of filling
the container by single boxes it is packed by blocks of several boxes without or only with
small gaps. Compared to older block building algorithms, CLTRS does not only use loss-
free blocks consisting of boxes of the same box type which are arranged in the same spatial
orientation (so-called simple blocks). Instead the block concept is extended in that also
general blocks are allowed that comprise boxes of different types or have congruent boxes
with different spatial orientations. A general block may have gaps (cf. Fig. 2). However, the
minimum volume utilization of a block (regarding the enveloping cuboid) is stipulated by a
parameter that is usually set to a high value, e.g. 98%. General blocks are mainly beneficial
for strongly heterogeneous problem instances.

The overall algorithm of CLTRS is shown in Fig. 3. The search is organized in two stages.
In the first stage only simple blocks are used while in the second stage general blocks are
allowed. At the beginning of each stage an appropriate list of oriented blocks, that serve
to fill the container, is generated in advance. Each stage has a specific time limit. The best
packing plan over both stages is output at the end. Using the two stages can be considered a
means to diversify the search.

In each stage a series of complete solutions (packing plans) is generated. The admitted
search effort per solution is controlled by an internal parameter search_effort that is doubled
from solution to solution. Hence, better and better solutions can be found within a search
stage. A solution is constructed block by block and each block fills a residual space, i.e.
an empty block-shaped space of defined size and position inside the container. The residual
spaces are collected in a stack that is initially filled by the container itself, i.e. the interior
space of the container is the first residual space to be processed. To process the current
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input (problem data, parameters)
for stage := 1 to 2 do // carry out search in two stages

generate special block list for current stage
initialize search effort per solution: search_effort := 1
repeat // generate successive packing plans with increasing search effort

initialize search state (packing plan, unpacked boxes, stack of residual spaces)
while stack of residual spaces not empty do

determine best block for uppermost residual space
update search state

endwhile
update search effort for next solution: search_effort := search_effort * 2

until time_limit(stage) is exceeded
endfor
output (best packing plan over both stages).

Fig. 3 Overall algorithm of method CLTRS

Fig. 4 A partition search and its basic search phases

residual space, namely the uppermost residual space in the stack, the most appropriate block
is selected from the block list and then placed in the residual space’s lower corner nearest to
the origin of the used coordinate system. Afterwards the rest of the space is orthogonally cut
resulting in up to three new residual spaces that are again inserted into the stack. Heuristic
rules for cutting (filled) and inserting (new) residual spaces aim at preventing waste, i.e. no
longer usable space in the container. If a block has been specified and placed, this decision
is not revised when further blocks are determined.

Determining the best block for the current residual space forms the kernel operation
of a search stage and is based on the following principle. Let an incomplete solution s0

including n0 (n0 ≥ 0) placed blocks be given. To find a block for the uppermost residual
space rstop of the residual space stack, starting from s0, i.e. retaining the n0 blocks already
placed, different complete solutions are generated experimentally. The (n0 + 1)th block of
all temporarily-generated solutions fills the (same) residual space rstop that results by the
previously added blocks. The (n0 + 1)th block of the complete temporary solution with
maximal packed volume is then returned as the best block for rstop.

Each of the complete solutions results by a separate tree search (called partition search)
that is itself composed by several basic search phases (cf. Fig. 4). The basic search phases
are chained as the incomplete solution sj that is output by the j th basic search phase is
taken as input solution by the (j + 1)th phase. Of course, the input solution of the first
basic search phase is the original incomplete solution s0. Each basic search phase adds dj

(dj ≥ 1) blocks to its input solution (j = 1, . . . , l). Only the last basic search phase provides
a complete solution.

In the j th basic search phase a tree is constructed in which the input solution sj−1 and the
related state data (residual space stack, set of unpacked boxes) form the root node. The tree
is defined by two parameters, namely the depth dj (dj ≥ 1) and the number of successor
nodes nsj . Starting with the root, nsj successor nodes are constructed per node (search
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Fig. 5 Two different search trees of a basic search phase

state) by filling the respective uppermost residual space alternately with the largest blocks
(in terms of volume) that fit into the space and consist of still unpacked boxes. Since dj

blocks are to be added the tree will have a depth of dj + 1 and generally each extended
solution will have nj−1 + dj blocks if the input solution consists of nj−1 blocks.

The extended solutions are generally still incomplete and to determine the best extended
solution of the j th basic search phase all extended solutions are completed by the so-called
greedy completion. Given an incomplete solution s ′ the greedy completion packs repeatedly
the largest possible block into the respective uppermost residual space until no further block
can be packed, i.e. a complete solution s ′′ is reached. Now the output solution of the j th basic
search phase is determined as the extended solution s ′ of (generally) nj−1 + dj blocks that
yields the best complete solution s ′′ with maximum packed volume. Only in the last basic
search phase the best completed solution s ′′ is returned instead of the related incomplete
solution s’ (see Fig. 4).

The number of successor nodes ns in a basic search phase is determined as a function
of the depth d so that a greater depth d corresponds to a smaller successor number ns and
vice versa. In Fig. 5 two possible trees of a basic search phase are shown. While in the
first tree of depth d = 2 the number of successors per node is ns = 2, the second tree has
the parameters depth d = 1 and ns = 4. Note that the number of successors ns determines
the search width or local diversity of the search while the depth d affects the number of
simultaneously considered consecutive search levels, i.e. the degree of foresight within a
basic search phase.

If the best block for a residual space has to be determined, at first the total depth td of
the partition searches is determined as a function of the parameter search_effort, i.e. td is
increased with search_effort. Then all ordered (number-theoretic) partitions of integer td,
denoted by π = (l, d1, d2, . . . , dl) with l ≥ 1, dj > 0, j = 1, . . . , l and

∑l

j=1 dj = td , are
considered. For each such partition π a partition search is carried out with l basic search
phases and depth values dj given by π . As explained above the best complete solution over
all partition searches then determines the block for the current residual space. If, e.g., the
total depth is td = 3, then partition searches have to be done for the four partitions (1,3),
(2,1,2), (2,2,1) and (3,1,1,1).

The special fashion of tree search outlined before is called partition controlled tree search
(PCTRS). According to the experience with the CLP the PCTRS is able to handle two suc-
cess factors of a tree search, namely the search width and the degree of foresight, in a flexible
and balanced way.

To adapt the CLP algorithm to the SPP the main routine is modified (see Fig. 3). If an
SPP solution including all given items was found in the first stage then the search for the
given container length is aborted, i.e. the second stage is ignored. It has been experimentally
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proved that in this way the search effort can be reduced without worsening the solution
quality.

4 Computational experiments

SPTRS was implemented in C/C++ using the GNU C/C++ compiler together with Net-
beans IDE 6.8 as development environment. All tests were run on an Intel 3.16 GHz PC with
3.6 GB RAM (Intel Core2 Duo, CPU 8500 3.16 GHz). In the computational experiments
the following parameter settings were used throughout. The parameter minspp_fillrate was
set to 90% (cf. Sect. 3.1). For the parameters of method CLTRS the original settings as
described in Fanslau and Bortfeldt (2010) were adopted. However, a pair of reduced time
limits for the search stages (10 seconds for stage 1, 20 seconds for stage 2) was applied
throughout. As explained above the second stage is only performed if no SPP solution was
found in the first stage of the search for a given container length. Moreover, in the 3D case
a time limit of 80 seconds for the entire search is imposed (commented in detail below).
Afterwards the experimental results for the 3D and 2D cases are presented.

4.1 Results on 3D test instances

To evaluate the performance of SPTRS for the 3D-SPP, almost all problem instances intro-
duced by Bortfeldt and Gehring (1999) and by Bortfeldt and Mack (2007) were calculated.
Altogether, five different instance sets for the 3D-SPP with a total of 800 instances are used
(note that a test case is a subset of an instance set):

• Instance set SP-BR was introduced in Bortfeldt and Gehring (1999) (see also Bortfeldt
and Mack 2007) and includes 10 test cases of 10 instances each. The instances were de-
rived from the 3D-CLP instances proposed by Bischoff and Ratcliff (1995) and Davies
and Bischoff (1998), respectively. The number of box types per instance varies from 3
in test case 1 to 50 in test case 10. The mean number of boxes per instance and test
case lies between 128 (in test case 5) and 140 (in test case 2). The character of the test
cases changes progressively from weakly to strongly heterogeneous. The optimal con-
tainer lengths are not known.

• Instance set SP-BR-XL was introduced in Bortfeldt and Mack (2007) and includes 10
test cases of 10 instances each. The problem instances and test cases are similarly con-
structed as for instance set SP-BR. However the number of boxes per instance amounts
constantly to 1000 and the instances can be viewed as weakly heterogeneous throughout.
The optimal container lengths are not known.

• Instance sets L, G and N were introduced in Bortfeldt and Mack (2007). Each of the sets
includes 8 test cases with 25 instances each. For all three instance sets the number of box
types per instance varies from 8 in test case 1 to 50 in test case 8 of the instance set.
The mean number of boxes per instance lies between 120 and 200 boxes. Each instance
of instance set L is constructed in such a way that an optimal solution with a volume
utilization of 100% (perfect solution) made up of some walls that follow each other in
length direction of the container is known. Each instance of set G has a known perfect so-
lution, observing guillotine cutting constraint (C2) that has not a wall structure in general.
Finally, each instance of instance set N has a known perfect solution not observing (C2).

The results for the 3D-SPP instances are shown in Tables 3, 4, 5 that are explained as
follows:
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Table 3 Results for instance set SP-BR (best utilizations for case (C3) not required in bold)

Method TSA-CC-4P SPBBL-CC4 3BF 3BF+TS SPTRS SPTRS SPTRS SPTRS

100% support Yes No No No No No Yes Yes

Utilization type VU (%) VU (%) VU2 (%) VU2 (%) VU (%) VU2 VU VU2

SP-BR01 (3) 92.3 87.3 88.7 90.0 94.0 94.1 93.6 93.7

SP-BR02 (5) 93.5 88.6 89.0 89.6 94.5 94.6 94.5 94.5

SP-BR03 (8) 92.3 89.4 87.8 89.0 94.4 94.5 93.9 94.0

SP-BR04 (10) 90.8 90.1 87.8 88.8 93.7 93.8 92.6 92.7

SP-BR05 (12) 89.9 89.3 87.7 88.5 93.3 93.3 92.0 92.1

SP-BR06 (15) 89.2 89.7 87.6 88.6 93.2 93.3 91.5 91.5

SP-BR07 (20) 87.1 89.2 87.4 88.7 92.1 92.2 90.3 90.4

SP-BR08 (30) 84.0 87.9 86.8 88.3 91.0 91.0 87.9 88.0

SP-BR09 (40) 80.9 87.3 86.5 87.9 90.7 90.8 83.1 83.2

SP-BR10 (50) 79.1 87.6 86.3 87.9 90.2 90.3 81.1 81.2

Mean utilization 87.9 88.7 87.6 88.7 92.7 92.8 90.1 90.1

Mean calc. time 234 s 99 s 1 s 160 s 78 s – 74 s –

• For instance sets SP-BR and SP-BR-XL the numbers of box types per test case are in-
dicated in brackets in column 1 of the related table. For instance sets L, G and N these
numbers are part of the names of the test cases shown in column 1 of Table 5.

• Two SPTRS variants were tested, i.e. SPTRS was applied with and without support con-
straint (C3). Whether (C3) is observed by SPTRS or by another solution method is indi-
cated in row “100% support” (“yes” or “no”).

• Four algorithms from literature were included for a comparison: the parallel tabu search
method TSA-CC-4P by Bortfeldt and Gehring (1999), the branch and bound method
SPBBL-CC4 by Bortfeldt and Mack (2007), the constructive heuristic 3BF and the tabu
search method 3BF+TS by Allen et al. (2011). These can be viewed as the most effec-
tive methods so far (cf. Table 2). The following computers were used for the compared
methods: TSA-CC-4P: four Pentium PCs (200 MHz each), SPBBL-CC4: AMD Athlon
(2.0 GHz), 3BF and 3BF+TS: Intel PC (1.86 GHz).

A time limit for the entire search of SPTRS was imposed to ensure that the compu-
tational effort used for SPTRS shows only small differences to the effort spent by the re-
cent competing methods SPBBL-CC4 and 3BF+TS, respectively. Considering the spec-
ified time limit of 160 seconds for both the methods 3BF+TS and SPBBL-CC4 and the
given data for the processors used, the time limit for SPTRS was set to 80 seconds. Here
it was taken into account that this time limit of SPTRS is often slightly exceeded since
the elapsed time is only checked outside the integrated container loading method. Mean
computing times of SPTRS and all compared methods can be found in Tables 3–10.

• The solution quality is given as volume utilization (VU) of the container in percent that
is calculated as VU = (total box volume)/(wC∗hC∗lCUsed) (in %). However, Allen et
al. (2011) calculate the volume utilization as VU2 = lClB/lCUsed (in %) (cf. Sect. 3.1
for calculation of lClB). It is easily seen that VU2 ≥ VU in any case (since �a� ≥ a).
Both utilizations, VU and VU2, are indicated for the SPTRS variants in Tables 3 and 4.
In Table 5 only utilization VU is indicated since the existence of perfect solutions ensures
the identicalness of VU2 and V U for all instances of the sets L, G and N.

• As SPTRS is a deterministic algorithm, the SPTRS results are compared to mean volume
utilizations of stochastic algorithms if mean and best utilization values are available. Per
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Table 4 Results for instance set SP-BR-XL (best utilizations for case (C3) not required in bold)

Method SPBBL-CC4 3BF 3BF+TS SPTRS SPTRS SPTRS SPTRS

100% support No No No No No Yes Yes

Utilization type VU (%) VU2 (%) VU2 (%) VU (%) VU2 VU VU2

SP-BR01-XL (3) 86.9 92.2 92.4 95.9 95.9 95.9 95.9

SP-BR02-XL (5) 88.3 92.2 92.4 95.6 95.6 95.6 95.6

SP-BR03-XL (8) 89.8 91.8 91.9 94.9 94.9 94.3 94.3

SP-BR04-XL (10) 90.2 92.0 92.1 94.5 94.5 94.2 94.3

SP-BR05-XL (12) 89.9 92.4 92.5 94.1 94.1 93.6 93.6

SP-BR06-XL (15) 91.5 92.5 92.6 93.5 93.5 92.9 92.9

SP-BR07-XL (20) 91.0 92.4 92.6 92.8 92.9 92.1 92.1

SP-BR08-XL (30) 90.8 92.6 92.8 92.5 92.5 80.4 80.4

SP-BR09-XL (40) 90.9 92.1 92.3 92.2 92.2 90.7 90.8

SP-BR10-XL (50) 90.4 92.5 92.7 92.3 92.3 90.5 90.5

Mean utilization 90.0 92.3 92.4 93.8 93.9 92.0 92.0

Mean calc. time 157 s 20 s 160 s 93 s – 90 s –

method and test case or instance set the mean volume utilization over all instances is
presented.

• Calculation times are given in seconds (related to used processor(s)) and represent to-
tal computation times (not times to best-values). Calculation times are averaged over all
instances of a test case or instance set. Alternatively time limits are used as calculation
times.

The results for the 3D-SPP can be summarized as follows:

• Generally, the SPTRS variant that fulfills the support constraint (C3) achieves smaller
volume utilizations than the other variant. For instance set SP-BR the observance of (C3)
“costs” approximately 2.6 %-points and for instance set SP-BR-XL approximately 1.8%-
points of volume utilization. These results correspond to the findings of Fanslau and Bort-
feldt (2010) on the influence of constraint (C3). However, for nine groups of instances
with smaller numbers of box types within the instance sets L, G and N an anomaly re-
garding this influence could be observed (see Table 5).

A particular high solution quality can be achieved by SPTRS for weakly heterogeneous
problem instances while the solution quality decreases as the heterogeneity of the box sets
increases. Note that this is not the case with, e.g., method SPBBL-CC4 (cf., e.g., Table 3).

• To ensure a fair comparison in first instance only methods that behave in the same way
regarding support constraint (C3) should be compared to each other. Hence, the SPTRS
variants that observe (C3) should be compared to the parallel tabu search method TSA-
CC-4P while the SPTRS variants that do not observe (C3) should be compared to the
other methods taken from literature. If constraint (C3) is required SPTRS reaches a bet-
ter solution quality than the competing method TSA-CC-4P for all 10 test cases of the
instance set SP-BR (for other instance sets no results are available for competing meth-
ods observing (C3)). If constraint (C3) is not required SPTRS achieves a better or equal
solution quality than all competing methods for 28 of 44 test cases. In 3 test cases of
instance set SP-BR-XL the competing method 3BF+TS performs better on average and
in 13 test cases of the instance sets L, N and G, respectively, the method SPBBL-CC4
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Table 5 Results for instance sets
L, G and N (best utilizations for
case (C3) not required in bold)

Method SPBBL-CC4 SPTRS SPTRS

100% support No No Yes

VU (%) VU (%) VU (%)

L08 96.4 99.8 99.7

L10 97.3 98.4 98.7

L12 97.3 98.1 97.7

L16 95.8 96.7 96.6

L20 97.7 96.7 96.0

L30 97.9 95.9 95.1

L40 97.2 95.1 94.3

L50 96.4 95.1 94.6

L, mean utilization 97.0 97.0 96.6

L, mean calc. time 160 s 63 s 60 s

G08 94.5 96.0 97.9

G10 94.1 95.9 96.6

G12 94.8 95.1 95.8

G15 94.4 93.9 94.1

G20 94.6 93.4 93.1

G30 94.5 92.4 91.7

G40 95.5 91.7 90.8

G50 95.1 90.9 86.2

G, mean utilization 94.7 93.7 93.3

G, mean calc. time 160 s 83 s 80 s

N08 93.5 95.9 97.1

N10 94.5 95.1 95.7

N12 94.4 94.6 94.7

N15 93.8 93.8 94.2

N20 93.4 93.1 92.8

N30 93.4 91.5 90.8

N40 92.9 90.6 88.5

N50 93.1 90.6 83.2

N, mean utilization 93.6 93.1 92.1

N, mean calc. time 160 s 82 s 82 s

achieves the better average utilization. Best results of competing methods are failed for
some test cases with higher numbers of box types (see Tables 4 and 5). Averaged over
all 200 instances of the sets SP-BR and SP-BR-XL SPTRS achieves a mean volume uti-
lization of 93.3% while the mean utilizations of 3BF+TS and SPBBL-CC4 amount to
90.6% and 89.3%, respectively. The mean volume utilization over all 800 instances of all
considered instance sets is 94.3% for SPTRS and amounts to 93.7% for SPBBL-CC4. All
in all, SPTRS proves to be very competitive in the 3D case. The mean total calculation
times in Tables 3–5 show that the computational effort of SPTRS and the best competing
methods is similar.
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4.2 Results on 2D test instances

The performance of SPTRS for the 2D-SPP is tested using four instance sets with 616 in-
stances:

• Instance set SP-KR was introduced by Kröger (1993, 1995) and includes 12 strongly het-
erogeneous instances with 25 to 60 items. The number of item types corresponds nearly
to the number of items and optimal container lengths are not known.

• Instance set SP-HT was defined by Hopper (2000) and by Hopper and Turton (2000) and
comprises three series C, N and T with 21, 35 and 35 strongly heterogeneous instances,
respectively. Each series consists of 7 test cases of 3 or 5 instances with (nearly) the same
number of items. All instances have perfect optimal solutions without any waste (at least
if SPP subtype RF is supposed), i.e. the lower bound lClB (see Sect. 3.1) specifies the
optimal container length. The instances of series T have guillotineable optimal solutions
while the instances of series N have only non-guillotineable optimal solutions.

• Instance set SP-N was generated by Burke et al. (2004) and consists of 13 strongly het-
erogeneous instances with 10 to 3152 rectangles. Each instance has a perfect solution so
that the optimal container lengths are known.

• Instance set SP-BWMV comprises ten classes (test cases) with 50 instances each. The
first six classes (C01 to C06) were suggested by Berkey and Wang (1987) and the last four
classes (C07 to C10) were defined by Martello and Vigo (1998) (see Iori et al. 2002, for a
fine description). Each class has five subclasses with 10 instances each. The item numbers
per instance lie between 20 and 100 and all instances are strongly heterogeneous. Optimal
container lengths are not known.

Algorithm SPTRS has been tested in two variants, namely for the SPP subtypes OG and
RG. In the first variant the orientation of all items is fixed (as stipulated in all tested 2D
instances) while in the second variant rotating the items is allowed. In the interest of a
fair comparison CLTRS is primarily matched to 2D-SPP methods from literature that also
observe the guillotine cutting constraint, i.e. that are specified for SPP subtypes OG or RG.
Only if for a given set of instances results of such methods are not available, top-quality
procedures for subtypes OF or RF are considered. As in the 3D case SPTRS is compared
preferably to mean (not best) results of stochastic methods and total calculation times are
given in seconds for the used processor. Unlike the 3D case no time limit for the entire
search of method SPTRS is specified for the calculation of 2D instances since there are too
many competing methods that were tested using very different testbeds.

The results for instance set SP-KR can be found in Table 6. For each instance the num-
ber of items is given in brackets (column 1). SPTRS is compared to the parallel genetic
algorithms by Kröger (1993, 1995) and Schnecke (1996), respectively. Further competing
methods are the genetic algorithm SPGAL by Bortfeldt (2006) and the B&B method HRBB
by Cui et al. (2008). SPGAL has been tested on a Pentium PC with 2 GHz while HRBB
results were achieved on a PC with 2.8 GHz. All competing methods work for subtype RG.
In Table 6 the used container lengths (lCUsed) are presented. SPTRS (RG) performs some-
what better than the parallel GAs and HRBB and it performs slightly worse than SPGAL.
While SPTRS achieves a better quality for the smaller instances SPGAL dominates for the
larger ones.

Table 7 shows the results for instance set SP-HT, series C. For each test case (of three
instances) the number of items per instance is given in brackets (column 1). SPTRS is com-
pared to the recursive procedure HR and the simulated annealing method SA+HR by Zhang
et al. (2005, 2006), respectively, the genetic algorithm SPGAL by Bortfeldt (2006) and to
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Table 6 Results (used container lengths) for instance set SP-KR (best results for type RG in bold)

Method Parallel GA (Schnecke) Parallel GA (Kröger) SPGAL HRBB SPTRS SPTRS

SPP subtype RG RG RG RG OG RG

SP-KR01 (25) 111.8 109.4 110.9 111 113 109

SP-KR02 (25) 107.6 105.0 105.2 106 107 105

SP-KR03 (25) 106.8 104.2 105.2 107 106 104

SP-KR04 (35) 158.3 153.0 153.0 154 155 153

SP-KR05 (35) 127.5 123.4 124.0 125 125 124

SP-KR06 (35) 128.4 124.6 125.4 127 128 125

SP-KR07 (45) 202.8 197.0 196.1 199 200 196

SP-KR08 (45) 172.8 165.2 164.9 166 168 165

SP-KR09 (45) 139.2 135.2 135.0 137 137 135

SP-KR10 (60) 259.6 253.8 251.5 253 257 254

SP-KR11 (60) 288.0 280.8 277.2 280 282 278

SP-KR12 (60) 294.6 284.6 281.9 284 289 284

Mean lCUsed 174.8 169.7 169.2 170.7 172.3 169.3

Mean calc. time – – 156 s 66 s 86 s 72 s

Table 7 Results (mean gaps in %) for instance set SP-HT, series C (best results for type RG in bold)

Method HR SA+HR HRBB SPGAL SPTRS SPTRS

SPP subtype RG RG RG OG OG RG

SP-HT-C1 (16-17) 8.3 5.0 1.7 3.2 3.3 1.7

SP-HT-C2 (25) 4.5 4.5 0.0 3.3 2.2 0.0

SP-HT-C3 (28-29) 6.7 2.2 1.1 3.9 1.1 0.0

SP-HT-C4 (49) 2.2 2.2 2.2 3.8 1.7 1.7

SP-HT-C5 (72-73) 1.9 1.9 1.9 2.4 1.5 1.1

SP-HT-C6 (97) 2.5 2.5 1.4 1.9 1.4 0.8

SP-HT-C7 (196-197) 1.8 3.2 1.3 1.7 1.4 1.0

Mean gap 4.0 3.1 1.4 2.9 1.8 0.9

Mean calc. time 5 s 345 s 2 s 143 s 58 s 61 s

the B&B method by Cui et al. (2008). HR has been tested on a Dell GX260 PC with 2.4 GHz
while HR+SA was run on a DELL GX270 with 3.0 GHz CPU. While SPGAL is tailored to
subtype OG the other competing methods work for subtype RG.

In Table 7 the mean gaps are given per test case where the gap of an instance’s solution is
calculated as gap = (lCUsed − lClB)/lClB (in %) (cf. Sect. 3.1). Both SPTRS variants per-
form better than the competing methods. SPTRS(RG) improves the mean gap values of HR,
SA+HR and HRBB by 3.1, 2.2 and 0.5%-points, respectively, while SPTRS (OG) reaches
an improvement of 1.1%-points compared to SPGAL (OG). However, it must be stated that
HRBB reaches a good solution quality within very short calculation times compared to the
other methods.

Table 8 includes the results for instance set SP-HT, series N and T. For each test case (of
five instances) the number of items per instance is given in brackets (columns 1, 6).
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Table 8 Results (mean gaps in %) for instance set SP-HT, series N and T

Method SVC
(SubKP)

GRASP SPTRS SPTRS – SVC
(SubKP)

GRASP SPTRS SPTRS

SPP subtype OF OF OG RG – OF OF OG RG

N1 (17) 3.3 0.9 10.0 3.5 T1 (17) 0.9 0.0 14.9 4.0

N2 (25) 3.4 3.3 6.2 2.9 T2 (25) 3.5 3.2 6.2 2.9

N3 (29) 3.5 3.6 5.6 2.7 T3 (29) 3.3 3.7 5.3 3.0

N4 (49) 2.5 3.0 3.8 2.0 T4 (49) 2.5 3.0 3.8 2.0

N5 (73) 2.1 2.6 3.4 1.6 T5 (73) 2.1 2.4 3.2 1.7

N6 (97) 1.7 2.2 2.3 1.4 T6 (97) 1.6 2.1 2.2 1.2

N7 (197) 1.0 1.3 1.3 0.7 T7 (199) 1.0 1.5 1.6 1.5

N, mean gap 2.5 2.4 4.7 2.1 T, mean gap 2.1 2.3 5.3 2.3

N, mean
calc. time

50 s 60 s 66 s 74 s T, mean
calc. time

50 s 60 s 73 s 69 s

Table 9 Results (volume
utilizations VU in %) for instance
set SP-N (best results for type RF
in bold)

Method BF+SA 3BF+TS SPTRS SPTRS

SPP subtype RF RF OG RG

N1 (10) 100.0 100.0 100.0 100.0

N2 (20) 100.0 100.0 100.0 100.0

N3 (30) 98.0 100.0 98.0 98.0

N4 (40) 97.6 99.8 98.8 98.8

N5 (50) 97.1 99.1 98.0 98.0

N6 (60) 98.0 99.3 99.0 99.0

N7 (70) 96.2 98.0 98.0 99.0

N8 (80) 97.6 97.6 98.8 98.8

N9 (100) 98.7 98.7 98.7 99.3

N10 (200) 98.7 99.3 99.3 99.3

N11 (300) 98.0 99.3 98.7 98.7

N12 (500) 98.0 99.0 98.0 98.0

N13 (3152) 99.6 99.6 99.9 99.9

SP-N, mean utilization 98.3 98.9 98.9 99.0

SP-N, mean calc. time 60 s 60 s 82 s 75 s

SPTRS is compared to method SVC(SubKP) by Belov et al. (2008) and to the GRASP
algorithm by Alvarez-Valdes et al. (2008) that are both tailored to subtype OF. SVC(SubKP)
was executed on an AMD PC with 2.4 GHz while the results for the GRASP algorithm were
calculated on a Pentium 4 Mobile PC with 2 GHz. Again, mean gaps are given per test case.
Obviously, the observance of the guillotine cutting constraint (C2) restricts the achievable
solutions especially for the smaller instances while this is to some extent compensated by
allowing the boxes to be rotated for SPTRS(RG).

Table 9 includes the results for instance set SP-N. For each instance the number of items
is indicated in brackets (column 1). SPTRS is compared to method BF+SA by Burke et
al. (2009) and 3BF+TS by Allen et al. (2011) that are designed for subtype RF. BF+SA
was calculated on a Pentium 4 PC with 2 GHz while Allen et al. (2011) used an Intel PC
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Table 10 Results (used
container lengths) for instance set
SP-BWMV

Method SVC (SubKP) GRASP SPTRS SPTRS

SPP subtype OF OF OG RG

C01-1 (20) 61.4 61.3 62.0 58.4

C01-2 (40) 122.0 121.9 123.2 116.7

C01-3 (60) 188.5 188.7 191.0 180.1

C01-4 (80) 262.6 262.9 269.0 249.7

C01-5 (100) 304.9 305.6 328.0 301.2

C01-Avg 187.9 188.1 194.6 181.2

C02-1 (20) 19.8 19.8 19.8 19.7

C02-2 (40) 39.1 39.1 39.3 39.1

C02-3 (60) 60.1 60.2 60.7 60.1

C02-4 (80) 83.2 83.2 83.6 83.2

C02-5 (100) 100.5 100.5 101.1 100.5

C02-Avg 60.5 60.6 60.9 60.5

C03-1 (20) 164.6 163.5 168.4 157.7

C03-2 (40) 333.9 333.8 339.9 316.8

C03-3 (60) 506.8 506.6 521.8 489.6

C03-4 (80) 709.8 710.0 734.3 679.3

C03-5 (100) 839.5 840.2 882.6 819.9

C03-Avg 510.9 510.8 529.4 492.7

C04-1 (20) 63.9 63.4 65.2 62.7

C04-2 (40) 125.9 126.3 127.8 125.4

C04-3 (60) 195.6 196.7 198.2 195.3

C04-4 (80) 270.4 272.2 274.4 270.7

C04-5 (100) 325.4 327.3 329.7 326.3

C04-Avg 196.2 197.2 199.1 196.1

C05-1 (20) 537.4 533.9 542.8 498.4

C05-2 (40) 1076.5 1074.7 1.086.9 1004.0

C05-3 (60) 1648.1 1645.9 1.675.5 1564.8

C05-4 (80) 2288.5 2290.4 2.372.9 2175.4

C05-5 (100) 2652.1 2652.0 2.821.9 2625.6

C05-Avg 1640.5 1639.4 1700.0 1573.6

C06-1 (20) 168.6 167.3 174.7 164.2

C06-2 (40) 332.2 333.6 336.7 331.1

C06-3 (60) 516.9 520.6 522.7 516.2

C06-4 (80) 714.0 718.9 722.5 717.3

C06-5 (100) 860.5 865.4 870.7 865.6

C06-Avg 518.4 521.2 525.5 518.9

C07-1 (20) 501.9 501.9 504.1 436.8

C07-2 (40) 1059.9 1059.0 1062.9 945.0

C07-3 (60) 1530.0 1529.6 1541.7 1384.0

C07-4 (80) 2222.1 2222.2 2315.5 2031.1

C07-5 (100) 2644.0 2645.2 2772.1 2420.1

C07-Avg 1591.6 1591.6 1639.3 1443.4

C08-1 (20) 461.5 458.0 472.1 448.8
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Table 10 (Continued)
Method SVC (SubKP) GRASP SPTRS SPTRS

SPP subtype OF OF OG RG

C08-2 (40) 956.1 954.4 980.0 952.3

C08-3 (60) 1400.8 1405.9 1426.6 1400.9

C08-4 (80) 1964.8 1973.6 2009.2 1988.1

C08-5 (100) 2423.1 2439.5 2487.3 2454.2

C08-Avg 1441.3 1446.3 1475.0 1448.9

C09-1 (20) 1106.8 1106.8 1108.4 987.9

C09-2 (40) 2190.6 2190.6 2193.2 1954.4

C09-3 (60) 3410.4 3410.4 3427.8 3041.1

C09-4 (80) 4588.1 4588.1 4621.4 4141.1

C09-5 (100) 5434.9 5434.9 5491.4 5144.4

C09-Avg 3346.2 3346.2 3368.4 3053.8

C10-1 (20) 351.4 350.5 354.3 338.3

C10-2 (40) 667.2 664.5 671.5 647.9

C10-3 (60) 936.0 935.5 947.5 918.3

C10-4 (80) 1211.2 1209.7 1228.0 1196.2

C10-5 (100) 1513.9 1515.1 1544.0 1508.2

C10-Avg 935.9 935.1 949.1 921.8

SP-BWMV
mean lCUsed

1042.9 1043.6 1064.1 989.1

SP-BWMV mean
calc. time

50 s 60 s 208 s 288 s

with 1.86 GHz. The utilizations are given according to the VU formula in Sect. 4.1. Allen
et al. (2011) calculate the volume utilization for instance set SP-N as VU2 (see Sect. 4.1).
However, the existence of perfect solutions ensures the identicalness of VU2 and V U for all
SP-N instances. The best mean volume utilization so far has been slightly improved by the
SPTRS (RG) variant and the SPTRS (OG) variant is also not dominated by the competing
methods that do not satisfy the guillotine cutting and the orientation constraint.

Table 10 presents the results for instance set SP-BWMV. For each class and subclass the
constant number of boxes per instance is indicated in column 1. SPTRS is again compared
to method SVC(SubKP) by Belov et al. (2008) and to the GRASP algorithm by Alvarez-
Valdes et al. (2008) that are tailored to subtype OF. Per subclass or class mean used container
lengths are shown. SPTRS (RG) achieves equal or better solutions than the GRASP algo-
rithm for 47 of the 50 subclasses while SPTRS (OG) generally does not reach the solution
quality of the compared methods for subtype OF. This result goes with the findings for
instance set SP-HT, series N and T.

All in all, SPTRS achieves a top solution quality in reasonable computation times also
for 2D-SPP instances. In terms of solution quality SPTRS seems to be at least on a par
with the most effective methods for solving the 2D-SPP with guillotine cutting constraint,
namely SPGAL and HRBB. A high solution quality was also proved in comparison with
high-quality methods for subtype RF using instance set SP-N.
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5 Conclusions

In this article an algorithm for the multi-dimensional strip packing problem with guillotine
cutting constraint is presented that is based on the method by Fanslau and Bortfeldt (2010)
for solving the container loading problem. Solving the SPP is reduced to solving a series
of CLP instances with decreasing container lengths. A preferably small value is chosen for
the initial container length to shorten the search. The chosen approach is advantageous in
some regards. It is easy to implement and the observance of constraints is transferred from
the CLP method to the SPP method. The main question to be investigated was whether the
high performance of the integrated CLP method is also transferred to the SPP method. This
question could be answered in the affirmative by means of extensive numerical experiments.
In a comparison to the best known 3D-SPP solution methods the proposed SPP algorithm,
called SPTRS, achieved a high solution quality using a similar computational effort as the
compared methods. In 28 of 44 3D-SPP test cases SPTRS reached the best volume utiliza-
tion on average. While SPTRS always satisfies the guillotine cutting constraint this is not
the case for most of the competing 3D-SPP methods. Moreover, the experiments proved
that algorithm SPTRS belongs to the most effective methods for the 2D-SPP with guillotine
cutting constraint.
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