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Abstract In this paper, a multiobjective scatter search procedure for a bi-objective terri-
tory design problem is proposed. A territory design problem consists of partitioning a set of
basic units into larger groups that are suitable with respect to some specific planning crite-
ria. These groups must be compact, connected, and balanced with respect to the number of
customers and sales volume. The bi-objective commercial territory design problem belongs
to the class of NP-hard problems. Previous work showed that large instances of the prob-
lem addressed in this work are practically intractable even for the single-objective version.
Therefore, the use of heuristic methods is the best alternative for obtaining approximate
efficient solutions for relatively large instances. The proposed scatter search-based frame-
work contains a diversification generation module based on a greedy randomized adaptive
search procedure, an improvement module based on a relinked local search strategy, and a
combination module based on a solution to an assignment problem.

The proposed metaheuristic is evaluated over a variety of instances taken from litera-
ture. This includes a comparison with two of the most successful multiobjective heuristics
from literature such as the Scatter Tabu Search Procedure for Multiobjective Optimization
(SSPMO) by Molina et al. (INFORMS J. Comput. 19(1):91–100, 2007), and the Non-
dominated Sorting Genetic Algorithm (NSGA-II) by Deb et al. (Parallel problem solving
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from nature – PPSN VI, Lecture notes in computer science, vol. 1917, Springer, Berlin,
pp. 849–858, 2000). Experimental work reveals that the proposed procedure consistently
outperforms both heuristics, SSPMO and NSGA-II, on all instances tested.

Keywords Territory design · Bi-objective programming · Pareto frontier · Metaheuristics ·
Scatter search

1 Introduction

Commercial territory design is a recent districting application. It consists of partitioning
a given set of basic units (BUs) into p larger groups called territories, according to some
specific planning criteria. Each BU is associated with a city block and has two attributes:
number of customers and product demand. The problem is represented by a graph where
each node is associated with a BU and each edge represents the adjacency between BUs. One
important requirement is that each territory must be connected, that is, it must be possible to
travel between each pair of nodes of the territory without leaving the territory. In addition all
territories must be balanced with respect to the number of customers and product demand.
As usual in districting problems, it is also important to have compact territories. Territory
compactness is handled by means of minimizing a dispersion objective function.

A single objective version of this problem was introduced by Ríos-Mercado and Fer-
nández (2009). Due to the complexity of the problem, they developed a reactive GRASP
procedure to solve it. Their proposed procedure outperformed the company method in both
solution quality and degree of infeasibility with respect to the balancing requirements. Dif-
ferent versions of this problem have been studied as well. Caballero-Hernández et al. (2007)
developed a GRASP for a commercial territory design problem with joint assignment con-
straints with relatively good results.

Regarding multiobjective approaches to other districting problems, there are a few ap-
plications on political districting (Guo et al. 2000; Bong and Wang 2004; Ricca and Sime-
one 2008), school districting (Bowerman et al. 1995; Scott et al. 1996), and public service
(Tavares-Pereira et al. 2007; Ricca 2004). These are, however, different models from the one
studied in this paper. To the best of our knowledge the only work on multiobjective com-
mercial territory design is the one by Salazar-Aguilar et al. (2011b) and Salazar-Aguilar et
al. (2011c). In the former, the bi-objective model is introduced and an improved ε-constraint
method is proposed for finding optimal Pareto frontiers. One of the limitations of that work
is of course the size of the instances that could be solved exactly. The largest tractable in-
stance has 150 BUs and 6 territories. In the latter, GRASP-based heuristics are developed to
attempt to tackle large scale instances of the problem with relative success. Therefore, the
motivation of the present work is to develop a better and more effective method for tackling
large instances of this commercial territory design problem (TDP). For a survey on single-
objective TDP applications, the reader is referred to the work of Kalcsics et al. (2005) and
Duque et al. (2007).

In this work, the well-known framework of Scatter Search (Laguna and Martí 2003)
is used to develop a heuristic that allows to obtain approximate efficient solutions to the
bi-objective commercial territory design problem. Five key components were derived and
developed within the Scatter Search (SS) framework: (i) a diversification generation module
based on a Greedy Randomized Adaptive Search Procedure (GRASP), (ii) an improvement
module based on a novel relinked search strategy, (iii) a solution combination module based
on a hybrid scheme; (iv) a reference set update module, and (v) a subset generation module.
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As usual in SS, the first three modules were specifically tailored to attempt to exploit the
problem structure.

The Scatter Search Method for Multiobjective Territory Design (SSMTDP) proposed in
this work was evaluated over a set of large instances. The results indicate that the SSMTDP
is able to find good solutions that are very well distributed along the efficient frontier. Al-
though the initial solutions have a poor evaluation in the objective functions, the proposed
combination method has the ability of exploring new regions in the search space and the
improvement method allows to obtain better solutions that are very far from the initial set.
When compared to the state-of-the-art of multi-objective methods such as the Scatter Tabu
Search Procedure for Multiobjective Optimization (SSPMO) and the Non-dominated Sort-
ing Genetic Algorithm (NSGA-II), it was observed that these procedures struggled in gener-
ating feasible solutions to the problem. A few instances could be solved by these procedures.
In contrast, the SSMTDP reported non-dominated solutions for all instances tested. Further-
more, SSMTDP reported significantly better solutions for those instances that were solved
for both SSPMO and NSGA-II.

The paper is organized as follows. Section 2 provides a description of the problem. In
Sect. 3, the proposed procedure is fully described. Experimental work is discussed in Sect. 4
and final conclusions are drawn in Sect. 5.

2 Problem description

Given a set V of city blocks (basic units, BUs), the firm wishes to partition this set into a
fixed number (p) of disjoint territories satisfying some planning criteria such as balance,
connectivity, and compactness. The balance in the territories is required to assure a better
workload distribution. Connectivity is required to guarantee mobility within the territories,
that is, each territory has to be connected, so that each basic unit can be reached from any
other without leaving the territory. Territory compactness is required to guarantee that cus-
tomers within a territory are relatively close to each other. Compactness and balance with
respect to the number of customers are the most important criteria identified by the firm.
Therefore in this work these criteria are considered as objective functions and the remaining
criteria are treated as constraints.

Let G = (V ,E), where E is the set of edges that represents adjacency between BUs. An
edge e ∈ E connecting nodes i and j exists if i and j are adjacent BUs. Multiple attributes
such as geographical coordinates (cx

j , c
y

j ), number of customers, and sales volume are asso-
ciated to each node j ∈ V . In particular, the firm wishes perfect balance among territories,
that is, each territory must contain the same amount of customers and sales volume. Let K

be the territory index set such that |K| = p. Let A = {1,2} be the set of node activities,
where 1 refers to the number of customers and 2 refers to sales volume. We define the size
of territory Xk with respect to activity a as w(a)(Xk) = ∑

i∈Xk
w

(a)
i , where w

(a)
i is the value

associated to activity a ∈ A in node i ∈ V . The target value is given by μ(a) = ∑
j∈V w

(a)
j /p.

Due to the discrete nature of this problem, it is practically impossible to have perfectly bal-
anced territories. Thus, for sales volume, a tolerance parameter τ (2) is introduced to allow a
relative deviation from the target μ(2).

Let Π be the set of all possible p-partitions of V . For measuring dispersion we use
the dispersion measure of the well-known p-Median Problem. In combinatorial form this
function is written as:

f1(X) =
∑

k∈K

∑

i∈Xk

di,c(k),
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where dij is the Euclidean distance between nodes i and j , and c(k) is the 1-median center
of the nodes in Xk , k ∈ K :

c(k) ∈ arg min
j∈Xk

d̃j

with

d̃j =
∑

i∈Xk

dij .

Under the previous assumptions, the bi-objective combinatorial model can be written as
follows.

min
X∈Π

f1(X) =
∑

k∈K

∑

i∈Xk

dic(k), (1)

min
X∈Π

f2(X) = max
k∈K

1

μ(1)

[
max

{
w(1)(Xk) − μ(1),μ(1) − w(1)(Xk)

}]
(2)

subject to:

w(2)(Xk) ≤ (1 + τ (2))μ(2), k ∈ K, (3)

w(2)(Xk) ≥ (1 − τ (2))μ(2), k ∈ K, (4)

Gk = (Xk,E(Xk)) is connected; k ∈ K. (5)

The goal is to find a p-partition X = (X1, . . . ,Xp) of V , such that both the dispersion
(1) on each territory Xk and the maximum relative deviation with respect to the number of
customers in each territory (2) are simultaneously minimized. Constraints (3)–(4) establish
that the territory size (sales volume) should be between the range allowed by the tolerance
parameter τ (2). Constraints (5) assure the connectivity of each territory, where Gk is the
graph induced in G by the set of nodes Xk .

Note that this can also be seen as partitioning G (the contiguity graph representing the
basic units) into p connected components (contiguous districts) under the additional side
constraints on the product demand of each territory (that must satisfy a soft target), and min-
imizing two objective functions (namely, the dispersion measure of the BUs in a territory,
and the maximum relative deviation of the number of customers of a district with respect to
a target level). The basic contiguity graph model for the representation of a territory divided
into elementary units was introduced by Simeone (1978), and has been widely adopted for
districting problems. For example, for political districting, it was used in Nygreen (1988),
Grilli Di Cortona et al. (1999), Ricca and Simeone (2008).

The above problem is NP-hard (Salazar-Aguilar et al. 2011a) and previous work (Salazar-
Aguilar et al. 2011b) reveals that large instances are intractable by applying the existing
exact solution procedures. In this paper we develop a heuristic procedure for obtaining ap-
proximate efficient solutions to large instances.

3 The SSMTDP procedure

The evolutionary approach called Scatter Search (SS) was first introduced in Glover (1977)
as a metaheuristic for integer programming. It is based on diversifying the search through
the solution space. It operates on a set of solutions, named the reference set, formed by good
and diverse solutions of the main population. These solutions are combined with the aim
of generating new solutions with better fitness, while maintaining diversity. Furthermore, an
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Fig. 1 Scatter search metaheuristic

improvement phase using local search is applied. As detailed in Martí et al. (2006), the basic
structure of SS is formed by five main modules. Figure 1 depicts a schematic representation
of the proposed SS design that shows how the modules interact.

SS is a very flexible technique, since some modules of its structure can be defined accord-
ing to the problem at hand. For instance, in this paper, the diversification, the improvement,
and the combination modules have been proposed and tailored to this specific problem at-
tempting to exploit its problem structure. In our design the diversification module generates
a set of initial solutions based on GRASP strategies; the improvement module attempts to
improve a given solution by using a novel relinked local search strategy for multiobjective
problems; the solution combination module transforms two given solutions into one or more
child solutions by attempting to keep good features from the parent solutions. In this spe-
cific application, exactly three child solutions are generated from two given territory designs.
These three problem-specific modules, are fully described in the following subsection. Fi-
nally, the remaining two modules, which are not problem-dependent, are the reference set
update module and the subset generation module. The former maintains a portion of the best
solutions of the reference set. In this case, the reference set is formed by non-dominated so-
lutions according to the Pareto sense. When a non-dominated solution is found, this enters
the reference set and those solutions that are dominated by the added solution are deleted
from the reference set. The subset generation module operates in the reference set, then the
subsets of solutions that must be combined are created by all possible pairs of solutions from
the reference set. During each SSMTDP iteration, a temporal memory is used to avoid those
combinations that were done in the previous iteration. In other words, for a specific iteration,
the combination process is applied just to those pairs of solutions that were not combined in
the previous iteration.

3.1 Description of SSMTDP modules

The components of the problem-specific modules of the proposed SSMTDP are described
in detail next.

Diversification generation module: It is based on the GRASP procedures developed by
Salazar-Aguilar et al. (2011c). Specifically, we use the procedure called BGRASP-I.
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This procedure uses a merit function based on two components: dispersion and maxi-
mum deviation with respect to the target value in the number of customers. This mod-
ule keeps connectivity as a hard constraint. The post-processing phase of BGRASP-I is
carried out by the improvement module described below.

Improvement module: This module transforms a trial solution into one or more trial solu-
tions. This module is an implementation of a relinked local search (RLS) strategy and is
applied to each solution obtained by either the diversification generation or the combi-
nation module. As mentioned in Molina et al. (2007), most local search applications to
multiobjective optimization use multiple runs to approximate the Pareto frontier. This
technique is usually based on a weighted combination of the objective functions where
each run consists of solving the single-objective optimization problem that results from
applying a given set of weights. To obtain an approximation of the Pareto frontier the
procedure must be run as many times as the desired number of points, using different
weight values. The performance of implementations based on multiple runs deterio-
rates as the need for generating more non-dominated solutions increases, since this is
directly proportional to the number of times that the procedure must be executed. On
the other hand, Molina et al. (2007) propose the use of a search referred to as relinked
local search. This scheme consists of performing a local search by taking into account
one objective function at a time in a sequential fashion. This module is based on the
very well known Fritz-John optimality principle for multiobjetive optimization (Singh
1987) which has been empirically demonstrated to provide a dense and diverse set of
non-dominated points.
In our problem, the RLS is done in the following way. For a given p-partition X =
(X1, . . . ,Xp), our improvement module consists of optimizing the following three ob-
jective functions (one at a time): (i) the dispersion measure

z1(X) =
∑

k∈K

∑

j∈Xk

dj,c(k), (6)

(ii) the maximum deviation with respect to the number of customers

z2(X) = 1

μ(1)
max
k∈K

{
max{w(1)(Xk) − μ(1),μ(1) − w(1)(Xk)}

}
, (7)

and (iii) total infeasibility

z3(X) = 1

μ(2)

∑

k∈K

max
{
w(2)(Xk) − (1 + τ (2))μ(2), (1 − τ (2))μ(2) − w(2)(Xk),0

}
(8)

related to the balancing of sales volume. Note that c(k) is the center of territory Xk . The
RLS consists of applying a single-objective local search by using each of these merit
functions one at a time. In other words, a first local search is applied by using z1(X)

as the merit function in a single-objective manner. After a local optimum is found, the
local search is continued with z2(X) as the merit function. This is followed by a local
search by using z3(X) as the merit function. To close the cycle, a final local search is
performed by using the initial objective z1(X) as the merit function. The set of non-
dominated solutions is updated at every local optimum found in the search trajectory.

Solution combination module: This transforms the solution sets formed by the subset gen-
eration module into one or more combined solutions. In this work, three solutions are
generated (see Function 1) from each pair of solutions. There are many ways of com-
bining a pair of solutions. In the proposed SSMTDP procedure, this component is de-
veloped by attempting to keep good features present in the current solutions. Then,
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Function 1 CombinationModule(X1, X2)
Input:

(X1,X2):= Pair of parent solutions to be combined
Output: (Xz1 ,Xz2 ,Xz3 ) Three new children solutions obtained by combining X1 and X2

Ci ← Set of territory centers of Xi , i = 1,2; Ē ← Edge set between C1 and C2

M ← SolveAssignmentProblem(C1, C2, Ē)
{ Build partial solution }
for (k = 1, . . . , p) do

Take (ik, jk) from M

X̄k ← X1
t (ik ) ∩ X2

t (jk)

if (X̄k = ∅) then X̄k ← {ik}
end for
{ Assign remaining nodes }
Xzq ← X̄ for q = 1,2,3
for (q = 1, . . . ,3) do

Xzq ← BuildSolution(Xzq , zq )
end for
return (Xz1 ,Xz2 ,Xz3 )

given a pair of solutions X1 and X2, these are combined by identifying the best match
between territories. An exhaustive evaluation of the possible ways of combining these
two solutions requires a high computational effort. Therefore, the module attempts to
find the best territory match based on their corresponding territory centers only. This
is done by solving an associated assignment problem. The assignment problem used
in this module minimizes the sum of distances between the territory centers identified
on these solutions. For instance, suppose that solutions X1 and X2, with corresponding
center sets C1 and C2, are to be combined. Let B = (C1,C2, Ē) be the associated com-
plete bipartite graph with node sets C1 and C2, and edge set Ē = {(i, j) ∈ C1 × C2,
where the weight of edge (i, j) ∈ Ē is given by dij . Let yij = 1 if edge (i, j) is included
in the assignment, whereas yij = 0 otherwise. Then the following assignment problem
is formulated:

(AP) Minimize h(y) =
∑

i∈C1

∑

j∈C2

dij yij

subject to
∑

j∈C2

yij = 1, i ∈ C1,

∑

i∈C1

yij = 1, j ∈ C2,

yij ∈ {0,1}, i ∈ C1, j ∈ C2.

The optimal solution to AP is used to determine which territories are matched. Each
matching pair (i, j) of this assignment yields a territory in the combined solution by
assigning to this territory all those nodes that are common to both territory with center
in i in X1 and territory with center in j in X2. This can be seen in Function 1, where
t (i) indicates the territory to which node i belongs. Let S(X1,X2) be the partial ter-
ritory design obtained this way. Figure 2 illustrates the process of generating a partial
solution by combining a pair of trial solutions X1 and X2. In this figure, the black nodes
represent the territory centers and the dotted lines represent the territories in the left-
hand side. After solving the AP and associating to each territory common nodes from
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Fig. 2 Combination of territories between a pair of solutions

X1 and X2, the resulting partial assignment S(X1,X2) is represented by the territories
enclosed by dotted lines in the right-hand side of the figure. As can be seen, there is a
set of unassigned nodes that must be assigned. Finally, this partial solution S(X1,X2)

is used as a starting solution for generating three new solutions. Each of these solutions
is obtained by iteratively adding the unassigned nodes to the partial territories through
a call to the diversification module under a different given merit function. Let zq(X),
for q = 1, 2, 3, be the merit function corresponding to the dispersion measure (6), the
maximum deviation with respect to the number of customers (7), and total relative in-
feasibility with respect to the balancing of the sales volume (8), respectively. That is,
for generating the new solution Xzq , the diversification is applied to S(X1,X2) under
merit function zq , for q = 1,2,3. The function BuildSolution(X̄, zq ) takes a partial so-
lution X̄ and a merit function zq and completes a solution by assigning the remaining
nodes under a GRASP construction and zq as merit function.

When all trial solutions are generated (i.e., when all pairs of solutions are combined),
this set of solutions is improved by using the improvement module previously described.
At the end, the improvement process reports a potential set of non-dominated solutions that
can be included in the current reference set. Thus, each solution from the potential set enters
the reference set if it is a non-dominated solution with respect to the current set of solutions
belonging to the reference set. Those solutions that are dominated by the new solution are
removed from the current reference set. The SSMTDP stops when there are no new solutions
included in the reference set.

Algorithm 1 shows a pseudocode of the proposed SSMTDP. The SSMTDP stops either
by iteration limit or by convergence, that is, when the reference set does not change in two
consecutive iterations. Note that the updating of the reference set takes place after a potential
set of non-dominated solutions is obtained by applying the improvement module over all
trial solutions (Xz1 , Xz2 , and Xz3 ) generated by the combination module. This strategy was
adopted due to the fact that the computational effort increases considerably when the typical
strategy (i.e., updating after each new feasible solution is generated) is performed.

4 Experimental work

The procedure was coded in C++, and compiled with the Sun C++ compiler workshop 8.0
under the Solaris 9 operating system and run on a SunFire V440. The data sets were taken
from the library developed by Ríos-Mercado and Fernández (2009). These data set contains
randomly generated instances based on real-world data provided by a firm. The SSMTDP
was applied over two instance sets with (n,p) ∈ {(500,20), (1000,50)}. For each set, 10
instances were generated and a tolerance parameter τ (2) = 0.05 was used for all of them.
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Algorithm 1 General scheme of SSMTDP
Input: L := Iteration limit
Output: RefSet := Set of non-dominated solutions (reference set)

NewSolutions ← TRUE, iter ← 0
RefSet ← DiverseSolutions( ) {use GRASP to generate P solutions}
while ((NewSolutions) and (iter < L)) do

SubSet ← SubsetGeneration(RefSet) {pairs of solutions to be combined}
TrialSubSet ← ∅, NewSolutions ← FALSE
for (X1,X2) ∈ SubSet do

(Xz1 ,Xz2 ,Xz3) ← CombinationModule(X1,X2)

TrialSubSet ← TrialSubSet ∪ {Xz1 ,Xz2 ,Xz3}
end for
for (X ∈ TrialSubSet) do

X ← Improvement(X) {apply RLS}
end for
UpdateRefSet(RefSet, TrialSubSet)
if (RefSet has changed) then NewSolutions ← TRUE
iter ← iter + 1

end while
return RefSet

Fig. 3 Performance of
SSMTDP, instance DU500-08

Two stopping criteria were used in the SSMTDP, iteration limit and convergence. In these
experiments, the maximum number of iterations was set to 10.

4.1 Assessing the performance of SSMTDP

During the experimental work, it was observed that SSMTDP converged without reaching
the iteration limit over all instances tested. Thus, in all cases the SSMTDP stopped when
there were no new solutions to be added to the reference set. Figure 3 shows the perfor-
mance of SSMTDP for the instance DU500-08, having 500 BUs and 20 territories. The
first frontier (BGRASP-I) is the initial solution set generated by the diversification module
(BGRASP-I). The following frontiers show the solutions belonging to the reference set on
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Fig. 4 Performance of
SSMTDP, instance DU1000-04

each SSMTDP iteration. Recall that SSMTDP starts with a non-dominated solution set that
is obtained by the diversification module. These solutions are assigned to the initial refer-
ence set. After that, each pair of solutions in the reference set is combined to generate three
different solutions. The new generated solutions are improved through the RLS and then,
the updating of the reference set is done for obtaining a new reference set. When the ref-
erence set does not change anymore, the SSMTDP stops. In the case illustrated in Fig. 3,
the SSMTDP converged at iteration 9. That is, in this iteration, the combination of solutions
from the reference set did not yield potential non-dominated solutions to be added to the ref-
erence set. Thus, SSMTDP reports as non-dominated solutions set those solutions belonging
to the reference set in the last iteration.

To illustrate the behavior of SSMTDP by using instances of size (1000,50), Fig. 4 shows
the SSMTDP iterations over the instance called DU1000-04 which has 1000 BUs and 50
territories. In this case the SSMTDP stopped in iteration 8. In summary, the approximate
efficient frontiers obtained by SSMTDP represent a significant improvement with respect to
the initial frontiers provided by BGRASP-I. It was observed that in all instances tested (20
instances), the SSMTDP method stopped by convergence.

In the following sections, SSMTDP is compared with two other state-of-the-art heuris-
tics, NSGA-II and SSPMO. NSGA-II is selected as it is the most widely used and cited
genetic algorithm for Multiobjective Optimization and, thus, considered a standard for ex-
perimental comparisons. On the other hand, SSPMO is regarded as one the most successful
and cited non-genetic algorithms for multiobjective optimization. SSPMO is a SS based
method that uses the Relinked Local Search principle, whose efficiency has been consis-
tently reported in the literature. Thus, we consider these two methods as important and
relevant for benchmarking our proposed heuristic.

Different performance measures have been used for evaluating the quality of the solu-
tions obtained from different multiobjective approaches. Here we consider the most popular
measures which have been reported in the literature of multiobjective optimization:

1. Number of points in the non-dominated frontier: It is an important measure because non-
dominated frontiers that provide more alternatives to the decision maker are preferred to
those frontiers with few non-dominated points.

2. k-distance: This density-estimation technique used by Zitzler et al. (2001) in connection
with the computational testing of SPEA2 is based on the kth nearest neighbor method of
Silverman (1986). This metric is simply the Euclidean distance from a non-dominated
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point to the kth nearest non-dominated point. Since the k-distance is defined for a single
point in the frontier, two measures are considered in the evaluation of the results, namely,
the average and maximum k-distance values computed over all the points of the non-
dominated frontier obtained by the method. Thus, the smaller the k-distance for the points
in the frontier, the better the frontier density. We use k = 4.

3. Size of space covered (SSC(X)): This metric was suggested by Zitzler and Thiele (1999).
For a given set of points X, SSC(X) is the volume of the points dominated by X. Hence,
the larger the value of SSC(X), the better X. Specifically, let X = {X1, . . . ,Xk} be a set
of k decision vectors. The function SSC(X) gives the volume enclosed by the union of
the polytopes P1, . . . ,Pk , where each Pi is formed by the intersections of the follow-
ing hyperplanes arising out of Xi , along with the axes: for each axis in the objective
space, there exists a hyperplane perpendicular to the axis and passing through the point
(f1(X

1), . . . , fk(X
k)). In the two-dimensional case, each Pi represents a rectangle de-

fined by the points (0,0) and (f1(X
i), f2(X

i)). To avoid computing infinite volumes, the
computed volume is divided by the volume of a reference hypercube (setting both upper
and lower bound limits for each objective) thus the final result is shown in percentage.

4. C(A,B): It is known as the coverage of two sets measure (Zitzler and Thiele 1999). This
measure represents the proportion of points in the estimated efficient frontier B that are
dominated by the non-dominated points in the estimated frontier A. Thus, C(A,B) is the
coverage of B by points in A.

4.2 Comparison with existing multiobjective SS procedure

4.2.1 Dealing with territory connectivity

Before describing the existing methods used for benchmarking, we must point out an impor-
tant aspect that is a key difference among these methods. As it has been empirically shown
the search space becomes very restricted when the connectivity constraints are considered as
hard constraints. Thus, to deal with this issue, a strategy where these constraints are treated
as soft constraints is followed in the adaptation of the existing algorithms. That is, these con-
straints are relaxed and added to a merit search function as a penalty term. By proceeding
this way, the algorithms can make a better search in the solution space. Naturally, infeasible
solutions are discarded at the end. This strategy contrasts with the one used in the proposed
scheme, where this connectivity is explicitly dealt with.

Description of SSPMO SSPMO is a metaheuristic introduced by Molina et al. (2007) ini-
tially developed for solving non-linear multiobjective optimization problems; however, it
has been adapted for multiobjective combinatorial problems as well. It consists of a scat-
ter/tabu search hybrid procedure that includes two different phases: (i) generation of an
initial set of non-dominated points through Relinked Local (Tabu) Searches (MOAMP), and
(ii) combination of solutions and updating of the non-dominated set via scatter search.

The generation of the initial set is based on the MOAMP method proposed by Caballero
et al. (2004). To build the initial set of non-dominated points, MOAMP carries out a series
of Relinked Tabu Searches where each visited point could be included in the final non-
dominated set. The second phase of MOAMP consists of an intensification search around
the initial set of non-dominated points. For more details see Caballero et al. (2004), Molina
et al. (2007).

The SSPMO procedure creates a reference set (E) using the non-dominated solutions
reported by MOAMP. A list of solutions that have been selected as reference points is kept to
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prevent the selection of those solutions in future iterations. Then, each solution that is added
to the set E, is added to a Tabu Set TS. A linear-combination method is used to combine
reference solutions. All pair of solutions in E are combined and each combination yields
four new trial solutions. Each new solution is subject to an improvement method based
on MOAMP. Solutions generated after the improvement procedure are tested for possible
inclusion in E. Once all pairs of solutions in E are combined and the new trial solutions
are improved, SSPMO updates the reference set E and proceeds to the next iteration. For a
complete description of SSPMO method, see Molina et al. (2007).

The SSPMO method was adapted to the multiobjective commercial territory design prob-
lem. Four objective functions are minimized: (i) dispersion (6), (ii) maximum deviation with
respect to the average number of customers (7), (iii) total infeasibility with respect to the bal-
ancing constraints of sales volume (8), and (iv) total number of disconnected nodes. A node
is said to be disconnected from a given territory if there is no path between this node and the
corresponding territory center considering only edges in this territory. The initial solution
set fed to MOAMP is generated by choosing p seeds (configuration of centers) and each
of the remaining BUs is assigned to its closest center. The maximum number of updates
of the reference set was set to 10 (equal to the number of iterations used in SSMTDP), the
maximum number of tabu solutions was set to 55, the threshold value was set to 0.05, and
the maximum number of non-dominated solutions included in the reference set was set to
100. The neighborhoods are the same as those defined in the NSGA-II method (following
section). For each pair of solutions, four new trial solutions are generated.

At the end, the non-dominated solutions reported by SSPMO are filtered using only those
feasible solutions that are non-dominated with respect to the dispersion measure and the
maximum deviation with respect to the average number of customers.

Comparing SSPMO and SSMTDP In this part of the computational work, the SSMTDP
procedure is compared with SSPMO. Both SS-based procedures stop by convergence or by
iteration limit (10 updates of the reference set). Figure 5 shows the Pareto frontiers provided
by SSPMO and SSMTDP. These results correspond to the 10 instances with 500 BUs and
20 territories. The maximum number of allowed movements in SSMTDP was set to 800.
Graphically, SSMTDP outperforms SSPMO over all instances tested.

Tables 1 and 2 show a summary of all metrics previously described for evaluating the
performance of the algorithms. Clearly, SSMTDP outperforms SSPMO in all metrics for
all the instances, specially when considering convergence, where the SSC metric is around
twice the one obtained by SSPMO. Additionally, in Table 2 the superiority of SSMTDP
over SSPMO is particular evident for instance DU500-04 for which, on average, 90% of the
frontiers generated by SSPMO are covered by the frontiers obtained by SSMTDP, and the
SSPMO frontiers are not able to cover any point in the frontiers provided by SSMTDP.

In addition, 10 instances with 1000 BUs and 50 territories were tested by applying both
SSPMO and SSMTDP using the same stopping criteria as in the previous cases. SSPMO
spent more than 30 days without getting convergence for the first instance tested. Then, the
stopping criteria was changed and the iteration limit was set to 2. Due that the tremendous
computational effort required by the SSPMO, the procedure was not applied to all instances
with 1000 BUs and 50 territories. Therefore, here we show only the approximate frontier
reported by SSPMO for the instance DU1000-05 (Fig. 6) at iteration 2. In contrast, our
procedure SSMTDP converged and reported non-dominated solutions for DU1000-05 and
for the remaining instances tested. The maximum number of moves for these cases was set
to 2000.
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Fig. 5 Approximate Pareto frontiers obtained by SSPMO and SSMTDP for the 10 instances tested in set
(500,20)
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Fig. 5 (Continued)

Table 1 Summary of metrics for the 10 instances in the set (500,20), where NP(X) refers to the number of
points in the non-dominated frontier X

Procedure NP(X) k-distance (mean) k-distance (max) SSC(X)

SSPMO min 7.00 0.16 0.30 0.38

ave 10.82 0.31 0.56 0.42

max 17.00 0.58 0.81 0.54

SSMTDP min 11.00 0.09 0.22 0.93

ave 14.36 0.16 0.44 0.97

max 22.00 0.26 0.83 0.99

Table 2 Average value for the
coverage of two sets C(A,B)

computed for the 10 instances in
the set (500,20)

C(A,B) SSPMO SSMTDP

SSPMO 0.00 0.00

SSMTDP 0.90 0.00

Fig. 6 Approximate Pareto
frontiers reported by SSPMO and
SSMTDP, instance DU1000-05
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4.3 Comparison with existing evolutionary algorithm

4.3.1 Description of NSGA-II

The Non-dominated Sorting Genetic Algorithm (NSGA-II) is an evolutionary algorithm that
has been successfully applied to many multiobjective combinatorial optimization problems
in the literature (Deb et al. 2000) and is the most cited method in multiobjective metaheuris-
tic. Its general description can be found in Deb et al. (2002).

In this work, NSGA-II was adapted to the problem. The same four objective functions
already considered for SSPMO are: (i) dispersion (6), (ii) maximum deviation with respect
to the average number of customers (7), (iii) total infeasibility with respect to the balancing
constraints of sales volume (8), and (iv) total number of unconnected nodes. The main fea-
tures of this NSGA-II procedure are the following. The generation of solutions consists of
randomly selecting p seeds from the set of nodes (V ) and assigning the remaining n − p

nodes to the closest center. NSGA-II uses different non-domination levels (ranks). In a few
words, for each solution h two entities are calculated: (i) domination count dh which corre-
sponds to the number of solutions that dominate the solution h, and (ii) a set of solutions Dh

that are dominated by h. All solutions in the first non-dominated frontier have their domi-
nation count equal to zero. Then, for each solution h with dh = 0, each member (g) from
Sp is visited, and its domination count is reduced by one. In doing so, if for any member g

the domination count becomes zero, it is put in a separate list Q̄. These members belong to
the second frontier. Now, the above procedure is continued with each member of Q̄ and the
third frontier is identified. The process continues until frontiers of all levels are identified.

For each pair of solutions two new solutions are obtained. Each new solution copies each
center from the one of the parent solutions with the same probability and the assignment
process is equal to that of the initial generation. For each generated solution, a random
integer number is generated in the range [0,4]. If the random number is equal to 0, then
the mutation process is not applied. Otherwise, the mutation process takes place by using
the kind of move determined by the generated number. The different neighborhoods used in
NSGA-II are defined by the following moves:

1. Select a center and change it for another randomly selected node. Do a re-assignment of
nodes using the new configuration of centers.

2. Select a node in the border of a territory and assign this node to the adjacent territory
(keeping connectivity).

3. Select a territory r and assign a randomly selected node from an adjacent territory to r .
4. Interchange two nodes between a pair of territories by holding connectivity.

When the convergence criterion is reached, the best non-dominated solutions are filtered
to obtain those feasible solutions that are non-dominated with respect to the dispersion mea-
sure and the maximum deviation with respect to the average number of customers.

4.3.2 Comparing NSGA-II, SSPMO, and SSMTDP

NSGA-II was applied to the two data sets previously described. The number of generations
and the population size were both set to 500. On each generation 250 solutions were com-
bined. NSGA-II reported non-dominated solutions only for the instance DU500-04 (Tables 3
and 4) which has 500 BUs and 20 territories. For the other 19 instances tested NSGA-II did
not provide feasible solutions, while SSTDP procedure reported non-dominated solutions
for all the tested instances. It was observed how NSGA-II failed on appropriately handling
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Table 3 Summary of metrics for
instance DU500-04, where
NP(X) refers to the number of
points in the non-dominated
frontier X

Procedure NP(X) k-distance (mean) k-distance (max) SSC(X)

SSPMO 13.00 0.20 0.62 0.38

NSGA-II 4.00 – – 0.43

SSMTDP 13.00 0.13 0.32 0.97

Table 4 Coverage of two sets
C(A, B), instance DU500-04 C(A,B) SSPMO NSGA-II SSMTDP

SSPMO 0.00 0.00 0.00

NSGA-II 0.15 0.00 0.00

SSMTDP 1.00 1.00 0.00

Fig. 7 Approximate Pareto
frontiers reported by NSGA-II,
SSPMO, and SSMTDP, instance
DU500-04

the connectivity constraints. Most of the solutions generated by NSGA-II are highly in-
feasible with respect to the connectivity constraints, even though the NSGA-II considers
this requirement as objective to be minimized. The selection mechanism and the combina-
tion modules are not enough to handle these difficult constraints. In contrast, the proposed
SSMTDP procedure is specifically designed to take the connectivity into account over all
its components. Thus, for this problem, exploiting problem structure definitely pays off.
Figure 7 shows the comparison among the SSMTDP, SSPMO, and NSGA-II procedures.

Note that a few non-dominated solutions from SSPMO are dominated by the non-
dominated set reported by NSGA-II. In addition, both SSPMO and SSMTDP reported non-
dominated points in a region that is not covered by the Pareto frontier obtained by NSGA-II.

Table 3 shows again the superiority of SSMTDP that clearly outperforms both NSGA-II
and SSPMO, demonstrating the efficiency of the proposed method. We analyzed the sin-
gle case (instance DU500-04) in which NSGA-II reported feasible solutions. Note that in
the k-distance (mean and max), the corresponding values for NSGA-II could not be com-
puted given that we used k = 4. The coverage of two sets measure C(A,B) is shown in
Table 4, in this table the set A is associated with the rows and B with the columns. Observe
that the points obtained by NSGA-II dominated some points obtained by SSPMO. Table 4
shows that NSGA-II dominates 15% of the points reported by SSPMO. For this metric,
SSMTDP dominates the frontiers reported by NSGA-II and SSPMO (see Fig. 7). Moreover,
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NSGA-II reported feasible solutions just for a single instance out of 20 instances tested,
while SSMTDP reported feasible solutions for all instances tested. In summary, SSMTDP
outperforms both the NSGA-II and SSPMO procedures.

5 Conclusions and future work

In this paper a novel heuristic procedure based on Scatter Search is proposed. Each com-
ponent of the proposed method called SSMTDP has been designed taking advantage of the
problem structure. Empirical evaluation of the method was performed on two large instance
sets, consisting of 500 and 1000 BUs respectively. Solutions generated by SSMTDP were
compared with solutions obtained by SSPMO, a State of the Art multiobjective method.
SSMTDP reported better solutions than SSPMO in all tested instances. In addition NSGA-
II an evolutionary algorithm which is a benchmark for multiobjective problems was adapted
to the problem. Empirical work revealed that SSMTDP significantly outperformed NSGA-
II on all tested instances. Furthermore, it was observed that NSGA-II struggled to obtain
feasible solutions in the first place. This was mainly due to the presence of the connectivity
constraints.

As a future work the procedure can be extended to more objectives than those presented
here, one immediate extension can be to incorporate the load balancing with respect to sales
volume. One more interesting extension is the incorporation of the routing cost of delivering
the product; this additional feature can be treated either as an objective or as a constraint.
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